説明

半導体装置の製造方法

【課題】高周波領域において優れた電気的特性が得られるように、寄生容量を低減し得る半導体装置の製造方法を得る。
【解決手段】第1のソース電極、ゲート電極、ドレイン電極、及び第2のソース電極が、所定方向に沿ってこの順に並んで半導体基板の上面上に形成された構造を有するトランジスタを形成する。犠牲層を、トランジスタを覆って半導体基板の上面上に形成する。犠牲層を部分的に除去することにより、第1のソース電極及び前記第2のソース電極を露出する。第1のソース電極及び第2のソース電極に接続され、所定方向に沿って延在する配線を、犠牲層の上面上に形成する。犠牲層を除去する。上面が開口した枠体を、トランジスタの周囲を取り囲んで、半導体基板の上面上に形成する。枠体上にテープを貼り付けることにより、枠体及びテープによってトランジスタ及び配線を覆う。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、半導体装置の製造方法に関し、特に、高周波で動作するトランジスタの製造方法に関する。
【背景技術】
【0002】
近年、携帯電話等に代表される移動体通信機器市場の世界的な拡大、及び衛星通信サービスの急速な普及により、高周波で動作する電子回路の需要が飛躍的に増加している。さらに、伝送される情報量の増大に伴い、より高い周波数での通信が必要とされている。このような要求に応えるために、マイクロ波領域の高い周波数で動作する、化合物半導体基板上に形成されるMMIC(Monolithic Microwave Integrated Circuit)の開発が盛んに行われている。
【0003】
MMICの中でも特に重要な素子はトランジスタであるが、化合物半導体は電子移動度が高いため、トランジスタは非常に高速で動作する。このようなトランジスタの一つとして、高電子移動度トランジスタ(High Electron Mobility Transistor:HEMT)と呼ばれているものがある。
【0004】
以下、従来のHEMTの構造について説明する。化合物半導体基板上に電子走行層が形成されており、電子走行層上に電子供給層が形成されている。電子供給層上には、第1〜第3の高濃度ドープ層が部分的に形成されている。第1の高濃度ドープ層上には第1のソース電極が形成されており、第2の高濃度ドープ層上にはドレイン電極が形成されており、第3の高濃度ドープ層上には第2のソース電極が形成されている。第1の高濃度ドープ層と第2の高濃度ドープ層との間における電子供給層上には、オーバーハング形状の第1のゲート電極が形成されている。第2の高濃度ドープ層と第3の高濃度ドープ層との間における電子供給層上には、オーバーハング形状の第2のゲート電極が形成されている。第1及び第2のゲート電極を覆って、比誘電率が4〜5程度の樹脂が形成されている。樹脂上には、金属配線が形成されている。金属配線は、樹脂内に形成された第1及び第2のコンタクトホールを介して、第1及び第2のソース電極に接続されている。
【0005】
第1及び第2のゲート電極に印加するゲート電圧によって、電子供給層から電子走行層へ供給される電子の量を調整することにより、ソース電極とドレイン電極との間を流れる電流量が制御される。
【0006】
なお、HEMTのゲート電極の周囲に空気層を形成する技術が、下記特許文献1〜3に開示されている。
【先行技術文献】
【特許文献】
【0007】
【特許文献1】特開2001−118859号公報
【特許文献2】特開平6−140440号公報
【特許文献3】特開2002−299443号公報
【発明の概要】
【発明が解決しようとする課題】
【0008】
上記したHEMTの構造では、第1及び第2の高濃度ドープ層と第1のゲート電極との間、並びに、第2及び第3の高濃度ドープ層と第2のゲート電極との間に、本質的で避けられないキャパシタが存在する。従来のHEMTでは、比誘電率が4〜5程度の樹脂が第1及び第2のゲート電極を覆って形成されているため、これらのキャパシタは比較的大きな寄生容量となる。その結果、従来のHEMTには、この寄生容量に起因して、高周波領域におけるデバイスの電気的特性が低下するという問題がある。
【0009】
本発明はかかる問題を解決するために成されたものであり、高周波領域において優れた電気的特性が得られるように、寄生容量を低減し得る半導体装置の製造方法を得ることを目的とする。
【課題を解決するための手段】
【0010】
本発明に係る半導体装置の製造方法は、(a)第1のソース電極、ゲート電極、ドレイン電極、及び第2のソース電極が、所定方向に沿ってこの順に並んで半導体基板の上面上に形成された構造を有するトランジスタを形成する工程と、(b)犠牲層を、前記トランジスタを覆って前記半導体基板の前記上面上に形成する工程と、(c)前記犠牲層を部分的に除去することにより、前記第1のソース電極及び前記第2のソース電極を露出する工程と、(d)前記工程(c)よりも後に実行され、前記第1のソース電極及び前記第2のソース電極に接続され、前記所定方向に沿って延在する配線を、前記犠牲層の上面上に形成する工程と、(e)前記工程(d)よりも後に実行され、前記犠牲層を除去する工程と、(f)上面が開口した枠体を、前記トランジスタの周囲を取り囲んで、前記半導体基板の前記上面上に形成する工程と、(g)前記枠体上にテープを貼り付けることにより、前記枠体及び前記テープによって前記トランジスタ及び前記配線を覆う工程とを備える。
【発明の効果】
【0011】
本発明によれば、寄生容量が低減され、高周波領域において優れた電気的特性を示す半導体装置を得ることができる。
【図面の簡単な説明】
【0012】
【図1】本発明の実施の形態1に係る半導体装置の構造を示す上面図である。
【図2】図1に示したラインII−IIに沿った位置に関する断面構造を示す断面図である。
【図3】図1に示したラインIII−IIIに沿った位置に関する断面構造を示す断面図である。
【図4】図2に対応させて、本発明の実施の形態1に係る半導体装置の製造方法を工程順に示す断面図である。
【図5】図2に対応させて、本発明の実施の形態1に係る半導体装置の製造方法を工程順に示す断面図である。
【図6】図2に対応させて、本発明の実施の形態1に係る半導体装置の製造方法を工程順に示す断面図である。
【図7】図2に対応させて、本発明の実施の形態1に係る半導体装置の製造方法を工程順に示す断面図である。
【図8】図3に対応させて、本発明の実施の形態1に係る半導体装置の製造方法を工程順に示す断面図である。
【図9】図3に対応させて、本発明の実施の形態1に係る半導体装置の製造方法を工程順に示す断面図である。
【図10】図3に対応させて、本発明の実施の形態1に係る半導体装置の製造方法を工程順に示す断面図である。
【図11】図3に対応させて、本発明の実施の形態1に係る半導体装置の製造方法を工程順に示す断面図である。
【図12】図3に対応させて、本発明の実施の形態1に係る半導体装置の製造方法を工程順に示す断面図である。
【図13】図2に対応させて、本発明の実施の形態2に係る半導体装置の構造を示す断面図である。
【図14】図3に対応させて、本発明の実施の形態2に係る半導体装置の構造を示す断面図である。
【図15】本発明の実施の形態3に係る半導体装置の製造方法を工程順に示す模式図である。
【図16】本発明の実施の形態3に係る半導体装置の製造方法を工程順に示す模式図である。
【図17】図2に対応させて、本発明の実施の形態3に係る半導体装置の構造を示す断面図である。
【図18】図3に対応させて、本発明の実施の形態3に係る半導体装置の構造を示す断面図である。
【図19】図1に対応させて、本発明の実施の形態4に係る半導体装置の構造を示す上面図である。
【図20】図19に示したラインXX−XXに沿った位置に関する断面構造を示す断面図である。
【図21】図1に対応させて、本発明の実施の形態5に係る半導体装置の構造を示す上面図である。
【図22】図21に示したラインXXII−XXIIに沿った位置に関する断面構造を示す断面図である。
【図23】本発明の実施の形態6に係る半導体装置の構造を示す上面図である。
【図24】本発明の実施の形態6に係る半導体装置の構造を示す上面図である。
【図25】図24に示したラインXXV−XXVに沿った位置に関する断面構造を示す断面図である。
【図26】図24に示したラインXXVI−XXVIに沿った位置に関する断面構造を示す断面図である。
【図27】図26に対応させて、本発明の実施の形態6に係る半導体装置の製造方法を工程順に示す断面図である。
【図28】図26に対応させて、本発明の実施の形態6に係る半導体装置の製造方法を工程順に示す断面図である。
【図29】図26に対応させて、本発明の実施の形態6に係る半導体装置の製造方法を工程順に示す断面図である。
【図30】本発明の実施の形態7に係る半導体装置の構造を示す上面図である。
【図31】本発明の実施の形態7に係る半導体装置の構造を示す上面図である。
【図32】図31に示したラインXXXII−XXXIIに沿った位置に関する断面構造を示す断面図である。
【図33】本発明の実施の形態8に係る半導体装置の構造を示す上面図である。
【図34】図33に示したラインXXXIV−XXXIVに沿った位置に関する断面構造を示す断面図である。
【発明を実施するための形態】
【0013】
実施の形態1.
図1は、本発明の実施の形態1に係る半導体装置の構造を示す上面図であり、図2,3は、それぞれ図1に示したラインII−II,III−IIIに沿った位置に関する断面構造を示す断面図である。
【0014】
図2を参照して、本実施の形態1に係るHEMTは、GaAs基板等の化合物半導体基板1、電子走行層2、電子供給層3、高濃度ドープ層4a,4b,5、ソース電極6a,6b、ドレイン電極7、及びオーバーハング形状のゲート電極8a,8bを有している。電子走行層2は、化合物半導体基板1上に全面的に形成されている。電子供給層3は、電子走行層2上に全面的に形成されている。高濃度ドープ層4a,4b,5は、互いに離間しつつ電子供給層3上に部分的に形成されている。以下の説明では、化合物半導体基板1、電子走行層2、電子供給層3、及び高濃度ドープ層4a,4b,5をまとめて、「半導体基板」と称する場合もある。
【0015】
ソース電極6aは高濃度ドープ層4a上に形成されており、ソース電極6bは高濃度ドープ層4b上に形成されており、ドレイン電極7は高濃度ドープ層5上に形成されている。ゲート電極8aは、高濃度ドープ層4aと高濃度ドープ層5との間における電子供給層3上に形成されており、ゲート電極8bは、高濃度ドープ層4bと高濃度ドープ層5との間における電子供給層3上に形成されている。ソース電極6a,6bには、金属配線9が接続されている。
【0016】
図3を参照して、半導体基板上には、側壁11a,11bが形成されている。側壁11a,11bの材質は、ポリイミド系樹脂、エポキシ系樹脂、又はフッ素系ポリマー樹脂等の、感光性樹脂である。側壁11a,11bの高さは、ゲート電極8aの高さよりも高い。金属配線9は、側壁11a,11bに接触して形成されている。金属配線9には、金属配線9の上面から底面まで貫通するスリット12が形成されている。
【0017】
図2,3を参照して、ゲート電極8a,8bの周囲には、空気層10が形成されている。空気層10は、金属配線9と、側壁11a,11bと、半導体基板の上面とによって規定されている。
【0018】
図1を参照して、ソース電極6a、ゲート電極8a、ドレイン電極7、ゲート電極8b、及びソース電極6bは、紙面の横方向(以下「第1方向」と称す)に沿ってこの順に並んで形成されている。側壁11a,11b及び金属配線9は、第1方向に沿って延在して形成されている。側壁11a,11bは、紙面の縦方向(以下「第2方向」と称す)に関して両側からHEMTを挟んでいる。金属配線9には、複数個の開口部(図1に示した例では6個のスリット12)が形成されている。スリット12の寸法は、例えば、幅が1μmであり、長さが20μmである。但し、長方形状のスリット12の代わりに、正方形状又は円形状の小孔を形成してもよい。
【0019】
図4〜7は、図2に対応させて、本実施の形態1に係る半導体装置の製造方法を工程順に示す断面図であり、図8〜12は、図3に対応させて、本実施の形態1に係る半導体装置の製造方法を工程順に示す断面図である。
【0020】
図4,8を参照して、まず、周知のHEMT製造プロセスを経ることにより、化合物半導体基板1、電子走行層2、電子供給層3、高濃度ドープ層4a,4b,5、ソース電極6a,6b、ドレイン電極7、及びゲート電極8a,8bを有するHEMTを形成する。
【0021】
図9を参照して、次に、写真製版法によって、半導体基板上に側壁11a,11bを形成する。
【0022】
図5,10を参照して、次に、写真製版法によって、側壁11a,11bが形成されていない部分の半導体基板上に、側壁11a,11bの材質とは異なる感光性樹脂から成る犠牲層15を形成する。図5に示すように、犠牲層15は、HEMTを覆って形成されている。
【0023】
図6を参照して、次に、犠牲層15を部分的に露光した後に現像処理を行うことにより、犠牲層15内にコンタクトホール16a,16bを形成する。これにより、ソース電極6a,6bの各上面が露出する。
【0024】
図7,11を参照して、次に、蒸着法によって、金等の金属膜を犠牲層15及び側壁11a,11b上に全面的に形成する。次に、その金属膜をパターニングすることにより、金属配線9を形成する。
【0025】
図12を参照して、次に、写真製版法及びエッチング法によって金属配線9を部分的に除去することにより、スリット12を形成する。これにより、犠牲層15の上面が部分的に露出する。
【0026】
その後、側壁11a,11bを溶解せず犠牲層15を溶解する有機アミン系の溶剤を用いて、犠牲層15を溶解する。次に、溶解された犠牲層15を、スリット12を介して外部に排出する。犠牲層15が除去された結果、空気層10が形成され、これにより、図2,3に示した構造が得られる。犠牲層15を除去した後にスリット12は塞がれるが、その方法については後述の実施の形態2〜5において説明する。
【0027】
本実施の形態1に係るHEMTによると、図2に示したように、ゲート電極8a,8bの周囲に空気層10が形成されている。空気層10の比誘電率は1程度である。従って、比誘電率が4〜5程度の樹脂によってゲート電極が覆われている従来のHEMTと比較すると、ゲート電極8a,8bと高濃度ドープ層4a,4b,5との間に形成される寄生容量を、70〜80%程度低減することができる。その結果、高周波領域におけるデバイスの電気的特性を大幅に向上することが可能となる。
【0028】
また、半導体基板上に側壁11a,11bが形成されており、空気層10の上面及び側面は、金属配線9と側壁11a,11bとによって完全に密閉されている。従って、後工程で半導体装置を樹脂封止する際に、封止用の樹脂が空気層10内に流入してくることを回避できる。
【0029】
実施の形態2.
図13,14は、それぞれ図2,3に対応させて、本発明の実施の形態2に係る半導体装置の構造を示す断面図である。Ta25,BST,STO等の絶縁膜20が金属配線9上に形成されており、スリット12は絶縁膜20によって塞がれている。
【0030】
図2,3に示した構造を得た後、CVD法又は蒸着法によって、絶縁膜20を金属配線9上に全面的に堆積又は蒸着する。スリット12の寸法は、例えば、幅が1μm、長さが20μmであり、絶縁膜20の膜厚は、例えば3μmである。スリット12の幅が非常に狭いため、絶縁膜20の形成工程において、堆積又は蒸着される絶縁膜20はスリット12の内部には侵入せず、スリット12を跨いで形成される。その結果、絶縁膜20によってスリット12が塞がれ、空気層10が密閉される。
【0031】
本実施の形態2に係る半導体装置の製造方法によると、スリット12を塞ぐにあたり、成膜技術として一般的に広く用いられているCVD法又は蒸着法を転用できるため、絶縁膜20を容易に形成できるという効果が得られる。
【0032】
実施の形態3.
図15,16は、本発明の実施の形態3に係る半導体装置の製造方法を工程順に示す模式図である。
【0033】
図15を参照して、液槽24内には、ポリイミド等の粘度の高い樹脂液23が貯留されている。図2,3に示した構造が形成されたウェハ25を、金属配線9を下に向けた状態(つまり、図2,3に示した構造を上下に反転した状態)で、支持棒26によって支持する。そして、その状態でウェハ25を樹脂液23中へディップする。これにより、金属配線9の表面に樹脂液23が塗布される。なお、樹脂液23中へディップする代わりに、スピンコートによって樹脂液23を塗布してもよい。
【0034】
図16を参照して、次に、樹脂液23からウェハ25を取り出した後、同じく金属配線9を下に向けた状態(つまり、樹脂液23が塗布された面を下に向けた状態)で、ウェハ25をホットプレート27に対面させることにより、キュアベークを行う。
【0035】
図17,18は、それぞれ図2,3に対応させて、本実施の形態3に係る半導体装置の構造を示す断面図である。樹脂液23をキュアベークすることによって得られた樹脂膜28が金属配線9上に形成されており、スリット12は樹脂膜28によって塞がれている。高粘度の樹脂液23が用いられるため、樹脂膜28の形成工程において、塗布される樹脂液23はスリット12の内部には侵入せず、スリット12を跨いで形成される。その結果、樹脂膜28によってスリット12が塞がれ、空気層10が密閉される。
【0036】
本実施の形態3に係る半導体装置の製造方法によると、スリット12を塞ぐにあたり、一般的に広く用いられている塗布装置を転用できるため、樹脂膜28を容易に形成できるという効果が得られる。
【0037】
また、スリット12を塞ぐにあたり、真空装置を使用する必要がないため、上記実施の形態2に係る半導体装置の製造方法と比較すると、コストの低減を図ることができる。
【0038】
さらに、樹脂液23が塗布された面を下に向けた状態でキュアベークを行うため、樹脂液23がスリット12を介して空気層10内へ侵入することを、より確実に防止することができる。
【0039】
実施の形態4.
図19は、図1に対応させて、本発明の実施の形態4に係る半導体装置の構造を示す上面図であり、図20は、図19に示したラインXX−XXに沿った位置に関する断面構造を示す断面図である。
【0040】
図1〜3に示した構造を得た後、スリット12が形成されている部分の金属配線9の上面上に、高分子系の粘着可能な材質(ポリイミド、ポリエチレンテレフタレート、カーボン等)から成るテープ30を粘着する。その結果、テープ30によってスリット12が塞がれ、空気層10が密閉される。
【0041】
本実施の形態4に係る半導体装置の製造方法によると、スリット12を塞ぐにあたり、真空装置を使用する必要がないため、上記実施の形態2に係る半導体装置の製造方法と比較すると、コストの低減を図ることができる。
【0042】
実施の形態5.
図21は、図1に対応させて、本発明の実施の形態5に係る半導体装置の構造を示す上面図であり、図22は、図21に示したラインXXII−XXIIに沿った位置に関する断面構造を示す断面図である。
【0043】
図1〜3に示した構造を得た後、スリット12が形成されている部分の金属配線9の上面上に、ポリイミド等の粘度の高い樹脂インク31をボンディングする。高粘度の樹脂インク31が用いられるため、樹脂インク31はスリット12の内部には侵入せず、スリット12を跨いで形成される。その結果、樹脂インク31によってスリット12が塞がれ、空気層10が密閉される。
【0044】
通常、トランジスタの製造プロセスにおいては、トランジスタの電気的特性の検査工程が実行される。そして、検査によって不適格と判定されたトランジスタには、適格と判定されたトランジスタと区別するために、樹脂インクをボンディングすることによって所定の印が付される。スリット12を塞ぐための樹脂インク31のボンディング工程は、不適格なトランジスタへの樹脂インクのボンディング工程と併せて実行することが望ましい。これにより、スリット12を塞ぐための樹脂インク31のボンディング工程を独立の工程として実行する場合と比較すると、コストの低減を図ることができるとともに、全体として、半導体装置の製造に要する時間を短縮することができる。
【0045】
本実施の形態5に係る半導体装置の製造方法によると、スリット12を塞ぐにあたり、真空装置を使用する必要がないため、上記実施の形態2に係る半導体装置の製造方法と比較すると、コストの低減を図ることができる。
【0046】
実施の形態6.
図23,24は、本発明の実施の形態6に係る半導体装置の構造を示す上面図であり、図25,26は、それぞれ図24に示したラインXXV−XXV,XXVI−XXVIに沿った位置に関する断面構造を示す断面図である。但し、図23では、図24に示したシート35の記載を省略している。
【0047】
図23を参照して、本実施の形態6に係る半導体装置は、同一の化合物半導体基板1上に行列状に形成された複数個のHEMTを備えている。図23では、代表的に4個のHEMTのみを示している。各HEMTの構造は、上記実施の形態1に係るHEMTの構造と同様である。
【0048】
図24〜26を参照して、本実施の形態6に係る半導体装置は、HEMT及び金属配線9を覆う形状に加工されたシート35を備えている。シート35は、例えば高分子系の材質(ポリイミド、ポリエチレンテレフタレート、カーボン等)を用いて形成されている。図24を参照して、各HEMTを覆うシート35が連結部36によって互いに連結されることにより、全体として1枚のシートが構成されている。図25,26を参照して、シート35は、半導体基板上に貼り付けられている。HEMTがシート35によって覆われることにより、ゲート電極8a,8bの周囲には空気層10が形成されている。空気層10は、シート35と、半導体基板の上面とによって規定されている。
【0049】
図27〜29は、図26に対応させて、本実施の形態6に係る半導体装置の製造方法を工程順に示す断面図である。
【0050】
まず、上記実施の形態1と同様の方法によって、図8に示した構造を得る。図27を参照して、次に、半導体基板上に犠牲層15を形成する。図27に示すように、犠牲層15は、HEMTを覆って形成されている。次に、犠牲層15内にコンタクトホール16a,16b(図27には表れない)を形成する。
【0051】
図28を参照して、次に、犠牲層15上に金属膜を形成した後、その金属膜をパターニングすることにより、金属配線9を形成する。次に、金属配線9内にスリット12(図28には表れない)を形成する。但し、本実施の形態6(及び後述の実施の形態7,8)では、スリット12の形成工程は省略しても構わない。
【0052】
図29を参照して、次に、犠牲層15を溶解する溶剤を用いて犠牲層15を溶解した後、溶解された犠牲層15を外部に排出する。
【0053】
その後、シート35とHEMTとを互いに位置合わせして、シート35を、HEMT及び金属配線9を覆って半導体基板上に貼り付けることにより、図26に示した構造が得られる。
【0054】
本実施の形態6に係るHEMTによると、図25に示したように、ゲート電極8a,8bの周囲に空気層10が形成されている。従って、上記実施の形態1と同様の理由により、高周波領域におけるデバイスの電気的特性を大幅に向上することが可能となる。
【0055】
また、半導体基板上にシート35が形成されており、空気層10の上面及び側面は、シート35によって完全に密閉されている。従って、後工程で半導体装置を樹脂封止する際に、封止用の樹脂が空気層10内に流入してくることを防止できる。なお、寄生容量を低減するためには、シート35の形状は少なくともゲート電極8a,8bの周囲を覆う形状であれば足りるが、図24〜26に示したようにHEMT全体をシート35によって覆うことにより、空気層10内への樹脂の流入を防止する効果を高めることができる。
【0056】
さらに、図24に示したように、各HEMTを覆うシート35が連結部36によって互いに連結されることにより、全体として1枚のシートが構成されている。従って、化合物半導体基板1上に形成された複数個のHEMTを1枚のシートによって同時に覆うことができるため、スループットの向上を図ることができる。
【0057】
実施の形態7.
図30,31は、本発明の実施の形態7に係る半導体装置の構造を示す上面図であり、図32は、図31に示したラインXXXII−XXXIIに沿った位置に関する断面構造を示す断面図である。但し、図30では、図31に示したテープ41の記載を省略している。
【0058】
図30〜32を参照して、本実施の形態7に係る半導体装置は、上面が開口した枠状の壁40と、壁40の開口上面を塞ぐように壁40上に貼り付けられたテープ41とを備えている。壁40は、HEMTの周囲を取り囲むように半導体基板上に形成されている。壁40の材質はポリイミド等であり、テープ41は、例えば高分子系の材質を用いて形成されている。図32に示すように、壁40の高さは、半導体基板の上面から金属配線9の上面までの高さよりも高い。HEMTが壁40及びテープ41によって取り囲まれることにより、ゲート電極8a,8bの周囲には空気層10が形成されている。空気層10は、壁40と、テープ41と、半導体基板の上面とによって規定されている。
【0059】
図29に示した構造を得た後、写真製版法によって、半導体基板上に壁40を形成する。その後、壁40上にテープ41を貼り付けることにより、図32に示した構造が得られる。
【0060】
本実施の形態7に係るHEMTによると、図31,32に示したように、ゲート電極8a,8bの周囲に空気層10が形成されている。従って、上記実施の形態1と同様の理由により、高周波領域におけるデバイスの電気的特性を大幅に向上することが可能となる。
【0061】
また、半導体基板上に壁40が形成されており、壁40上にテープ41が貼り付けられているため、空気層10の上面及び側面は完全に密閉されている。従って、後工程で半導体装置を樹脂封止する際に、封止用の樹脂が空気層10内に流入してくることを回避できる。本実施の形態7ではHEMT全体が壁40及びテープ41によって覆われるため、この効果は高い。
【0062】
実施の形態8.
図33は、本発明の実施の形態8に係る半導体装置の構造を示す上面図であり、図34は、図33に示したラインXXXIV−XXXIVに沿った位置に関する断面構造を示す断面図である。
【0063】
図23と同様に、本実施の形態8に係る半導体装置は、同一の化合物半導体基板1上に行列状に形成された複数個のHEMTを備えている。また、図33,34を参照して、本実施の形態8に係る半導体装置は、HEMT及び金属配線9を覆う形状に加工された壁部46を有する基板45を備えている。基板45は、絶縁基板、又はGaAs基板等の化合物半導体基板である。但し、基板45の代わりに、高分子系の材質によって形成されたテープを用いてもよい。
【0064】
図34を参照して、基板45は、半導体基板上に貼り付けられている。HEMTが基板45によって覆われることにより、ゲート電極8a,8bの周囲には空気層10が形成されている。空気層10は、基板45と、半導体基板の上面とによって規定されている。
【0065】
上記実施の形態6と同様の方法によって図23に示した構造を得た後、互いに隣接するHEMT同士の間に壁部46が挿入されるように基板45を位置合わせして、基板45を半導体基板上に貼り付けることにより、図33,34に示した構造が得られる。
【0066】
本実施の形態8に係るHEMTによると、図34に示したように、ゲート電極8a,8bの周囲に空気層10が形成されている。従って、上記実施の形態1と同様の理由により、高周波領域におけるデバイスの電気的特性を大幅に向上することが可能となる。
【0067】
また、半導体基板上に基板45(又はテープ)が形成されており、空気層10の上面及び側面は、基板45によって完全に密閉されている。従って、後工程で半導体装置を樹脂封止する際に、封止用の樹脂が空気層10内に流入してくることを防止できる。本実施の形態8ではHEMT全体が基板45によって覆われるため、この効果は高い。
【0068】
さらに、化合物半導体基板1上に形成された複数個のHEMTを1個の基板45によって同時に覆うことができるため、スループットの向上を図ることができる。
【符号の説明】
【0069】
1 化合物半導体基板、2 電子走行層、3 電子供給層、4a,4b,5 高濃度ドープ層、6a,6b ソース電極、7 ドレイン電極、8a,8b ゲート電極、9 金属配線、10 空気層、11a,11b 側壁、12 スリット、15 犠牲層、16a,16b コンタクトホール、20 絶縁膜、28 樹脂膜、30,41 テープ、31 樹脂インク、35 シート、40 壁、45 基板。

【特許請求の範囲】
【請求項1】
(a)第1のソース電極、ゲート電極、ドレイン電極、及び第2のソース電極が、所定方向に沿ってこの順に並んで半導体基板の上面上に形成された構造を有するトランジスタを形成する工程と、
(b)犠牲層を、前記トランジスタを覆って前記半導体基板の前記上面上に形成する工程と、
(c)前記犠牲層を部分的に除去することにより、前記第1のソース電極及び前記第2のソース電極を露出する工程と、
(d)前記工程(c)よりも後に実行され、前記第1のソース電極及び前記第2のソース電極に接続され、前記所定方向に沿って延在する配線を、前記犠牲層の上面上に形成する工程と、
(e)前記工程(d)よりも後に実行され、前記犠牲層を除去する工程と、
(f)上面が開口した枠体を、前記トランジスタの周囲を取り囲んで、前記半導体基板の前記上面上に形成する工程と、
(g)前記枠体上にテープを貼り付けることにより、前記枠体及び前記テープによって前記トランジスタ及び前記配線を覆う工程と
を備える、半導体装置の製造方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate

【図14】
image rotate

【図15】
image rotate

【図16】
image rotate

【図17】
image rotate

【図18】
image rotate

【図19】
image rotate

【図20】
image rotate

【図21】
image rotate

【図22】
image rotate

【図23】
image rotate

【図24】
image rotate

【図25】
image rotate

【図26】
image rotate

【図27】
image rotate

【図28】
image rotate

【図29】
image rotate

【図30】
image rotate

【図31】
image rotate

【図32】
image rotate

【図33】
image rotate

【図34】
image rotate


【公開番号】特開2012−44221(P2012−44221A)
【公開日】平成24年3月1日(2012.3.1)
【国際特許分類】
【出願番号】特願2011−257062(P2011−257062)
【出願日】平成23年11月25日(2011.11.25)
【分割の表示】特願2005−56898(P2005−56898)の分割
【原出願日】平成17年3月2日(2005.3.2)
【出願人】(000006013)三菱電機株式会社 (33,312)
【Fターム(参考)】