説明

形状測定装置および該方法

【課題】本発明は、測定対象物の表面形状をより高い精度で測定することができる形状測定装置および形状測定方法を提供する。
【解決手段】本発明の形状測定装置Sは、光へテロダイン干渉を行う一面側測定部2および他面側測定部3によって測定対象物WAの厚さを測定するものであって、一面側測定部2が測定対象物に複数の測定光を照射することで、1回の測定で測定対象物WAにおける厚さと表面形状とを測定する。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、光ヘテロダイン干渉法によって測定対象物の表面形状を測定する形状測定装置および形状測定方法に関する。
【背景技術】
【0002】
近年、集積回路は、素子の集積化が進んでいる。この集積回路を半導体ウェハに製造するプロセス条件であるプロセス・ルールは、通常、ゲート配線の線幅または間隔における最小加工寸法によって規定される。このプロセス・ルールが半分になれば、理論上、同じ面積に4倍のトランジスタや配線を配置することができるため、同じトランジスタ数では1/4の面積となる。この結果、1枚の半導体ウェハから製造することができるダイが4倍になるだけでなく、通常、歩留まりも改善されるため、さらに多くのダイが製造可能となる。この最小加工寸法は、高密度な集積回路を製造するために、2007年の時点の最先端では、45nmに達している。
【0003】
このようなサブミクロンメートルオーダ(1μm以下)のプロセス・ルールでは、半導体ウェハに高い平坦度が要求され、半導体ウェハの表面形状(表面の高さ変化)が無視できない。このため、半導体ウェハの表面形状を高精度に、例えば、サブナノメートルオーダ(1nm以下)で測定する形状測定装置が望まれている。このような形状測定装置の1つとして、光ヘテロダイン干渉法によって測定対象物の表面形状を測定する装置が知られている。この光ヘテロダイン干渉法は、周波数の異なる2つのレーザ光を干渉させてそれらの差の周波数を持つビート信号を生成し、この生成したビート信号の位相変化を検波するものであり、このビート信号の位相変化は、前記2つのレーザ光の間における光路長の差に対応する。このような光ヘテロダイン干渉法を用いた形状測定装置は、例えば、特許文献1に開示されている。
【0004】
この特許文献1に記載の形状測定装置は、被測定物の厚みを非接触で測定するために用いられる形状測定装置であって、所定の光源から射出されるそれぞれ周波数が異なる第1の測定光および第2の測定光のそれぞれを分岐させて前記被測定物の表裏相対する部位である表面の測定部位およびうら面の測定部位の各方向へ導く導光手段と、前記おもて面の測定部位の方向へ導かれた前記第1の測定光を前記おもて面の測定部位に照射させるとともに、前記おもて面の測定部位の方向へ導かれた前記第2の測定光を第1の参照面に照射させ、前記おもて面の測定部位からの前記第1の測定光の反射光と前記第1の参照面からの前記第2の測定光の反射光とを干渉させ、その干渉光の強度信号を出力するおもて面側のヘテロダイン干渉計と、前記うら面の測定部位の方向へ導かれた前記第2の測定光を前記うら面の測定部位に照射させるとともに、前記うら面の測定部位の方向へ導かれた前記第1の測定光を第2の参照面に照射させ、前記うら面の測定部位からの前記第2の測定光の反射光と前記第2の参照面からの前記第1の測定光の反射光とを干渉させ、その干渉光の強度信号を出力するうら面側のヘテロダイン干渉計と、前記おもて面側のヘテロダイン干渉計およびうら面側のヘテロダイン干渉計のそれぞれから出力される強度信号の位相差を検出し、その検出信号を前記被測定物の厚みに相当する第1の測定値として出力する第1の位相検波手段とを備えている。このような構成によって特許文献1に記載の形状測定装置は、被測定物の厚みを非接触で測定することができる。
【先行技術文献】
【特許文献】
【0005】
【特許文献1】特開2008−180708号公報
【発明の概要】
【発明が解決しようとする課題】
【0006】
ところで、この特許文献1に記載の形状測定装置は、原理的には面の表面形状を測定することが可能であるが、その測定結果には、ウェハの振動も含んだ面形状データとなってしまい、ナノメートルオーダレベルでの正確な面の表面形状を測定することができない。
【0007】
特に、半導体ウェハでは、その表面形状の平坦度(厚さ分布および表面形状)は、その外縁部にエッジロールオフ(Edge Roll-off)と呼ばれる形状が存在するため、一般に、中心部よりも外縁部の方が劣る。半導体ウェハにおけるダイの製造可能領域を外縁部へ広げるために、このエッジロールオフの評価が重要である。このエッジロールオフを評価するためにも、半導体ウェハにおける表面形状をより高い精度で測定することが望まれる。
【0008】
本発明は、上述の事情に鑑みて為された発明であり、その目的は、測定対象物の表面形状をより高い精度で測定することができる形状測定装置および形状測定方法を提供することである。
【課題を解決するための手段】
【0009】
本発明者は、種々検討した結果、上記目的は、以下の本発明により達成されることを見出した。すなわち、本発明の一態様にかかる形状測定装置は、測定光を生成する光源部と、前記光源部で生成された測定光を一面側測定光と他面側測定光とに分ける光分岐部と、前記光分岐部で分けられた一面側測定光を第1一面側測定光と第2一面側測定光とにさらに分け、光ヘテロダイン干渉によって、前記分けられた第1一面側測定光における測定対象物の一方面に照射されて反射された照射後一面側測定光と前記分けられた第2一面側測定光とを干渉させた照射後一面側干渉光を生成するとともに、光ヘテロダイン干渉によって、前記分けられた第1一面側測定光における前記測定対象物の一方面に照射される前の照射前一面側測定光と前記分けられた第2一面側測定光とを干渉させた照射前一面側干渉光を生成する一面側測定部と、前記光分岐部で分けられた他面側測定光を第1他面側測定光と第2他面側測定光とにさらに分け、光ヘテロダイン干渉によって、前記分けられた第1他面側測定光における前記測定対象物の他方面に照射されて反射された照射後他面側測定光と前記分けられた第2他面側測定光とを干渉させた照射後他面側干渉光を生成するとともに、光ヘテロダイン干渉によって、前記分けられた第1他面側測定光における前記測定対象物の他方面に照射される前の照射前他面側測定光と前記分けられた第2他面側測定光とを干渉させた照射前他面側干渉光を生成する他面側測定部と、一面側測定部によって生成された照射前一面側干渉光および照射後一面側干渉光を位相検波することによって得られた一面側位相と、他面側測定部によって生成された照射前他面側干渉光および照射後他面側干渉光を位相検波することによって得られた他方面側位相との位相差から前記測定対象物における前記一方面から前記他方面までの距離を前記測定対象物の厚さとして求める演算部とを備え、前記一面側測定部は、複数の照射後一面側干渉光を生成するために、前記測定対象物の一方面に対し複数の箇所に複数の第1一面側測定光を照射して反射させ複数の照射後一面側測定光を得、前記演算部は、前記複数の箇所のそれぞれについて、前記一面側測定部によって生成された照射前一面側干渉光および照射後一面側干渉光を位相検波することによって得られた一面側位相に基づいて予め設定された基準面から前記測定対象物の前記一方面までの距離を求めることによって、前記複数の箇所での前記測定対象物における表面形状をさらに求めることを特徴とする。
【0010】
そして、本発明の他の一態様にかかる形状測定方法は、測定光を一面側測定光と他面側測定光とに分ける測定光分配工程と、前記光分岐部で分けられた一面側測定光を第1一面側測定光と第2一面側測定光とにさらに分け、光ヘテロダイン干渉によって、前記分けられた第1一面側測定光における測定対象物の一方面に照射されて反射された照射後一面側測定光と前記分けられた第2一面側測定光とを干渉させた照射後一面側干渉光を生成するとともに、光ヘテロダイン干渉によって、前記分けられた第1一面側測定光における前記測定対象物の一方面に照射される前の照射前一面側測定光と前記分けられた第2一面側測定光とを干渉させた照射前一面側干渉光を生成する一面側干渉光生成工程と、前記光分岐部で分けられた他面側測定光を第1他面側測定光と第2他面側測定光とにさらに分け、光ヘテロダイン干渉によって、前記分けられた第1他面側測定光における前記測定対象物の他方面に照射されて反射された照射後他面側測定光と前記分けられた第2他面側測定光とを干渉させた照射後他面側干渉光を生成するとともに、光ヘテロダイン干渉によって、前記分けられた第1他面側測定光における前記測定対象物の他方面に照射される前の照射前他面側測定光と前記分けられた第2他面側測定光とを干渉させた照射前他面側干渉光を生成する他面側干渉光生成工程と、一面側干渉光生成工程によって生成された照射前一面側干渉光および照射後一面側干渉光を位相検波することによって得られた一面側位相と、他面側干渉光生成工程によって生成された照射前他面側干渉光および照射後他面側干渉光を位相検波することによって得られた他方面側位相との位相差から前記測定対象物における前記一方面から前記他方面までの距離を前記測定対象物の厚さとして求める演算工程とを備え、前記一面側干渉光生成工程は、複数の照射後一面側干渉光を生成するために、前記測定対象物の一方面に対し複数の箇所に複数の第1一面側測定光を照射して反射させ複数の照射後一面側測定光を得、前記演算工程は、前記複数の箇所のそれぞれについて、前記一面側干渉光生成工程によって生成された照射前一面側干渉光および照射後一面側干渉光を位相検波することによって得られた一面側位相に基づいて予め設定された基準面から前記測定対象物の前記一方面までの距離を求めることによって、前記複数の箇所での前記測定対象物における表面形状をさらに求めることを特徴とする。
【0011】
このような構成の形状測定装置および形状測定方法では、測定対象物の一方面に対し複数の箇所で光ヘテロダイン干渉法によって測定対象物が測定され、これによって測定対象物の厚さと例えば高さ分布等の面の表面形状が1回の測定で求めることができ、上記構成の形状測定装置および形状測定方法は、測定対象物の厚さおよび表面形状をより高い精度で測定することができる。
【0012】
また、上述の形状測定装置において、前記測定対象物の厚さ方向に直交する水平方向に前記測定対象物を移動する移動部をさらに備え、前記演算部は、前記移動部によって前記測定対象物を前記水平方向に移動させながら、前記複数の箇所のそれぞれについて、前記一面側測定部によって生成された照射前一面側干渉光および照射後一面側干渉光を位相検波することによって得られた一面側位相に基づいて予め設定された基準面から前記測定対象物の前記一方面までの距離を求めることによって、前記測定対象物の表面形状を求めることで、前記複数の箇所での前記測定対象物における表面形状を複数求めることを特徴とする。
【0013】
この構成によれば、移動部によって測定対象物が水平方向に移動され、前記測定対象物が走査される。このため、このような構成の形状測定装置は、前記走査の範囲について、測定対象物の厚さおよび表面形状をより高い精度で測定することができる。
【0014】
また、これら上述の形状測定装置において、前記複数の箇所は、3箇所以上であり、前記演算部は、前記複数の箇所のそれぞれについての前記予め設定された基準面から前記測定対象物の前記一方面までの距離に基づいて前記複数の箇所における曲率を求めることを特徴とする。
【0015】
このような構成の形状測定装置は、測定対象物の表面における曲率を測定対象物の表面形状として測定することができる。
【0016】
また、上述の形状測定装置において、前記演算部は、前記曲率を複数求め、前記求めた複数の曲率によって得られる複数の円弧を連結することによって、前記測定対象物における表面の高さ分布を求めることを特徴とする。
【0017】
この構成によれば、複数の曲率によって得られる複数の円弧が連結される。このため、このような構成の形状測定装置は、測定対象物における表面形状を再現することができる。
【0018】
また、これら上述の形状測定装置において、前記移動部は、移動前における複数の箇所と移動後における複数の箇所とが2つ以上重なるように、前記測定対象物を前記水平方向に移動することを特徴とする。
【0019】
この構成によれば、移動前における複数の箇所と移動後における複数の箇所とが2つ以上重なるように、測定対象物が水平方向に移動される。このため、このような構成の形状測定装置は、連続的に測定対象物の表面形状を容易に測定することができる。
【0020】
また、これら上述の形状測定装置において、前記複数の箇所は、移動方向に沿って並んでおり、前記移動方向に沿って互いに隣接する2つの箇所の間隔が等しいことを特徴とする。
【0021】
この構成によれば、移動方向に沿って並ぶ2つの箇所の間隔が等しい。このため、このような構成の形状測定装置は、移動部の制御が容易となり、また、一定の間隔で、測定対象物の表面形状を測定することができる。
【0022】
また、これら上述の形状測定装置において、前記一面側測定部は、前記分けられた第1一面側測定光を複数に分ける第1一面側回折格子と、前記分けられた第2一面側測定光を複数に分ける第2一面側回折格子とを備え、光ヘテロダイン干渉によって、前記第1一面側回折格子で分けられた複数の第1一面側測定光における前記測定対象物の一方面に照射されて反射された複数の照射後一面側測定光と前記第2一面側回折格子で分けられた複数の第2一面側測定光とを干渉させることで、前記複数の照射後一面側干渉光を生成することを特徴とする。
【0023】
このような構成の形状測定装置は、第1一面側回折格子を用いることによって1つの光学素子で第1一面側測定光を複数に分けることができ、そして、第2一面側回折格子を用いることによって1つの光学素子で第2一面側測定光を複数に分けることができ、複数の箇所を同時に測定することができる。
【0024】
また、これら上述の形状測定装置において、前記一面側測定部は、前記分けられた第1一面側測定光を複数に分ける1または複数の第1一面側ビームスプリッタと、前記分けられた第2一面側測定光を複数に分ける1または複数の第2一面側ビームスプリッタとを備え、光ヘテロダイン干渉によって、前記第1一面側ビームスプリッタで分けられた複数の第1一面側測定光における前記測定対象物の一方面に照射されて反射された複数の照射後一面側測定光と前記第2一面側ビームスプリッタで分けられた複数の第2一面側測定光とを干渉させることで、前記複数の照射後一面側干渉光を生成することを特徴とする。
【0025】
この構成によれば、1または複数の第1一面側ビームスプリッタによって第1一面側測定光が複数に分けられ、1または複数の第2一面側ビームスプリッタによって第2一面側測定光が複数に分けられ、複数の箇所が同時に測定される。このようにビームスプリッタを用いるので、このような構成の形状測定装置は、一面側測定部の光学設計や調整において、高い自由度を持ち、その制約が低減される。
【0026】
また、これら上述の形状測定装置において、前記一面側測定部は、前記分けられた第1一面側測定光と第2一面側測定光との間に周波数差を生じさせる一面側光変調器を備え、前記他面側測定部は、前記分けられた第1他面側測定光と第2他面側測定光との間に周波数差を生じさせる他面側光変調器を備えることを特徴とする。
【0027】
この構成によれば、一面側測定部内に一面側光変調器が備えられ、他面側測定部内に他面側光変調器が備えられる。このため、このような構成の形状測定装置は、光源部から一面側測定部に至る光路において、光ヘテロダイン干渉を行う光に位相の揺らぎが発生することが無く、そして、光源部から他面側測定部に至る光路において、光ヘテロダイン干渉を行う光に位相の揺らぎが発生することが無い。
【発明の効果】
【0028】
本発明にかかる形状測定装置および形状測定方法は、測定対象物の厚さおよび表面形状をより高い精度で測定することができる。
【図面の簡単な説明】
【0029】
【図1】実施形態にかかる形状測定装置の構成を示すブロック図である。
【図2】実施形態の形状測定装置における光源部の構成を示す図である。
【図3】実施形態の形状測定装置における第1態様にかかる一面側測定部の構成を示す図である。
【図4】実施形態の形状測定装置における第2態様にかかる一面側測定部の構成を示す図である。
【図5】実施形態の形状測定装置における他面側測定部の構成を示す図である。
【図6】実施形態の形状測定装置におけるステージの構成を示す図である。
【図7】実施形態の形状測定装置における第1態様の一面側位相検波部の構成を示す図である。
【図8】実施形態の形状測定装置における第2態様の一面側位相検波部の構成を示す図である。
【図9】実施形態の形状測定装置における他方面側位相検波部の構成を示す図である。
【図10】曲率の算出方法を説明するための図である。
【図11】実施形態の形状測定装置を用いて測定対象物の表面形状を測定する場合における測定箇所を説明するための図である。
【図12】実施形態の形状測定装置を用いて測定対象物の表面形状を測定する場合において、各測定箇所における複数の箇所と測定結果とを説明するための図である。
【図13】エッジロールオフを説明するための図である。
【図14】測定箇所における複数の箇所について、第1ないし第3の態様を説明するための図である。
【発明を実施するための形態】
【0030】
以下、本発明にかかる実施の一形態を図面に基づいて説明する。なお、各図において同一の符号を付した構成は、同一の構成であることを示し、適宜、その説明を省略する。また、本明細書において、総称する場合には添え字を省略した参照符号で示し、個別の構成を指す場合には添え字を付した参照符号で示す。
【0031】
図1は、実施形態にかかる形状測定装置の構成を示すブロック図である。実施形態にかかる形状測定装置Sは、光ヘテロダイン干渉法を利用することによって例えば半導体ウェハ等の薄板状の測定対象物WAにおける表面形状をナノメートルレベルやサブナノメートルレベル(1nm以下の厚さ方向の分解能)で測定する装置である。形状測定装置Sは、例えば、図1に示すように、光源部1と、一面側測定部2(2A、2B)と、他面側測定部3と、ステージ4と、一面側位相検波部5(5A、5B)と、他方面側位相検波部6と、演算制御部7と、入力部8と、出力部9とを備えて構成され、ステージ4によって測定対象物WAを水平方向に移動させながら測定対象物WAの表面形状を測定するものである。
【0032】
以下、形状測定装置Sの各部について説明するが、ここで、各部で多用される光部品(光学素子)について、纏めて説明する。
【0033】
光分岐部(optical branching device、無偏光ビームスプリッタ)は、入射光を光パワーの点で2つの光に分配してそれぞれ射出する光部品である。光分岐部は、例えば、ハーフミラー(半透鏡)等の微少光学素子形光分岐結合器や、溶融ファイバの光ファイバ形光分岐結合器や、光導波路形光分岐結合器等を利用することができる。光分岐部は、通常、入力端子と出力端子とを入れ替えて(逆に)使用すると、入射した2つの光を合わせて射出する光結合部として機能する。光分岐部としてハーフミラーが用いられる場合、通常、この分配された一方の光は、ハーフミラーを通過してそのままの方向で射出され、この分配された他方の光は、ハーフミラーで反射されてこの方向と垂直な方向(直交する方向)で射出される。
【0034】
偏光ビームスプリッタ(polarization beam splitter)は、入射光から互いに直交するS偏光とP偏光とを取り出してそれぞれ射出する光部品であり、通常、この取り出された一方の光(S偏光またはP偏光)は、そのままの方向で射出され、この取り出された他方の光(P偏光またはS偏光)は、この方向と垂直な方向(直交する方向)で射出される。
【0035】
偏光子(polarizer)は、入射光から所定の偏光面を持つ直線偏光を取り出して射出する光部品であり、例えば、偏光フィルタである。
【0036】
波長板(wave plate、(位相板(phase plate))は、入射光における2つの偏光成分の間に所定の位相差(したがって光路差)を与えて射出する光部品であり、例えば、前記1/4波長板や、入射光における2つの偏光成分の間にλ/2の光路差を与える1/2波長板等である。波長板を構成する例えば複屈折性の白雲母板等の結晶板における厚さをdとし、前記結晶板における2つの偏光成分に対する屈折率をそれぞれn1、n2とし、入射光の波長をλとする場合に、この波長板による位相差は、(2π/λ)(n1−n2)dで与えられる。
【0037】
反射鏡(ミラー、reflection mirror)は、入射光をその入射角に応じた反射角で所定の反射率で反射することによって光の進行方向を変更する光部品であり、例えば、ガラス部材の表面に金属薄膜や誘電体多層膜を蒸着したものである。反射鏡は、光のロスを低減するために、全反射する全反射鏡が好ましい。
【0038】
入力端子は、光部品へ光を入射するための端子であり、また、出力端子は、光部品から光を射出するための端子である。各部間の接続には、例えばミラーやレンズ等の光学部品から構成される導光手段が用いられてもよいが、本実施形態では、各部間の接続には、後述するように、偏波保持光ファイバやマルチモード光ファイバ等の光ファイバが用いられることから、これら入力端子および出力端子には、光ファイバを接続するためのコネクタが用いられる。
【0039】
以下、形状測定装置Sの各部について説明する。まず、光源部1について説明する。図2は、実施形態の形状測定装置における光源部の構成を示す図である。光源部1は、所定の可干渉光であって、測定対象物WAの表面形状を光ヘテロダイン干渉法によって測定するための測定光を生成する装置である。測定光は、予め設定された所定の波長λ(周波数ω)を持つ単波長光であって、予め設定された所定の偏光面を持つ偏光である。測定光は、測定対象物を両面から光ヘテロダイン干渉法によって測定するために、2つの一面側測定光(第A測定光)および他面側測定光(第B測定光)を備えている。このような光源部1は、例えば、図2に示すように、単波長レーザ光源1aと、光アイソレータ1bと、光分岐部1cと、偏光子1d、1fと、出力端子1e、1gとを備えて構成される。
【0040】
単波長レーザ光源1aは、予め設定された所定の波長λ0(周波数ω0)を持つ単波長レーザ光を発生する装置であり、種々のレーザ装置を用いることができるが、例えば、所定の光パワーで波長約632.8nmのレーザ光を出力することができるヘリウムネオンレーザ装置(He−Neレーザ装置)等である。単波長レーザ光源1aは、波長ロッカ等を備えた周波数安定化レーザ装置が好ましい。光アイソレータ1bは、その入力端子からその出力端子へ一方向のみに光を透過させる光部品である。光アイソレータ1bは、単波長レーザ光源1aのレーザ発振を安定させるために、形状測定装置S内における各光部品(光学素子)の接続部等で生じる反射光(戻り光)が単波長レーザ光源1aに入射することを防止するものである。
【0041】
このような光源部1では、単波長レーザ光源1aから射出されたレーザ光は、光アイソレータ1bを介して光分岐部1cに入射され、第1レーザ光および第2レーザ光の2つに分配される。第1レーザ光は、偏光子1dに入射され、所定の偏光面を持つレーザ光の一面側測定光となって、出力端子1eから射出される。この一面側測定光は、一面側測定部2に入射される。一方、第2レーザ光は、偏光子1fに入射され、所定の偏光面を持つレーザ光の他面側測定光となって、出力端子1gから射出される。この他面側測定光は、他面側測定部3に入射される。
【0042】
ここで、説明の便宜上、測定対象物WAの一方面(図1に示す例では上側の面(上面))を「A面」と呼称することとし、測定対象物WAの、A面と表裏の関係にある他方面(図1に示す例では下側の面(下面))を「B面」と呼称することとする。本実施形態では、前記一面側測定光は、測定対象物WAのA面の表面形状を光ヘテロダイン干渉法によって測定するために用いられ、前記他面側測定光は、測定対象物WAのB面の表面形状を光ヘテロダイン干渉法によって測定するために用いられる。
【0043】
光源部1と一面側測定部2との接続、および、光源部1と他面側測定部3との接続には、光源部1および一面側測定部2間の光路長と、光源部1および他面側測定部3間の光路長との調整を容易にする観点から、本実施形態では、それぞれ、光をその偏波面を保持しながら導光する偏波保持光ファイバが用いられる。偏波保持光ファイバは、例えば、PANDAファイバや楕円コア光ファイバ等である。光源部1の出力端子1eから射出した一面側測定光は、偏波保持光ファイバによって導光され、一面側測定部2へ入射し、光源部1の出力端子1gから射出した他面側測定光は、偏波保持光ファイバによって導光され、他面側測定部3へ入射する。
【0044】
次に、一面側測定部2について説明する。図3は、実施形態の形状測定装置における第1態様にかかる一面側測定部の構成を示す図である。図4は、実施形態の形状測定装置における第2態様にかかる一面側測定部の構成を示す図である。
【0045】
一面側測定部(第A測定部)2は、光源部1からの一面側測定光が入射され、一面側測定光を用いた光ヘテロダイン干渉法によって測定対象物WAにおけるA面の表面形状の情報を含むビート光信号を得る装置である。
【0046】
より具体的には、一面側測定部2は、測定対象物WAのA面に対向配置され、光源部1からの一面側測定光を第1一面側測定光(第A1測定光)と第2一面側測定光(第A2測定光)とにさらに分け、光ヘテロダイン干渉によって、前記分けられた第1一面側測定光における測定対象物WAのA面に照射されて反射された照射後一面側測定光(第A照射後測定光)と前記分けられた第2一面側測定光とを干渉させた照射後一面側干渉光(第A照射後干渉光)を生成するとともに、光ヘテロダイン干渉によって、前記分けられた第1一面側測定光における測定対象物WAのA面に照射される前の照射前一面側測定光(第A照射前測定光)と前記分けられた第2一面側測定光とを干渉させた照射前一面側干渉光(第A照射前干渉光)を生成する測定光学系であって、測定対象物WAにおけるA面の表面形状を測定するべく複数の照射後一面側干渉光を生成するために、測定対象物WAのA面に対し1つの測定箇所MPにおける複数の箇所Pに複数の第1一面側測定光を照射して反射させ複数の照射後一面側測定光を得る測定光学系である。このような構成の一面側測定部2では、照射前一面側干渉光を基準に、複数の照射後一面側干渉光における各位相がそれぞれ測定され得る。
【0047】
さらに、より具体的には、一面側測定部2は、測定対象物WAのA面に対向配置され、一面側測定光から、互いに周波数の異なる2つの第1および第2一面側測定光を生成し、この2つの第1一面側測定光と第2一面側測定光とを干渉(光ヘテロダイン干渉)させ、それらの差の周波数を持つビート光信号を生成する光ヘテロダイン干渉計であり、一面側測定光から第1および第2一面側測定光が生成されてから第1一面側測定光と第2一面側測定光とが干渉されるまでの間に、第1一面側測定光が測定対象物WAのA面に照射され反射される第1一面側光路および第1一面側測定光が測定対象物WAのA面に照射されない第2一面側光路の各光路を含み、そして、測定対象物WAにおけるA面の表面形状を測定するために、第1一面側測定光が測定対象物WAのA面に照射される前に第1一面側測定光がさらに複数に分配され、そのそれぞれが測定対象物WAのA面に照射され反射され、この第1一面側測定光の複数の分配に対応して、第1一面側測定光と第2一面側測定光とが干渉される前に、第2一面側測定光もさらに複数に分配され、そのそれぞれが測定対象物WAのA面で反射された複数の第1一面側測定光とそれぞれ干渉する測定光学系である。
【0048】
このような一面側測定部2として、例えば、図3に示す構成の第1態様にかかる一面側測定部2Aや図4に示す構成の第2態様にかかる一面側測定部2Bが挙げられる。
【0049】
この第1態様にかかる一面側測定部2Aは、図3に示すように、入力端子2aと、光分岐部2b、2d、2i、2m、2pと、偏光ビームスプリッタ2fと、光波長シフタ2c、2lと、反射鏡2k、2oと、回折格子2e、2nと、1/4波長板2gと、レンズ2hと、出力端子2j(2j−1〜2j−3)、2qとを備えて構成される。
【0050】
光波長シフタ2c、2lは、入射光の波長をシフトして(入射光の周波数を変化させて)入射光の波長(周波数)と異なる波長(周波数)の光を生成する光部品であり、例えば、音響光学効果を利用することによって入射光の波長をシフトする音響光学変調器(acoustooptic modulator)等が用いられる。回折格子2e、2nは、入射光を回折する光部品である。回折格子2e、2nは、本実施形態では、入射光が格子に入射されるとこの格子を透過して回折光が射出される透過型の回折格子である。レンズ2hは、一面側測定部2Aの測定対象物WAに対する対物レンズであり、非球面の集光レンズである。
【0051】
このような構成の一面側測定部2Aでは、光源部1から偏波保持光ファイバを介して入力端子2aに入射された一面側測定光は、光分岐部2bに入射され、第1一面側測定光および第2一面側測定光の2つに分配される。第1一面側測定光は、そのままの方向(光分岐部2bにおいて、入射光の進行方向と射出光の進行方向とが同じ)で進行する一方、第2一面側測定光は、第1一面側測定光の進行方向に対し直交する方向(垂直な方向)へ進行する。第1一面側測定光は、光波長シフタ2cに入射され、その波長(周波数)がシフト(変更)され、第2一面側測定光は、反射鏡2kを介して光波長シフタ2lに入射され、その波長(周波数)がシフト(変更)される。周波数変更後(波長シフト後)における第1一面側測定光の周波数ωA1と第2一面側測定光の周波数ωA2との周波数差△ωAは、特に限定されないが、光ヘテロダインによって干渉させる観点から、例えば、数十kHz〜数MHz程度の値である。後述の第2態様の一面側測定部2Bおよび他面側測定部3も同様である。
【0052】
なお、本実施形態では、第1一面側測定光および第2一面側測定光のそれぞれを波長シフタ2c、clによってそれぞれ波長シフトしたが、光ヘテロダインによって干渉させるために、第1一面側測定光の周波数ωA1と第2一面側測定光の周波数ωA2との間に、所定の周波数差△ωAが有ればよいので、一方のみであってもよい。後述の第2態様の一面側測定部2Bおよび他面側測定部3も同様である。
【0053】
また、光分岐部2bから射出された第2一面側測定光は、本実施形態では光分岐部2bによって第1一面側測定光の進行方向に対し直交する方向へ進行するが、反射鏡2kによってその進行方向が直角に曲げられ、第1一面側測定光の進行方向と揃えられる。このように反射鏡2kは、光分岐部2bから射出された第1一面側測定光の進行方向と第2一面側測定光の進行方向とを揃えるために設けられている。
【0054】
波長シフタ2cから射出された第1一面側測定光(波長シフト後の第1一面側測定光)は、光分岐部2dに入射され、第11一面側測定光(第A11測定光)および第12一面側測定光(第A12測定光)の2つに分配される。この第11一面側測定光は、そのままの方向で進行する一方、第12一面側測定光は、第11一面側測定光の進行方向に対し直交する方向へ進行する。また、波長シフタ2lから射出された第2一面側測定光(波長シフト後の第2一面側測定光)は、光分岐部2mに入射され、第21一面側測定光(第A21測定光)および第22一面側測定光(第A22測定光)の2つに分配される。この第21一面側測定光は、そのままの方向で進行する一方、第22一面側測定光は、第21一面側測定光の進行方向に対し直交する方向へ進行する。
【0055】
第12一面側測定光は、照射前一面側測定光であり、光分岐部2pに入射され、第22一面側測定光は、反射鏡2oを介して光分岐部2pに入射される。そして、この光分岐部2pに入射された第12一面側測定光と第22一面側測定光とは、光分岐部2pで光が合わされて光ヘテロダイン干渉を行い、そのビート光信号が照射前一面側干渉光として出力端子2qから射出される。ここでは、光分岐部2pは、光結合部として機能している。この出力端子2qから射出されたビート光信号の照射前一面側干渉光は、一面側位相検波部5に入射される。
【0056】
また、測定対象物WAのA面に対し1つの測定箇所MPにおける複数の箇所Pに複数の測定光、本実施形態では第11一面側測定光を照射するために、第11一面側測定光は、回折格子2eに入射され、回折され、複数に分配される。そして、これに対応して第21一面側測定光も、回折格子2nに入射され、回折され、複数に分配される。前記複数の箇所Pは、任意の個数でよいが、本実施形態では、測定対象物WAの表面形状として測定箇所の曲率を求めることから、3箇所以上である。前記複数の箇所Pの個数が多いほど、求められる曲率の精度が向上し、好ましいが、その情報処理(演算処理)の処理量(演算量)が増すことから、例えば、本実施形態では、前記複数の箇所Pの個数は、3箇所である。このため、回折格子2eによって回折された回折光のうちの3つの回折光が、測定対象物WAのA面における3箇所に同時に照射される第11一面側測定光として用いられ、これに対応して回折格子2nによって回折された回折光のうちの3つの回折光が、後述のように光分岐部2iで合わせられて光へテロダイン干渉を行う第21一面側測定光として用いられる。そして、このように用いられる3つの回折光は、光パワーの点で相対的により強くまた対称性を有することから、例えば、0次回折光、+1次回折光および−1次回折光が用いられる。
【0057】
回折格子2eで回折された複数(ここでは3個)の第11一面側測定光は、偏光ビームスプリッタ2fを介して1/4波長板2gに入射され、レンズ2hで集光され、測定対象物WAのA面に、1つの測定箇所MPにおいて複数の箇所Pに照射される。そして、この測定対象物WAのA面における前記複数の箇所Pのそれぞれで反射された複数の第11一面側測定光は、照射後一面側測定光として、再び、レンズ2hに入射され、そして、1/4波長板2gに入射される。したがって、この1/4波長板2gの存在によって、偏光ビームスプリッタ2fから測定対象物WAのA面に照射される複数の第11一面側測定光における偏光状態(例えばP偏光またはS偏光)と、測定対象物WAのA面で反射して偏光ビームスプリッタ2fに入射される複数の第11一面側測定光における偏光状態(例えばS偏光またはP偏光)とが互いに入れ替わることになる。このため、回折格子2eから偏光ビームスプリッタ2fに入射された複数の第11一面側測定光は、偏光ビームスプリッタ2fを測定対象物WAのA面に向かって通過する一方、測定対象物WAのA面からレンズ2hおよび1/4波長板2gを介して偏光ビームスプリッタ2fに入射した複数の第11一面側測定光(照射後一面側測定光)は、所定の方向、本実施形態では、前記複数の第11一面側測定光(照射後一面側測定光)が測定対象物WAのA面から偏光ビームスプリッタ2fへ向かう方向に対し直交する方向に反射される。
【0058】
偏光ビームスプリッタ2fから射出された複数の第11一面側測定光(照射後一面側測定光)は、光分岐部2iに入射される。光分岐部2iには、回折格子2nで回折され分配された複数の第21一面側測定光も、入射される。そして、この光分岐部2iに入射された複数の第11一面側測定光と複数の第21一面側測定光とは、光分岐部2iで各光のそれぞれが合わされて光ヘテロダイン干渉をそれぞれ行い、その複数のビート光信号が複数の照射後一面側干渉光として各出力端子2j(2j−1〜2j−3)から射出される。ここでは、光分岐部2iは、光結合部として機能している。これら各出力端子2j(2j−1〜2j−3)から射出されたビート光信号の複数の照射後一面側干渉光は、一面側位相検波部5に入射される。
【0059】
本実施形態では、一面側測定部2Aと一面側位相検波部5とは、シングルモード光ファイバであってもよいが、光軸調整および伝播光の光量における優位性の観点から、複数の伝搬モードを持つマルチモード光ファイバによって接続されている。したがって、本実施形態では、一面側測定部5Aから射出した照射前一面側干渉光は、マルチモード光ファイバによって導光され、一面側位相検波部5へ入射し、一面側測定部5Aから射出した複数の照射後一面側干渉光は、複数のマルチモード光ファイバによってそれぞれ導光され、一面側位相検波部5へ入射する。なお、後述の一面側測定部2Bと一面側位相検波部5との接続および他面側測定部3と他方面側位相検波部6との接続も同様である。
【0060】
このような構成の一面側測定部2Aは、回折格子2eを用いることによって1つの光学素子で第1一面側測定光を複数に分けることができ、そして、回折格子2nを用いることによって1つの光学素子で第2一面側測定光を複数に分けることができ、一面側測定光の1つの発光で前記複数の箇所Pを同時に測定することができる。また、複数の第11一面側測定光(照射後一面側測定光)と複数の第21一面側測定光との光ヘテロダイン干渉も1つの光分岐部2iで行うことができる。したがって、一面側測定部2Aを構成する光部品の個数を低減することができ、装置の小型化および低廉化を実現しやすい。
【0061】
また、この第2態様にかかる一面側測定部2Bは、図4に示すように、入力端子2aと、光分岐部2b、20a、20b、20c、20m、20n、20o、20p、20q、20r、20uと、偏光ビームスプリッタ2fと、光波長シフタ2c、2lと、反射鏡2k、20d、20e、20f、20g、20j、20k、20l、20s、20tと、1/4波長板2gと、レンズ2hと、出力端子2j(2j−1〜2j−3)、2qとを備えて構成される。
【0062】
このような構成の一面側測定部2Bでは、光源部1から偏波保持光ファイバを介して入力端子2aに入射された一面側測定光は、光分岐部2bに入射され、第1一面側測定光および第2一面側測定光の2つに分配される。第2一面側測定光は、そのままの方向(光分岐部2bにおいて、入射光の進行方向と射出光の進行方向とが同じ)で進行する一方、第1一面側測定光は、第2一面側測定光の進行方向に対し直交する方向(垂直な方向)へ進行する。第2一面側測定光は、光波長シフタ2cに入射され、その波長(周波数)がシフト(変更)され、第1一面側測定光は、反射鏡2kを介して光波長シフタ2lに入射され、その波長(周波数)がシフト(変更)される。
【0063】
また、光分岐部2bから射出された第1一面側測定光は、本実施形態では光分岐部2bによって第2一面側測定光の進行方向に対し直交する方向へ進行するが、反射鏡2kによってその進行方向が直角に曲げられ、第2一面側測定光の進行方向と揃えられる。このように反射鏡2kは、光分岐部1bから射出された第1一面側測定光の進行方向と第2一面側測定光の進行方向とを揃えるために設けられている。
【0064】
波長シフタ2lから射出された第1一面側測定光(波長シフト後の第1一面側測定光)は、光分岐部20aに入射され、第11一面側測定光および第12一面側測定光の2つに分配される。この第11一面側測定光は、そのままの方向で進行する一方、第12一面側測定光は、第11一面側測定光の進行方向に対し直交する方向へ進行する。また、波長シフタ2cから射出された第2一面側測定光(波長シフト後の第2一面側測定光)は、光分岐部20pに入射され、第21一面側測定光および第22一面側測定光の2つに分配される。この第21一面側測定光は、そのままの方向で進行する一方、第22一面側測定光は、第21一面側測定光の進行方向に対し直交する方向へ進行する。
【0065】
第12一面側測定光は、照射前一面側測定光であり、光分岐部20uに入射され、第22一面側測定光は、反射鏡20tを介して光分岐部20uに入射される。そして、この光分岐部20uに入射された第12一面側測定光と第22一面側測定光とは、光分岐部20uで光が合わされて光ヘテロダイン干渉を行い、そのビート光信号が照射前一面側干渉光として出力端子2qから射出される。ここでは、光分岐部2pは、光結合部として機能している。この出力端子2qから射出されたビート光信号の照射前一面側干渉光は、一面側位相検波部5に入射される。
【0066】
また、測定対象物WAのA面に対し1つの測定箇所MPにおける複数の箇所Pに複数の測定光、本実施形態では第11一面側測定光を照射するために、第11一面側測定光は、複数の光分岐部20に順次に入射され、各光分岐部で順次に分配され、複数に分配される。これに対応して第21一面側測定光も、複数の光分岐部20に順次に入射され、各光分岐部で順次に分配され、複数に分配される。本実施形態では、一面側測定部2Aの説明で上述したように、前記複数の箇所Pの個数は、3箇所である。このため、より具体的には、第11一面側測定光は、2個の光分岐部20bおよび光分岐部20cに順次に入射され、各光分岐部20b、20cで順次に分配され、3つに分配される。これに対応して第21一面側測定光も、2個の光分岐部20qおよび光分岐部20rに順次に入射され、各光分岐部20q、20rで順次に分配され、3つに分配される。
【0067】
光分岐部20bで分配された一方の第11一面側測定光は、第1番目の第11一面側測定光として、反射鏡20eを介して偏光ビームスプリッタ2fに入射される。光分岐部20bで分配された他方の第11一面側測定光は、光分岐部20cに入射され、さらに分配される。この光分岐部20cで分配された一方の第11一面側測定光は、第2番目の第11一面側測定光として、反射鏡20fを介して偏光ビームスプリッタ2fに入射される。そして、この光分岐部20cで分配された他方の第11一面側測定光は、第3番目の第11一面側測定光として、反射鏡20dおよび反射鏡20gを介して偏光ビームスプリッタ2fに入射される。
【0068】
ここで、この光分岐部20bで分配された他方の第11一面側測定光は、そのままの方向で進行する一方、光分岐部20bで分配された一方の第11一面側測定光は、前記他方の第11一面側測定光の進行方向に対し直交する方向へ進行する。この光分岐部20cで分配された他方の第11一面側測定光は、そのままの方向で進行する一方、光分岐部20cで分配された一方の第11一面側測定光は、前記他方の第11一面側測定光の進行方向に対し直交する方向へ進行する。そして、反射鏡20d、20e、20f、20gは、それぞれ、入射光の進行方向に対し略直交する方向で射出する。したがって、反射鏡20e、20f、20gから偏光ビームスプリッタ2fへ向かう第1番目ないし第3番目の各第11一面側測定光は、互いに略同じ方向に向かって進行している。
【0069】
また、光分岐部20qで分配された一方の第21一面側測定光は、第1番目の第21一面側測定光として、光分岐部20oに入射される。光分岐部20qで分配された他方の第21一面側測定光は、光分岐部20rに入射され、さらに分配される。この光分岐部20rで分配された一方の第21一面側測定光は、第2番目の第21一面側測定光として、光分岐部20nに入射される。そして、この光分岐部20rで分配された他方の第21一面側測定光は、第3番目の第21一面側測定光として、反射鏡20sを介して光分岐部20mに入射される。
【0070】
ここで、この光分岐部20qで分配された他方の第21一面側測定光は、そのままの方向で進行する一方、光分岐部20qで分配された一方の第21一面側測定光は、前記他方の第21一面側測定光の進行方向に対し直交する方向へ進行する。この光分岐部20rで分配された他方の第21一面側測定光は、そのままの方向で進行する一方、光分岐部20rで分配された一方の第21一面側測定光は、前記他方の第21一面側測定光の進行方向に対し直交する方向へ進行する。そして、反射鏡20sは、入射光の進行方向に対し直交する方向で射出する。したがって、光分岐部20q、光分岐部20r、反射鏡20sから光分岐部20o、光分岐部20n、光分岐部20mへ向かう第1番目ないし第3番目の各第21一面側測定光は、互いに略同じ方向に向かって進行している。
【0071】
そして、反射鏡20e、20f、20gから偏光ビームスプリッタ2fに入射された第1番目ないし第3番目の各第11一面側測定光は、偏光ビームスプリッタ2fを介して1/4波長板2gに入射され、レンズ2hで集光され、測定対象物WAのA面に1つの測定箇所MPにおいて複数の箇所P(ここでは3箇所)で照射される。この測定対象物WAのA面における前記複数の箇所Pのそれぞれで反射された複数(ここでは3箇所)の第11一面側測定光は、照射後一面側測定光として、再び、レンズ2hに入射され、そして、1/4波長板2gを介して偏光ビームスプリッタ2fに入射される。これら偏光ビームスプリッタ2fに入射された各第11一面側測定光(各照射後一面側測定光)は、所定の方向、本実施形態では、前記第11一面側測定光(照射後一面側測定光)が測定対象物WAのA面から偏光ビームスプリッタ2fへ向かう方向に対し直交する方向に反射される。
【0072】
偏光ビームスプリッタ2fから射出された各第11一面側測定光(照射後一面側測定光)は、反射鏡20j、反射鏡20k、反射鏡20lでそれぞれ反射され、その進行方向が略直角に曲げられ、光分岐部20m、光分岐部20n、光分岐部20oにそれぞれ入射される。これら光分岐部20m、光分岐部20n、光分岐部20oのそれぞれには、上述したように、反射鏡20s、光分岐部20r、光分岐部20qからの各第21一面側測定光も、入射されている。そして、これら光分岐部20m、光分岐部20n、光分岐部20oのそれぞれに入射された各第11一面側測定光と各第21一面側測定光とは、これら光分岐部20m、光分岐部20n、光分岐部20oのそれぞれで各光のそれぞれが合わされて光ヘテロダイン干渉をそれぞれ行い、その複数(ここでは3個)のビート光信号が各照射後一面側干渉光として各出力端子2j(2j−1〜2j−3)から射出される。ここでは、光分岐部20m、光分岐部20n、光分岐部20oは、光結合部として機能している。これら各出力端子2j(2j−1〜2j−3)から射出されたビート光信号の複数の照射後一面側干渉光は、一面側位相検波部5に入射される。
【0073】
このような構成の一面側測定部2Bでは、1または複数、図4に示す例では2個の光分岐部20b、20cによって第1一面側測定光が複数に分けられ、1または複数、図4に示す例では2個の光分岐部20q、20rによって第2一面側測定光が複数に分けられ、一面側測定光の1回の発光で前記複数の箇所Pが同時に測定される。このように光分岐部を用いるので、このような構成の一面側測定部2Bは、その光学設計や調整において、高い自由度を持ち、その制約が低減される。図3に示す構成の一面側測定部2Aと比較すると、この一面側測定部2Aでは、回折格子2e、2nおよびレンズ2hのパラメータによって、各光学素子間の距離や複数の箇所における各距離が略一意に決まり、その光学設計や調整において、その自由度が比較的少ないが、この図4に示す構成の一面側測定部2Bでは、各光学素子の光軸を個別に調整することができるため、その光学設計や調整において、その制約が比較的少なく、高い自由度を有している。
【0074】
次に、他面側測定部3について説明する。図5は、実施形態の形状測定装置における第2測定部の構成を示す図である。
【0075】
他面側測定部(第B測定部)3は、光源部1からの他面側測定光が入射され、他面側測定光を用いた光ヘテロダイン干渉法によって測定対象物WAにおけるB面の表面形状の情報を含むビート光信号を得る装置である。
【0076】
より具体的には、他面側測定部3は、測定対象物WAのB面に対向配置され、光源部1からの他面側測定光(第B測定光)を第1他面側測定光(第B1測定光)と第2他面側測定光(第B2測定光)とにさらに分け、光ヘテロダイン干渉によって、前記分けられた第1他面側測定光における測定対象物WAのB面に照射されて反射された照射後他面側測定光(第B照射後測定光)と前記分けられた第2他面側測定光とを干渉させた照射後他面側干渉光(第B照射後干渉光)を生成するとともに、光ヘテロダイン干渉によって、前記分けられた第1他面側測定光における測定対象物WAのB面に照射される前の照射前他面側測定光(第B照射前測定光)と前記分けられた第2他面側測定光とを干渉させた照射前他面側干渉光(第B照射前干渉光)を生成する測定光学系である。このような構成の他面側測定部3では、照射前他面側干渉光を基準に、複数の照射後他面側干渉光における各位相がそれぞれ測定され得る。
【0077】
さらに、より具体的には、他面側測定部3は、測定対象物WAのB面に対向配置され、他面側測定光から、互いに周波数の異なる2つの第1および第2他面側測定光を生成し、この2つの第1他面側測定光と第2他面側測定光とを干渉(光ヘテロダイン干渉)させ、それらの差の周波数を持つビート光信号を生成する光ヘテロダイン干渉計であり、他面側測定光から第1および第2他面側測定光が生成されてから第1他面側測定光と第2他面側測定光とが干渉されるまでの間に、第1他面側測定光が測定対象物WAのB面に照射され反射される第1他面側光路および第1他面側測定光が測定対象物WAのB面に照射されない第2他面側光路を含む測定光学系である。
【0078】
このような他面側測定部3は、例えば、図5に示すように、入力端子3aと、光分岐部3b、3d、3h、3l、3nと、偏光ビームスプリッタ3eと、光波長シフタ3c、3kと、反射鏡3j、3mと、1/4波長板3fと、レンズ3gと、出力端子3i、3oとを備えて構成される。
【0079】
このような構成の他面側測定部3では、光源部1から偏波保持光ファイバを介して入力端子3aに入射された他面側測定光は、光分岐部3bに入射され、第1他面側測定光および第2他面側測定光の2つに分配される。第1他面側測定光は、そのままの方向(光分岐部3bにおいて、入射光の進行方向と射出光の進行方向とが同じ)で進行する一方、第2他面側測定光は、第1他面側測定光の進行方向に対し直交する方向(垂直な方向)へ進行する。第1他面側測定光は、光波長シフタ3cに入射され、その波長(周波数)がシフト(変更)され、第2他面側測定光は、反射鏡3jを介して光波長シフタ3kに入射され、その波長(周波数)がシフト(変更)される。
【0080】
また、光分岐部3bから射出された第2他面側測定光は、本実施形態では光分岐部3bによって第1他面側測定光の進行方向に対し直交する方向へ進行するが、反射鏡3jによってその進行方向が直角に曲げられ、第1他面側測定光の進行方向と揃えられる。このように反射鏡3jは、光分岐部3bから射出された第1他面側測定光の進行方向と第2他面側測定光の進行方向とを揃えるために設けられている。
【0081】
波長シフタ3cから射出された第1他面側測定光(波長シフト後の第1他面側測定光)は、光分岐部3dに入射され、第11他面側測定光(第B11測定光)および第12他面側測定光(第B12測定光)の2つに分配される。この第11他面側測定光は、そのままの方向で進行する一方、第12他面側測定光は、第11他面側測定光の進行方向に対し直交する方向へ進行する。また、波長シフタ3kから射出された第2他面側測定光(波長シフト後の第2他面側測定光)は、光分岐部2lに入射され、第B21測定光および第B22測定光の2つに分配される。この第B21測定光は、そのままの方向で進行する一方、第B22測定光は、第B21測定光の進行方向に対し直交する方向へ進行する。
【0082】
第12他面側測定光は、照射前他面側測定光であり、光分岐部3nに入射され、第B22測定光は、反射鏡3mを介して光分岐部3nに入射される。そして、この光分岐部3nに入射された第12他面側測定光と第B22測定光とは、光分岐部3nで光が合わされて光ヘテロダイン干渉を行い、そのビート光信号が照射前他面側干渉光として出力端子3oから射出される。ここでは、光分岐部3nは、光結合部として機能している。この出力端子3oから射出されたビート光信号の照射前他面側干渉光は、他方面側位相検波部6に入射される。
【0083】
第11他面側測定光は、偏光ビームスプリッタ3eを介して1/4波長板3fに入射され、レンズ3gで集光され、測定対象物WAのB面に照射される。そして、この測定対象物WAのB面で反射された第11他面側測定光は、照射後他面側測定光として、再び、レンズ3gに入射され、そして、1/4波長板3fに入射される。したがって、この1/4波長板3fの存在によって、偏光ビームスプリッタ3eから測定対象物WAのB面に照射される第11他面側測定光における偏光状態(例えばP偏光またはS偏光)と、測定対象物WAのB面で反射して偏光ビームスプリッタ3eに入射される第11他面側測定光における偏光状態(例えばS偏光またはP偏光)とが互いに入れ替わることになる。このため、光分岐部3dから偏光ビームスプリッタ3eに入射された第11他面側測定光は、偏光ビームスプリッタ3eを測定対象物WAのB面に向かって通過する一方、測定対象物WAのB面からレンズ3gおよび1/4波長板3fを介して偏光ビームスプリッタ3eに入射した第11他面側測定光(照射後他面側測定光)は、所定の方向、本実施形態では、前記第11他面側測定光(照射後他面側測定光)が測定対象物WAのB面から偏光ビームスプリッタ3eへ向かう方向に対し直交する方向に反射される。
【0084】
偏光ビームスプリッタ3eから射出された第11他面側測定光(照射後他面側測定光)は、光分岐部3hに入射される。光分岐部3hには、光分岐部3lで分配された第B21測定光も、入射される。そして、この光分岐部3hに入射された第11他面側測定光(照射後他面側測定光)と第B21測定光とは、光分岐部3hで各光が合わされて光ヘテロダイン干渉を行い、そのビート光信号が照射後他面側干渉光として出力端子3iから射出される。ここでは、光分岐部3hは、光結合部として機能している。この出力端子3iから射出されたビート光信号の照射後他面側干渉光は、他方面側位相検波部6に入射される。
【0085】
そして、一面側測定部2と他面側測定部3とは、測定対象物WAのA面における測定箇所(測定位置)とそのB面における測定箇所(測定位置)とが表裏関係で以て同じ位置となるように、配置される。すなわち、測定対象物WAの厚さ方向をZ軸とし、前記厚さ方向に直交する水平面内における互いに直交する2方向をそれぞれX軸およびY軸とする直交XYZ座標系を設定する場合に、複数の第11一面側測定光が測定対象物WAのA面に照射される複数の箇所のうちのいずれかの箇所(例えば、複数の箇所における中央の箇所等)のX座標値およびY座標値が、第11他面側測定光が測定対象物WAのB面に照射される箇所のX座標値およびY座標値と一致するように、正対配置される。
【0086】
次に、ステージ4について説明する。図6は、実施形態の形状測定装置におけるステージの構成を示す図である。ステージ4は、演算制御部7の制御に従って、測定対象物WAの厚さ方向に直交する水平方向に測定対象物WAを移動する装置である。ステージ4は、上述のようにXYZ座標系を設定した場合に、X軸方向およびY軸方向に測定対象物WAを移動することができるXYステージであってもよいが、本実施形態では、測定対象物WAが半導体ウェハである場合に、一般に、半導体ウェハが円盤状の形状であることから、ステージ4は、測定対象物WAを回転移動することができるとともに、前記回転の径方向にも移動することができる装置である。このため、測定箇所における測定値は、円柱座標系RθZで表現されることが好ましい。
【0087】
このようなステージ4は、より具体的には、例えば、図6に示すように、測定対象物WAの振動による影響を受けることなく、測定対象物WAの測定箇所MPにおける厚さ等の表面形状を高精度にかつ高速に測定することができるように、中央部材から径方向に延びる3個のアーム部材を備え、前記アーム部材の先端で、半導体ウェハ等の円盤状の測定対象物WAをその縁部(エッジ領域)において円周上の3箇所で3点支持する支持部4dと、前記支持部4dの中央部材に連結される回転軸4aと、回転軸4aを回転駆動する回転駆動部4bと、回転駆動部4bを所定の移動範囲内で直線移動する直線駆動部4cとを備えている。これら回転駆動部4bや直線駆動部4cは、例えばサーボモータ等のアクチュエータや減速ギヤ等の駆動機構を備えて構成される。
【0088】
このような構成のステージ4では、測定対象物WAが支持部4dにおける3個のアーム部材の各先端に載せられて支持部4dによって3点支持される。そして、このように測定対象物WAがステージ4に載置された場合に、測定対象物WAのA面およびB面が一面側測定部2および他面側測定部3によって測定することができるように、ステージ4が一面側測定部2および他面側測定部3の配置位置に対して配設される。
【0089】
そして、このような構成のステージ4では、演算制御部7の制御に従って回転駆動部4bが回転することで、回転軸4aを介して支持部4dが回転し、測定対象物WAが回転軸4a(支持部4dの中央部材)を中心に回転する。そして、演算制御部7の制御に従って回転駆動部4bが回転駆動部4bを直線移動することで、測定対象物WAが径方向に沿って移動する。このような回転駆動部4bによる測定対象物WAの回転移動と、直線駆動部4cによる測定対象物WAの直線方向の移動とを併用することによって、ステージ4の移動範囲内において測定対象物WAの所望の測定箇所MPを測定することができる。ここで、1個の測定箇所MPには、上述したように、一面側測定部2によって複数の箇所Pで第11一面側測定光が照射される。
【0090】
次に、一面側位相検波部(第A位相検波部)5について説明する。図7は、実施形態の形状測定装置における第1態様の一面側位相検波部の構成を示す図である。図8は、実施形態の形状測定装置における第2態様の一面側位相検波部の構成を示す図である。
【0091】
一面側位相検波部5は、一面側測定部2(2A、2B)によって得られた複数の照射後一面側干渉光のそれぞれについて、照射前一面側干渉光との間における各位相差△ΦAを検出するための装置である。本実施形態では、3箇所の測定箇所MPA1、MPA2、MPA3について、3個の照射後一面側干渉光が得られることから、3個の位相差△ΦA1、△ΦA2、△ΦA3が検出される。
【0092】
このような一面側位相検波部5として、例えば、図7に示す構成の第1態様にかかる一面側位相検波部5Aや図8に示す構成の第2態様にかかる一面側位相検波5Bが挙げられる。
【0093】
この第1態様にかかる一面側位相検波部5Aは、図7に示すように、光電変換部5a(5a−1、5a−2、5a−3)、5bと、位相検波器5c、5d、5eとを備えて構成される。
【0094】
光電変換部5a、5bは、例えばホトダイオード等の、入射光の光量に応じた信号レベルの電気信号に変換して該電気信号を出力する光電変換素子を備えて構成される。光電変換部5aは、前記複数の箇所(測定箇所MP)の個数に応じて用意され、一面側測定部2からの複数の照射後一面側干渉光をそれぞれ受光して、その各光量に応じた信号レベルの各電気信号を各一面側測定ビート信号(第A測定ビート信号)SigAとして出力するものである。本実施形態では、前記複数の箇所は、3個であることから、3個の光電変換部5a−1、5a−2、5a−3が用意される。各光電変換部5a−1、5a−2、5a−3のそれぞれは、一面側測定部2の出力端子2j−1、2j−2、2j−3からそれぞれ射出された3個の照射後一面側干渉光を各マルチモード光ファイバおよび図略の各入力端子を介してそれぞれ受光し、これら各照射後一面側干渉光の各光量に応じて各一面側測定ビート信号SigA−1、SigA−2、SigA−3をそれぞれ出力する。そして、光電変換部5bは、一面側測定部2からの照射前一面側干渉光をマルチモード光ファイバおよび図略の入力端子を介して受光して、その光量に応じた信号レベルの電気信号を一面側参照ビート信号(第A参照ビート信号)RefAとして出力するものである。
【0095】
位相検波器5c、5d、5eは、入力信号間の位相を検出する装置である。位相検波器5cは、光電変換部5bから一面側参照ビート信号RefAと光電変換部5a−2から一面側測定ビート信号SigA−2とが入力され、これら一面側参照ビート信号RefAと一面側測定ビート信号SigA−2との間における位相差△ΦAa2−rを検出する。位相検波器5dは、光電変換部5a−1から一面側信号ビート信号SigA−1と光電変換部5a−2から一面側測定ビート信号SigA−2とが入力され、一面側信号ビート信号SigA−1と一面側測定ビート信号SigA−2との間における位相差△ΦAa1−a2を検出する。位相検波器5eは、光電変換部5a−2から一面側信号ビート信号SigA−2と光電変換部5a−3から一面側測定ビート信号SigA−3とが入力され、一面側信号ビート信号SigA−2と一面側測定ビート信号SigA−3との間における位相差△ΦAa3−a2を検出する。これら位相差△ΦAa2−r、位相差△ΦAa1−a2および位相差△ΦAa3−a2から、演算処理によって、一面側測定部2によって得られた複数の照射後一面側干渉光のそれぞれについて、照射前一面側干渉光との間における各位相差△ΦA1、△ΦA2、△ΦA3を検出することができる。この演算処理は、一面側位相検波部5Aによって実行されてもよく、また、演算制御部7によって実行されてもよい。
【0096】
このような演算処理を不要とするために、第2態様にかかる一面側位相検波部5Bは、図8に示すように、光電変換部5a(5a−1、5a−2、5a−3)、5bと、位相検波器5c、5d、5eとを備え、位相検波器5cは、光電変換部5bから一面側参照ビート信号RefAと光電変換部5a−2から一面側測定ビート信号SigA−2とが入力され、一面側測定ビート信号SigA−2と一面側参照ビート信号RefAとの間における位相差△ΦA2を検出する。位相検波器5dは、光電変換部5bから一面側参照ビート信号RefAと光電変換部5a−1から第A測定ビート信号SigA−1とが入力され、一面側測定ビート信号SigA−1と一面側参照ビート信号RefAとの間における位相差△ΦA1を検出する。位相検波器5eは、光電変換部5bから一面側参照ビート信号RefAと光電変換部5a−3から一面側測定ビート信号SigA−3とが入力され、一面側測定ビート信号SigA−3と一面側参照ビート信号RefAとの間における位相差△ΦA3を検出する。
【0097】
次に、他方面側位相検波部(第B位相検波部)6について説明する。図9は、実施形態の形状測定装置における他方面側位相検波部の構成を示す図である。
【0098】
他方面側位相検波部6は、他面側測定部3によって得られた照射後他面側干渉光と照射前他面側干渉光との間における各位相差△ΦBを検出するための装置である。より具体的には、このような他方面側位相検波部6は、例えば、図9に示すように、光電変換部6a、6bと、位相検波器6cとを備えて構成される。
【0099】
光電変換部6aは、例えばホトダイオード等の光電変換素子を備えて構成され、他面側測定部3からの照射後他面側干渉光をマルチモード光ファイバおよび図略の入力端子を介して受光して、その光量に応じた信号レベルの電気信号を他面側測定ビート信号(第B測定ビート信号)SigBとして出力するものである。光電変換部6bは、例えばホトダイオード等の光電変換素子を備えて構成され、他面側測定部3からの照射前他面側干渉光をマルチモード光ファイバおよび図略の入力端子を介して受光して、その光量に応じた信号レベルの電気信号を他面側参照ビート信号(第B参照ビート信号)RefBとして出力するものである。
【0100】
位相検波器6cは、入力信号間の位相を検出する装置であり、光電変換部6bから他面側参照ビート信号RefBと光電変換部6aから他面側測定ビート信号SigBとが入力され、これら他面側参照ビート信号RefBと他面側測定ビート信号SigBとの間における位相差△ΦBを検出する。
【0101】
演算制御部7は、形状測定装置Sの各部を当該機能に応じて制御する回路であり、例えば、形状測定装置Sの各部を当該機能に応じて制御するための制御プログラムや測定対象物WAの表面形状を一面側位相検波部5および他方面側位相検波部6の各出力に基づいて求める演算プログラム等の各種の所定のプログラム、および、前記所定のプログラムの実行に必要なデータ等の各種の所定のデータ等を記憶する、不揮発性の記憶素子であるROM(Read Only Memory)や書き換え可能な不揮発性の記憶素子であるEEPROM(Electrically Erasable Programmable Read Only Memory)、前記所定のプログラムを読み出して実行することによって所定の演算処理や制御処理を行うCPU(Central Processing Unit)、前記所定のプログラムの実行中に生じるデータ等を記憶するいわゆる前記CPUのワーキングメモリとなるRAM(Random Access Memory)、ならびに、これらの周辺回路を備えたマイクロコンピュータ等によって構成される。演算制御部7は、機能的に、曲率算出部71と、形状算出部72と、ステージ制御部73と、光源制御部74と、厚さ算出部75とを備えている。
【0102】
ステージ制御部73は、測定対象物WAにおける複数の測定箇所MPを測定するために、測定対象物WAが厚さ方向に直交する水平方向に移動するように、ステージ4における回転駆動部4bおよび直線駆動部4cの各動作を制御するものである。光源制御部74は、光源部1の動作を制御するものである。
【0103】
厚さ算出部75は、一面側測定部2によって生成された照射前一面側干渉光および照射後一面側干渉光を一面側位相検波部5で位相検波することによって得られた一面側位相と、他面側測定部3によって生成された照射前他面側干渉光および照射後他面側干渉光を他方面側位相検波部6で位相検波することによって得られた他方面側位相との位相差から測定対象物WAにおけるA面からB面までの距離を測定対象物WAの厚さとして求めるものである。より具体的には、厚さ算出部75は、一面側測定部2によって生成された照射前一面側干渉光および照射後一面側干渉光を一面側位相検波部5で位相検波することによって得られた一面側位相差△ΦAと、他面側測定部3によって生成された照射前他面側干渉光および照射後他面側干渉光を他方面側位相検波部6で位相検波することによって得られた他方面側位相差△ΦBとの差分(△ΦA−△ΦB)から測定対象物WAにおけるA面からB面までの距離を測定対象物WAの厚さとして求める。この差分(△ΦA−△ΦB)は、測定対象物WAの厚さに関する値であり、一面側測定光の波長および他面側測定光の波長とが等しいとの近似の下に、一面側測定光の波長をλとする場合に、測定対象物WAの厚さDは、例えば、D=(△ΦA+△ΦB)×(λ/2)/(2π)によって求められる。前記式の符号(△ΦAと△ΦBとの間の符号)は、光学系によって正負いずれもとることができ、通常、一面側測定部2および他面側測定部3を対称に作った(構成した)場合には、正(+)となる。なお、本実施形態では、一面側と他面側との測定光は、同じ光源からの光を分岐したものであり、一面側と他面側との測定光の波長は、一致している。
【0104】
そして、演算制御部7は、測定箇所MPにおける複数の箇所Pのそれぞれについて、予め設定された基準面から測定対象物WAの一方面(A面)までの距離d(da、db、dc)を求めることによって、測定箇所MPにおける複数の箇所Pでの測定対象物WAの表面形状を求めるものである。本実施形態では、測定対象物WAの表面形状として例えば曲率や前記曲率に基づく円弧が曲率算出部71や形状算出部72によって求める。
【0105】
曲率算出部71は、測定箇所MPにおける複数の箇所Pのそれぞれについて、予め設定された基準面から測定対象物WAの一方面(A面)までの距離d(da、db、dc)に基づいて、前記複数の箇所Pにおける曲率、すなわち、前記測定箇所MPでの曲率を求めるものである。本実施形態では、前記複数の箇所Pは、3箇所であるので、曲率算出部71は、図10に示すように、曲率CFを、CF=(2db−da−dc)/(w)によって求める。ここで、daは、第1番目の箇所Paにおける前記予め設定された基準面から測定対象物WAの一方面までの距離であり、dbは、第2番目の箇所Pbにおける前記予め設定された基準面から測定対象物WAの一方面までの距離であり、dcは、第3番目の箇所Pcにおける前記予め設定された基準面から測定対象物WAの一方面までの距離である。この距離da、db、dcは、実際の距離をそのままに表す絶対値ではなく前記基準面からの相対値であり、この距離daは、da=(△ΦA1/(2π)+n1)×(λ/2)+N1によって求められ、距離dbは、db=(△ΦA2/(2π)+n2)×(λ/2)+N2によって求められ、距離dcは、dc=(△ΦA3/(2π)+n3)×(λ/2)+N3によって求められる。このように前記予め設定された基準面から測定対象物WAの一方面までの距離でdは、例えば、d=(△ΦA/(2π)+n)×(λ/2)+Nによって求められる。なお、前記基準面は、一面側測定部2から照射される測定光の光軸に対し水平な水平面であり、前記光軸に沿った任意の位置に設定される。前記定数N、N1、N2、N3は、前記基準面に対する初期値であり、例えば測定対象物WAの測定の度に事前に測定され、当該形状測定装置Sに記憶される。また、数値n、n1、n2、n3は、連続測定の場合に前記初期値に対する変化分を位相の整数倍で表すものである。そして、wは、隣接する測定光照射位置間の距離(面方向)である。曲率CFの逆数が曲率半径CFRである。
【0106】
形状算出部72は、曲率算出部71によって求められた、複数の測定箇所MPでの各曲率によって得られる各円弧を連結することによって、測定対象物WAにおける表面の高さ分布を表面形状として求めるものである。例えば、測定箇所MPにおける複数の箇所Pのうちの中央位置に在る箇所Pから曲率算出部71で求められた曲率CFに対応する曲率半径CFRで、前記中央位置の箇所Pを含む円弧が、前記測定箇所MPでの円弧として求められ、各測定箇所MPでの各円弧が連結される。
【0107】
入力部8は、例えば、測定開始等を指示するコマンドや測定対象物の属性情報等のデータを入力するための装置であり、例えば、複数の入力スイッチを備えた操作パネルやキーボード等である。出力部9は、入力部8で受け付けたコマンドやデータおよび測定結果等を出力するための装置であり、例えば、CRTディスプレイ、LCD(液晶ディスプレイ)、有機ELディスプレイおよびプラズマディスプレイ等の表示装置やプリンタ等の印刷装置等である。これら入力部8および出力部9は、演算制御部7に接続される。
【0108】
次に、本実施形態における形状測定装置Sの動作について説明する。図11は、実施形態の形状測定装置を用いて測定対象物の表面形状を測定する場合における測定箇所を説明するための図である。図11における○は、測定箇所MPを示し、その破線は、各測定箇所MPの軌跡を示す。図12は、実施形態の形状測定装置を用いて測定対象物の表面形状を測定する場合において、各測定箇所MPにおける複数の箇所Pと測定結果とを説明するための図である。図12(A)は、各測定箇所MPにおける複数の箇所Pを説明するための図であり、図12(B)は、各測定箇所MPにおける測定結果を示す図である。図12(A)における●は、測定箇所における複数の箇所Pを示し、その円弧状の破線は、各測定箇所MPの軌跡を示す。図12(B)の横軸は、測定対象物WAにおける周方向の位置座標を表し、その縦軸は、面高さを表す。図12(B)における●は、測定結果を示す。また、図12における直線上の実線および破線は、図12(A)と図12(B)との対応関係を表すものである。なお、以下の説明において、各測定箇所MPにおける複数の箇所Pは、説明の便宜上、3個として説明を行う。
【0109】
図略の電源スイッチがオンされると、形状測定装置Sが起動され、演算制御部7によって必要な各部の初期化が行われる。そして、例えば半導体ウェハ等の板状体の測定対象物WAがステージ4に載置され、入力部8から測定開始を指示するコマンドを受け付けると、演算制御部7は、測定対象物WAの表面形状の測定を開始する。
【0110】
まず、演算制御部7の光源制御部74は、光源部1を駆動し、単波長レーザ光源1aに所定のレーザ光を発光させる。この単波長レーザ光源1aによる所定のレーザ光の発光により、上述した光学系の作用によって、一面側測定光および他面側測定光が光源部1の出力端子1eおよび出力端子1gからそれぞれ射出される。
【0111】
続いて、この光源部1の出力端子1eから射出された一面側測定光は、偏波保持光ファイバを伝播し、一面側測定部2に入射される。この一面側測定部2では、この入射された一面側測定光から上述した光学系の作用によって照射前一面側干渉光および3個の照射後一面側干渉光とが生成され、出力端子2qおよび3個の出力端子2j−1〜2j−3からそれぞれ射出される。続いて、この一面側測定部2の出力端子2qおよび3個の出力端子2j−1〜2j−3からそれぞれ射出された照射前一面側干渉光および3個の照射後一面側干渉光とは、各マルチモード光ファイバを伝播し、一面側位相検波部5に入射される。この一面側位相検波部5では、これら照射前一面側干渉光と3個の照射後一面側干渉光との位相検波によって、これら3個の照射後一面側干渉光のそれぞれについて、照射前一面側干渉光との間における各位相差△ΦA1、△ΦA2、△ΦA3に関連あるいは表すデータが生成される。
【0112】
一方、この光源部1の出力端子1gから射出された他面側測定光は、偏波保持光ファイバを伝播し、他面側測定部3に入射される。この他面側測定部3では、この入射された他面側測定光から上述した光学系の作用によって照射前他面側干渉光および照射後他面側干渉光とが生成され、出力端子3oおよび出力端子2iからそれぞれ射出される。続いて、この他面側測定部3の出力端子2oおよび出力端子3iからそれぞれ射出された照射前他面側干渉光および照射後他面側干渉光とは、各マルチモード光ファイバを伝播し、他方面側位相検波部6に入射される。この他方面側位相検波部6では、これら照射前他面側干渉光と照射後他面側干渉光との位相検波によって、照射後他面側干渉光について、照射前他面側干渉光との間における各位相差△ΦBを表すデータが生成される。
【0113】
これら一面側測定部2および一面側位相検波部5と他面側測定部3および他方面側位相検波部6とがこのような動作を行っている際に、演算制御部7のステージ制御部73は、ステージ4を制御することによって、測定対象物WAをその厚さ方向に直交する水平方向に移動させる。
【0114】
より具体的には、例えば、本実施形態では、ステージ制御部7は、ステージ4の回転駆動部4bを制御することによって測定対象物WAを回転させつつ、ステージ4の直線駆動部4cを制御することによって測定対象物WAを直線方向に移動させる。このようなステージ制御部73によるステージ4の制御を行っている間に、演算制御部7は、測定箇所MPの位置が予め設定された所定の位置になるごとに、一面側位相検波部5および他方面側位相検波部6から各位相差△ΦA1、△ΦA2、△ΦA3;△ΦBのデータを取得する。このような動作によって、図11に示すように、複数の測定箇所MPの各位置の軌跡が螺旋を描くように、測定対象物WAにおける測定箇所MPの位置を順次に変更しつつ測定対象物WAにおける各測定箇所MPでの各位相差△ΦA1、△ΦA2、△ΦA3;△ΦBのデータが取得される。また例えば、ステージ制御部7は、ステージ4の回転駆動部4bを制御することによって測定対象物WAを回転させつつ、この間に、演算制御部7は、測定箇所MPの位置が予め設定された所定の位置になるごとに、一面側位相検波部5および他方面側位相検波部6から各位相差△ΦA1、△ΦA2、△ΦA3;△ΦBのデータを取得する。続いて、測定対象物WAが1回転したところで、ステージ4の直線駆動部4cを制御することによって測定対象物WAを直線方向に所定の距離だけ移動させる。そして、この直線方向に所定の距離だけ移動したところで、上述と同様に、演算制御部7は、測定対象物WAを回転させつつ、この間に、所定の位置での各位相差△ΦA1、△ΦA2、△ΦA3;△ΦBのデータを取得する。このような動作によって、半径の異なる円周上の各位置での各測定箇所MPで各位相差△ΦA1、△ΦA2、△ΦA3;△ΦBのデータが取得される。
【0115】
ここで、上述の形状測定装置Sにおいて、移動前における複数の箇所Pと移動後における複数の箇所Pとが2つ以上重なるように、測定対象物WAを水平方向に移動するように、演算制御部7のステージ制御部73は、ステージ4を制御し、そして、一面側位相検波部5および他方面側位相検波部6から各位相差△ΦA1、△ΦA2、△ΦA3;△ΦBのデータを取得してもよい。
【0116】
また、上述の形状測定装置Sにおいて、複数の箇所Pが、移動方向に沿って並び、この移動方向に沿って互いに隣接する2つの箇所Pの間隔が等しくなるように、演算制御部7のステージ制御部73は、ステージ4を制御し、そして、一面側位相検波部5および他方面側位相検波部6から各位相差△ΦA1、△ΦA2、△ΦA3;△ΦBのデータを取得してもよい。
【0117】
例えば、ステージ制御部73は、各測定箇所MPの各位置の軌跡が螺旋を描く場合では、測定対象物WAが周方向に一定の角速度で回転するように回転駆動部4bを制御しつつ、測定対象物WAが直線方向に一定の速度で移動するように直線駆動部4cを制御する。この場合でも、移動前における複数の箇所Pと移動後における複数の箇所Pとが2つ以上重なるように、周方向に回転させつつ、直線方向に移動するようにステージ4が制御される。あるいは、ステージ制御部73は、各測定箇所MPの各位置が円周上に並ぶ場合では、測定対象物WAが周方向に一定の角速度で回転するように回転駆動部4bを制御し、1回転したところで、測定対象物WAが直線方向に所定の距離だけ移動するように直線駆動部4cを制御する。そして、演算制御部7は、一定の周期で、一面側位相検波部5および他方面側位相検波部6から各位相差△ΦA1、△ΦA2、△ΦA3;△ΦBのデータを取得する。
【0118】
このようなステージ制御部73によるステージ4の制御および演算制御部7のデータ取得のタイミングの制御を行うことにより、例えば、移動前における複数の箇所Pと移動後における複数の箇所Pとを2つ重ね、かつ、移動方向に沿って互いに隣接する2つの箇所Pの間隔を等しくすると(曲線(円弧)AR上での距離を等しくすると)、各測定箇所PMでの複数の箇所Pは、図12(A)に示す位置となる。図12(A)に示す例では、第1番目の測定箇所MP1では、曲線(円弧)AR上の3個の箇所P−11、P−12、P−13で前記各位相差のデータが取得され、第2番目の測定箇所MP2では、曲線AR上の3個の箇所P−21、P−22、P−23で前記各位相差のデータが取得される。ここで、箇所P−22が箇所P−11に重なり、箇所P−23が箇所P−12に重なる。そして、第3番目の測定箇所MP3では、曲線AR上の3個の箇所P−31、P−32、P−33で前記各位相差のデータが取得される。ここで、箇所P−32が箇所P−21に重なり、箇所P−33が箇所P−22および箇所P−11に重なる。また、第4番目の測定箇所MP4では、曲線AR上の3個の箇所P−41、P−42、P−43で前記各位相差のデータが取得される。ここで、箇所P−42が箇所P−31に重なり、箇所P−43が箇所P−32および箇所P−21に重なる。
【0119】
続いて、これら各位相差△ΦA1、△ΦA2、△ΦA3;△ΦBのデータが取得されると、演算制御部7の厚さ算出部75は、上述した演算式によって、測定箇所MPにおける厚さD、例えば箇所Pbの厚さDを求め、測定箇所MPにおける測定対象物WAの厚さDを求める。
【0120】
続いて、演算制御部7の曲率算出部71は、測定箇所MPにおける3個の箇所Pa、Pb、Pcのそれぞれについての測定対象物WAの距離da、db、dcに基づいて、上述した演算式によって、測定箇所MPにおける曲率CFを求める。
【0121】
続いて、演算制御部の形状算出部72は、曲率算出部71によって求められた、複数の測定箇所MPでの各曲率CFによって得られる各円弧を連結することによって、測定対象物WAにおける表面の高さ分布を求める。例えば、実線の曲線で図12(B)に示すように、4個の第1ないし第4測定箇所MP1〜MP4での各曲率CF1〜CF4によって得られる各円弧を連結することによって、測定対象物WAにおける表面の高さ分布が求められる。
【0122】
続いて、演算制御部7は、これら求めた厚さ分布、曲率および表面の高さ分布を測定対象物WAの表面形状として出力部9に出力し、出力部9は、これら厚さ分布、曲率および表面の高さ分布を測定対象物WAの表面形状として表示する。
【0123】
このように動作することによって、本実施形態における形状測定装置Sおよび形状測定方法では、測定対象物WAの一方面に対し測定箇所MPにおける複数の箇所Pで光ヘテロダイン干渉法によって測定対象物WAの一方面から他方面までの距離が測定され、測定対象物WAの厚さと面の表面形状が1回の測定で求めることができ、このような構成の形状測定装置Sおよび形状測定方法は、測定対象物WAの厚さと表面形状とをより高い精度で測定することができる。例えば、このような構成の形状測定装置Sおよび形状測定方法では、ナノメートルレベルの精密な測定が可能となる。このような構成の形状測定装置Sおよび形状測定方法は、製造工程中や製造後における製品検査等の用途で半導体ウェハの製造工場等で好適に使用することができる。
【0124】
また、上述の形状測定装置Sおよび形状測定方法では、ステージ4によって測定対象物WAが水平方向に移動され、測定対象物WAの厚みが走査される。このため、このような構成の形状測定装置Sおよび形状測定方法は、前記走査の範囲について、測定対象物WAの厚さ分布をより高い精度で測定することができる。
【0125】
また、上述の形状測定装置Sおよび形状測定方法では、測定対象物WAの表面における曲率CFを測定対象物WAの表面形状として測定することができる。
【0126】
また、上述の形状測定装置Sおよび形状測定方法では、複数の曲率CFによって得られる複数の円弧が連結される。このため、このような構成の形状測定装置Sおよび形状測定方法は、測定対象物WAにおける表面の高さ分布を測定対象物WAの表面形状として測定することができ、測定対象物WAにおける表面の形状を再現することができる。
【0127】
また、上述の形状測定装置Sおよび形状測定方法では、移動前における複数の箇所と移動後における複数の箇所とが2つ以上重ねられる。このため、このような構成の形状測定装置Sおよび形状測定方法は、連続的に測定対象物WAの表面形状を容易に測定することができる。
【0128】
また、上述の形状測定装置Sおよび形状測定方法では、移動方向に沿って並ぶ2つの箇所Pの間隔が等しい。このため、このような構成の形状測定装置Sおよび形状測定方法は、ステージ4の制御が容易となり、また、一定の間隔で、測定対象物WAの表面形状を測定することができる。
【0129】
また、上述の形状測定装置Sでは、一面側光変調器および他面側光変調器が光源部1内に設けられるのではなく、一面側測定部2は、その内部に、より具体的には、筐体内部に一面側光変調器の一例としての波長シフタ2c、2lを備え、他面側測定部3は、その内部に、より具体的には、筐体内部に他面側光変調器の一例としての波長シフタ3c、3kを備えている。このため、このような構成の形状測定装置Sは、光源部1から一面側測定部2に至る光路において、光ヘテロダイン干渉を行う光に位相の揺らぎが発生することが無く、そして、光源部1から他面側測定部3に至る光路において、光ヘテロダイン干渉を行う光に位相の揺らぎが発生することが無い。したがって、形状測定装置Sは、測定対象物WAの表面形状をより高い精度で測定することができる。
【0130】
なお、上述の実施形態において、形状測定装置Sは、エッジロールオフを表す指標を演算制御部7によって求めてもよい。図13は、エッジロールオフを説明するための図である。図13(A)は、ウェハ(Wafer)の表面プロファイル(Surface Profile)を示す模式図であり、図13(B)は、前記ウェハの縦断面模式図である。図13(A)の横軸は、ウェハにおけるエッジからの距離であり、その縦軸は、高さである。
【0131】
半導体ウェハには、図13に示すように、最も外側にChamferと呼ばれる面取部があり、例えば、300mmウェハでは、物理的な先端から約0.3mm〜0.5mmの領域が前記面取部に当たる。エッジロールオフ(Edge Roll-off)は、前記面取部より内部の数mmまでに至る領域である。このエッジロールオフは、様々な要因によって生じるが、その大きな要因は、半導体ウェハの研磨工程にある。このエッジロールオフは、通常、図13に示すように、「ダレた形状」を呈するが、条件によっては、ダレではなく、「盛り上がった形状」を呈する場合もある。
【0132】
このエッジロールオフの評価方法として、例えば、Kimuraらが提案しているROA(Roll-off Amount;ROA)という評価値がある。この評価値は、図13(A)に示すように、半導体ウェハが平坦であると考えられる、半導体ウェハの物理的な先端から約3〜6mmの位置(Reference area)における半導体ウェハの形状から基準平面を求め、1mmの位置の半導体ウェハの形状と前記基準面との距離として定義される。この評価値ROAは、半導体ウェハの外縁部がどの程度ダレているか、あるいは盛り上がっているかを表す指標である。
【0133】
このようなエッジロールオフの指標である評価値ROAを求めるために、測定箇所MPにおける複数の箇所Pが径方向に沿って並ぶように一面側測定部2が構成され、演算制御部7が、機能的に、形状算出部72によって求められた測定対象物WAにおける表面の高さ分布を用いて、評価値ROAを求める評価値算出部をさらに備えるように形状測定装置Sが構成されてもよい。この評価値算出部をさらに備えることで、形状測定装置Sは、エッジロールオフの評価値ROAを求めることができる。したがって、このエッジロールオフの評価値ROAを参照することによって、所定のプロセス・ルールに適合したダイを製造することができる領域を半導体ウェハに適切に設定することができる。
【0134】
また、上述の実施形態では、形状測定装置Sは、A面のみ複数の箇所Pで測定するように構成されたが、B面もA面における複数の箇所Pの各位置に正対する各位置の複数の箇所Qで測定するように、構成されてもよい。この場合では、他面側測定部3も一面側測定部2と同様に構成され、演算制御部7は、A面とB面において互いに正対する位置における位相差のデータ同士で、測定対象物WAの表面形状を求める。
【0135】
また、上述の実施形態では、測定箇所MPでの複数の箇所Pは、3個であったが、これに限定されるものではない。図14は、測定箇所における複数の箇所について、第1ないし第3の態様を説明するための図である。図14(A)は、第1態様での測定箇所MPにおける複数の箇所Pを示し、図14(B)は、第2態様での測定箇所MPにおける複数の箇所Pを示し、図14(C)は、第3態様での測定箇所MPにおける複数の箇所Pを示す。図14において、●は、箇所Pを表す。
【0136】
第1態様では、測定箇所MPでの複数の箇所Pの個数は、図14(A)に示すように、上述した実施形態と同様に3個である。隣接する2つの箇所P間の距離は、例えば、500μm等である。
【0137】
また、第2態様では、測定箇所MPでの複数の箇所Pの個数は、図14(B)に示すように、十字を形成するように配列された5個である。このような第2態様では、例えば、図3に示す第1態様の一面側測定部2Aにおいて、回折格子2eおよび回折格子2nのそれぞれを、回折方向が互いに直交する2個の回折格子に代え、さらに、この2個の回折格子によって2次元アレイ状にそれぞれ回折された第11一面側測定光および第21一面側測定光(照射後一面側干渉光)のうち、十字を形成するような配列で5個の照射後一面側干渉光を、5個の出力端子2jで受光するように、形状測定装置Sが構成される。
【0138】
そして、第3態様では、測定箇所MPでの複数の箇所Pの個数は、図14(C)に示すように、2次元アレイ状に配列された3行×3列の9個である。このような第3態様では、例えば、図3に示す第1態様の一面側測定部2Aにおいて、回折格子2eおよび回折格子2nのそれぞれを、回折方向が互いに直交する2個の回折格子に代え、さらに、この2個の回折格子によって2次元アレイ状にそれぞれ回折された第11一面側測定光および第21一面側測定光(照射後一面側干渉光)のうち、3行×3列の2次元アレイ状を形成するような配列で9個の照射後一面側干渉光を、9個の出力端子2jで受光するように、形状測定装置Sが構成される。
【0139】
このような測定箇所MPでの複数の箇所Pが、前記第2態様や前記第3態様のように2次元配列される場合では、測定対象物WAにおける表面形状を、1つの測定箇所MPにおいて2次元的に測定することが可能となる。
【0140】
本発明を表現するために、上述において図面を参照しながら実施形態を通して本発明を適切且つ十分に説明したが、当業者であれば上述の実施形態を変更および/または改良することは容易に為し得ることであると認識すべきである。したがって、当業者が実施する変更形態または改良形態が、請求の範囲に記載された請求項の権利範囲を離脱するレベルのものでない限り、当該変更形態または当該改良形態は、当該請求項の権利範囲に包括されると解釈される。
【符号の説明】
【0141】
S 形状測定装置
MP 測定箇所
P 測定箇所における複数の箇所
WA 測定対象物
1 光源部
2、2A、2B 一面側測定部
2e、2n 回折格子
3 他面側測定部
4 ステージ
5、5A、5B 一面側位相検波部
6 他面側位相検波部
7 演算制御部
71 曲率算出部
72 形状算出部
73 ステージ制御部
74 光源制御部
75 厚さ算出部

【特許請求の範囲】
【請求項1】
測定光を生成する光源部と、
前記光源部で生成された測定光を一面側測定光と他面側測定光とに分ける光分岐部と、
前記光分岐部で分けられた一面側測定光を第1一面側測定光と第2一面側測定光とにさらに分け、光ヘテロダイン干渉によって、前記分けられた第1一面側測定光における測定対象物の一方面に照射されて反射された照射後一面側測定光と前記分けられた第2一面側測定光とを干渉させた照射後一面側干渉光を生成するとともに、光ヘテロダイン干渉によって、前記分けられた第1一面側測定光における前記測定対象物の一方面に照射される前の照射前一面側測定光と前記分けられた第2一面側測定光とを干渉させた照射前一面側干渉光を生成する一面側測定部と、
前記光分岐部で分けられた他面側測定光を第1他面側測定光と第2他面側測定光とにさらに分け、光ヘテロダイン干渉によって、前記分けられた第1他面側測定光における前記測定対象物の他方面に照射されて反射された照射後他面側測定光と前記分けられた第2他面側測定光とを干渉させた照射後他面側干渉光を生成するとともに、光ヘテロダイン干渉によって、前記分けられた第1他面側測定光における前記測定対象物の他方面に照射される前の照射前他面側測定光と前記分けられた第2他面側測定光とを干渉させた照射前他面側干渉光を生成する他面側測定部と、
一面側測定部によって生成された照射前一面側干渉光および照射後一面側干渉光を位相検波することによって得られた一面側位相と、他面側測定部によって生成された照射前他面側干渉光および照射後他面側干渉光を位相検波することによって得られた他方面側位相との位相差から前記測定対象物における前記一方面から前記他方面までの距離を前記測定対象物の厚さとして求める演算部とを備え、
前記一面側測定部は、複数の照射後一面側干渉光を生成するために、前記測定対象物の一方面に対し複数の箇所に複数の第1一面側測定光を照射して反射させ複数の照射後一面側測定光を得、
前記演算部は、前記複数の箇所のそれぞれについて、前記一面側測定部によって生成された照射前一面側干渉光および照射後一面側干渉光を位相検波することによって得られた一面側位相に基づいて予め設定された基準面から前記測定対象物の前記一方面までの距離を求めることによって、前記複数の箇所での前記測定対象物における表面形状をさらに求めること
を特徴とする形状測定装置。
【請求項2】
前記測定対象物の厚さ方向に直交する水平方向に前記測定対象物を移動する移動部をさらに備え、
前記演算部は、前記移動部によって前記測定対象物を前記水平方向に移動させながら、前記複数の箇所のそれぞれについて、前記一面側測定部によって生成された照射前一面側干渉光および照射後一面側干渉光を位相検波することによって得られた一面側位相に基づいて予め設定された基準面から前記測定対象物の前記一方面までの距離を求めることによって、前記測定対象物の表面形状を求めることで、前記複数の箇所での前記測定対象物における表面形状を複数求めること
を特徴とする請求項1に記載の形状測定装置。
【請求項3】
前記複数の箇所は、3箇所以上であり、
前記演算部は、前記複数の箇所のそれぞれについての前記予め設定された基準面から前記測定対象物の前記一方面までの距離に基づいて前記複数の箇所における曲率を求めること
を特徴とする請求項1または請求項2に記載の形状測定装置。
【請求項4】
前記演算部は、前記曲率を複数求め、前記求めた複数の曲率によって得られる複数の円弧を連結することによって、前記測定対象物における表面の高さ分布を求めること
を特徴とする請求項3に記載の形状測定装置。
【請求項5】
前記移動部は、移動前における複数の箇所と移動後における複数の箇所とが2つ以上重なるように、前記測定対象物を前記水平方向に移動すること
を特徴とする請求項2ないし請求項4のいずれか1項に記載の形状測定装置。
【請求項6】
前記複数の箇所は、移動方向に沿って並んでおり、前記移動方向に沿って互いに隣接する2つの箇所の間隔が等しいこと
を特徴とする請求項2ないし請求項5のいずれか1項に記載の形状測定装置。
【請求項7】
前記一面側測定部は、前記分けられた第1一面側測定光を複数に分ける第1一面側回折格子と、前記分けられた第2一面側測定光を複数に分ける第2一面側回折格子とを備え、光ヘテロダイン干渉によって、前記第1一面側回折格子で分けられた複数の第1一面側測定光における前記測定対象物の一方面に照射されて反射された複数の照射後一面側測定光と前記第2一面側回折格子で分けられた複数の第2一面側測定光とを干渉させることで、前記複数の照射後一面側干渉光を生成すること
を特徴とする請求項1ないし請求項6のいずれか1項に記載の形状測定装置。
【請求項8】
前記一面側測定部は、前記分けられた第1一面側測定光を複数に分ける1または複数の第1一面側ビームスプリッタと、前記分けられた第2一面側測定光を複数に分ける1または複数の第2一面側ビームスプリッタとを備え、光ヘテロダイン干渉によって、前記第1一面側ビームスプリッタで分けられた複数の第1一面側測定光における前記測定対象物の一方面に照射されて反射された複数の照射後一面側測定光と前記第2一面側ビームスプリッタで分けられた複数の第2一面側測定光とを干渉させることで、前記複数の照射後一面側干渉光を生成すること
を特徴とする請求項1ないし請求項6のいずれか1項に記載の形状測定装置。
【請求項9】
前記一面側測定部は、前記分けられた第1一面側測定光と第2一面側測定光との間に周波数差を生じさせる一面側光変調器を備え、
前記他面側測定部は、前記分けられた第1他面側測定光と第2他面側測定光との間に周波数差を生じさせる他面側光変調器を備えること
を特徴とする請求項1ないし請求項8のいずれか1項に記載の形状測定装置。
【請求項10】
測定光を一面側測定光と他面側測定光とに分ける測定光分配工程と、
前記光分岐部で分けられた一面側測定光を第1一面側測定光と第2一面側測定光とにさらに分け、光ヘテロダイン干渉によって、前記分けられた第1一面側測定光における測定対象物の一方面に照射されて反射された照射後一面側測定光と前記分けられた第2一面側測定光とを干渉させた照射後一面側干渉光を生成するとともに、光ヘテロダイン干渉によって、前記分けられた第1一面側測定光における前記測定対象物の一方面に照射される前の照射前一面側測定光と前記分けられた第2一面側測定光とを干渉させた照射前一面側干渉光を生成する一面側干渉光生成工程と、
前記光分岐部で分けられた他面側測定光を第1他面側測定光と第2他面側測定光とにさらに分け、光ヘテロダイン干渉によって、前記分けられた第1他面側測定光における前記測定対象物の他方面に照射されて反射された照射後他面側測定光と前記分けられた第2他面側測定光とを干渉させた照射後他面側干渉光を生成するとともに、光ヘテロダイン干渉によって、前記分けられた第1他面側測定光における前記測定対象物の他方面に照射される前の照射前他面側測定光と前記分けられた第2他面側測定光とを干渉させた照射前他面側干渉光を生成する他面側干渉光生成工程と、
一面側干渉光生成工程によって生成された照射前一面側干渉光および照射後一面側干渉光を位相検波することによって得られた一面側位相と、他面側干渉光生成工程によって生成された照射前他面側干渉光および照射後他面側干渉光を位相検波することによって得られた他方面側位相との位相差から前記測定対象物における前記一方面から前記他方面までの距離を前記測定対象物の厚さとして求める演算工程とを備え、
前記一面側干渉光生成工程は、複数の照射後一面側干渉光を生成するために、前記測定対象物の一方面に対し複数の箇所に複数の第1一面側測定光を照射して反射させ複数の照射後一面側測定光を得、
前記演算工程は、前記複数の箇所のそれぞれについて、前記一面側干渉光生成工程によって生成された照射前一面側干渉光および照射後一面側干渉光を位相検波することによって得られた一面側位相に基づいて予め設定された基準面から前記測定対象物の前記一方面までの距離を求めることによって、前記複数の箇所での前記測定対象物における表面形状をさらに求めること
を特徴とする形状測定方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate

【図14】
image rotate


【公開番号】特開2011−145194(P2011−145194A)
【公開日】平成23年7月28日(2011.7.28)
【国際特許分類】
【出願番号】特願2010−6653(P2010−6653)
【出願日】平成22年1月15日(2010.1.15)
【出願人】(000001199)株式会社神戸製鋼所 (5,860)
【Fターム(参考)】