説明

半導体検査方法

【課題】半導体製造工程途中のウエハを検査する技術として、回路パターンに電圧および温度等の電気的負荷をかけて信頼性評価を行う半導体検査方法を提供する。
【解決手段】半導体製造工程途中の回路パターンを含むウエハに対して、電子線を所定の時間照射して、回路パターンを所定の帯電電圧に帯電させる工程(ステップ99)と、レーザー照射等により回路パターン周りの領域を所定の温度に制御する工程(ステップ106)とにより、回路パターンに電気的負荷を印加する。そして、電気的負荷印加の前後において、回路パターンを含む領域に電子線を照射することで二次電子画像を取得し(ステップ90)、この電気的負荷印加の前後の二次電子画像を比較判定することで、回路パターンおよびそれを含むウエハを検査する。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、特に電子線を用いた半導体装置の検査方法に係わり、回路パターンを有する半導体ウエハ上の欠陥を検出する検査技術、半導体素子の電気特性の不良解析技術、信頼性評価技術、並びに欠陥検査を用いた半導体装置の製造技術に関するものである。
【背景技術】
【0002】
電子線を用いた回路パターンを有する半導体ウエハの評価方法として、ウエハの大口径化と回路パターンの微細化に対応して高スループットかつ高精度な検査を行う技術が実用化されている。例えば、特許文献1(特開平06−139985号公報)で開示されているように、表面電位差に起因する二次電子線のコントラストを利用して欠陥検査を行う方法が知られている。電位コントラストから電気的欠陥を評価する方法として、例えば、特許文献2(特開平11−121561号公報)には、電子線をウエハに照射して、ウエハ表面から発生する二次電子画像を取得する手法が記載されている。本手法では、電子線を照射することによって回路パターンを帯電させたときに生じる二次電子の電位コントラストによって回路パターンの電気的な欠陥を検査することができる。特に半導体のゲート酸化膜等の特性を評価する手法については、例えば、特許文献3(特開2005−108984号公報)で開示されているように、電子線を1回または所定の間隔で複数回照射し、発生した二次電子の画像からリーク不良を特定する手法が知られている。
【0003】
一方、近年のゲート絶縁膜の薄膜化及び、新プロセス導入に伴い、CMOS等のゲート酸化膜やメモリのトンネル酸化膜等の信頼性評価が重要となっている。これまでは、半導体回路の完成後にプローブを接触させて、半導体回路に電気的に負荷を与えた後に電気的特性の変化を評価して、信頼性の評価を行なっていた。信頼性の評価法としては、例えば、TDDB(Time Dependent Dielectric Breakdown)と呼ばれている手法があり、酸化膜に長時間電圧を印加したときの絶縁破壊特性が一般的に評価されている。他の信頼性評価法として、ホットキャリア効果によるMOS特性の劣化の評価が行なわれている。他の信頼性評価法としては、PBTI(Positive Bais Temperature Instability)、あるいはNBTI(Negative Bais Temperature Instability)と呼ばれている手法で、高温で酸化膜に長時間正あるいは負の電圧を印加したときのMOS特性変化の評価が行なわれている。
【特許文献1】特開平06−139985号公報
【特許文献2】特開平11−121561号公報
【特許文献3】特開2005−108984号公報
【発明の開示】
【発明が解決しようとする課題】
【0004】
前述したような電子線を用いた欠陥検査手法を用いると、ウエハ上に形成した回路パターンの電気特性を半導体製造工程途中で非接触、非破壊で高速に検査することが可能となる。しかし、この手法では、回路パターンに電気的な負荷をかけた後に、電気特性の変化を検査するといった信頼性評価を行うことができなかった。このため、従来においては、半導体製造工程途中(所謂インライン)で信頼性評価を行うことが困難となっていた。
【0005】
一方、従来においては、例えば半導体製造工程後のプローブ検査内で信頼性評価を行っている。しかし、この場合、パッドにプローブを接触させて素子に電気的負荷をかけた後、プローブをパッドに接触させて電気特性を評価していたため、半導体回路全体の信頼性は評価することができたが、実際に回路パターンのどの場所が故障して素子特性が劣化したのか知ることはできなかった。このため、不良箇所を特定・解析して不良原因を究明するまでに時間を費やし、半導体開発期間を遅らせる要因となっていた。すなわち、例えば、信頼性低下の原因が半導体製造工程の初期の段階で発生した場合、この段階で不良が発生しても半導体回路が完成して電気テストを実施するまで検知することができず、不良発生から対策実施まで時間を要していた。このため、対策に数ヶ月レベルの膨大な時間を費やし、半導体開発期間を遅らせる要因となっていた。
【0006】
本発明は、このようなことを鑑みてなされたものであり、本発明の前記ならびにそれ以外の目的と新規な特徴は、本明細書の記述および添付図面から明らかになるであろう。
【課題を解決するための手段】
【0007】
そこで、本発明者らは半導体製造工程途中で信頼性評価を行う方法を検討した。この結果、信頼性評価時に半導体回路に与える電気的負荷に対応する負荷を電子線照射によって与えることにより、擬似的に回路パターンの信頼性評価を半導体製造工程途中に行うことが可能であることを見出した。例えば、ゲートパターンについて、TDDB特性を評価する場合について説明する。
【0008】
TDDB特性は酸化膜に長時間電圧を印加したときの絶縁破壊特性であり、例えば、図2のような特性として示される。時間Tlはゲート絶縁膜が絶縁破壊するまでの時間である。TDDBは、式(1)に示すように、ゲート絶縁膜に印加するストレス電界Eoxと温度Taによって加速されることが知られている。
【0009】
Tl=A・10−βEox・exp(Ea/kTa) (1)
ここで、βは電界加速係数、Eaは温度加速係数、kはボルツマン係数である。回路パターンの温度Taは絶対温度であり、Aは定数である。または、TDDBの絶縁破壊特性は式(2)で表されることもある。
【0010】
Tl=A・exp(−B/Eox)・exp(Ea/kTa) (2)
このように、半導体製造工程途中で回路パターンの信頼性評価をするためには、ウエハに所定の時間安定にストレス電界Eoxを印加するための手段、さらに、回路パターンの温度Taを調整するための手段が必要である。このような電気的負荷を半導体製造工程途中のウエハに印加し、回路パターンの信頼性を検査するための手段ついて、以下に述べる。
【0011】
第一の手段として、ウエハ上の回路パターンに電子線を照射してウエハ表面を正または負に所定の時間、帯電させるための手段を設けた。例えば、図4に示すように、ウエハに所望の時間、電子線を照射するための電子光学系を設けた。さらに、ウエハ上面に所望の電圧をかけてウエハ表面の帯電電圧を制御するための電極34a,34bを設けた。この電極34a,34bに電圧をかけてウエハ上面に形成される電界を調整することにより、電子線をウエハに照射したときに生成される二次電子の軌道を制御し、ウエハ表面の帯電を制御することが可能となった。例えば、ウエハ表面を正に帯電させる場合、ウエハからの二次電子の放出効率が1以上となる照射エネルギーで一次電子線を照射する。このとき、ウエハ上面の電極34a,34bに正の電圧をかけると、例えば図5に示すように、ウエハ表面から発生した二次電子112は効率的にウエハ上面に引き出され、ウエハ表面は正に帯電する。一方、ウエハ表面を負に帯電させる場合、ウエハ上面の電極34a,34bに負の電圧をかけると、ウエハ表面から発生した二次電子111は再びウエハ表面に引き戻されて負に帯電する。所定の領域に所定時間安定に電子線を照射する機能を設けた。これにより、半導体製造工程途中のウエハの所望のパターンに所望の時間、所望の電界をかけることが可能となった。
【0012】
第二の手段として、ウエハ上の回路パターンの所望の位置に電子線照射による負荷を印加するための手段を設けた。例えば、第一の手段と同様に、ウエハに所望のエネルギーを持つ電子線を所望量、パターン上の所定の位置にある小さい領域に電子線を照射するための電子光学系を設けた。まず、電気的負荷を与える前の初期状態の検査として二次電子画像を取得し、取得した二次電子画像から、負荷を印加する領域を決定する。そして、回路パターンの所定の位置に、エネルギーと照射量を調整した電子線を通過させることによって、回路パターンの所定の領域に負荷を与えて信頼性を評価する。回路パターンの一部に電子線を照射することで、回路パターンの局所に負荷を印加することが可能となり、信頼性低下の原因を早期に推定することが可能となる。例えば、図3に示すゲートパターンの場合、ゲート電極123のエッジ部分(122)のみに電子線を照射して、エッジ部分(122)に選択的に負荷をかけることができ、信頼性劣化の原因がゲートのエッジ部分(122)に起因するものかどうかを評価することができる。繰り返しパターンの同一箇所を認識し、同一条件で電子線を照射するための機能を設けた。
【0013】
第三の手段として、ウエハ上の所望の回路パターンの温度を制御するための手段を設けた。例えば図4に示すように、所望のパターンにレーザー光を照射して温度を制御するための機能を設けた。表面の温度を制御するために、レーザー光はパルス状で照射することもできる。さらに、パターン温度を計測する温度計を設け、レーザー光の出力を自動調整するための機構を設けた。また、第一の手段あるいは第二の手段で述べた電子線照射と第三の手段であるレーザー光照射はウエハ上の同一パターンに行うことが可能な構成となっており、回路パターンの温度制御を行いながら電子線照射によるストレス電圧印加も同一パターン上で行なうことが可能となった。
【0014】
第四の手段として、第一、第二、第三の手段で述べた電気的負荷印加手段によって被検査ウエハの回路パターンに負荷を印加する前後で二次電子画像取得用の電子線をウエハに照射し、発生する二次電子の電位コントラストを取得し、回路パターンの電気特性を評価するための機能を設けた。まず、図4に示すように、第一、第二、第三の手段で述べた電気的負荷印加手段によって負荷を印加する際のXYステージ16上の位置と電子線照射によって発生する二次電子の電位コントラストを取得する際のXYステージ16上の位置との間を精度良く移動するための機構を設けた。さらに、電気的負荷を印加する時の電子線照射領域と二次電子画像取得時の電子線照射領域を精密に一致するように調整して電子線を照射するためのアラインメント機能等を設けた。これにより、電子線照射による負荷印加前後の電位コントラストを高速に取得し、精度良く比較評価することが可能となった。さらに、電気的負荷印加を行なったパターンの二次電子画像を取得し、取得した二次電子画像から回路パターンの電気特性を評価し、ストレス印加による回路特性の経時変化を表示するための手段を設けた。
【発明の効果】
【0015】
本願において開示される発明のうち、代表的なものによって得られる効果を簡単に説明すると、半導体装置の信頼性の不具合を早期に検出でき、製造コストの低減などが実現可能となる。
【発明を実施するための最良の形態】
【0016】
以下の実施の形態において、要素の数等(個数、数値、量、範囲等を含む)に言及する場合、特に明示した場合および原理的に明らかに特定の数に限定される場合等を除き、その特定の数に限定されるものではなく、特定の数以上でも以下でも良い。また、以下の実施の形態において、その構成要素(要素ステップ等も含む)は、特に明示した場合および原理的に明らかに必須であると考えられる場合等を除き、必ずしも必須のものではないことは言うまでもない。同様に、以下の実施の形態において、構成要素等の形状、位置関係等に言及するときは、特に明示した場合および原理的に明らかにそうでないと考えられる場合等を除き、実質的にその形状等に近似または類似するもの等を含むものとする。このことは、上記数値および範囲についても同様である。
【0017】
以下、本発明の実施の形態を図面に基づいて詳細に説明する。なお、実施の形態を説明するための全図において、同一の部材には原則として同一の符号を付し、その繰り返しの説明は省略する。
【0018】
まず、半導体製造工程途中のウエハをTDDB評価する手法及び装置の一例について説明する。本実施の形態における半導体検査装置(信頼性検査装置)の構成例を図4に示す。半導体検査装置1は、検査用システム50と負荷印加用システム51、ステージ機構系3、ウエハ搬送系4、真空排気系5、光学顕微鏡6、操作系8で構成されている。
【0019】
検査用システム50は、電子光学系2、制御系7より構成されている。電子光学系2は、電子銃9a、コンデンサレンズ10a、対物レンズ11a、電極34a、検出器12a、エネルギーフィルタ13a、偏向器14a、ウエハ高さ検出器15aより構成されている。制御系7は、信号検出系制御部22、ブランキング制御部23、ビーム偏向補正制御部24、電子光学系制御部25、ウエハ高さセンサ検出系26、ステージ制御部27、電極制御部33より構成されている。
【0020】
負荷印加用システム51は、電子光学系52、ウエハ温度調整系56、負荷印加制御系57より構成されている。電子光学系52は、電子銃9b、コンデンサレンズ10b、対物レンズ11b、電極34b、検出器12b、エネルギーフィルタ13b、偏向器14b、ウエハ高さ検出器15bより構成されている。負荷印加制御系57は、信号検出系制御部72、ブランキング制御部73、ビーム偏向補正制御部74、電子光学系制御部75、ウエハ高さセンサ検出系76、電極制御部77、レーザー光学系制御部78、温度制御部79より構成されている。ウエハ温度調整系56は、レーザー光源66、レーザー光学系67、温度計68で構成されている。このように、負荷印加用システム51は、検査用システム50に温度調整手段(ウエハ温度調整系56、レーザー光学系制御部78、温度制御部79)が加わったような構成となっている。この半導体検査装置1は、検査用システム50と負荷印加用システム51を分離し、検査と負荷印加とを並行して行うことでスループットの向上を図っているが、一つの共有システムを設け、検査と負荷印加とを順番に行うように構成することも可能である。
【0021】
ステージ機構系3は、XYステージ16と、ウエハ18を保持するためのホルダ17と、ホルダ17およびウエハ18に負の電圧を印加するためのリターディング電源19より構成されている。XYステージ16には、レーザー測長による位置検出器が取りつけられている。検査用システム50の電子光学系2と負荷印加システム51の電子光学系52、またはウエハ温度調整系56、または光学顕微鏡6との間の距離は既知となっており、XYステージ16が前記既知の距離を往復移動するようになっている。すなわち、負荷印加システム51と検査用システム50の間を位置精度良くウエハ18が行き来できるようになっている。ウエハ搬送系4は、カセット載置部20とウエハローダ21とXYステージ16間をウエハ18が行き来できるようになっている。操作系8は、操作画面および操作部28、画像処理部29、画像・検査データ保存部30、演算部31、外部サーバ32より構成されている。
【0022】
このような半導体検査装置1を用いてTDDB検査を行う手法について、検査フローに従って説明する。図1に検査フローの一例を示す。
【0023】
まず、ウエハ18をセットし、操作画面28上で検査するウエハ18のカセット内の棚番号を指定する(ステップ80)。そして、被検査ウエハ18の情報として、ショットマトリクス、ゲート面積、ゲート酸化膜厚等のパターン情報を操作画面から入力する(ステップ81)。次いで、操作画面から各種検査条件を入力する。電気特性検査条件として、電子ビーム電流、電子ビーム照射エネルギー、走査速度および信号検出サンプリングクロック、1画面あたりの視野サイズ、1画面あたりの画像取得回数、画像処理に用いる取得画像、検査領域、被検査ウエハ18に関する各種情報等の条件を入力する(ステップ82)。また、電気的負荷印加条件として、電気的負荷印加時の電子ビーム電流、電子ビーム照射エネルギー、走査速度、1画面あたりの視野サイズ、電子線スキャン回数、電子ビーム照射時間、ウエハ上面の電極34bの電圧、ウエハ表面の帯電電圧、回路パターンの制御温度、電気的負荷印加時間等の条件を入力する(ステップ83)。なお、被検査パターンに局所的に電気的負荷を加える場合は、予め取得した二次電子画像に対して電子線を照射する領域を指定する。
【0024】
さらに、ステップ82,83においては、複数枚のウエハ18を自動的に続けて検査するかどうか、または同じウエハ18を異なる検査条件で続けて検査するかどうか等の内容を入力する。個々のパラメータを入力することも可能であるが、通常はパターン情報、検査領域、電気的負荷印加条件を指定すれば、検査したいパターン情報に応じて、上記各種検査パラメータの組み合わせが検査条件ファイルとしてデータベース化されて画像・検査データ保存部30に記憶されており、検査条件ファイルを選択して入力するだけでよい。これらの条件入力が完了したら、検査をスタートする。
【0025】
自動検査をスタートすると、まず、設定されたウエハ18が、半導体検査装置1内に搬送される。該被検査ウエハ18は、カセット載置部20からアーム、予備真空室等を含むウエハローダ21によりホルダ17上に載置され、保持固定されてホルダとともにウエハローダ21内で真空排気され、既に真空排気系5で真空になっている検査室に搬送される(ステップ84)。ウエハがロードされたら、上記入力された検査条件に基づき、電子光学系制御部25が、各部に電子線照射条件を設定する。その後、半導体検査装置1は、ホルダ17上に載置されたビーム校正用パターンが電子光学系2の下にくるようにXYステージ16を移動し(ステップ85)、ビーム校正用パターンの電子線画像を取得し、該画像より焦点及び非点収差の調整を行う(ステップ86)。続いて、被検査ウエハ18上の所定の箇所を対象として、ウエハ18の電子線画像を取得し、コントラスト等を調整する。ここで、電子線照射条件等を変更する必要が生じた場合にはパラメータを変更し、再度ビーム校正を実施することも可能である。また、ウエハ18の高さをウエハ高さ検出器15より求め、ウエハ高さセンサ検出系26により高さ情報と電子ビームの合焦点条件の相関を求め、その後の電子線画像取得時には毎回焦点合わせを実行することなく、ウエハ高さ検出器15の結果より合焦点条件に自動的に調整することも可能である。
【0026】
電子線照射条件および焦点及び非点収差調整が完了したら、ウエハ18上の2点以上の点によりアライメントを実施する。検査においては、ウエハ18内あるいはチップ内の設定された領域を高精度に視野出しする必要がある。そこで、半導体検査装置1は、欠陥部の視野出しを実行する前に予め登録したアライメント条件およびアライメント画像を用いて、自動的にアライメントを実行する(ステップ87)。アライメントが完了したら、アライメント結果に基づき回転や座標値を補正し、次に、ホルダ17上に載置された第二の校正用パターンに移動する。第二の校正用パターンは、予め正常に接合が形成されたトランジスタまたは、トランジスタに相当するパターンであり、該パターンを用いて正常部の明るさを校正する。この結果をふまえて、ウエハ18上に移動し、ウエハ上のパターン箇所の画像を取得し、明るさ調整すなわちキャリブレーションを実施する(ステップ88)。
【0027】
キャリブレーションが完了したら、半導体検査装置1は、検査を開始する(ステップ89)。検査が開始されると、半導体検査装置1は、指定された検査条件で指定された領域に電子線を走査しながら、二次電子画像を取得し(ステップ90)、二次電子画像を保存する(ステップ91)。二次電子画像取得時には、ステップアンドリピートで画像取得を行うこともできる。続いて、取得した二次電子画像を元に欠陥判定を行う(ステップ92)。この際に、取得した二次電子画像の明るさのばらつきからリーク電流のばらつきを評価することもできる。また、二次電子画像取得時にリアルタイムで画像処理を実施し、欠陥判定を行なうこともできる。検査状況は操作画面28に表示され、且つ検査データをデータ変換部を介して外部サーバ32などに出力する(ステップ93)。
【0028】
ここで、二次電子画像を用いて欠陥判定を行う方法について説明する。例えば、図5に電子ビームをゲートパターンに照射したときの帯電状態を示す説明図を示す。まず、上記半導体検査装置の検査用電子光学系を用いて電子ビームを照射する。ゲート電極110を正に帯電させる場合には、電子ビームの照射エネルギーはゲート電極の二次電子放出効率が1以上になる条件を選択する。前記条件で電子ビームを照射すると、照射した電子ビームよりも多くの二次電子が発生してゲート電極は正に帯電する。ゲート電極が正に帯電すると、エネルギーの低い二次電子111はウエハ表面に引き戻されるが、エネルギーの高い二次電子112は検出器に到達する。
【0029】
ここで、ウエハ上面に設置された電極34a,34bにかける電圧によってウエハ上面の電界が決定され、二次電子の軌道が制御されてウエハ表面に戻る二次電子と検出される二次電子が制御される。従って、電子線の照射エネルギー等の電子線の照射条件とウエハ上面の電界によってゲート電極110の帯電電圧を制御することができる。このようにして、ゲート電極110の帯電電圧が制御されて二次電子画像のコントラストが形成される。ゲート絶縁膜113が絶縁破壊している場合、ゲート電極110に電子線を照射しても、ゲート絶縁膜113を通してSi基板114から電流が瞬時に供給されるため、ゲート電極110は帯電しない。このため、ゲート絶縁膜113が絶縁破壊しているゲート電極110は正常のゲート電極の二次電子画像よりも明るく観察される。従って、ゲート絶縁膜113のリーク電流によって二次電子画像の明るさは変化する。
【0030】
図6には取得した二次電子画像のゲート電極部分の信号強度の累積度数分布を示す。このように、信号強度の分布から、被検査パターンの主分布と明るい二次電子画像として検出された落ちこぼれが評価できた。欠陥と判定するためのしきい値115を設定することにより、欠陥を検出することができた。
【0031】
被検査パターンの初期状態の検査が終了したら、信頼性評価のための電気的負荷印加を行う。まず、半導体検査装置1は、XYステージ16を制御し、ウエハ18を負荷印加用システム51内の所定の位置に移動する。次に、上記入力された電気的負荷印加条件に基づき、電子光学系制御部75が各部に電子線照射条件を設定する。そして、ホルダ17上に載置されたビーム校正用パターンが電子光学系52下にくるようにXYステージ16を制御し(ステップ94)、ビーム校正用パターンの電子線画像を取得し、該画像より焦点及び非点収差の調整を行う(ステップ95)。その後、被検査ウエハ18上の所定の箇所に移動し、ウエハ18の電子線画像を取得し、コントラスト等を調整する。ここで、電子線照射条件等を変更する必要が生じた場合にはパラメータを変更し、再度ビーム校正を実施することも可能である。また、ウエハ18の高さをウエハ高さ検出器15bより求め、ウエハ高さセンサ検出系76により高さ情報と電子ビームの合焦点条件の相関を求め、この後の電子線画像取得時には毎回焦点合わせを実行することなく、ウエハ高さ検出器15bの結果より合焦点条件に自動的に調整することもできる。
【0032】
電子線照射条件および焦点及び非点収差調整が完了したら、ウエハ18上の2点以上の点によりアライメントを実施する(ステップ96)。検査においては、ウエハ18内あるいはチップ内の設定された領域を高精度に視野出しする必要がある。そこで、半導体検査装置1は、欠陥部の視野出しを実行する前に予め登録したアライメント条件およびアライメント画像を用いて、自動的にアライメントを実行する。このアライメントにより、検査用システム50での検査用二次電子画像取得時における電子線照射領域と、負荷印加用システム51での電気的負荷を印加する場合における電子線照射領域との対応を精密にとることが可能となる。
【0033】
アライメントが完了したら、アライメント結果に基づき回転や座標値を補正し、次に、ホルダ17上に載置された第二の校正用パターンに移動する。第二の校正用パターンは、予め正常に接合が形成されたトランジスタまたは、トランジスタに相当するパターンであり、該パターンを用いて正常部の明るさを校正する。この結果をふまえて、ウエハ18上に移動し、ウエハ上のパターン箇所の画像を取得し、明るさ調整すなわちキャリブレーションを実施する(ステップ97)。なお、キャリブレーションは、最初に一度実施すればよく、後述するステップ101からステップ90へと戻るループ処理に伴った2回目以降の場合は、当該処理を省略し、最初に実施した際に得た設定値を用いることができる。
【0034】
キャリブレーションが完了したら、半導体検査装置1は、XYステージ16を制御し、電気的負荷を印加する領域が電気的負荷印加用の電子光学系52直下にくるようにウエハ18を移動する(ステップ98)。なお、前述したように、例えば、検査用システム50が負荷印加用システムを共有する構成とする場合には、電気的負荷を印加する領域が電子光学系2直下にくるようにウエハ18を移動する。
【0035】
次いで、半導体検査装置1は、電気的負荷印加を開始し、指定された検査条件で指定された領域に指定された時間電子線を照射・走査する(ステップ99)。この際に、温度を制御する必要がある場合には、電子線照射と同時にレーザー光照射を行うことにより、電気的負荷印加領域のウエハ温度を制御することができる(ステップ106)。ステップ99における電子線照射条件は、パターン表面が所望の帯電電圧になるように設定される。電子ビームを用いてパターン表面を所望の帯電電圧に制御する手法は、上記検査画像取得時にパターン表面を帯電させた手法と同一であり、電子線の照射エネルギー等の電子線の照射条件とウエハ上面の電極34bにかける電圧を調整することによってゲート電極110の帯電電圧を制御することができる。電気的負荷を印加する場合には、電子線として、スポットビームを照射領域に走査することもできるし、照射領域に対してブロードに広げた形成ビームを照射することもできる。また、パターン表面が所望の帯電電圧に帯電されているか随時確認し、帯電電圧が許容値を外れている場合には、再度電子線照射条件およびウエハ上面の電極電圧を再設定することができる。
【0036】
ここで、ウエハ表面の帯電電圧を測定する方法の一例について説明する。ここでは、検出器12bの前段に設置されたエネルギーフィルタ13bを用いて帯電電圧を測定する手法の一例を説明する。図7に、二次電子画像の信号強度のフィルタ電圧依存性と帯電電圧との関連を示す。まず、エネルギーフィルタ13bの電圧を、検出する二次電子のエネルギーよりも十分高い値に設定し、二次電子画像を取得する。次に、フィルタ電圧の値をステップ幅ΔVfずつ変化させて設定し、二次電子画像を取得する。二次電子画像が十分暗くなるまでフィルタ電圧の設定と二次電子画像取得を繰り返して、図7に示したような二次電子画像の信号強度のフィルタ電圧依存性116を取得する。導電性材料でできたベアウエハ等、帯電電圧が0Vである試料での二次電子画像の信号強度のフィルタ電圧依存性117を予め取得しておき、これとの間のシフト量を算出することによって、帯電電圧Vcを測定することができる。その他、ケルビンプローブ等の手段を用いて帯電電圧を取得することもできる。
【0037】
次に、電気的負荷印加用の電子線照射領域と検査用の電子線照射領域との関連を述べる。図8に電気的負荷印加領域119と検査領域118の関係の一例を示す。図8は、大量のパターンを同時に電気的負荷印加する場合について示してあり、一度に広い領域に電子線を照射することによって、短時間に大量のパターンに均一な負荷を与えることができる。検査パターンが少量の場合や、1枚のウエハ上で異なる電気的負荷印加条件の検査を行う場合には、検査領域118と電気的負荷印加領域119とをほぼ同等に設定することもできる。
【0038】
また、これまでは電子線照射によって生じる帯電電圧によって電気的負荷を与える場合について述べたが、所望の領域に電子線を通過させることによってパターンに電気的負荷を与えることもできる。この手法では、例えば、ホットキャリア効果の評価を擬似的に行なうことができる。ホットキャリア効果は、MOSFETのドレイン近傍の電界が非常に大きくなることによって高速に加速された電子が発生し、この電子によって高エネルギーの電子および正孔の一部がゲート酸化膜に注入されてさらにホットキャリアを発生する現象のことである。入射電子線、あるいは入射電子線によって発生した二次電子をゲート酸化膜に注入することにより、擬似的にホットキャリア効果を発生させることができる。この場合の入射電子線のエネルギーとして、例えば、ゲート電極の厚さ以上の飛程となる電子線のエネルギーが有効である。
【0039】
所望の領域に電子線を通過させる手法で電気的負荷を印加する場合には、パターンの局所に負荷を与えることが可能である。図9に、ゲートパターンに局所的に負荷を印加する場合の検査領域121と電気的負荷印加領域122との関連の一例を示す。図9に示すように、検査領域121よりも小さな領域への電気的負荷印加を行うことができる。例えば、ゲートパターンの場合、例えば、ゲート電極123のエッジ付近に電気的負荷を与えた場合とゲート電極123全体に電気的負荷を与えた場合とを比較することによって、回路パターンにおける信頼性低下を起こしやすい場所を特定することができる。または、ゲートパターン下のアクティブ領域124と素子分離領域125の境界領域と、ゲート電極123全体に電気的負荷を与えた場合とを比較することによって、信頼性低下を起こしやすい場所を特定することができる。このように、局所的に電気的負荷を与える場合には、負荷を与えるパターンの近傍で、予め登録したアライメント条件およびアライメント画像を用いて、自動的にアライメントを実行することもできる。
【0040】
また、前述したような電子線照射による電気的負荷印加の際には温度制御を行なうことも可能である(ステップ106)。すなわち、ウエハを加熱する手段として、レーザー光を電気的負荷印加領域を含む領域に照射できる構造を設けた。例えば、レーザー光源66から出射されたレーザー光は図8に示した様に、例えば、電気的負荷印加用電子ビームが照射される領域よりも広い領域120に照射される。レーザー光源66としては、例えば半導体レーザ等を用いることができる。回路パターンの温度を調整するために、レーザーの出力、および、レーザーパルスの間隔を調整する。温度調整は、温度計68がリアルタイムでレーザー照射部の温度を計測し、計測した温度に従って、温度制御部79がレーザーの出力およびレーザーパルスの間隔を調整することで行われる。検査パターンに直接レーザー光を照射した場合、温度上昇以外に検査パターンに影響を及ぼす可能性がある場合がある。このような場合は、電子線照射部から少し離れた領域、または、ウエハ裏面からレーザー照射することにより、間接的にパターンの温度を制御することもできる。
【0041】
なお、ウエハ18を加熱する他の手法として、例えばXYステージ16にヒーターを埋め込んだ構造とし、電子線照射前に温度調整を行うこともできる。検査中にパターンの温度を変えた場合には、電子線照射領域に微妙な位置ずれが生じて、所定のパターンに電気的負荷を印加できなかったり、所定のパターンの検査画像が取得できない場合がある。このような場合は、レーザー光照射領域120等の温度を制御した領域内で予め登録したアライメント条件およびアライメント画像を用いて、自動的にアライメントを実行するとよい。
【0042】
このようにして1回目の電気的負荷印加が終了すると、半導体検査装置1は、ウエハ18を再び検査用システム50内の所定のステージ位置に移動して、電気的負荷印加後の検査を行う(ステップ101)。2回目以降の検査は電気的負荷印加前と同じ条件で行うことが望ましい。電気的負荷印加時の残留帯電の影響がある場合は、検査前に除電処理を施す(ステップ100)。除電方法としては、例えば、検査時と逆の極性の帯電になるような電子線照射条件で電子線を照射する方法、あるいは、紫外光を照射して帯電除去処理を施す方法などが挙げられる。2回目以降の検査画像取得時には、ビーム調整(ステップ86)、ウエハアライメント(ステップ87)、キャリブレーション(ステップ88)を省略することができる。検査画像を取得したら、再び負荷印加用システム51にウエハ18を移動し(ステップ94)、電子線照射および温度調整により電気的負荷印加を行う(ステップ99)。図10に、ストレス印加と検査画像取得のタイミングの関係を示す。このように、検査と負荷印加とを繰り返して、検査データを取得する。
【0043】
また、検査状況は随時、操作画面28に表示され、検査データは画像・検査データ保存部30に保存される。検査が終了したら(ステップ102)、各検査データを纏めた検査結果ファイルが画像・検査データ保存部30に生成され(ステップ103)、また、ウエハ18がアンロードされる(ステップ104)。検査結果ファイルは、操作画面28に表示することができ(ステップ105)、また、外部サーバ32等に出力することもできる。検査結果の表示例を図11に示す。図11は、前述したような検査によって得られたTDDB特性の表示例である。図11に示すように、演算部31等を用いて前述した検査データを集計および判別処理することで、電気的負荷印加時間に伴う不良率の変化を評価できるようになる。
【0044】
さらに、演算部31等を用いて前述した検査データを集計および判別処理することで、不良のショット内分布やウエハ面内分布の情報を操作画面28等に表示することもできる。図12に、不良箇所のウエハ面内分布126の表示例を示す。このように、例えば、落ちこぼれパターン部分127を電気的負荷印加時間によって分類して表示することができる。具体的には、まず、第1段階として、前述したステップ90等の処理により、ウエハ面内のそれぞれ異なる箇所に配置された複数の回路パターンを対象として、各回路パターン毎に、電気的負荷印加前の二次電子画像のコントラスト(第1電位コントラスト)を取得する。次いで、第2段階として、前述したステップ99等の処理により、各回路パターンに電気的負荷を印加した後、ステップ90等の処理に戻って、電気的負荷印加後の二次電子画像のコントラスト(第2電位コントラスト)を取得する。その後は、この第2段階の処理が繰り返し行われ、これに伴い、電気的負荷印加時間が蓄積されることになる。演算部31等は、この第2段階の処理が行われる毎に、ステップ92等の処理により、第1電位コントラストと第2電位コントラストの差分値を比較判定し、この差分値が予め定めたしきい値よりも大きくなった場合に、該当する回路パターンを故障と判別する。そして、演算部31等は、この故障と判別した時点での電気的負荷印加時間の蓄積時間を、該当する回路パターンのTDDB特性の実力値と判断する。図12は、このようにして得られたウエハ面内における各回路パターンの実力値の分布を表示したものである。また、同様にして、図12に示すように、ショット128内の拡大表示もすることができる。
【0045】
TDDB特性では、通常絶縁破壊を起こしたパターンを不良としているが、デバイスの種類によってリーク電流にしきい値を設け、しきい値以上のリーク電流となったパターンを不良として表示することもできる。例えばウエハ周辺で不良が多発したり、ショット周辺やパターン密度が疎な箇所で不良が発生する場合がある。このような分布の特徴を的確に把握して、不良発生の原因を特定し、早期にプロセス改善等の対策を行なうために上記結果表示が有益となる。この結果、不良発生のプロセスやその要因を早期に特定することができるようになり、半導体製造プロセスへのフィードバックを早期に行うことが可能となり、早期に製造プロセスを立ち上げ、早期に製品の歩留まりを向上できるようになる。
【0046】
以上、本実施の形態の半導体検査方法を用いることによる主要な効果を纏めると以下のようになる。
【0047】
まず、半導体製造工程途中のウエハにおいて、信頼性の評価を行なうことが可能となった。例えば、TDDB、PBTI、あるいはNBTI、ホットキャリア効果によるMOS特性の劣化等の信頼性の評価が可能となった。また、例えば、電子線照射によってホットキャリアを生成するような電気的負荷の印加法により、従来の印加法よりも負荷印加時間を短縮することができるため、評価時間を短くすることが可能となった。また、回路パターンに局所的に負荷を印加できるようになったため、回路パターンのどの部分が信頼性劣化原因となっているか評価可能となり、対策の効率が大幅に向上した。また、回路パターンを最後まで作成しなくても、製造工程途中で信頼性評価できるようになったことから、プロセス条件最適化を実施する際に、プロセスの良否を即座に判定できるため、対策の効率が大幅に向上し、その結果半導体製造プロセスの開発期間および歩留まり向上期間を大幅に短縮することができるようになった。
【0048】
また信頼性劣化のウエハ面内分布が即座に分かるので、インラインでの他の検査結果との対応や基板製造プロセスのウエハ面内分布との対応が高速、高精度に把握できるので、基板製造プロセスにいち早く異常対策処理を講ずることができ、その結果半導体装置その他の基板の不良率を低減し生産性を高めることが可能となった。さらに、異常発生をいち早く検知して、従来よりも早期に対策を講ずることが可能となったので、多量の不良発生を未然に防止し、半導体装置の信頼性を高めることができるようになった。この結果、新製品等の開発効率が向上し、且つ、製造コストが削減できるようになった。
【0049】
以上、本発明者によってなされた発明を実施の形態に基づき具体的に説明したが、本発明は前記実施の形態に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能である。
【産業上の利用可能性】
【0050】
本発明の一実施の形態による半導体検査方法は、特に、半導体装置の前工程プロセス内で行われるインライン検査工程に適用して有益な技術であり、これに限らず、不良品発生時の解析技術としてや、プロセス開発時の評価技術としてなど半導体装置の評価方法として広く適用可能である。
【図面の簡単な説明】
【0051】
【図1】本発明の一実施の形態による半導体検査方法において、その検査フローの一例を示す図である。
【図2】TDDB特性の一例を示す説明図である。
【図3】本発明の一実施の形態による半導体検査方法において、ゲートパターンへの電気的負荷印加法の一例を示す説明図である。
【図4】本発明の一実施の形態による半導体検査方法において、それに用いる半導体検査装置の一例を示す構成図である。
【図5】本発明の一実施の形態による半導体検査方法において、ゲートパターンに電子線を照射したときの帯電状態を一例を示す説明図である。
【図6】本発明の一実施の形態による半導体検査方法において、ゲート電極部分での二次電子画像の信号強度の累積度数分布を示す説明図である。
【図7】本発明の一実施の形態による半導体検査方法において、二次電子画像の信号強度のフィルタ電圧依存性を示す説明図である。
【図8】本発明の一実施の形態による半導体検査方法において、電気的負荷印加領域と検査領域の関係の一例を示す説明図である。
【図9】本発明の一実施の形態による半導体検査方法において、ゲートパターンエッジ部分のみに電気的負荷を印加する場合の検査領域と電気的負荷印加領域との関連の一例を示す説明図である。
【図10】本発明の一実施の形態による半導体検査方法において、電気的負荷印加と検査画像取得のタイミングの一例を示す説明図である。
【図11】本発明の一実施の形態による半導体検査方法において、TDDB特性評価結果の表示例を示す説明図である。
【図12】本発明の一実施の形態による半導体検査方法において、TDDB特性評価結果の不良箇所のウエハ面内分布の表示例を示す説明図である。
【符号の説明】
【0052】
1 半導体検査装置
2 電子光学系
3 ステージ機構系
4 ウエハ搬送系
5 真空排気系
6 光学顕微鏡
7 制御系
8 操作系
9a,9b 電子銃
10a,10b コンデンサレンズ
11a,11b 対物レンズ
12a,12b 検出器
13a,13b エネルギーフィルタ
14a,14b 偏向器
15a,15b ウエハ高さ検出器
16 XYステージ
17 ホルダ
18 ウエハ
19 リターディング電源
20 カセット載置部
21 ウエハローダ
22 信号検出系制御部
23 ブランキング制御部
24 ビーム偏向補正制御部
25 電子光学系制御部
26 ウエハ高さセンサ検出系
27 ステージ制御部
28 操作画面
29 画像処理部
30 画像・検査データ保存部
31 演算部
32 外部サーバ
33 電極制御部
34a,34b 電極
50 検査用システム
51 負荷印加用システム
52 電子光学系
56 ウエハ温度調整系
57 負荷印加制御系
66 レーザー光源
67 レーザー光学系
68 温度計
72 信号検出系制御部
73 ブランキング制御部
74 ビーム偏向補正制御部
75 電子光学系制御部
76 ウエハ高さセンサ検出系
77 電極制御部
78 レーザー光学系制御部
79 温度制御部
110 ゲート電極
111,112 二次電子
113 ゲート絶縁膜
114 Si基板
115 しきい値
116 被検査パターンのフィルタ電圧依存性
117 帯電していないパターンのフィルタ電圧依存性
118 検査領域
119 電気的負荷印加領域
120 レーザー光照射領域
121 検査領域
122 電気的負荷印加領域
123 ゲート電極
124 アクティブ領域
125 素子分離領域
126 ウエハ面内分布
127 落ちこぼれパターン部分
128 ショット

【特許請求の範囲】
【請求項1】
回路パターンが形成された半導体基板表面に第1の電子ビームを照射する第1工程と、
前記第1の電子ビームの照射によって前記半導体基板から放出された第1の二次電子を検出する第2工程と、
前記第1の二次電子を基にして第1の電位コントラスト信号を取得する第3工程と、
前記第1の電子ビームを照射した回路パターンを含む領域に第2の電子ビームを所定量照射して前記回路パターンの一部に所定時間の電気的負荷を与える第4工程と、
前記第1の電子ビームを照射した回路パターンを含む領域に前記第1の電子ビームと同等の照射条件で第3の電子ビームを照射する第5工程と、
前記第3の電子ビームの照射によって前記半導体基板から放出された第2の二次電子を検出する第6工程と、
前記第2の二次電子を基にして第2の電位コントラスト信号を取得する第7工程と、
前記第1の電位コントラスト信号と前記第2の電位コントラスト信号の変化量から、前記回路パターンの電気的特性を判別および表示する第8工程とを有することを特徴とする半導体検査方法。
【請求項2】
請求項1記載の半導体検査方法において、
前記第8工程は、前記回路パターンの電気的特性のウエハ面内でのばらつきを表示することを特徴とする半導体検査方法。
【請求項3】
請求項1記載の半導体検査方法において、
前記第4工程で前記第2の電子ビームが照射される回路パターンの一部は、ゲート電極であり、前記第8工程によって、前記ゲート電極下の絶縁膜の耐久性が判別されることを特徴とする半導体検査方法。
【請求項4】
請求項1記載の半導体検査方法において、
前記第4工程では、不良を起こしやすいと推察される前記回路パターンの一部に前記第2の電子ビームを通過させることで疑似的にホットキャリアを発生させる処理が行われ、前記第8工程によって、前記回路パターンの一部の耐久性が判別されることを特徴とする半導体検査方法。
【請求項5】
請求項1記載の半導体検査方法において、
更に、前記第4工程の前に、前記回路パターンを所定の温度に調整する第9工程を有することを特徴とする半導体検査方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate


【公開番号】特開2009−252995(P2009−252995A)
【公開日】平成21年10月29日(2009.10.29)
【国際特許分類】
【出願番号】特願2008−98851(P2008−98851)
【出願日】平成20年4月7日(2008.4.7)
【出願人】(503121103)株式会社ルネサステクノロジ (4,790)
【Fターム(参考)】