説明

感光性樹脂組成物、硬化レリーフパターンの製造方法及び半導体装置

【課題】銅又は銅合金の上でも変色を起こさない硬化膜を与える感光性樹脂組成物、該感光性樹脂組成物を用いてパターンを形成する硬化レリーフパターンの製造方法並びに半導体装置の提供。
【解決手段】(A)ポリイミド前駆体であるポリアミド酸、ポリアミド酸エステル、ポリオキサゾール前駆体となり得るポリヒドロキシアミド、ポリアミノアミド、ポリアミド、ポリアミドイミド、ポリイミド、ポリベンゾオキサゾール、ポリベンゾイミダゾール、ポリベンズチアゾールから成る群より選ばれる少なくとも一種の樹脂:100質量部、(B)プリン誘導体:該(A)樹脂100質量部を基準として0.01〜10質量部、並びに(C)感光剤:該(A)樹脂100質量部を基準として1〜50質量部を含む感光性樹脂組成物。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、例えば、電子部品の絶縁材料、並びに半導体装置におけるパッシベーション膜、バッファーコート膜及び層間絶縁膜等のレリーフパターンの形成に用いられる感光性樹脂組成物、それを用いた硬化レリーフパターンの製造方法、並びに半導体装置に関するものである。
【背景技術】
【0002】
従来、電子部品の絶縁材料、半導体装置のパッシベーション膜、表面保護膜、層間絶縁膜等には、優れた耐熱性、電気特性及び機械特性を併せ持つポリイミド樹脂が用いられている。このポリイミド樹脂の中でも、感光性ポリイミド前駆体の形態で提供されるものは、該前駆体の塗布、露光、現像、及びキュアによる熱イミド化処理によって、耐熱性のレリーフパターン被膜を容易に形成することができる。このような感光性ポリイミド前駆体は、従来の非感光型ポリイミドに比べて、大幅な工程短縮を可能にするという特徴を有している。
【0003】
一方、近年は、集積度及び機能の向上、並びにチップサイズの矮小化の観点から、半導体装置のプリント配線基板への実装方法も変化している。従来の金属ピンと鉛−スズ共晶ハンダによる実装方法から、より高密度実装が可能なBGA(ボールグリップドアレイ)、CSP(チップサイズパッケージング)等のように、ポリイミド被膜が、直接ハンダバンプに接触する構造が用いられるようになってきている。このようなバンプ構造を形成するとき、当該被膜には高い耐熱性と耐薬品性が要求される。ポリイミド前駆体又はポリベンゾオキサゾール前駆体を含む組成物に熱架橋剤を添加することによって、ポリイミド被膜又はポリベンゾオキサゾール被膜の耐熱性を向上させる方法が開示されている(特許文献1参照)。
【0004】
さらに、半導体装置の微細化が進むことで、半導体装置の配線抵抗が無視できなくなってきている。したがって、これまで使用されてきた金又はアルミニウム配線から、より抵抗の低い銅又は銅合金の配線への変更が行われている。しかしながら、従来の感光性樹脂組成物では、組成物中の化合物が銅又は銅合金と反応し易い為に、銅又は銅合金の変色が発生するという問題があった。
【0005】
上記を解決する手段としてポリイミド前駆体を含有する組成物にトリアゾール又はその誘導体を添加することで、銅又は銅合金に発生する変色及び腐食を抑制する方法が開示されている(特許文献2参照)。
【0006】
また、ポリイミドの末端に不飽和へテロ環式基等を導入することで、ポリイミドに対する銅の良好な接着を提供する方法が開示されている(特許文献3参照)。
【先行技術文献】
【特許文献】
【0007】
【特許文献1】特開2003−287889号公報
【特許文献2】特開2005−010360号公報
【特許文献3】特開平6−106678号公報
【発明の概要】
【発明が解決しようとする課題】
【0008】
しかしながら、特許文献2に記載の組成物は、膜厚を厚くすると銅又は銅合金上で変色が発生するといった問題があった。したがって、本発明は、銅又は銅合金の上でも変色を起こさない硬化膜を与える感光性樹脂組成物、該感光性樹脂組成物を用いてパターンを形成する硬化レリーフパターンの製造方法、並びに半導体装置を提供することを目的とする。
【課題を解決するための手段】
【0009】
本発明者らは、感光性樹脂組成物中にプリン誘導体を配合させることにより、銅又は銅合金の上でも変色抑制に優れる硬化膜を与える感光性樹脂組成物が得られることを見出し、本発明を完成するに至った。すなわち、本発明は以下の通りである。
【0010】
[1] (A)ポリイミド前駆体であるポリアミド酸、ポリアミド酸エステル、ポリオキサゾール前駆体となり得るポリヒドロキシアミド、ポリアミノアミド、ポリアミド、ポリアミドイミド、ポリイミド、ポリベンゾオキサゾール、ポリベンゾイミダゾール、及びポリベンズチアゾールから成る群より選ばれる少なくとも一種の樹脂:100質量部、
(B)プリン誘導体:該(A)樹脂100質量部を基準として0.01〜10質量部、並びに、
(C)感光剤:該(A)樹脂100質量部を基準として1〜50質量部
を含む感光性樹脂組成物。
【0011】
[2] 前記(A)樹脂は、下記一般式(1):
【化1】

{式中、Xは、4価の有機基であり、Yは、2価の有機基であり、nは、2〜150の整数であり、そしてR及びRは、それぞれ独立に、水素原子、又は下記一般式(2):
【化2】

(式中、R、R及びRは、それぞれ独立に、水素原子又は炭素数1〜3の有機基であり、そしてmは、2〜10の整数である。)で表される1価の有機基、又は炭素数1〜4の飽和脂肪族基である。}で表される構造を有するポリイミド前駆体、下記一般式(3):
【化3】

{式中、Xは、炭素数6〜15の3価の有機基であり、Yは、炭素数6〜35の2価の有機基であり、かつ同一の構造であるか、又は複数の構造を有してよく、Rは、炭素数3〜20のラジカル重合性の不飽和結合基を少なくとも一つ有する有機基であり、そしてnは、1〜1000の整数である。}
で表される構造を有するポリアミド、下記一般式(4):
【化4】

{式中、Yは、炭素原子を有する4価の有機基であり、Y、X及びXは、それぞれ独立に、2個以上の炭素原子を有する2価の有機基であり、nは、1〜1000の整数であり、nは、0〜500の整数であり、n/(n+n)>0.5であり、そしてX及びYを含むn個のジヒドロキシジアミド単位並びにX及びYを含むn個のジアミド単位の配列順序は問わない。}
で表される構造を有するポリオキサゾール前駆体、及び下記一般式(5):
【化5】

{式中、Xは、4〜14価の有機基、Yは2〜12価の有機基、R及びRは、それぞれ独立に、フェノール性水酸基、スルホン酸基又はチオール基から選ばれる基を少なくとも一つ有する有機基を示し、nは、3〜200の整数であり、m及びmは、0〜10の整数を示す。}
で表される構造を有するポリイミドから成る群より選ばれる少なくとも一種の樹脂である、[1]に記載の感光性樹脂組成物。
【0012】
[3] 前記(B)プリン誘導体は、下記一般式(6):
【化6】

{式中、Rは、水素原子、ハロゲン原子、水酸基、アミノ基又は炭素数1〜10のアルキル基若しくは芳香族基であり、そしてR10は、水素原子、ハロゲン原子、炭素数1〜6のアルコキシ基、水酸基、ヒドロキシアルキル基又は炭素数1〜10のアルキル基若しくは芳香族基で置換されていてもよいアミノ基である。}で表される化合物、下記一般式(7):
【化7】

{式中、R11は、水素原子、ハロゲン原子、水酸基、アミノ基又は炭素数1〜10のアルキル基若しくは芳香族基であり、そしてR12及びR13は、それぞれ独立に、水素原子、水酸基、ヒドロキシアルキル基又は炭素数1〜10のアルキル基若しくは芳香族基である。}で表される化合物、下記一般式(8):
【化8】

{式中、R14は、水素原子、ハロゲン原子、水酸基、アミノ基又は炭素数1〜10のアルキル基若しくは芳香族基であり、そしてR15は、水素原子、ハロゲン原子、炭素数1〜6のアルコキシ基、水酸基、ヒドロキシアルキル基又は炭素数1〜10のアルキル基若しくは芳香族基で置換されていてもよいアミノ基である。}で表される化合物、及び下記一般式(9):
【化9】

{式中、R16は、水素原子、ハロゲン原子、水酸基、アミノ基又は炭素数1〜10のアルキル基若しくは芳香族基であり、そしてR17及びR18は、それぞれ独立に、水素原子、水酸基、ヒドロキシアルキル基又は炭素数1〜10のアルキル基若しくは芳香族基である。}で表される化合物から成る群より選ばれる少なくとも1種のプリン誘導体である、[1]又は[2]に記載の感光性樹脂組成物。
【0013】
[4] 前記(B)プリン誘導体は、下記一般式(10):
【化10】

{式中、R19は、水素原子、ハロゲン原子、水酸基、アミノ基又は炭素数1〜10のアルキル基若しくは芳香族基である。}で表される化合物、下記一般式(11):
【化11】

{式中、R20は、水素原子、ヒドロキシアルキル基又は炭素数1〜10のアルキル基である。}で表される化合物、下記一般式(12):
【化12】

{式中、R21は、水素原子、ハロゲン原子、水酸基、アミノ基又は炭素数1〜10のアルキル基若しくは芳香族基である。}で表される化合物、及び下記一般式(13):
【化13】

{式中、R22は、水素原子、ヒドロキシアルキル基又は炭素数1〜10のアルキル基である。}で表される化合物から成る群より選ばれる少なくとも1種のプリン誘導体である、[1]〜[3]のいずれか1項に記載の感光性樹脂組成物。
【0014】
[5] 前記(B)プリン誘導体が、上記一般式(12)で表される化合物、及び上記一般式(13)で表される化合物から成る群から選ばれる少なくとも一種のプリン誘導体である、[1]〜[3]のいずれか1項に記載の感光性樹脂組成物。
【0015】
[6] (D)架橋剤:前記(A)樹脂100質量部を基準として0.5〜20質量部をさらに含む、[1]〜[5]のいずれか1項に記載の感光性樹脂組成物。
【0016】
[7] (E)有機チタン化合物:前記(A)樹脂100質量部を基準として0.05〜10質量部をさらに含む、[1]〜[6]のいずれか1項に記載の感光性樹脂組成物。
【0017】
[8] 前記(E)有機チタン化合物は、チタンキレート化合物、テトラアルコキシチタン化合物及びチタノセン化合物から成る群から選ばれる少なくとも1種の化合物である、[7]に記載の感光性樹脂組成物。
【0018】
[9] (1)前記[1]〜[8]のいずれか1項に記載の感光性樹脂組成物を基板上に塗布することによって感光性樹脂層を該基板上に形成する工程と、
(2)該感光性樹脂層を露光する工程と、
(3)該露光後の感光性樹脂層を現像してレリーフパターンを形成する工程と、
(4)該レリーフパターンを加熱処理することによって硬化レリーフパターンを形成する工程と
を含む、硬化レリーフパターンの製造方法。
【0019】
[10] 前記基板が、銅又は銅合金から形成されている、[9]に記載の方法。
【0020】
[11] 前記[9]又は[10]に記載の製造方法により得られる硬化レリーフパターンを含む半導体装置。
【発明の効果】
【0021】
本発明によれば、感光性樹脂組成物中にプリン誘導体を配合させることにより、銅又は銅合金の上でも変色を起こさない硬化膜を与える感光性樹脂組成物を得ることができ、さらに、該感光性樹脂組成物を用いてパターンを形成する硬化レリーフパターンの製造方法、並びに半導体装置を提供することができる。
【発明を実施するための形態】
【0022】
本発明について、以下に具体的に説明する。なお本明細書を通じ、一般式において同一符号で表されている構造は、分子中に複数存在する場合に、互いに同一であるか、又は異なっていてもよい。
【0023】
<感光性樹脂組成物>
本発明は、(A)ポリイミド前駆体であるポリアミド酸、ポリアミド酸エステル、ポリオキサゾール前駆体となり得るポリヒドロキシアミド、ポリアミノアミド、ポリアミド、ポリアミドイミド、ポリイミド、ポリベンゾオキサゾール、ポリベンゾイミダゾール、ポリベンズチアゾールから成る群より選ばれる少なくとも一種の樹脂:100質量部、(B)プリン誘導体:(A)樹脂100質量部を基準として0.01〜10質量部、(C)感光剤:(A)樹脂100質量部を基準として1〜50質量部を必須成分とする。
【0024】
(A)樹脂
本発明に用いられる(A)樹脂について説明する。本発明の(A)樹脂は、ポリイミド前駆体であるポリアミド酸、ポリアミド酸エステル、ポリオキサゾール前駆体となり得るポリヒドロキシアミド、ポリアミノアミド、ポリアミド、ポリアミドイミド、ポリイミド、ポリベンゾオキサゾール、ポリベンゾイミダゾール、ポリベンズチアゾールから成る群より選ばれる少なくとも一種の樹脂を主成分とする。ここで、主成分とは、これらの樹脂を全樹脂の60質量%以上含有することを意味し、80質量%以上含有することが好ましい。また、必要に応じて他の樹脂を含んでいてもよい。
【0025】
これらの樹脂の重量平均分子量は、熱処理後の耐熱性、機械特性の観点から、ゲルパーミエーションクロマトグラフィーによるポリスチレン換算で、1,000以上であることが好ましく、5,000以上がより好ましい。上限は100,000以下であることが好ましく、感光性樹脂組成物とする場合は、現像液に対する溶解性の観点から、50,000以下がより好ましい。
【0026】
本発明において(A)樹脂は、レリーフパターンを形成させるために、感光性樹脂であることが望ましい。感光性樹脂は、後述の(C)感光剤とともに使用して感光性樹脂組成物となり、その後の現像工程において溶解又は未溶解の現象を引き起こす樹脂である。
【0027】
感光性樹脂としてはポリイミド前駆体であるポリアミド酸、ポリアミド酸エステル、ポリオキサゾール前駆体となり得るポリヒドロキシアミド、ポリアミノアミド、ポリアミド、ポリアミドイミド、ポリイミド、ポリベンゾオキサゾール、ポリベンゾイミダゾール、ポリベンズチアゾールの中でも、熱処理後の樹脂が耐熱性、機械特性に優れることから、ポリイミド前駆体、ポリアミド、ポリベンゾオキサゾール前駆体、ポリイミドが好ましく用いられる。また、これらの感光性樹脂は、後述の(C)感光剤とともに、ネガ型又はポジ型の何れの感光性樹脂組成物を調製するか等、所望の用途に応じて選択できる。
【0028】
[ポリイミド前駆体]
本発明の感光性樹脂組成物において、耐熱性及び感光特性の観点から最も好ましい(A)樹脂の1つの例は、前記一般式(1):
【化14】

{式中、Xは、4価の有機基であり、Yは、2価の有機基であり、nは、2〜150の整数であり、R及びRは、それぞれ独立に、水素原子、又は前記一般式(2):
【化15】

(式中、R、R及びRは、それぞれ独立に、水素原子又は炭素数1〜3の有機基であり、そしてmは、2〜10の整数である。)で表される1価の有機基、又は炭素数1〜4の飽和脂肪族基である。}
で表される構造を有するポリイミド前駆体である。ポリイミド前駆体は、加熱(例えば200℃以上)環化処理を施すことによってポリイミドに変換される。ポリイミド前駆体はネガ型感光性樹脂組成物用として好適である。
【0029】
上記一般式(1)中、Xで表される4価の有機基は、耐熱性と感光特性とを両立するという点で、好ましくは炭素数6〜40の有機基であり、さらに好ましくは、−COOR基及び−COOR基と−CONH−基とが互いにオルト位置にある芳香族基、又は脂環式脂肪族基である。Xで表される4価の有機基として、好ましくは芳香族環を含有する炭素原子数6〜40の有機基であり、さらに好ましくは、下記式(14):
【化16】

で表される構造が挙げられるが、これらに限定されるものではない。また、Xの構造は1種でも2種以上の組み合わせでも構わない。上記式(14)で表される構造を有するX基は、耐熱性と感光特性とを両立するという点で特に好ましい。
【0030】
上記一般式(1)中、Yで表される2価の有機基は、耐熱性と感光特性とを両立するという点で、好ましくは炭素数6〜40の芳香族基であり、例えば、下記式(15):
【化17】

で表される構造、及び下記式(16):
【化18】

{式中、R23及びR24は、それぞれ独立に、メチル基(−CH)、エチル基(−C)、プロピル基(−C)又はブチル基(−C)を表す。}
で表される構造が挙げられるが、これらに限定されるものではない。また、Yの構造は1種でも2種以上の組み合わせでも構わない。上記式(15)及び(16)で表される構造を有するY基は、耐熱性及び感光特性を両立するという点で特に好ましい。
【0031】
及びRに関して、上記一般式(2)中のRは、水素原子又はメチル基であることが好ましく、R及びRは、感光特性の観点から水素原子であることが好ましい。また、mは、感光特性の観点から2以上10以下の整数、好ましくは2以上4以下の整数である。
【0032】
(A)樹脂としてポリイミド前駆体を用いる場合に、感光性樹脂組成物に感光性を付与する方式としては、エステル結合型とイオン結合型とが挙げられる。前者は、ポリイミド前駆体の側鎖にエステル結合によって光重合性基、すなわちオレフィン性二重結合を有する化合物を導入する方法であり、後者は、ポリイミド前駆体のカルボキシル基と、アミノ基を有する(メタ)アクリル化合物のアミノ基とをイオン結合を介して結合させて、光重合性基を付与する方法である。
【0033】
上記エステル結合型のポリイミド前駆体は、まず、前述の4価の有機基Xを含むテトラカルボン酸二無水物と、光重合性の不飽和二重結合を有するアルコール類及び任意に炭素数1〜4の飽和脂肪族アルコール類とを反応させて、部分的にエステル化したテトラカルボン酸(以下、アシッド/エステル体ともいう)を調製した後、これと、前述の2価の有機基Yを含むジアミン類とをアミド重縮合させることにより得られる。
【0034】
(アシッド/エステル体の調製)
本発明で、エステル結合型のポリイミド前駆体を調製するために好適に用いられる、4価の有機基Xを含むテトラカルボン酸二無水物としては、例えば、無水ピロメリット酸、ジフェニルエーテル−3,3’,4,4’−テトラカルボン酸二無水物、ベンゾフェノン−3,3’,4,4’−テトラカルボン酸二無水物、ビフェニル−3,3’,4,4’−テトラカルボン酸二無水物、ジフェニルスルホン−3,3’,4,4’−テトラカルボン酸二無水物、ジフェニルメタン−3,3’,4,4’−テトラカルボン酸二無水物、2,2−ビス(3,4−無水フタル酸)プロパン、2,2−ビス(3,4−無水フタル酸)−1,1,1,3,3,3−ヘキサフルオロプロパン等を挙げることができるが、これらに限定されるものではない。また、これらは単独で用いることができるのは勿論のこと2種以上を混合して用いてもよい。
【0035】
本発明で、エステル結合型のポリイミド前駆体を調製するために好適に用いられる、光重合性の不飽和二重結合を有するアルコール類としては、例えば、2−アクリロイルオキシエチルアルコール、1−アクリロイルオキシ−3−プロピルアルコール、2−アクリルアミドエチルアルコール、メチロールビニルケトン、2−ヒドロキシエチルビニルケトン、2−ヒドロキシ−3−メトキシプロピルアクリレート、2−ヒドロキシ−3−ブトキシプロピルアクリレート、2−ヒドロキシ−3−フェノキシプロピルアクリレート、2−ヒドロキシ−3−ブトキシプロピルアクリレート、2−ヒドロキシ−3−t−ブトキシプロピルアクリレート、2−ヒドロキシ−3−シクロヘキシルオキシプロピルアクリレート、2−メタクリロイルオキシエチルアルコール、1−メタクリロイルオキシ−3−プロピルアルコール、2−メタクリルアミドエチルアルコール、メチロールビニルケトン、2−ヒドロキシエチルビニルケトン、2−ヒドロキシ−3−メトキシプロピルメタクリレート、2−ヒドロキシ−3−ブトキシプロピルメタクリレート、2−ヒドロキシ−3−フェノキシプロピルメタクリレート、2−ヒドロキシ−3−ブトキシプロピルメタクリレート、2−ヒドロキシ−3−t−ブトキシプロピルメタクリレート、2−ヒドロキシ−3−シクロヘキシルオキシプロピルメタクリレート等を挙げることができる。
【0036】
上記アルコール類に、炭素数1〜4の飽和脂肪族アルコールとして、例えば、メタノール、エタノール、n−プロパノール、イソプロパノール、n−ブタノール、tert−ブタノール等を一部混合して用いることもできる。
【0037】
上記の本発明に好適なテトラカルボン酸二無水物と上記のアルコール類とを、ピリジン等の塩基性触媒の存在下、適当な反応溶媒中、温度20〜50℃で4〜10時間撹拌溶解、混合することにより、酸無水物のエステル化反応が進行し、所望のアシッド/エステル体を得ることができる。
【0038】
上記反応溶媒としては、アシッド/エステル体、及びこれとジアミン成分とのアミド重縮合生成物であるポリイミド前駆体を完全に溶解するものが好ましく、例えば、N−メチル−2−ピロリドン、N,N−ジメチルアセトアミド、N,N−ジメチルホルムアミド、ジメチルスルホキシド、テトラメチル尿素、ガンマブチロラクトン等が挙げられる。
【0039】
その他の反応溶媒としては、ケトン類、エステル類、ラクトン類、エーテル類、ハロゲン化炭化水素類が挙げられ、そして炭化水素類としては、例えば、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン、酢酸メチル、酢酸エチル、酢酸ブチル、シュウ酸ジエチル、エチレングリコールジメチルエーテル、ジエチレングリコールジメチルエーテル、テトラヒドロフラン、ジクロロメタン、1,2−ジクロロエタン、1,4−ジクロロブタン、クロロベンゼン、o−ジクロロベンゼン、ヘキサン、ヘプタン、ベンゼン、トルエン、キシレン等が挙げられる。これらは必要に応じて、単独で用いても2種以上混合して用いてもよい。
【0040】
(ポリイミド前駆体の調製)
上記アシッド/エステル体(典型的には上記反応溶媒中の溶液)に、氷冷下、適当な脱水縮合剤、例えば、ジシクロカルボジイミド、1−エトキシカルボニル−2−エトキシ−1,2−ジヒドロキノリン、1,1−カルボニルジオキシ−ジ−1,2,3−ベンゾトリアゾール、N,N’−ジスクシンイミジルカーボネート等を投入混合してアシッド/エステル体をポリ酸無水物とした後、これに、本発明で好適に用いられる2価の有機基Yを含むジアミン類を別途溶媒に溶解又は分散させたものを滴下投入し、アミド重縮合させることにより、目的のポリイミド前駆体を得ることができる。
【0041】
本発明で好適に用いられる2価の有機基Yを含むジアミン類としては、例えば、p−フェニレンジアミン、m−フェニレンジアミン、4,4−ジアミノジフェニルエーテル、3,4’−ジアミノジフェニルエーテル、3,3’−ジアミノジフェニルエーテル、4,4’−ジアミノジフェニルスルフィド、3,4’−ジアミノジフェニルスルフィド、3,3’−ジアミノジフェニルスルフィド、4,4’−ジアミノジフェニルスルホン、3,4’−ジアミノジフェニルスルホン、3,3’−ジアミノジフェニルスルホン、4,4’−ジアミノビフェニル、3,4’−ジアミノビフェニル、3,3’−ジアミノビフェニル、4,4’−ジアミノベンゾフェノン、3,4’−ジアミノベンゾフェノン、3,3’−ジアミノベンゾフェノン、4,4’−ジアミノジフェニルメタン、3,4’−ジアミノジフェニルメタン、3,3’−ジアミノジフェニルメタン、1,4−ビス(4−アミノフェノキシ)ベンゼン、1,3−ビス(4−アミノフェノキシ)ベンゼン、
【0042】
1,3−ビス(3−アミノフェノキシ)ベンゼン、ビス〔4−(4−アミノフェノキシ)フェニル〕スルホン、ビス〔4−(3−アミノフェノキシ)フェニル〕スルホン、4,4−ビス(4−アミノフェノキシ)ビフェニル、4,4−ビス(3−アミノフェノキシ)ビフェニル、ビス〔4−(4−アミノフェノキシ)フェニル〕エーテル、ビス〔4−(3−アミノフェノキシ)フェニル〕エーテル、1,4−ビス(4−アミノフェニル)ベンゼン、1,3−ビス(4−アミノフェニル)ベンゼン、9,10−ビス(4−アミノフェニル)アントラセン、2,2−ビス(4−アミノフェニル)プロパン、2,2−ビス(4−アミノフェニル)ヘキサフルオロプロパン、2,2−ビス〔4−(4−アミノフェノキシ)フェニル)プロパン、2,2−ビス〔4−(4−アミノフェノキシ)フェニル)ヘキサフルオロプロパン、1,4−ビス(3−アミノプロピルジメチルシリル)ベンゼン、オルト−トリジンスルホン、9,9−ビス(4−アミノフェニル)フルオレン、及びこれらのベンゼン環上の水素原子の一部が、メチル基、エチル基、ヒドロキシメチル基、ヒドロキシエチル基、ハロゲン等で置換されたもの、例えば3,3’−ジメチル−4,4’−ジアミノビフェニル、2,2’−ジメチル−4,4’−ジアミノビフェニル、3,3’−ジメチル−4,4’−ジアミノジフェニルメタン、2,2’−ジメチル−4,4’−ジアミノジフェニルメタン、3,3’−ジメチトキシ−4,4’−ジアミノビフェニル、3,3’−ジクロロ−4,4’−ジアミノビフェニル、並びにその混合物等が挙げられるが、これに限定されるものではない。
【0043】
また、本発明の感光性樹脂組成物を基板上に塗布することによって基板上に形成される樹脂層と各種基板との密着性の向上を目的に、ポリイミド前駆体の調製に際して、1,3−ビス(3−アミノプロピル)テトラメチルジシロキサン、1,3−ビス(3−アミノプロピル)テトラフェニルジシロキサン等のジアミノシロキサン類を共重合することもできる。
【0044】
アミド重縮合反応終了後、当該反応液中に共存している脱水縮合剤の吸水副生物を必要に応じて濾別した後、水、脂肪族低級アルコール、又はその混合液等の貧溶媒を、得られた重合体成分に投入し、重合体成分を析出させ、さらに、再溶解、再沈析出操作等を繰り返すことにより、重合体を精製し、真空乾燥を行い、目的のポリイミド前駆体を単離する。精製度を向上させるために、陰イオン及び/又は陽イオン交換樹脂を適当な有機溶媒で膨潤させて充填したカラムに、この重合体の溶液を通し、イオン性不純物を除去してもよい。
【0045】
一方、上記イオン結合型のポリイミド前駆体は、典型的には、テトラカルボン酸二無水物にジアミンを反応させて得られる。この場合、上記一般式(11)中のR及びRのうち少なくともいずれかはヒドロキシル基である。
【0046】
テトラカルボン酸二無水物としては、上記式(14)の構造を含むテトラカルボン酸の無水物が好ましく、ジアミンとしては、上記式(15)又は(16)の構造を含むジアミンが好ましい。得られたポリアミド前駆体に、後述する、アミノ基を有する(メタ)アクリル化合物を添加することで、カルボキシル基とアミノ基とのイオン結合により光重合性基が付与される。
【0047】
上記エステル結合型及び上記イオン結合型のポリイミド前駆体の分子量は、ゲルパーミエーションクロマトグラフィーによるポリスチレン換算重量平均分子量で測定した場合に、8,000〜150,000であることが好ましく、9,000〜50,000であることがより好ましい。重量平均分子量が8,000以上である場合機械物性が良好であり、150,000以下である場合現像液への分散性が良好で、レリーフパターンの解像性能が良好である。ゲルパーミエーションクロマトグラフィーの展開溶媒としては、テトラヒドロフラン、及びN−メチル−2−ピロリドンが推奨される。また重量平均分子量は標準単分散ポリスチレンを用いて作成した検量線から求める。標準単分散ポリスチレンとしては、昭和電工社製 有機溶媒系標準試料 STANDARD SM−105から選ぶことが推奨される。
【0048】
[ポリアミド]
本発明の感光性樹脂組成物における好ましい(A)樹脂のさらに1つの例は、下記一般式(3):
【化19】

{式中、Xは、炭素数6〜15の3価の有機基であり、Yは、炭素数6〜35の2価の有機基であり、かつ同一の構造であるか、又は複数の構造を有してもよく、Rは、炭素数3〜20のラジカル重合性の不飽和結合基を少なくとも一つ有する有機基であり、そしてnは、1〜1000の整数である。}
で表される構造を有するポリアミドである。このポリアミドはネガ型感光性樹脂組成物用として好適である。
【0049】
上記一般式(3)中、Rで示される基としては、感光特性と耐薬品性とを両立するという点で、下記一般式(17)、
【化20】

{式中、R25は、炭素数2〜19のラジカル重合性の不飽和結合基を少なくとも一つ有する有機基である。}
で表される基であることが好ましい。
【0050】
上記一般式(3)中、Xで示される3価の有機基としては、炭素数が6〜15の3価の有機基であることが好ましく、例えば下記式(18):
【化21】

で表される基の中から選ばれる芳香族基であることが好ましく、そしてアミノ基置換イソフタル酸構造からカルボキシル基及びアミノ基を除いた芳香族基であることがより好ましい。
【0051】
上記一般式(3)中、Yで示される2価の有機基としては、炭素数が6〜35の有機基であることが好ましく、そして置換されていてもよい芳香族環又は脂肪族環を1〜4個有する環状有機基、または環状構造を持たない脂肪族基またはシロキサン基であることが更に好ましい。Yで示される2価の有機基としては、下記一般式(15)及び下記一般式(19)、(20):
【化22】

【化23】

{式中、R26及びR27は、それぞれ独立に、水酸基、メチル基(−CH)、エチル基(−C)、プロピル基(−C)又はブチル基(−C)から成る群から選ばれる一つの基であり、そして該プロピル基及びブチル基は、各種異性体を含む}
【化24】

{式中、mは、0〜8の整数であり、m及びmは、それぞれ独立に、0〜3の整数であり、m及びmは、それぞれ独立に、0〜10の整数であり、そしてR28及びR29は、メチル基(−CH)、エチル基(−C)、プロピル基(−C)、ブチル基(−C)又はこれらの異性体である。}が挙げられる。
【0052】
環状構造を持たない脂肪族基またはシロキサン基としては、下記一般式(21):
【化25】

{式中、mは、2〜12の整数であり、m10は、1〜3の整数であり、m11は、1〜20の整数であり、そしてR30、R31、R32及びR33は、それぞれ独立に、炭素数1〜3のアルキル基又は置換されていてもよいフェニル基である。}が好ましいものとして挙げられる。
【0053】
本発明のポリアミド樹脂は、例えば、以下のように合成することができる。
(フタル酸化合物封止体の合成)
第一に、3価の芳香族基Xを有する化合物、例えばアミノ基で置換されたフタル酸、アミノ基で置換されたイソフタル酸、及び、アミノ基で置換されたテレフタル酸からなる群から選ばれた少なくとも1つ以上の化合物(以下、「フタル酸化合物」という)1モルと、アミノ基と反応する化合物1モルとを反応させて、該フタル酸化合物のアミノ基を後述のラジカル重合性の不飽和結合を含む基で修飾、封止した化合物(以下、「フタル酸化合物封止体」という)を合成する。これらは単独でもよいし、混合して用いてもよい。
【0054】
フタル酸化合物を上記ラジカル重合性の不飽和結合を含む基で封止した構造とすると、ポリアミド樹脂にネガ型の感光性(光硬化性)を付与することができる。
【0055】
ラジカル重合性の不飽和結合を含む基としては、炭素数3〜20のラジカル重合性の不飽和結合基を有する有機基であることが好ましく、メタクリロイル基又はアクリロイル基を含む基が特に好ましい。
【0056】
上述のフタル酸化合物封止体は、フタル酸化合物のアミノ基と、炭素数3〜20のラジカル重合性の不飽和結合基を少なくとも一つ有する酸クロライド、イソシアネート又はエポキシ化合物等とを反応させることで得ることができる。
【0057】
好適な酸クロライドとしては、(メタ)アクリロイルクロリド、2−[(メタ)アクリロイルオキシ]アセチルクロリド、3―[(メタ)アクリロイルオキシ]プロピオニルクロリド、2−[(メタ)アクリロイルオキシ]エチルクロロホルメート、3−[(メタ)アクリロイルオキシプロピル]クロロホルメートなどが挙げられる。好適なイソシアネートとしては、2−(メタ)アクリロイルオキシエチルイソシアネート、1,1−ビス[(メタ)アクリロイルオキシメチル]エチルイソシアネート、2−[2−(メタ)アクリロイルオキシエトキシ]エチルイソシアネートなどが挙げられる。好適なエポキシ化合物としては、グリシジル(メタ)アクリレートなどが挙げられる。これらは単独で用いてもよいし、混合して用いてもよいが、メタクリロイルクロリドおよび/又は2−(メタクリロイルオキシ)エチルイソシアネートを用いるのが特に好ましい。
【0058】
更に、これらのフタル酸化合物封止体としては、フタル酸化合物が5−アミノイソフタル酸であるものが、感光特性に優れると同時に、加熱硬化後の膜特性に優れたポリアミドを得ることができるために好ましい。
【0059】
上記封止反応は、ピリジンなどの塩基性触媒又はジ−n−ブチルスズジラウレートなどのスズ系触媒の存在下、フタル酸化合物と封止剤とを溶媒中で撹拌溶解、混合することにより進行させることができる。
【0060】
反応溶媒としては、生成物であるフタル酸化合物封止体を完全に溶解するものが好ましく、例えば、N−メチル−2−ピロリドン、N,N−ジメチルアセトアミド、N,N−ジメチルホルムアミド、ジメチルスルホキシド、テトラメチル尿素、ガンマブチロラクトン等が挙げられる。
【0061】
その他の反応溶媒としては、ケトン類、エステル類、ラクトン類、エーテル類、ハロゲン化炭化水素類が挙げられ、そして炭化水素類としては、例えば、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン、酢酸メチル、酢酸エチル、酢酸ブチル、シュウ酸ジエチル、エチレングリコールジメチルエーテル、ジエチレングリコールジメチルエーテル、テトラヒドロフラン、ジクロロメタン、1,2−ジクロロエタン、1,4−ジクロロブタン、クロロベンゼン、o−ジクロロベンゼン、ヘキサン、ヘプタン、ベンゼン、トルエン、及びキシレン等が挙げられる。これらの溶媒は、必要に応じて、単独でも混合して用いることもできる。
【0062】
酸クロライドなど、封止剤の種類によっては、封止反応の過程で塩化水素が副生するものがある。この場合は、以降の工程の汚染を防止する意味からも、一旦水再沈して水洗乾燥したり、イオン交換樹脂を充填したカラムを通してイオン成分を除去軽減するなど、適宜精製を行うことが好ましい。
【0063】
(ポリアミドの合成)
上記フタル酸化合物封止体と2価の有機基Yを有するジアミン化合物を、ピリジン又はトリエチルアミンなどの塩基性触媒の存在下、適当な溶媒中で混合し、アミド重縮合させることにより、本発明のポリアミドを得ることができる。
【0064】
アミド重縮合方法としては、フタル酸化合物封止体を、脱水縮合剤を用いて対称ポリ酸無水物とした後にジアミン化合物と混合する方法、又はフタル酸化合物封止体を既知の方法により酸クロライド化した後にジアミン化合物と混合する方法、ジカルボン酸成分と活性エステル化剤を脱水縮合剤の存在下で反応させて活性エステル化させた後にジアミン化合物と混合する方法などが挙げられる。
【0065】
脱水縮合剤としては、例えば、ジシクロヘキシルカルボジイミド、1−エトキシカルボニル−2−エトキシ−1,2−ジヒドロキノリン、1,1’−カルボニルジオキシ−ジ−1,2,3−ベンゾトリアゾール、N,N’−ジスクシンイミジルカーボネートなどが好ましいものとして挙げられる。
【0066】
クロロ化剤としては、塩化チオニルなどが挙げられる。
【0067】
活性エステル化剤としては、N−ヒドロキシスクシンイミド又は1−ヒドロキシベンゾトリアゾール、N−ヒドロキシ−5−ノルボルネン−2,3−ジカルボン酸イミド、2−ヒドロキシイミノ−2−シアノ酢酸エチル、2−ヒドロキシイミノ−2−シアノ酢酸アミドなどが挙げられる。
【0068】
有機基Yを有するジアミン化合物としては、芳香族ジアミン化合物、芳香族ビスアミノフェノール化合物、脂環式ジアミン化合物、直鎖脂肪族ジアミン化合物、シロキサンジアミン化合物からなる群から選択される少なくとも1つのジアミン化合物であることが好ましく、所望に応じて複数を併用することも可能である。
【0069】
芳香族ジアミン化合物としては、p−フェニレンジアミン、m−フェニレンジアミン、4,4’−ジアミノジフェニルエーテル、3,4’−ジアミノジフェニルエーテル、3,3’−ジアミノジフェニルエーテル、4,4’−ジアミノジフェニルスルフィド、3,4’−ジアミノジフェニルスルフィド、3,3’−ジアミノジフェニルスルフィド、4,4’−ジアミノジフェニルスルホン、3,4’−ジアミノジフェニルスルホン、3,3’−ジアミノジフェニルスルホン、4,4’−ジアミノビフェニル、3,4’−ジアミノビフェニル、3,3’−ジアミノビフェニル、4,4’−ジアミノベンゾフェノン、3,4’−ジアミノベンゾフェノン、3,3’−ジアミノベンゾフェノン、4,4’−ジアミノジフェニルメタン、3,4’−ジアミノジフェニルメタン、
【0070】
3,3’−ジアミノジフェニルメタン、1,4−ビス(4−アミノフェノキシ)ベンゼン、1,3−ビス(4−アミノフェノキシ)ベンゼン、1,3−ビス(3−アミノフェノキシ)ベンゼン、ビス[4−(4−アミノフェノキシ)フェニル]スルホン、ビス[4−(3−アミノフェノキシ)フェニル]スルホン、4,4’−ビス(4−アミノフェノキシ)ビフェニル、4,4’−ビス(3−アミノフェノキシ)ビフェニル、ビス[4−(4−アミノフェノキシ)フェニル]エーテル、ビス[4−(3−アミノフェノキシ)フェニル]エーテル、1,4−ビス(4−アミノフェニル)ベンゼン、1,3−ビス(4−アミノフェニル)ベンゼン、9,10−ビス(4−アミノフェニル)アントラセン、2,2−ビス(4−アミノフェニル)プロパン、2,2−ビス(4−アミノフェニル)ヘキサフルオロプロパン、2,2−ビス[4−(4−アミノフェノキシ)フェニル]プロパン、2,2−ビス[4−(4−アミノフェノキシ)フェニル]ヘキサフルオロプロパン、1,4−ビス(3−アミノプロピルジメチルシリル)ベンゼン、オルト−トリジンスルホン、9,9−ビス(4−アミノフェニル)フルオレン、並びにこれらのベンゼン環上の水素原子の一部が、メチル基、エチル基、ヒドロキシメチル基、ヒドロキシエチル基、及びハロゲン原子から成る群から選択される1つ以上の基で置換されたジアミン化合物が挙げられる。
【0071】
このベンゼン環上の水素原子が置換されたジアミン化合物の例としては、3,3’−ジメチル−4,4’−ジアミノビフェニル、2,2’−ジメチル−4,4’−ジアミノビフェニル、3,3’−ジメチル−4,4’−ジアミノジフェニルメタン、2,2’−ジメチル−4,4’−ジアミノジフェニルメタン、3,3’−ジメチトキシ−4,4’−ジアミノビフェニル、3,3’−ジクロロ−4,4’−ジアミノビフェニルなどが挙げられる。
【0072】
芳香族ビスアミノフェノール化合物としては、3,3’−ジヒドロキシベンジジン、3,3’−ジアミノ−4,4’−ジヒドロキシビフェニル、3,3’−ジヒドロキシ−4,4’−ジアミノジフェニルスルホン、ビス−(3−アミノ−4−ヒドロキシフェニル)メタン、2,2−ビス−(3−アミノ−4−ヒドロキシフェニル)プロパン、2,2−ビス−(3−アミノ−4−ヒドロキシフェニル)ヘキサフルオロプロパン、2,2−ビス−(3−ヒドロキシ−4−アミノフェニル)ヘキサフルオロプロパン、ビス−(3−ヒドロキシ−4−アミノフェニル)メタン、2,2−ビス−(3−ヒドロキシ−4−アミノフェニル)プロパン、3,3’−ジヒドロキシ−4,4’−ジアミノベンゾフェノン、3,3’−ジヒドロキシ−4,4’−ジアミノジフェニルエーテル、4,4’−ジヒドロキシ−3,3’−ジアミノジフェニルエーテル、2,5−ジヒドロキシ−1,4−ジアミノベンゼン、4,6−ジアミノレゾルシノール、1,1−ビス(3−アミノ−4−ヒドロキシフェニル)シクロヘキサン、4,4−(α−メチルベンジリデン)−ビス(2−アミノフェノール)などが挙げられる。
【0073】
脂環式ジアミン化合物としては、1,3−ジアミノシクロペンタン、1,3−ジアミノシクロヘキサン、1,3−ジアミノ−1−メチルシクロヘキサン、3,5−ジアミノ−1,1−ジメチルシクロヘキサン、1,5−ジアミノ−1,3−ジメチルシクロヘキサン、1,3−ジアミノ−1−メチル−4−イソプロピルシクロヘキサン、1,2−ジアミノ−4−メチルシクロヘキサン、1,4−ジアミノシクロヘキサン、1,4−ジアミノ−2,5−ジエチルシクロヘキサン、1,3−ビス(アミノメチル)シクロヘキサン、1,4−ビス(アミノメチル)シクロヘキサン、2−(3−アミノシクロペンチル)−2−プロピルアミン、メンセンジアミン、イソホロンジアミン、ノルボルナンジアミン、1−シクロヘプテン−3,7−ジアミン、4,4’−メチレンビス(シクロヘキシルアミン)、4,4’−メチレンビス(2−メチルシクロヘキシルアミン)、1,4−ビス(3−アミノプロピル)ピペラジン、3,9−ビス(3−アミノプロピル)−2,4,8,10−テトラオキサスピロ−[5,5]−ウンデカンなどが挙げられる。
【0074】
直鎖脂肪族ジアミン化合物としては、1,2−ジアミノエタン、1,4−ジアミノブタン、1,6−ジアミノヘキサン、1,8−ジアミノオクタン、1,10−ジアミノデカン、1,12−ジアミノドデカンなどの炭化水素型ジアミン、又は2−(2−アミノエトキシ)エチルアミン、2,2’−(エチレンジオキシ)ジエチルアミン、ビス[2−(2−アミノエトキシ)エチル]エーテルなどのアルキレンオキサイド型ジアミンなどが挙げられる。
【0075】
シロキサンジアミン化合物としては、ジメチル(ポリ)シロキサンジアミン、例えば、信越化学工業製、商標名PAM−E、KF−8010、X−22−161Aなどが挙げられる。
【0076】
反応溶媒としては、生成するポリマーを完全に溶解する溶媒が好ましく、例えば、N−メチル−2−ピロリドン、N,N−ジメチルアセトアミド、N,N−ジメチルホルムアミド、ジメチルスルホキシド、テトラメチル尿素、ガンマブチロラクトン等が挙げられる。
【0077】
他にも、場合によってはケトン類、エステル類、ラクトン類、エーテル類、炭化水素類、ハロゲン化炭化水素類を反応溶媒として用いてもよい。具体的には、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン、酢酸メチル、酢酸エチル、酢酸ブチル、シュウ酸ジエチル、エチレングリコールジメチルエーテル、ジエチレングリコールジメチルエーテル、テトラヒドロフラン、ジクロロメタン、1,2−ジクロロエタン、1,4−ジクロロブタン、クロロベンゼン、o−ジクロロベンゼン、ヘキサン、ヘプタン、ベンゼン、トルエン、キシレン等が挙げられる。
【0078】
アミド重縮合反応終了後、反応液中に析出してきた脱水縮合剤由来の析出物等を必要に応じて濾別する。次いで、反応液中に、水若しくは脂肪族低級アルコール又はその混合液などのポリアミドの貧溶媒を投入してポリアミドを析出させる。更に、析出したポリアミドを溶媒に再溶解させ、再沈析出操作を繰り返すことによって精製し、真空乾燥を行い、目的のポリアミドを単離する。なお、精製度を更に向上させるために、このポリアミドの溶液を、イオン交換樹脂を充填したカラムに通してイオン性不純物を除去してもよい。
【0079】
ポリアミドのゲルパーミエーションクロマトグラフィー(以下「GPC」という)によるポリスチレン換算重量平均分子量は、7,000〜70,000であることが好ましく、そして10,000〜50,000であることがより好ましい。ポリスチレン換算重量平均分子量が7,000以上であれば、硬化レリーフパターンの基本的な物性が確保される。また、ポリスチレン換算重量平均分子量が70,000以下であれば、レリーフパターンを形成する際の現像溶解性が確保される。
【0080】
GPCの溶離液としては、テトラヒドロフラン又はN−メチル−2−ピロリドンが推奨される。また、重量平均分子量値は標準単分散ポリスチレンを用いて作成した検量線から求められる。標準単分散ポリスチレンとしては昭和電工製 有機溶媒系標準試料 STANDARD SM−105から選ぶことが推奨される。
【0081】
[ポリオキサゾール前駆体]
本発明の感光性樹脂組成物における好ましい(A)樹脂のさらに1つの例は、下記一般式(4):
【化26】

{式中、Yは、炭素原子を有する4価の有機基であり、好ましくは2個以上の炭素原子を有する4価の有機基であり、Y、X及びXは、それぞれ独立に、2個以上の炭素原子を有する2価の有機基であり、nは、1〜1000の整数であり、nは、0〜500の整数であり、n/(n+n)>0.5であり、そしてX及びYを含むn個のジヒドロキシジアミド単位並びにX及びYを含むn個のジアミド単位の配列順序は問わない。}で表される構造を有するポリオキサゾール前駆体(以下、上記一般式(4)で表されるポリオキサゾール前駆体を単に「ポリオキサゾール前駆体」という場合がある。)である。
【0082】
ポリオキサゾール前駆体は、上記一般式(4)中のn個のジヒドロキシジアミド単位(以下、単にジヒドロキシジアミド単位という場合がある。)を有するポリマーであり、上記一般式(4)中のn個のジアミド単位(以下、単にジアミド単位という場合がある。)を有してもよい。
【0083】
の炭素原子数は、感光特性を得る目的で2個以上40個以下であることが好ましく、Xの炭素原子数は、感光特性を得る目的で2個以上40個以下であることが好ましく、Yの炭素原子数は、感光特性を得る目的で2個以上40個以下であることが好ましく、そしてYの炭素原子数は、感光特性を得る目的で2個以上40個以下であることが好ましい。
【0084】
該ジヒドロキシジアミド単位は、Y(NH(OH)の構造を有するジアミノジヒドロキシ化合物(好ましくはビスアミノフェノール)及びX(COOH)の構造を有するジカルボン酸からの合成により形成できる。以下、上記ジアミノジヒドロキシ化合物がビスアミノフェノールである場合を例に典型的な態様を説明する。該ビスアミノフェノールの2組のアミノ基とヒドロキシ基とはそれぞれ互いにオルト位にあるものであり、該ジヒドロキシジアミド単位は、約250〜400℃での加熱によって閉環して、耐熱性のポリオキサゾール構造に変化する。一般式(3)中のnは、感光特性を得る目的で1以上、感光特性を得る目的で1000以下である。nは2〜1000の範囲が好ましく、3〜50の範囲がより好ましく、3〜20の範囲であることが最も好ましい。
【0085】
ポリオキサゾール前駆体には、必要に応じて上記ジアミド単位n個が縮合されていてもよい。該ジアミド単位は、Y(NHの構造を有するジアミン及びX(COOH)の構造を有するジカルボン酸からの合成により形成できる。一般式(3)中のnは、0〜500の範囲であり、nが500以下であることにより良好な感光特性が得られる。nは0〜10の範囲がより好ましい。ジヒドロキシジアミド単位に対するジアミド単位の割合が高すぎると現像液として使用するアルカリ性水溶液への溶解性が低下するので、一般式(3)中のn/(n+n)の値は0.5超であり、0.7以上であることがより好ましく、0.8以上であることが最も好ましい。
【0086】
(NH(OH)の構造を有するジアミノジヒドロキシ化合物としてのビスアミノフェノールとしては、例えば、3,3’−ジヒドロキシベンジジン、3,3’−ジアミノ−4,4’−ジヒドロキシビフェニル、4,4’−ジアミノ−3,3’−ジヒドロキシビフェニル、3,3’−ジアミノ−4,4’−ジヒドロキシジフェニルスルホン、4,4’−ジアミノ−3,3’−ジヒドロキシジフェニルスルホン、ビス−(3−アミノ−4−ヒドロキシフェニル)メタン、2,2−ビス−(3−アミノ−4−ヒドロキシフェニル)プロパン、2,2−ビス−(3−アミノ−4−ヒドロキシフェニル)ヘキサフルオロプロパン、2,2−ビス−(4−アミノ−3−ヒドロキシフェニル)ヘキサフルオロプロパン、ビス−(4−アミノ−3−ヒドロキシフェニル)メタン、2,2−ビス−(4−アミノ−3−ヒドロキシフェニル)プロパン、4,4’−ジアミノ−3,3’−ジヒドロキシベンゾフェノン、3,3’−ジアミノ−4,4’−ジヒドロキシベンゾフェノン、4,4’−ジアミノ−3,3’−ジヒドロキシジフェニルエーテル、3,3’−ジアミノ−4,4’−ジヒドロキシジフェニルエーテル、1,4−ジアミノ−2,5−ジヒドロキシベンゼン、1,3−ジアミノ−2,4−ジヒドロキシベンゼン、1,3−ジアミノ−4,6−ジヒドロキシベンゼン等が挙げられる。これらのビスアミノフェノールは単独又は2種以上を組合せて使用できる。該ビスアミノフェノールにおけるY基としては、下記式(22):
【化27】

で表されるものが、感光特性の点で好ましい。
【0087】
また、Y(NHの構造を有するジアミンとしては、芳香族ジアミン、シリコンジアミン等が挙げられる。このうち芳香族ジアミンとしては、例えば、m−フェニレンジアミン、p−フェニレンジアミン、2,4−トリレンジアミン、3,3’−ジアミノジフェニルエーテル、3,4’−ジアミノジフェニルエーテル、4,4’−ジアミノジフェニルエーテル、3,3’−ジアミノジフェニルスルホン、4,4’−ジアミノジフェニルスルホン、3,4’−ジアミノジフェニルスルホン、3,3’−ジアミノジフェニルメタン、4,4’−ジアミノジフェニルメタン、3,4’−ジアミノジフェニルメタン、4,4’−ジアミノジフェニルスルフィド、3,3’−ジアミノジフェニルケトン、4,4’−ジアミノジフェニルケトン、3,4’−ジアミノジフェニルケトン、2,2’−ビス(4−アミノフェニル)プロパン、2,2’−ビス(4−アミノフェニル)ヘキサフルオロプロパン、1,3−ビス(3−アミノフェノキシ)ベンゼン、1,3−ビス(4−アミノフェノキシ)ベンゼン、1,4−ビス(4−アミノフェノキシ)ベンゼン、4−メチル−2,4−ビス(4−アミノフェニル)−1−ペンテン、
【0088】
4−メチル−2,4−ビス(4−アミノフェニル)−2−ペンテン、1,4−ビス(α,α−ジメチル−4−アミノベンジル)ベンゼン、イミノ−ジ−p−フェニレンジアミン、1,5−ジアミノナフタレン、2,6−ジアミノナフタレン、4−メチル−2,4−ビス(4−アミノフェニル)ペンタン、5(又は6)−アミノ−1−(4−アミノフェニル)−1,3,3−トリメチルインダン、ビス(p−アミノフェニル)ホスフィンオキシド、4,4’−ジアミノアゾベンゼン、4,4’−ジアミノジフェニル尿素、4,4’−ビス(4−アミノフェノキシ)ビフェニル、2,2−ビス[4−(4−アミノフェノキシ)フェニル]プロパン、2,2−ビス[4−(4−アミノフェノキシ)フェニル]ヘキサフルオロプロパン、2,2−ビス[4−(3−アミノフェノキシ)フェニル]ベンゾフェノン、4,4’−ビス(4−アミノフェノキシ)ジフェニルスルホン、4,4’−ビス[4−(α,α−ジメチル−4−アミノベンジル)フェノキシ]ベンゾフェノン、4,4’−ビス[4−(α,α―ジメチル−4−アミノベンジル)フェノキシ]ジフェニルスルホン、4,4’−ジアミノビフェニル、
【0089】
4,4’−ジアミノベンゾフェノン、フェニルインダンジアミン、3,3’−ジメトキシ−4,4’−ジアミノビフェニル、3,3’−ジメチル−4,4’−ジアミノビフェニル、o−トルイジンスルホン、2,2−ビス(4−アミノフェノキシフェニル)プロパン、ビス(4−アミノフェノキシフェニル)スルホン、ビス(4−アミノフェノキシフェニル)スルフィド、1,4−(4−アミノフェノキシフェニル)ベンゼン、1,3−(4−アミノフェノキシフェニル)ベンゼン、9,9−ビス(4−アミノフェニル)フルオレン、4,4’−ジ−(3−アミノフェノキシ)ジフェニルスルホン、4,4’−ジアミノベンズアニリド等、並びに、これら芳香族ジアミンの芳香核の水素原子が、塩素原子、フッ素原子、臭素原子、メチル基、メトキシ基、シアノ基及びフェニル基から成る群より選ばれる少なくとも1種の基又は原子によって置換された化合物が挙げられる。
【0090】
また、上記ジアミンとして、基材との接着性を高めるためにシリコンジアミンを選択することができる。シリコンジアミンの例としては、ビス(4−アミノフェニル)ジメチルシラン、ビス(4−アミノフェニル)テトラメチルシロキサン、ビス(4−アミノフェニル)テトラメチルジシロキサン、ビス(γ−アミノプロピル)テトラメチルジシロキサン、1,4−ビス(γ−アミノプロピルジメチルシリル)ベンゼン、ビス(4−アミノブチル)テトラメチルジシロキサン、ビス(γ−アミノプロピル)テトラフェニルジシロキサン等が挙げられる。
【0091】
また、X(COOH)又はX(COOH)の構造を有する好ましいジカルボン酸としては、X及びXが、それぞれ、直鎖、分岐鎖又は環状構造を有する脂肪族基又は芳香族基であるものが挙げられる。中でも、芳香族環又は脂肪族環を含有していても良い炭素原子数2個以上40個以下の有機基が好ましく、X及びXは、それぞれ、下記式(23):
【化28】

{式中、R34は、−CH−、−O−、−S−、−SO−、−CO−、−NHCO−及び−C(CF−から成る群から選択される2価の基を表す。}
で表される芳香族基から好ましく選択でき、これらは感光特性の点で好ましい。
【0092】
ポリオキサゾール前駆体は、末端基が特定の有機基で封止されたものでもよい。封止基で封止されたポリオキサゾール前駆体を用いる場合、本発明の感光性樹脂組成物の加熱硬化後の塗膜の機械物性(特に伸度)及び硬化レリーフパターン形状が良好となることが期待される。このような封止基の好適な例としては、下記式(24):
【化29】

で表されるものが挙げられる。
【0093】
ポリオキサゾール前駆体のゲルパーミエーションクロマトグラフィーによるポリスチレン換算重量平均分子量は、3,000〜70,000であることが好ましく、6,000〜50,000であることがより好ましい。この重量平均分子量は、硬化レリーフパターンの物性の観点から3,000以上が好ましい。また、解像性の観点から、70,000以下が好ましい。ゲルパーミエーションクロマトグラフィーの展開溶媒としては、テトラヒドロフラン、N−メチル−2−ピロリドンが推奨される。また分子量は標準単分散ポリスチレンを用いて作成した検量線から求める。標準単分散ポリスチレンとしては昭和電工社製 有機溶媒系標準試料 STANDARD SM−105から選ぶことが推奨される。
【0094】
[ポリイミド]
本発明の感光性樹脂組成物における好ましい(A)樹脂のさらに1つの例は、前記一般式(5):
【化30】

(式中、Xは、4〜14価の有機基、Yは、2〜12価の有機基、R及びRは、フェノール性水酸基、スルホン酸基又はチオール基から選ばれる基を少なくとも一つ有する有機基を示し、かつ同一であるか、又は異なっていてよく、nは、3〜200の整数であり、そしてm及びmは、0〜10の整数である。)で表される構造を有するポリイミドである。ここで、一般式(5)で表される樹脂は、十分な膜特性を発現する上で熱処理の工程で化学変化を要さないので、より低温での処理に好適である点で特に好ましい。
上記一般式(5)にて示される構造単位中のXは、炭素数4〜40の4価〜14価の有機基であることが好ましく、耐熱性と感光特性とを両立するという点で、芳香族環又は脂肪族環を含有する炭素原子数5〜40の有機基であることがさらに好ましい。
【0095】
上記一般式(5)で表されるポリイミドは、テトラカルボン酸、対応するテトラカルボン酸二無水物、テトラカルボン酸ジエステルジクロリドなどとジアミン、対応するジイソシアネート化合物、トリメチルシリル化ジアミンを反応させて得ることができる。ポリイミドは、一般にテトラカルボン酸二無水物とジアミンを反応させて得られるポリイミド前駆体の1つであるポリアミド酸を、加熱又は酸若しくは塩基などによる化学処理で脱水閉環することで得ることができる。
【0096】
好適なテトラカルボン酸二無水物としては、ピロメリット酸二無水物、3,3’、4,4’−ビフェニルテトラカルボン酸二無水物、2,3,3’,4’−ビフェニルテトラカルボン酸二無水物、2,2’,3,3’−ビフェニルテトラカルボン酸二無水物、3,3’,4,4’−ベンゾフェノンテトラカルボン酸二無水物、2,2’,3,3’−ベンゾフェノンテトラカルボン酸二無水物、2,2−ビス(3,4−ジカルボキシフェニル)プロパン二無水物、2,2−ビス(2,3−ジカルボキシフェニル)プロパン二無水物、1,1−ビス(3,4−ジカルボキシフェニル)エタン二無水物、1,1−ビス(2,3−ジカルボキシフェニル)エタン二無水物、ビス(3,4−ジカルボキシフェニル)メタン二無水物、ビス(2,3−ジカルボキシフェニル)メタン二無水物、ビス(3,4−ジカルボキシフェニル)スルホン二無水物、ビス(3,4−ジカルボキシフェニル)エーテル二無水物、1,2,5,6−ナフタレンテトラカルボン酸二無水物、9,9−ビス(3,4−ジカルボキシフェニル)フルオレン酸二無水物、
【0097】
9,9−ビス{4−(3,4−ジカルボキシフェノキシ)フェニル}フルオレン酸二無水物、2,3,6,7−ナフタレンテトラカルボン酸二無水物、2,3,5,6−ピリジンテトラカルボン酸二無水物、3,4,9,10−ペリレンテトラカルボン酸二無水物、2,2−ビス(3,4−ジカルボキシフェニル)ヘキサフルオロプロパン二無水物などの芳香族テトラカルボン酸二無水物、又はブタンテトラカルボン酸二無水物、1,2,3,4−シクロペンタンテトラカルボン酸二無水物などの脂肪族のテトラカルボン酸二無水物、3,3’,4,4’−ジフェニルスルホンテトラカルボン酸二無水物及び下記一般式(25):
【化31】

{式中、R35は、酸素原子、C(CF、C(CH又はSOから選ばれる基を示し、そしてR36及びR37は、同一であるか、又は異なっていてもよく、かつ水素原子、水酸基又はチオール基から選ばれる基を示す。}で表される化合物が挙げられる。
【0098】
これらのうち、3,3’,4,4’−ビフェニルテトラカルボン酸二無水物、2,3,3’,4’−ビフェニルテトラカルボン酸二無水物、2,2’,3,3’−ビフェニルテトラカルボン酸二無水物、3,3’,4,4’−ベンゾフェノンテトラカルボン酸二無水物、2,2’,3,3’−ベンゾフェノンテトラカルボン酸二無水物、2,2−ビス(3,4−ジカルボキシフェニル)プロパン二無水物、2,2−ビス(2,3−ジカルボキシフェニル)プロパン二無水物、1,1−ビス(3,4−ジカルボキシフェニル)エタン二無水物、1,1−ビス(2,3−ジカルボキシフェニル)エタン二無水物、ビス(3,4−ジカルボキシフェニル)メタン二無水物、ビス(2,3−ジカルボキシフェニル)メタン二無水物、ビス(3,4−ジカルボキシフェニル)スルホン二無水物、
【0099】
ビス(3,4−ジカルボキシフェニル)エーテル二無水物、2,2−ビス(3,4−ジカルボキシフェニル)ヘキサフルオロプロパン二無水物、3,3’,4,4’−ジフェニルスルホンテトラカルボン酸二無水物、9,9−ビス(3,4−ジカルボキシフェニル)フルオレン酸二無水物、9,9−ビス{4−(3,4−ジカルボキシフェノキシ)フェニル}フルオレン酸二無水物及び下記一般式(26)
【化32】

{式中、R38は、酸素原子、C(CF、C(CH又はSOから選ばれる基を示し、そしてR39及びR40は、同一であるか、又は異なっていてもよく、かつ水素原子、水酸基又はチオール基から選ばれる基を示す。}で表される構造の酸二無水物が好ましい。これらは単独で又は2種以上を組み合わせて使用される。
【0100】
上記一般式(5)のYは、ジアミンの構造成分を表しており、このジアミンとしては、芳香族環又は脂肪族環を含有する2〜12価の有機基を表し、中でも炭素原子数5〜40の有機基が好ましい。
【0101】
ジアミンの具体的な例としては、3,4’−ジアミノジフェニルエーテル、4,4’−ジアミノジフェニルエーテル、3,4’−ジアミノジフェニルメタン、4,4’−ジアミノジフェニルメタン、3,4’−ジアミノジフェニルスルホン、4,4’−ジアミノジフェニルスルホン、3,4’−ジアミノジフェニルスルフィド、4,4’−ジアミノジフェニルスルフィド、1,4−ビス(4−アミノフェノキシ)ベンゼン、ベンジン、m−フェニレンジアミン、P−フェニレンジアミン、1,5−ナフタレンジアミン、2,6−ナフタレンジアミン、ビス(4−アミノフェノキシフェニル)スルホン、ビス(3−アミノフェノキシフェニル)スルホン、ビス(4−アミノフェノキシ)ビフェニル、ビス{4−(4−アミノフェノキシ)フェニル}エーテル、1,4−ビス(4−アミノフェノキシ)ベンゼン、2,2’−ジメチル−4,4’−ジアミノビフェニル、2,2’−ジエチル−4,4’−ジアミノビフェニル、3,3’−ジメチル−4,4’−ジアミノビフェニル、
【0102】
3,3’−ジエチル−4,4’−ジアミノビフェニル、2,2’,3,3’−テトラメチル−4,4’−ジアミノビフェニル、3,3’,4,4’−テトラメチル−4,4’−ジアミノビフェニル、2,2’−ジ(トリフルオロメチル)−4,4’−ジアミノビフェニル、9,9−ビス(4−アミノフェニル)フルオレン又はこれらの芳香族環にアルキル基若しくはハロゲン原子で置換した化合物、或いは脂肪族のシクロヘキシルジアミン、メチレンビスシクロヘキシルアミン及び、下記一般式(27):
【化33】

{式中、R41は、酸素原子、C(CF、C(CH又はSOから選ばれる基を示し、そしてR42〜R45は、同一であるか、又は異なっていてよく、かつ水素原子、水酸基又はチオール基から選ばれる基を示す。}で表される構造のジアミンなどが挙げられる。
【0103】
これらのうち、3,4’−ジアミノジフェニルエーテル、4,4’−ジアミノジフェニルエーテル、3,4’−ジアミノジフェニルメタン、4,4’−ジアミノジフェニルメタン、3,4’−ジアミノジフェニルスルホン、4,4’−ジアミノジフェニルスルホン、3,4’−ジアミノジフェニルスルフィド、4,4’−ジアミノジフェニルスルフィド、m−フェニレンジアミン、P−フェニレンジアミン、1,4−ビス(4−アミノフェノキシ)ベンゼン、9,9−ビス(4−アミノフェニル)フルオレン及び、下記一般式(28):
【化34】

{式中、R46は、酸素原子、C(CF、C(CH又はSOから選ばれる基を示し、そしてR47〜R50は、同一であるか、又は異なっていてよく、かつ水素原子、水酸基又はチオール基から選ばれる基を示す。}
で表される構造のジアミンが好ましい。
【0104】
これらのうち、3,4’−ジアミノジフェニルエーテル、4,4’−ジアミノジフェニルエーテル、3,4’−ジアミノジフェニルメタン、4,4’−ジアミノジフェニルメタン、3,4’−ジアミノジフェニルスルホン、4,4’−ジアミノジフェニルスルホン、1,4−ビス(4−アミノフェノキシ)ベンゼン、および下記一般式(29):
【化35】

{式中、R51は、酸素原子、C(CF、C(CH又はSOから選ばれる基を示し、そしてR52及びR53は、同一であるか、又は異なっていてよく、かつ水素原子、水酸基又はチオール基から選ばれる基を示す。}
で表される構造のジアミンが特に好ましい。これらは単独で又は2種以上を組み合わせて使用される。
【0105】
一般式(5)のR及びRは、フェノール性水酸基、スルホン酸基、又はチオール基を表している。本発明においては、R及びRとしてフェノール性水酸基、スルホン酸基及び/又はチオール基を混在させることができる。
【0106】
及びRのアルカリ可溶性基の量を制御することで、アルカリ水溶液に対する溶解速度が変化するので、この調整により適度な溶解速度を有した感光性樹脂組成物を得ることができる。
【0107】
さらに、基板との接着性を向上させるために、耐熱性を低下させない範囲でX、Yとしてシロキサン構造を有する脂肪族の基を共重合してもよい。具体的には、ジアミン成分として、ビス(3−アミノプロピル)テトラメチルジシロキサン、ビス(p−アミノ−フェニル)オクタメチルペンタシロキサンなどを1〜10モル%共重合したものなどがあげられる。
【0108】
上記ポリイミドは、例えば、低温中でテトラカルボン酸二無水物とジアミン化合物(一部をモノアミンである末端封止剤に置換)を反応させる方法、低温中でテトラカルボン酸二無水物(一部を酸無水物またはモノ酸クロリド化合物又はモノ活性エステル化合物である末端封止剤に置換)とジアミン化合物を反応させる方法、テトラカルボン酸二無水物とアルコールとによりジエステルを得、その後ジアミン(一部をモノアミンである末端封止剤に置換)と縮合剤の存在下で反応させる方法、テトラカルボン酸二無水物とアルコールとによりジエステルを得、その後残りのジカルボン酸を酸クロリド化し、ジアミン(一部をモノアミンである末端封止剤に置換)と反応させる方法などの方法を利用して、ポリイミド前駆体を得、これを、既知のイミド化反応法を用いて完全イミド化させる方法、または、途中でイミド化反応を停止し、一部イミド構造を導入する方法、さらには、完全イミド化したポリマーと、そのポリイミド前駆体をブレンドする事によって、一部イミド構造を導入する方法を利用して合成することができる。
【0109】
上記ポリイミドは、感光性樹脂組成物を構成するポリマー全体に対し、イミド化率が15%以上になるように、ポリイミドを有していることが好ましい。さらに好ましくは20%以上である。ここでイミド化率とは、感光性樹脂組成物を構成するポリマー全体に存在するイミド化の割合を指す。イミド化率が15%を下回ると熱硬化時の収縮量が大きくなり、厚膜作製には適さない。
【0110】
イミド化率は、以下の方法で容易に算出できる。まず、ポリマーの赤外吸収スペクトルを測定、ポリイミドに起因するイミド構造の吸収ピーク(1780cm−1付近、1377cm−1付近)の存在を確認する。次に、そのポリマーを350℃で1時間熱処理し、熱処理後の赤外吸収スペクトルを測定し、1377cm−1付近のピーク強度を熱処理前の強度と比較することによって、熱処理前ポリマー中のイミド化率を算出する。
【0111】
上記ポリイミドの分子量は、ゲルパーミエーションクロマトグラフィーによるポリスチレン換算重量平均分子量で測定した場合に、3,000〜200,000であることが好ましく、5,000〜50,000であることがより好ましい。重量平均分子量が3,000以上である場合機械物性が良好であり、50,000以下である場合現像液への分散性が良好で、レリーフパターンの解像性能が良好である。
【0112】
ゲルパーミエーションクロマトグラフィーの展開溶媒としては、テトラヒドロフラン、及びN−メチル−2−ピロリドンが推奨される。また分子量は標準単分散ポリスチレンを用いて作成した検量線から求める。標準単分散ポリスチレンとしては、昭和電工社製 有機溶媒系標準試料 STANDARD SM−105から選ぶことが推奨される。
【0113】
(B)プリン誘導体
本発明に用いられる(B)プリン誘導体について説明する。(B)プリン誘導体は、プリン環を基本骨格とする化合物で、その骨格から誘導される化合物を称してプリン誘導体とする。(B)プリン誘導体を用いることにより、銅又は銅合金の上でも変色抑制効果が優れる。銅又は銅合金の上でも変色抑制効果が優れることの化学メカニズムは定かではないが、窒素原子を分子内に含有するプリン誘導体と、酸素原子又は窒素原子などのヘテロ原子を含有する(A)樹脂とが、水素結合等で適度に相互作用することで、樹脂と銅との過度な相互作用が抑制され、銅上での変色が防止されるものと推察される。
【0114】
(B)プリン誘導体の具体例としては、プリン、アデニン、グアニン、ヒポキサンチン、キサンチン、テオブロミン、カフェイン、尿酸、イソグアニン、2,6−ジアミノプリン、9−メチルアデニン、2−ヒドロキシアデニン、2−メチルアデニン、1−メチルアデニン、N−メチルアデニン、N,N−ジメチルアデニン、2−フルオロアデニン、9−(2−ヒドロキシエチル)アデニン、グアニンオキシム、N−(2−ヒドロキシエチル)アデニン、8−アミノアデニン、6−アミノ‐8−フェニル‐9H−プリン、1−エチルアデニン、6−エチルアミノプリン、1−ベンジルアデニン、N−メチルグアニン、7−(2−ヒドロキシエチル)グアニン、N−(3−クロロフェニル)グアニン、N−(3−エチルフェニル)グアニン、2−アザアデニン、5−アザアデニン、8−アザアデニン、8−アザグアニン、8−アザプリン、8−アザキサンチン、8−アザヒポキサンチン等及びその誘導体が挙げられる。
【0115】
さらに、(B)プリン誘導体が、下記一般式(6):
【化36】

{式中、Rは、水素原子、ハロゲン原子、水酸基、アミノ基又は炭素数1〜10のアルキル基若しくは芳香族基であり、そしてR10は、水素原子、ハロゲン原子、炭素数1〜6のアルコキシ基、水酸基、ヒドロキシアルキル基又は炭素数1〜10のアルキル基若しくは芳香族基で置換されていてもよいアミノ基である。}で表される化合物、下記一般式(7):
【化37】

{式中、R11は、水素原子、ハロゲン原子、水酸基、アミノ基又は炭素数1〜10のアルキル基若しくは芳香族基であり、そしてR12及びR13は、それぞれ独立に、水素原子、水酸基、ヒドロキシアルキル基又は炭素数1〜10のアルキル基若しくは芳香族基である。}で表される化合物、下記一般式(8):
【化38】

{式中、R14は、水素原子、ハロゲン原子、水酸基、アミノ基又は炭素数1〜10のアルキル基若しくは芳香族基であり、そしてR15は、水素原子、ハロゲン原子、炭素数1〜6のアルコキシ基、水酸基、ヒドロキシアルキル基又は炭素数1〜10のアルキル基若しくは芳香族基で置換されていてもよいアミノ基である。}で表される化合物、及び下記一般式(9):
【化39】

{式中、R16は、水素原子、ハロゲン原子、水酸基、アミノ基又は炭素数1〜10のアルキル基若しくは芳香族基であり、R17及びR18は、それぞれ独立に、水素原子、水酸基、ヒドロキシアルキル基又は炭素数1〜10のアルキル基若しくは芳香族基である。}で表される化合物から成る群より選ばれる少なくとも1種のプリン誘導体であることが、銅又は銅合金の上での変色抑制の観点から好ましい。
【0116】
上記一般式(6)〜(9)で表される化合物としては、具体的には、プリン、アデニン、グアニン、2,6−ジアミノプリン、2−ヒドロキシアデニン、2−メチルアデニン、N−メチルアデニン、N,N−ジメチルアデニン、2−フルオロアデニン、N−(2−ヒドロキシエチル)アデニン、グアニンオキシム、N−(2−ヒドロキシエチル)アデニン、N−エチルアデニン、N−メチルグアニン、N−(3−エチルフェニル)グアニン、8−アザアデニン、8−アザグアニン、8−アザプリン等が挙げられる。
【0117】
中でも、下記一般式(10):
【化40】

{式中、R19は、水素原子、ハロゲン原子、水酸基、アミノ基又は炭素数1〜10のアルキル基若しくは芳香族基である。}で表される化合物、下記一般式(11):
【化41】

{式中、R20は、水素原子、ヒドロキシアルキル基又は炭素数1〜10のアルキル基である。}で表される化合物、下記一般式(12):
【化42】

{式中、R21は、水素原子、ハロゲン原子、水酸基、アミノ基又は炭素数1〜10のアルキル基若しくは芳香族基である。}で表される化合物、及び下記一般式(13):
【化43】

{式中、R22は、水素原子、ヒドロキシアルキル基又は炭素数1〜10のアルキル基である。}で表される化合物から成る群より選ばれる少なくとも1種のプリン誘導体は、銅又は銅合金の上での変色抑制の点でさらに好ましい。
【0118】
上記一般式(10)〜(13)で表される化合物としては、具体的には、プリン、アデニン、グアニン、2,6−ジアミノプリン、2−ヒドロキシアデニン、2−メチルアデニン、2−フルオロアデニン、8−アザアデニン、8−アザグアニン、8−アザプリン等が挙げられる。
【0119】
さらに、プリン誘導体が、上記一般式(12)で表される化合物、及び上記一般式(13)で表される化合物から成る群から選ばれる少なくとも一種の化合物であることが銅又は銅合金の上への密着性の点で特に好ましく、更なる密着性の観点から、8−アザアデニン又は8−アザグアニンであることが最も好ましい。
【0120】
(B)プリン誘導体の配合量は、(A)樹脂100質量部に対し、0.01〜10質量部であり、好ましくは0.05〜2質量部である。上記配合量が0.01質量部以上である場合、銅又は銅合金の上での変色が発現し、一方、10質量部以下である場合、保存安定性に優れる。
【0121】
(C)感光剤
本発明に用いられる(C)感光剤について説明する。(C)感光剤は、本発明の感光性樹脂組成物が、(A)樹脂として例えば主にポリイミド前駆体および/又はポリアミドを用いるネガ型であるか、(A)樹脂として例えば主にポリオキサゾール前駆体および/又は可溶性ポリイミドを用いるポジ型であるか等により異なる。
【0122】
(C)感光剤の、感光性樹脂組成物中の配合量は、(A)感光性樹脂100質量部に対して、1〜50質量部である。上記配合量は、光感度又はパターニング性の観点で1質量部以上であり、感光性樹脂組成物の硬化性又は硬化後の感光性樹脂層の物性の観点から50質量部以下である。
【0123】
まずネガ型を所望する場合について説明する。この場合(C)感光剤としては光重合開始剤および/又は光酸発生剤が用いられ、光重合開始剤としては、光ラジカル重合開始剤であることが好ましく、ベンゾフェノン、o−ベンゾイル安息香酸メチル、4−ベンゾイル−4’−メチルジフェニルケトン、ジベンジルケトン、フルオレノン等のベンゾフェノン誘導体、2,2’−ジエトキシアセトフェノン、2−ヒドロキシ−2−メチルプロピオフェノン、1−ヒドロキシシクロヘキシルフェニルケトン等のアセトフェノン誘導体、チオキサントン、2−メチルチオキサントン、2−イソプロピルチオキサントン、ジエチルチオキサントン等のチオキサントン誘導体、ベンジル、ベンジルジメチルケタール、ベンジル−β−メトキシエチルアセタール等のベンジル誘導体、
【0124】
ベンゾイン、ベンゾインメチルエーテル等のベンゾイン誘導体、1−フェニル−1,2−ブタンジオン−2−(o−メトキシカルボニル)オキシム、1−フェニル−1,2−プロパンジオン−2−(o−メトキシカルボニル)オキシム、1−フェニル−1,2−プロパンジオン−2−(o−エトキシカルボニル)オキシム、1−フェニル−1,2−プロパンジオン−2−(o−ベンゾイル)オキシム、1,3−ジフェニルプロパントリオン−2−(o−エトキシカルボニル)オキシム、1−フェニル−3−エトキシプロパントリオン−2−(o−ベンゾイル)オキシム等のオキシム類、N−フェニルグリシン等のN−アリールグリシン類、ベンゾイルパークロライド等の過酸化物類、芳香族ビイミダゾール類、チタノセン類、α−(n−オクタンスルフォニルオキシイミノ)−4−メトキシベンジルシアニド等の光酸発生剤類等が好ましく挙げられるが、これらに限定されるものではない。上記の光重合開始剤の中では、特に光感度の点で、オキシム類がより好ましい。
【0125】
ネガ型の感光性樹脂組成物に(C)感光剤として光酸発生剤を用いる場合は、紫外線の如き活性光線の照射によって酸性を呈すると共に、その作用により、後述する(D)成分である架橋剤を(A)成分である樹脂と架橋せしめる、又は架橋剤同士を重合せしめる作用を有する。この光酸発生剤の例としては、ジアリールスルホニウム塩、トリアリールスルホニウム塩、ジアルキルフェナシルスルホニウム塩、ジアリールヨードニウム塩、アリールジアゾニウム塩、芳香族テトラカルボン酸エステル、芳香族スルホン酸エステル、ニトロベンジルエステル、オキシムスルホン酸エステル、芳香族N−オキシイミドスルフォネート、芳香族スルファミド、ハロアルキル基含有炭化水素系化合物、ハロアルキル基含有ヘテロ環状化合物、ナフトキノンジアジド−4−スルホン酸エステルなどが用いられる。このような化合物は必要に応じて2種類以上併用したり、他の増感剤と組合せて使用することができる。上記の光酸発生剤の中では、特に光感度の点で、芳香族オキシムスルホン酸エステル、芳香族N−オキシイミドスルフォネートがより好ましい。
【0126】
これらの感光剤の配合量は、(A)樹脂100質量部に対し、1〜50質量部であり、光感度特性の観点から2〜15質量部が好ましい。(C)感光剤を(A)樹脂100質量部に対し1質量部以上配合することで光感度に優れ、50質量部以下配合することで厚膜硬化性に優れる。
【0127】
更に、上述した通り、一般式(11)で表される(A)樹脂がイオン結合型の場合、(A)樹脂の側鎖にイオン結合を介して光重合性基を付与するために、アミノ基を有する(メタ)アクリル化合物が用いられる。この場合には、アミノ基を有する(メタ)アクリル化合物が(C)感光剤として使用され、例えばジメチルアミノエチルアクリレート、ジメチルアミノエチルメタクリレート、ジエチルアミノエチルアクリレート、ジエチルアミノエチルメタクリレート、ジメチルアミノプロピルアクリレート、ジメチルアミノプロピルメタクリレート、ジエチルアミノプロピルアクリレート、ジエチルアミノプロピルメタクリレート、ジメチルアミノブチルアクリレート、ジメチルアミノブチルメタクリレート、ジエチルアミノブチルアクリレート、ジエチルアミノブチルメタクリレート、等のジアルキルアミノアルキルアクリレート又はメタクリレートが好ましく、中でも感光特性の観点から、アミノ基上のアルキル基が炭素数1〜10、アルキル鎖が炭素数1〜10のジアルキルアミノアルキルアクリレート又はメタクリレートが好ましい。
【0128】
これらのアミノ基を有する(メタ)アクリル化合物の配合量は、(A)樹脂100質量部に対し、1〜20質量部であり、光感度特性の観点から2〜15質量部が好ましい。(C)感光剤として、アミノ基を有する(メタ)アクリル化合物を(A)樹脂100質量部に対し1質量部以上配合することで光感度に優れ、20質量部以下配合することで厚膜硬化性に優れる。
【0129】
次にポジ型を所望する場合について説明する。この場合(C)感光剤としては光酸発生剤が用いられ、具体的には、ジアゾキノン化合物、オニウム塩、ハロゲン含有化合物、等を用いることができるが、溶剤溶解性及び保存安定性の観点から、ジアゾキノン構造を有する化合物が好ましい。
【0130】
上記ジアゾキノン化合物は、1,2−ベンゾキノンジアジド構造又は1,2−ナフトキノンジアジド構造を有する化合物であり、米国特許第2,772,972号明細書、同第2,797,213号明細書、同第3,669,658号明細書等により既知の物質である。好ましいジアゾキノン化合物の例としては、例えば、下記一般式(30):
【化44】

{式中、Qは、水素原子又は下記式(31):
【化45】

で表されるナフトキノンジアジドスルホン酸エステル基であり、全てのQが同時に水素原子であることはない。}で表されるものが挙げられる。
【0131】
上記一般式(30)で表されるナフトキノンジアジドスルホン酸エステル基の中でも、下記一般式(32):
【化46】

{式中、Qは、上記一般式(31)において定義した通りである。}
で表されるものが特に好ましい。
【0132】
上記オニウム塩としては、ヨードニウム塩、スルホニウム塩、ホシホニウム塩、ホスホニウム塩、アンモニウム塩、及びジアゾニウム塩等が挙げられ、ジアリールヨードニウム塩、トリアリールスルホニウム塩、及びトリアルキルスルホニウム塩から成る群から選ばれるオニウム塩が好ましい。
【0133】
上記ハロゲン含有化合物としては、ハロアルキル基含有炭化水素化合物等が挙げられ、トリクロロメチルトリアジンが好ましい。
【0134】
これら光酸発生剤の配合量は、(A)樹脂100質量部に対し、1〜50質量部であり、5〜30質量部が好ましい。(C)感光剤としての光酸発生剤の配合量が1質量部以上であれば感光性樹脂組成物によるパターニング性が良好であり、50質量部以下であれば感光性樹脂組成物の硬化後の膜の引張り伸び率が良好で、かつ露光部の現像残さ(スカム)が少ない。
【0135】
本発明の感光性樹脂組成物には、(D)架橋剤を含有させてもよい。架橋剤は、本発明の感光性樹脂組成物を用いて形成されたレリーフパターンを加熱硬化する際に、(A)樹脂を架橋し得るか、又は架橋剤自身が架橋ネットワークを形成し得る架橋剤であることができる。架橋剤は、感光性樹脂組成物から形成された硬化膜の耐熱性及び耐薬品性を更に強化することができる。
【0136】
架橋剤としては、例えば、熱架橋性基を1つ有するものとしてML−26X、ML−24X、ML−236TMP、4−メチロール3M6C、ML−MC、ML−TBC(以上、商品名、本州化学工業(株)製)、P−a型ベンゾオキサジン(商品名、四国化成工業(株)製)等、2つ有するものとしてDM−BI25X−F、46DMOC、46DMOIPP、46DMOEP(以上、商品名、旭有機材工業(株)製)、DML−MBPC、DML−MBOC、DML−OCHP、DML−PC、DML−PCHP、DML−PTBP、DML−34X、DML−EP、DML−POP、DML−OC、ジメチロール−Bis−C、ジメチロール−BisOC−P、DML−BisOC−Z、DML−BisOCHP−Z、DML−PFP、DML−PSBP、DML−MB25、DML−MTrisPC、DML−Bis25X−34XL、DML−Bis25X−PCHP(以上、商品名、本州化学工業(株)製)、ニカラックMX−290(商品名、(株)三和ケミカル製)、
【0137】
B−a型ベンゾオキサジン、B−m型ベンゾオキサジン(以上、商品名、四国化成工業(株)製)、2,6−ジメトキシメチル−4−t−ブチルフェノール、2,6−ジメトキシメチル−p−クレゾール、2,6−ジアセトキシメチル−p−クレゾール等、3つ有するものとしてTriML−P、TriML−35XL、TriML−TrisCR−HAP(以上、商品名、本州化学工業(株)製)等、4つ有するものとしてTM−BIP−A(商品名、旭有機材工業(株)製)、TML−BP、TML−HQ、TML−pp−BPF、TML−BPA、TMOM−BP(以上、商品名、本州化学工業(株)製)、ニカラックMX−280、ニカラックMX−270(以上、商品名、(株)三和ケミカル製)等、6つ有するものとしてHML−TPPHBA、HML−TPHAP(以上、商品名、本州化学工業(株)製)、ニカラックMW−390、ニカラックMW−100LM(以上、商品名、(株)三和ケミカル製)が挙げられる。
【0138】
これらのうち、本発明では熱架橋性基を少なくとも2つ含有するものが好ましく、特に好ましくは、46DMOC、46DMOEP(以上、商品名、旭有機材工業(株)製)、DML−MBPC、DML−MBOC、DML−OCHP、DML−PC、DML−PCHP、DML−PTBP、DML−34X、DML−EP、DML−POP、ジメチロール−BisOC−P、DML−PFP、DML−PSBP、DML−MTrisPC(以上、商品名、本州化学工業(株)製)、ニカラックMX−290(商品名、(株)三和ケミカル製)、B−a型ベンゾオキサジン、B−m型ベンゾオキサジン(以上、商品名、四国化成工業(株)製)、2,6−ジメトキシメチル−4−t−ブチルフェノール、2,6−ジメトキシメチル−p−クレゾール、2,6−ジアセトキシメチル−p−クレゾール等、TriML−P、TriML−35XL(以上、商品名、本州化学工業(株)製)等、TM−BIP−A(商品名、旭有機材工業(株)製)、TML−BP、TML−HQ、TML−pp−BPF、TML−BPA、TMOM−BP(以上、商品名、本州化学工業(株)製)、ニカラックMX−280、ニカラックMX−270(以上、商品名、(株)三和ケミカル製)等、HML−TPPHBA、HML−TPHAP(以上、商品名、本州化学工業(株)製)等が挙げられる。また、さらに好ましくは、ニカラックMX−290、ニカラックMX−280、ニカラックMX−270(以上、商品名、(株)三和ケミカル製)、B−a型ベンゾオキサジン、B−m型ベンゾオキサジン(以上、商品名、四国化成工業(株)製)、ニカラックMW−390、ニカラックMW−100LM(以上、商品名、(株)三和ケミカル製)等が挙げられる。
【0139】
耐熱性及び耐薬品性以外の諸性能との兼ね合いで、感光性樹脂組成物が架橋剤を含有する場合の配合量は、(A)樹脂100質量部に対し、0.5〜20質量部であることが好ましく、より好ましくは2〜10質量部である。該配合量が0.5質量部以上である場合、良好な耐熱性及び耐薬品性が発現し、一方、20質量部以下である場合、保存安定性に優れる。
【0140】
(E)有機チタン化合物
本発明の感光性樹脂組成物には、(E)有機チタン化合物を含有させてもよい。(E)有機チタン化合物を含有することにより、約250℃という低温で硬化した場合であっても耐薬品性に優れる感光性樹脂層を形成できる。また、特に(B)プリン誘導体と(E)有機チタン化合物との双方を感光性樹脂組成物中に含有させることにより、キュア後の樹脂層が基板接着性に加えて耐薬品性に優れるという効果を奏する。
【0141】
(E)有機チタン化合物として使用可能な有機チタン化合物としては、チタン原子に有機化学物質が共有結合又はイオン結合を介して結合しているものが挙げられる。
【0142】
(E)有機チタン化合物の具体的例を以下のI)〜VII)に示す:
I)チタンキレート化合物:中でも、アルコキシ基を2個以上有するチタンキレートが、ネガ型感光性樹脂組成物の保存安定性及び良好なパターンが得られることからより好ましく、具体的な例は、チタニウムビス(トリエタノールアミン)ジイソプロポキサイド、チタニウムジ(n−ブトキサイド)ビス(2,4−ペンタンジオネート、チタニウムジイソプロポキサイドビス(2,4−ペンタンジオネート)、チタニウムジイソプロポキサイドビス(テトラメチルヘプタンジオネート)、チタニウムジイソプロポキサイドビス(エチルアセトアセテート)等である。
【0143】
II)テトラアルコキシチタン化合物:例えば、チタニウムテトラ(n−ブトキサイド)、チタニウムテトラエトキサイド、チタニウムテトラ(2−エチルヘキソキサイド)、チタニウムテトライソブトキサイド、チタニウムテトライソプロポキサイド、チタニウムテトラメトキサイド、チタニウムテトラメトキシプロポキサイド、チタニウムテトラメチルフェノキサイド、チタニウムテトラ(n−ノニロキサイド)、チタニウムテトラ(n−プロポキサイド)、チタニウムテトラステアリロキサイド、チタニウムテトラキス[ビス{2,2−(アリロキシメチル)ブトキサイド}]等である。
【0144】
III)チタノセン化合物:例えば、ペンタメチルシクロペンタジエニルチタニウムトリメトキサイド、ビス(η−2,4−シクロペンタジエン−1−イル)ビス(2,6−ジフルオロフェニル)チタニウム、ビス(η−2,4−シクロペンタジエン−1−イル)ビス(2,6−ジフルオロ−3−(1H−ピロール−1−イル)フェニル)チタニウム等である。
【0145】
IV)モノアルコキシチタン化合物:例えば、チタニウムトリス(ジオクチルホスフェート)イソプロポキサイド、チタニウムトリス(ドデシルベンゼンスルホネート)イソプロポキサイド等である。
【0146】
V)チタニウムオキサイド化合物:例えば、チタニウムオキサイドビス(ペンタンジオネート)、チタニウムオキサイドビス(テトラメチルヘプタンジオネート)、フタロシアニンチタニウムオキサイド等である。
【0147】
VI)チタニウムテトラアセチルアセトネート化合物:例えば、チタニウムテトラアセチルアセトネート等である。
【0148】
VII)チタネートカップリング剤:例えば、イソプロピルトリドデシルベンゼンスルホニルチタネート等である。
【0149】
中でも、(E)有機チタン化合物が、上記I)チタンキレート化合物、II)テトラアルコキシチタン化合物、及びIII)チタノセン化合物から成る群から選ばれる少なくとも1種の化合物であることが、より良好な耐薬品性を奏するという観点から好ましい。特に、チタニウムジイソプロポキサイドビス(エチルアセトアセテート)、チタニウムテトラ(n−ブトキサイド)、及びビス(η−2,4−シクロペンタジエン−1−イル)ビス(2,6−ジフルオロ−3−(1H−ピロール−1−イル)フェニル)チタニウムが好ましい。
【0150】
(E)有機チタン化合物を配合する場合の配合量は、(A)樹脂100質量部に対し、0.05〜10質量部であることが好ましく、より好ましくは0.1〜2質量部である。該配合量が0.05質量部以上である場合良好な耐熱性及び耐薬品性が発現し、一方10質量部以下である場合保存安定性に優れる。
【0151】
(F)その他成分
本発明の感光性樹脂組成物は、上記(A)〜(E)成分以外の成分をさらに含有してもよい。本発明の感光性樹脂組成物は、典型的には、上記各成分及び必要に応じてさらに使用される任意成分を溶剤に溶解してワニス状にした感光性樹脂組成物として使用するため、(F)その他成分としては溶剤を挙げることができる。溶剤としては、(A)樹脂に対する溶解性の点から、極性の有機溶剤を用いることが好ましい。具体的には、N,N−ジメチルホルムアミド、N−メチル−2−ピロリドン、N−エチル−2−ピロリドン、N,N−ジメチルアセトアミド、ジメチルスルホキシド、ジエチレングリコールジメチルエーテル、シクロペンタノン、γ−ブチロラクトン、α−アセチル−γ−ブチロラクトン、テトラメチル尿素、1,3−ジメチル−2−イミダゾリノン、N−シクロヘキシル−2−ピロリドン等が挙げられ、これらは単独又は2種以上の組合せで用いることができる。
【0152】
上記溶剤は、感光性樹脂組成物の所望の塗布膜厚及び粘度に応じて、(A)樹脂100質量部に対し、例えば30〜1500質量部の範囲、好ましくは100〜1000質量部の範囲で用いることができる。
【0153】
更に、感光性樹脂組成物の保存安定性を向上させる観点から、アルコール類を含む溶剤が好ましい。好適に使用できるアルコール類は、典型的には、分子内にアルコール性水酸基を持ち、オレフィン系二重結合を有さないアルコールであり、具体的な例としては、メチルアルコール、エチルアルコール、n−プロピルアルコール、イソプロピルアルコール、n−ブチルアルコール、イソブチルアルコール、tert−ブチルアルコール等のアルキルアルコール類、乳酸エチル等の乳酸エステル類、プロピレングリコール−1−メチルエーテル、プロピレングリコール−2−メチルエーテル、プロピレングリコール−1−エチルエーテル、プロピレングリコール−2−エチルエーテル、プロピレングリコール−1−(n−プロピル)エーテル、プロピレングリコール−2−(n−プロピル)エーテル等のプロピレングリコールモノアルキルエーテル類、エチレングリコールメチルエーテル、エチレングリコールエチルエーテル、エチレングリコール−n−プロピルエーテル等のモノアルコール類、2−ヒドロキシイソ酪酸エステル類、エチレングリコール、及びプロピレングリコール等のジアルコール類挙げることができる。これらの中では、乳酸エステル類、プロピレングリコールモノアルキルエーテル類、2−ヒドロキシイソ酪酸エステル類、及びエチルアルコールが好ましく、特に乳酸エチル、プロピレングリコール−1−メチルエーテル、プロピレングリコール−1−エチルエーテル、及びプロピレングリコール−1−(n−プロピル)エーテルがより好ましい。
【0154】
溶剤が、オレフィン系二重結合を有さないアルコールを含有する場合、全溶剤中に占める、オレフィン系二重結合を有さないアルコールの含量は、5〜50質量%であることが好ましく、より好ましくは10〜30質量%である。オレフィン系二重結合を有さないアルコールの上記含量が5質量%以上の場合、感光性樹脂組成物の保存安定性が良好になり、50質量%以下の場合、(A)樹脂の溶解性が良好になる。
【0155】
また、例えば、本発明の感光性樹脂組成物を用いて銅又は銅合金から成る基板上に硬化膜を形成する場合には、銅上の変色を抑制するためにアゾール化合物を任意に配合することができる。
【0156】
アゾール化合物としては、1H−トリアゾール、5−メチル−1H−トリアゾール、5−エチル−1H−トリアゾール、4,5−ジメチル−1H−トリアゾール、5−フェニル−1H−トリアゾール、4−t−ブチル−5−フェニル−1H−トリアゾール、5−ヒドロキシフェニル−1H−トリアゾール、フェニルトリアゾール、p−エトキシフェニルトリアゾール、5−フェニル−1−(2−ジメチルアミノエチル)トリアゾール、5−ベンジル−1H−トリアゾール、ヒドロキシフェニルトリアゾール、1,5−ジメチルトリアゾール、4,5−ジエチル−1H−トリアゾール、1H−ベンゾトリアゾール、2−(5−メチル−2−ヒドロキシフェニル)ベンゾトリアゾール、2−[2−ヒドロキシ−3,5−ビス(α,α―ジメチルベンジル)フェニル]−ベンゾトリアゾール、2−(3,5−ジ−t−ブチル−2−ヒドロキシフェニル)ベンゾトリアゾール、2−(3−t−ブチル−5−メチル−2−ヒドロキシフェニル)−ベンゾトリアゾール、2−(3,5−ジ−t−アミル−2−ヒドロキシフェニル)ベンゾトリアゾール、2−(2’−ヒドロキシ−5’−t−オクチルフェニル)ベンゾトリアゾール、ヒドロキシフェニルベンゾトリアゾール、トリルトリアゾール、5−メチル−1H−ベンゾトリアゾール、4−メチル−1H−ベンゾトリアゾール、4−カルボキシ−1H−ベンゾトリアゾール、5−カルボキシ−1H−ベンゾトリアゾール、1H−テトラゾール、5−メチル−1H−テトラゾール、5−フェニル−1H−テトラゾール、5−アミノ−1H−テトラゾール、1−メチル−1H−テトラゾール等が挙げられる。
【0157】
特に好ましくは、トリルトリアゾール、5−メチル−1H−ベンゾトリアゾール、及び4−メチル−1H−ベンゾトリアゾールが挙げられる。また、これらアゾール化合物は、1種で用いても2種以上の混合物で用いても構わない。
【0158】
感光性樹脂組成物が上記アゾール化合物を含有する場合の配合量は、(A)樹脂100質量部に対し、0.1〜20質量部である事が好ましく、光感度特性の観点から0.5〜5質量部がより好ましい。アゾール化合物の(A)樹脂100質量部に対する配合量が0.1質量部以上である場合、本発明の感光性樹脂組成物を銅又は銅合金の上に形成した場合に、銅又は銅合金表面の変色が抑制され、一方、20質量部以下である場合には光感度に優れる。
【0159】
また、銅表面上の変色を抑制するためにヒンダードフェノール化合物を任意に配合することができる。ヒンダードフェノール化合物としては、2,6−ジ−t−ブチル−4−メチルフェノール、2,5−ジ−t−ブチル−ハイドロキノン、オクタデシル−3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネ−ト、イソオクチル−3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート、4、4’−メチレンビス(2、6−ジ−t−ブチルフェノール)、4,4’−チオ−ビス(3−メチル−6−t−ブチルフェノール)、4,4’−ブチリデン−ビス(3−メチル−6−t−ブチルフェノール)、トリエチレングリコール−ビス[3−(3−t−ブチル−5−メチル−4−ヒドロキシフェニル)プロピオネート]、1,6−ヘキサンジオール−ビス[3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート]、2,2−チオ−ジエチレンビス[3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート]、N,N’−ヘキサメチレンビス(3,5−ジ−t−ブチル−4−ヒドロキシ−ヒドロシンナマミド)、2,2’−メチレン−ビス(4−メチル−6−t−ブチルフェノール)、2,2’−メチレン−ビス(4−エチル−6−t−ブチルフェノール)、
【0160】
ペンタエリスリチル−テトラキス[3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート]、トリス−(3,5−ジ−t−ブチル−4−ヒドロキシベンジル)−イソシアヌレイト、1,3,5−トリメチル−2,4,6−トリス(3,5−ジ−t−ブチル−4−ヒドロキシベンジル)ベンゼン、1,3,5−トリス(3−ヒドロキシ−2,6−ジメチル−4−イソプロピルベンジル)−1,3,5−トリアジン−2,4,6−(1H,3H,5H)−トリオン、1,3,5−トリス(4−t−ブチル−3−ヒドロキシ−2,6−ジメチルベンジル)−1,3,5−トリアジン−2,4,6−(1H,3H,5H)−トリオン、1,3,5−トリス(4−s−ブチル−3−ヒドロキシ−2,6−ジメチルベンジル)−1,3,5−トリアジン−2,4,6−(1H,3H,5H)−トリオン、1,3,5−トリス[4−(1−エチルプロピル)−3−ヒドロキシ−2,6−ジメチルベンジル]−1,3,5−トリアジン−2,4,6−(1H,3H,5H)−トリオン、
【0161】
1,3,5−トリス[4−トリエチルメチル−3−ヒドロキシ−2,6−ジメチルベンジル]−1,3,5−トリアジン−2,4,6−(1H,3H,5H)−トリオン、1,3,5−トリス(3−ヒドロキシ−2,6−ジメチル−4−フェニルベンジル)−1,3,5−トリアジン−2,4,6−(1H,3H,5H)−トリオン、1,3,5−トリス(4−t−ブチル−3−ヒドロキシ−2,5,6−トリメチルベンジル)−1,3,5−トリアジン−2,4,6−(1H,3H,5H)−トリオン、1,3,5−トリス(4−t−ブチル−5−エチル−3−ヒドロキシ−2,6−ジメチルベンジル)−1,3,5−トリアジン−2,4,6−(1H,3H,5H)−トリオン、1,3,5−トリス(4−t−ブチル−6−エチル−3−ヒドロキシ−2−メチルベンジル)−1,3,5−トリアジン−2,4,6−(1H,3H,5H)−トリオン、1,3,5−トリス(4−t−ブチル−6−エチル−3−ヒドロキシ−2,5−ジメチルベンジル)−1,3,5−トリアジン−2,4,6−(1H,3H,5H)−トリオン、1,3,5−トリス(4−t−ブチル−5,6−ジエチル−3−ヒドロキシ−2−メチルベンジル)−1,3,5−トリアジン−2,4,6−(1H,3H,5H)−トリオン、
【0162】
1,3,5−トリス(4−t−ブチル−3−ヒドロキシ−2−メチルベンジル)−1,3,5−トリアジン−2,4,6−(1H,3H,5H)−トリオン、1,3,5−トリス(4−t−ブチル−3−ヒドロキシ−2,5−ジメチルベンジル)−1,3,5−トリアジン−2,4,6−(1H,3H,5H)−トリオン、1,3,5−トリス(4−t−ブチル−5‐エチル−3−ヒドロキシ−2−メチルベンジル)−1,3,5−トリアジン−2,4,6−(1H,3H,5H)−トリオン等が挙げられるが、これに限定されるものではない。これらの中でも、1,3,5−トリス(4−t−ブチル−3−ヒドロキシ−2,6−ジメチルベンジル)−1,3,5−トリアジン−2,4,6−(1H,3H,5H)−トリオン等が特に好ましい。
【0163】
ヒンダードフェノール化合物の配合量は、(A)樹脂100質量部に対し、0.1〜20質量部であることが好ましく、光感度特性の観点から0.5〜10質量部であることがより好ましい。ヒンダードフェノール化合物の(A)樹脂100質量部に対する配合量が0.1質量部以上である場合、例えば銅又は銅合金の上に本発明の感光性樹脂組成物を形成した場合に、銅又は銅合金の変色・腐食が防止され、一方、20質量部以下である場合には光感度に優れる。
【0164】
本発明の感光性樹脂組成物は、上記成分以外の成分を含有してもよい。その成分の好ましいものは、(A)樹脂として例えばポリイミド前駆体等を用いるネガ型かポリオキサゾール前駆体等を用いるポジ型か等によって異なる。
【0165】
(A)樹脂としてポリイミド前駆体等を用いるネガ型の場合には、光感度を向上させるために増感剤を任意に配合することができる。該増感剤としては、例えば、ミヒラーズケトン、4,4’−ビス(ジエチルアミノ)ベンゾフェノン、2,5−ビス(4’−ジエチルアミノベンザル)シクロペンタン、2,6−ビス(4’−ジエチルアミノベンザル)シクロヘキサノン、2,6−ビス(4’−ジエチルアミノベンザル)−4−メチルシクロヘキサノン、4,4’−ビス(ジメチルアミノ)カルコン、4,4’−ビス(ジエチルアミノ)カルコン、p−ジメチルアミノシンナミリデンインダノン、p−ジメチルアミノベンジリデンインダノン、2−(p−ジメチルアミノフェニルビフェニレン)−ベンゾチアゾール、2−(p−ジメチルアミノフェニルビニレン)ベンゾチアゾール、2−(p−ジメチルアミノフェニルビニレン)イソナフトチアゾール、1,3−ビス(4’−ジメチルアミノベンザル)アセトン、1,3−ビス(4’−ジエチルアミノベンザル)アセトン、3,3’−カルボニル−ビス(7−ジエチルアミノクマリン)、3−アセチル−7−ジメチルアミノクマリン、3−エトキシカルボニル−7−ジメチルアミノクマリン、3−ベンジロキシカルボニル−7−ジメチルアミノクマリン、3−メトキシカルボニル−7−ジエチルアミノクマリン、3−エトキシカルボニル−7−ジエチルアミノクマリン、N−フェニル−N’−エチルエタノールアミン、N−フェニルジエタノールアミン、N−p−トリルジエタノールアミン、N−フェニルエタノールアミン、4−モルホリノベンゾフェノン、ジメチルアミノ安息香酸イソアミル、ジエチルアミノ安息香酸イソアミル、2−メルカプトベンズイミダゾール、1−フェニル−5−メルカプトテトラゾール、2−メルカプトベンゾチアゾール、2−(p−ジメチルアミノスチリル)ベンズオキサゾール、2−(p−ジメチルアミノスチリル)ベンズチアゾール、2−(p−ジメチルアミノスチリル)ナフト(1,2−d)チアゾール、2−(p−ジメチルアミノベンゾイル)スチレン等が挙げられる。これらは単独で又は例えば2〜5種類の組合せで用いることができる。
【0166】
光感度を向上させるための増感剤を感光性樹脂組成物が含有する場合の配合量は、(A)樹脂100質量部に対し、0.1〜25質量部であることが好ましい。
【0167】
また、レリーフパターンの解像性を向上させるために、光重合性の不飽和結合を有するモノマーを任意に配合することができる。このようなモノマーとしては、光重合開始剤によりラジカル重合反応する(メタ)アクリル化合物が好ましく、特に以下に限定するものではないが、ジエチレングリコールジメタクリレート、テトラエチレングリコールジメタクリレートなどの、エチレングリコール又はポリエチレングリコールのモノ又はジアクリレート及びメタクリレート、プロピレングリコール又はポリプロピレングリコールのモノ又はジアクリレート及びメタクリレート、グリセロールのモノ、ジ又はトリアクリレート及びメタクリレート、シクロヘキサンジアクリレート及びジメタクリレート、1,4−ブタンジオールのジアクリレート及びジメタクリレート、1,6−ヘキサンジオールのジアクリレート及びジメタクリレート、ネオペンチルグリコールのジアクリレート及びジメタクリレート、ビスフェノールAのモノ又はジアクリレート及びメタクリレート、ベンゼントリメタクリレート、イソボルニルアクリレート及びメタクリレート、アクリルアミド及びその誘導体、メタクリルアミド及びその誘導体、トリメチロールプロパントリアクリレート及びメタクリレート、グリセロールのジ又はトリアクリレート及びメタクリレート、ペンタエリスリトールのジ、トリ、又はテトラアクリレート及びメタクリレート、並びにこれら化合物のエチレンオキサイド又はプロピレンオキサイド付加物等の化合物を挙げることができる。
【0168】
レリーフパターンの解像性を向上させるための上記の光重合性の不飽和結合を有するモノマーを感光性樹脂組成物が含有する場合、光重合性の不飽和結合を有するモノマーの配合量は、(A)樹脂100質量部に対し、1〜50質量部であることが好ましい。
【0169】
また、本発明の感光性樹脂組成物を用いて形成される膜と基材との接着性向上のために接着助剤を任意に配合することができる。接着助剤としては、γ−アミノプロピルジメトキシシラン、N−(β−アミノエチル)−γ−アミノプロピルメチルジメトキシシラン、γ−グリシドキシプロピルメチルジメトキシシラン、γ−メルカプトプロピルメチルジメトキシシラン、3−メタクリロキシプロピルジメトキシメチルシラン、3−メタクリロキシプロピルトリメトキシシラン、ジメトキシメチル−3−ピペリジノプロピルシラン、ジエトキシ−3−グリシドキシプロピルメチルシラン、N−(3−ジエトキシメチルシリルプロピル)スクシンイミド、N−[3−(トリエトキシシリル)プロピル]フタルアミド酸、ベンゾフェノン−3,3’−ビス(N−[3−トリエトキシシリル]プロピルアミド)−4,4’−ジカルボン酸、ベンゼン−1,4−ビス(N−[3−トリエトキシシリル]プロピルアミド)−2,5−ジカルボン酸、3−(トリエトキシシリル)プロピルスクシニックアンハイドライド、N−フェニルアミノプロピルトリメトキシシラン、3−ウレイドプロピルトリメトキシシラン、3−ウレイドプロピルトリエトキシシラン、3−(トリアルコキシシリル)プロピルスクシン酸無水物等のシランカップリング剤、及びアルミニウムトリス(エチルアセトアセテート)、アルミニウムトリス(アセチルアセトネート)、エチルアセトアセテートアルミニウムジイソプロピレート等のアルミニウム系接着助剤等が挙げられる。
【0170】
これらの接着助剤のうちでは、接着力の点からシランカップリング剤を用いることがより好ましい。感光性樹脂組成物が接着助剤を含有する場合、接着助剤の配合量は、(A)樹脂100質量部に対し、0.5〜25質量部の範囲が好ましい。
【0171】
また、特に溶剤を含む溶液の状態での保存時の感光性樹脂組成物の粘度及び光感度の安定性を向上させるために熱重合禁止剤を任意に配合することができる。熱重合禁止剤としては、ヒドロキノン、N−ニトロソジフェニルアミン、p−tert−ブチルカテコール、フェノチアジン、N−フェニルナフチルアミン、エチレンジアミン四酢酸、1,2−シクロヘキサンジアミン四酢酸、グリコールエーテルジアミン四酢酸、2,6−ジ−tert−ブチル−p−メチルフェノール、5−ニトロソ−8−ヒドロキシキノリン、1−ニトロソ−2−ナフトール、2−ニトロソ−1−ナフトール、2−ニトロソ−5−(N−エチル−N−スルホプロピルアミノ)フェノール、N−ニトロソ−N−フェニルヒドロキシルアミンアンモニウム塩、N−ニトロソ−N(1−ナフチル)ヒドロキシルアミンアンモニウム塩等が用いられる。
【0172】
感光性樹脂組成物に配合する場合の熱重合禁止剤の配合量としては、(A)樹脂100質量部に対し、0.005〜12質量部の範囲が好ましい。
【0173】
一方、本発明の感光性樹脂組成物において、(A)樹脂としてポリオキサゾール前駆体等を用いるポジ型の場合は、必要に応じて、従来感光性樹脂組成物の添加剤として用いられている染料、界面活性剤、基材との密着性を高めるための接着助剤等を添加することが可能である。
【0174】
上記添加剤について更に具体的に述べると、染料としては、例えば、メチルバイオレット、クリスタルバイオレット、マラカイトグリーン等が挙げられる。また、界面活性剤としては、例えば、ポリプロピレングリコール又はポリオキシエチレンラウリルエーテル等のポリグリコール類又はその誘導体から成る非イオン系界面活性剤、例えばフロラード(商品名、住友3M社製)、メガファック(商品名、大日本インキ化学工業社製)又はルミフロン(商品名、旭硝子社製)等のフッ素系界面活性剤、例えばKP341(商品名、信越化学工業社製)、DBE(商品名、チッソ社製)、グラノール(商品名、共栄社化学社製)等の有機シロキサン界面活性剤が挙げられる。接着助剤としては、例えば、アルキルイミダゾリン、酪酸、アルキル酸、ポリヒドロキシスチレン、ポリビニルメチルエーテル、t−ブチルノボラック、エポキシシラン、エポキシポリマー等、及び各種シランカップリング剤が挙げられる。
【0175】
シランカップリング剤の具体的な好ましい例としては、例えば、N−フェニル−3−アミノプロピルトリアルコキシシラン、3−メルカプトプロピルトリアルコキシシラン、2−(トリアルコキシシリルエチル)ピリジン、3−メタクリロキシプロピルトリアルコキシシラン、3−メタクリロキシプロピルジアルコキシアルキルシラン、3−グリシドキシプロピルトリアルコキシシラン、3−グリシドキシプロピルジアルコキシアルキルシラン、3−アミノプロピルトリアルコキシシラン及び3−アミノプロピルジアルコキシアルキルシラン並びに酸無水物及び酸二無水物の反応物、3−アミノプロピルトリアルコキシシラン又は3−アミノプロピルジアルコキシアルキルシランのアミノ基をウレタン基又はウレア基に変換したもの等を挙げることができる。なお、この際のアルキル基としてはメチル基、エチル基、ブチル基等が、酸無水物としてはマレイン酸無水物、フタル酸無水物等が、酸二無水物としてはピロメリット酸二無水物、3,3’,4,4’−ベンゾフェノンテトラカルボン酸二無水物、4,4’−オキシジフタル酸二無水物等が、ウレタン基としてはt−ブトキシカルボニルアミノ基等が、ウレア基としてはフェニルアミノカルボニルアミノ基等が挙げられる。
【0176】
<硬化レリーフパターンの製造方法及び半導体装置>
また、本発明は、(1)上述した本発明の感光性樹脂組成物を基板上に塗布することによって樹脂層を該基板上に形成する工程と、(2)該樹脂層を露光する工程と、(3)該露光後の樹脂層を現像してレリーフパターンを形成する工程と、(4)該レリーフパターンを加熱処理することによって硬化レリーフパターンを形成する工程とを含む、硬化レリーフパターンの製造方法を提供する。以下、各工程の典型的な態様について説明する。
【0177】
(1)感光性樹脂組成物を基板上に塗布することによって樹脂層を該基板上に形成する工程
本工程では、本発明の感光性樹脂組成物を基材上に塗布し、必要に応じてその後乾燥させて樹脂層を形成する。塗布方法としては、従来から感光性樹脂組成物の塗布に用いられていた方法、例えば、スピンコーター、バーコーター、ブレードコーター、カーテンコーター、スクリーン印刷機等で塗布する方法、スプレーコーターで噴霧塗布する方法等を用いることができる。
【0178】
必要に応じて、感光性樹脂組成物から成る塗膜を乾燥させることができる。乾燥方法としては、風乾、オーブン又はホットプレートによる加熱乾燥、真空乾燥等の方法が用いられる。具体的には、風乾又は加熱乾燥を行う場合、20℃〜140℃で1分〜1時間の条件で乾燥を行うことができる。以上の通り、基板上に樹脂層を形成できる。
【0179】
(2)樹脂層を露光する工程
本工程では、上記で形成した樹脂層を、コンタクトアライナー、ミラープロジェクション、ステッパー等の露光装置を用いて、パターンを有するフォトマスク又はレチクルを介して又は直接に、紫外線光源等により露光する。
【0180】
この後、光感度の向上等の目的で、必要に応じて、任意の温度及び時間の組合せによる露光後ベーク(PEB)及び/又は現像前ベークを施してもよい。ベーク条件の範囲は、温度は40〜120℃であり、そして時間は10秒〜240秒であることが好ましいが、本発明の感光性樹脂組成物の諸特性を阻害するものでない限り、この範囲に限らない。
【0181】
(3)露光後の樹脂層を現像してレリーフパターンを形成する工程
本工程においては、露光後の感光性樹脂層の露光部又は未露光部を現像除去する。ネガ型の感光性樹脂組成物を用いる場合(例えば(A)樹脂としてポリイミド前駆体を用いる場合)には、未露光部が現像除去され、ポジ型の感光性樹脂組成物を用いる場合(例えば(A)樹脂としてポリオキサゾール前駆体を用いる場合)には、露光部が現像除去される。現像方法としては、従来知られているフォトレジストの現像方法、例えば回転スプレー法、パドル法、超音波処理を伴う浸漬法等の中から任意の方法を選択して使用することができる。また、現像の後、レリーフパターンの形状を調整する等の目的で、必要に応じて任意の温度及び時間の組合せによる現像後ベークを施してもよい。
【0182】
現像に使用される現像液としては、感光性樹脂組成物に対する良溶媒、又は該良溶媒と貧溶媒との組合せが好ましい。例えばアルカリ水溶液に溶解しない感光性樹脂組成物の場合、良溶媒としては、N−メチルピロリドン、N−シクロヘキシル−2−ピロリドン、N,N−ジメチルアセトアミド、シクロペンタノン、シクロヘキサノン、γ−ブチロラクトン、α−アセチル−γ−ブチロラクトン等が好ましく、貧溶媒としてはトルエン、キシレン、メタノール、エタノール、イソプロピルアルコール、乳酸エチル、プロピレングリコールメチルエーテルアセテート及び水等が好ましい。良溶媒と貧溶媒とを混合して用いる場合には、感光性樹脂組成物中のポリマーの溶解性によって良溶媒に対する貧溶媒の割合を調整することが好ましい。また、各溶媒を2種以上、例えば数種類組合せて用いることもできる。
【0183】
一方、アルカリ水溶液に溶解する感光性樹脂組成物の場合、現像に使用される現像液は、アルカリ水溶液可溶性重合体を溶解除去するものであり、典型的にはアルカリ化合物を溶解したアルカリ性水溶液である。現像液中に溶解されるアルカリ化合物は、無機アルカリ化合物、又は有機アルカリ化合物のいずれであってもよい。
【0184】
該無機アルカリ化合物としては、例えば、水酸化リチウム、水酸化ナトリウム、水酸化カリウム、リン酸水素二アンモニウム、リン酸水素二カリウム、リン酸水素二ナトリウム、ケイ酸リチウム、ケイ酸ナトリウム、ケイ酸カリウム、炭酸リチウム、炭酸ナトリウム、炭酸カリウム、ホウ酸リチウム、ホウ酸ナトリウム、ホウ酸カリウム、及びアンモニア等が挙げられる。
【0185】
また、該有機アルカリ化合物としては、例えば、テトラメチルアンモニウムヒドロキシド、テトラエチルアンモニウムヒドロキシド、トリメチルヒドロキシエチルアンモニウムヒドロキシド、メチルアミン、ジメチルアミン、トリメチルアミン、モノエチルアミン、ジエチルアミン、トリエチルアミン、n−プロピルアミン、ジ−n−プロピルアミン、イソプロピルアミン、ジイソプロピルアミン、メチルジエチルアミン、ジメチルエタノールアミン、エタノールアミン、及びトリエタノールアミン等が挙げられる。
【0186】
更に、必要に応じて、上記アルカリ性水溶液に、メタノール、エタノール、プロパノール、又はエチレングリコール等の水溶性有機溶媒、界面活性剤、保存安定剤、及び樹脂の溶解抑止剤等を適量添加することができる。以上のようにしてレリーフパターンを形成できる。
【0187】
(4)レリーフパターンを加熱処理することによって硬化レリーフパターンを形成する工程
本工程では、上記現像により得られたレリーフパターンを加熱することによって、硬化レリーフパターンに変換する。加熱硬化の方法としては、ホットプレートによるもの、オーブンを用いるもの、温度プログラムを設定できる昇温式オーブンを用いるもの等種々の方法を選ぶことができる。加熱は、例えば180℃〜400℃で30分〜5時間の条件で行うことができる。加熱硬化の際の雰囲気気体としては空気を用いてもよく、窒素、アルゴン等の不活性ガスを用いることもできる。
【0188】
<半導体装置>
本発明はまた、上述した本発明の硬化レリーフパターンの製造方法により得られる硬化レリーフパターンを含む、半導体装置を提供する。本発明は、半導体素子である基材と、前記基材上に上述した硬化レリーフパターン製造方法により形成された樹脂の硬化レリーフパターンとを含む半導体装置も提供する。また、本発明は、基材として半導体素子を用い、上述した硬化レリーフパターンの製造方法を工程の一部として含む半導体装置の製造方法にも適用できる。本発明の半導体装置は、上記硬化レリーフパターン製造方法で形成される硬化レリーフパターンを、表面保護膜、層間絶縁膜、再配線用絶縁膜、フリップチップ装置用保護膜、又はバンプ構造を有する半導体装置の保護膜等として形成し、既知の半導体装置の製造方法と組合せることで製造することができる。
【0189】
本発明の感光性樹脂組成物は、上記のような半導体装置への適用の他、多層回路の層間絶縁、フレキシブル銅張板のカバーコート、ソルダーレジスト膜、及び液晶配向膜等の用途にも有用である。
【実施例】
【0190】
以下、実施例により本発明を具体的に説明するが、本発明はこれに限定されるものではない。実施例、比較例及び製造例においては、感光性樹脂組成物の物性を以下の方法に従って測定及び評価した。
【0191】
(1)重量平均分子量
各樹脂の重量平均分子量(Mw)をゲルパーミエーションクロマトグラフィー法(標準ポリスチレン換算)で測定した。測定に用いたカラムは昭和電工(株)製の商標名「Shodex 805M/806M直列」であり、標準単分散ポリスチレンは、昭和電工(株)製の商標名「Shodex STANDARD SM−105」を選択し、展開溶媒はN−メチル−2−ピロリドンであり、検出器は昭和電工(株)製の商標名「Shodex RI−930」を使用した。
【0192】
(2)銅変色試験
感光性樹脂組成物を銅基板上にスピン塗布し、乾燥して30μm厚の塗膜を樹脂層として形成した。次いで、ウエハー上に形成した塗膜を、アルカリ水溶液に溶解しない感光性樹脂組成物の場合、シクロペンタノンを用いて現像機(D−SPIN636型、日本国、大日本スクリーン製造社製)でスプレー現像し、プロピレングリコールメチルエーテルアセテートでリンスすることで塗膜を完全に溶解させた。アルカリ水溶液に溶解する感光性樹脂組成物の場合、平行光マスクアライナー(PLA−501FA、日本国、キヤノン社製)により、500mJ/cmのエネルギーを全面に照射後、AZエレクトロニックマテリアルズ社製アルカリ現像液(AZ300MIFデベロッパー、2.38質量%水酸化テトラメチルアンモニウム水溶液)を用いて現像機でパドル現像し、純水でリンスすることで塗膜を完全に溶解させた。溶解後の銅基板を以下の基準に基づき評価した:
「最良」:目視でも、200倍の光学顕微鏡で観察したときも、銅基板の変色が認められないもの;
「良」:目視では銅基板の変色が認められず、200倍の光学顕微鏡で観察したときに銅基板の変色がわずかに認められるもの;
「やや良」:目視では銅基板の変色が認められず、200倍の光学顕微鏡で観察したときに銅基板の変色が認められるもの;
「不良」:目視において銅基板の変色が重度に認められるもの。
(3)銅密着試験(基板接着格子数)
感光性樹脂組成物を銅基板上にスピン塗布し、乾燥して17μm厚の塗膜を感光性樹脂層として形成した後、昇温プログラム式キュア炉(VF−2000型、日本国、光洋リンドバーグ社製)を用いて、窒素雰囲気下、200℃で1時間、続いて250℃で2時間加熱処理(キュア)することにより、10μm厚の硬化樹脂塗膜を得た。キュア後の膜にJIS K 5600−5−6規格のクロスカット法に準じて、銅基板/硬化樹脂塗膜間の接着特性を以下の基準に基づき、評価した。
「最良」:基板に接着している硬化樹脂塗膜の格子数が100のもの。
「良」:基板に接着している硬化樹脂塗膜の格子数が80〜99のもの。
「やや良」:基板に接着している硬化樹脂塗膜の格子数が50〜79のもの。
「やや不良」:基板に接着している硬化樹脂塗膜の格子数が20〜49のもの。
「不良」:基板に接着している硬化樹脂塗膜の格子数が20未満のもの。
【0193】
(4)耐薬品性試験
(ネガ型感光性樹脂によるレリーフパターンの形成)
6インチ窒化膜付きシリコンウエハー(協同インターナショナル社製)上に、感光性樹脂組成物をスピン塗布し、乾燥して17μm厚の塗膜を感光性樹脂層として形成した。この塗膜にテストパターン付レチクルを用いてghiステッパー(Prisma−ghi、ウルトラテック社製)により、200mJ/cmでエネルギーを照射して露光した。次いで、ウエハー上に形成した塗膜を、シクロペンタノンを用いて現像機(D−SPIN636型、日本国、大日本スクリーン製造社製)でスプレー現像し、プロピレングリコールメチルエーテルアセテートでリンスして未露光部を現像除去し、樹脂のレリーフパターンを得た。レリーフパターンを形成したウエハーを昇温プログラム式キュア炉(VF−2000型、日本国、光洋リンドバーグ社製)を用いて、窒素雰囲気下、200℃で1時間、続いて250℃で2時間加熱処理することにより、10μm厚の樹脂の硬化レリーフパターンを窒化膜付きシリコンウエハー上に得た。
【0194】
(ポジ型感光性樹脂によるレリーフパターンの形成)
6インチ窒化膜付きシリコンウエハー(協同インターナショナル社製)上に、感光性樹脂組成物をスピン塗布し、塗膜を感光性樹脂層として形成した。この塗膜にテストパターン付レチクルを用いてi線ステッパー(NSR2005i8A、ニコン社製)により、300mJ/cmでエネルギーを照射して露光した。次いで、ウエハー上に形成した塗膜を、2.38質量%水酸化テトラメチルアンモニウム水溶液を用いて現像機(D−SPIN636型、日本国、大日本スクリーン製造社製)でスプレー現像し、純水でリンスして露光部を現像除去し、樹脂のレリーフパターンを得た。レリーフパターンを形成したウエハーを昇温プログラム式キュア炉(VF−2000型、日本国、光洋リンドバーグ社製)を用いて、窒素雰囲気下、続いて320℃で1時間加熱処理することにより、10μm厚の樹脂の硬化レリーフパターンを窒化膜付きシリコンウエハー上に得た。
【0195】
(ネガ型感光性樹脂による硬化レリーフパターンの耐薬品性評価)
得られた硬化レリーフパターンを水酸化カリウム1質量%、3−メトキシ−3−メチル−1−ブタノール39質量%及びジメチルスルホキシド60質量%から成る溶液に100℃で1時間浸漬した。水洗及び風乾の後、膜厚測定及び光学顕微鏡下での観察により、以下の基準に基づいて樹脂塗膜を評価した:
「最良」:浸漬前の塗膜に対する浸漬後の塗膜の膜厚変動が±1%以内であり、かつクラックが発生していない場合。
「良」:塗膜の膜厚変動が±3%以内でありクラックが発生していない場合。
「不良」:膜厚変動が±3%を超えているか、又はクラックが発生している場合。
【0196】
(ポジ型感光性樹脂による硬化レリーフパターンの耐薬品性評価)
得られた硬化レリーフパターンをST−44(商品名、ATMI社製)溶液に80℃で5分浸漬した。水洗及び風乾の後、膜厚測定及び光学顕微鏡下での観察により、以下の基準に基づいて樹脂塗膜を評価した:
「最良」:浸漬前の塗膜に対する浸漬後の塗膜の膜厚変動が±1%以内であり、かつクラックが発生していない場合。
「良」:塗膜の膜厚変動が±3%以内でありクラックが発生していない場合。
「不良」:膜厚変動が±3%を超えているか、又はクラックが発生している場合。
【0197】
<製造例1>((A)ポリイミド前駆体としてのポリマーAの合成)
4,4’−オキシジフタル酸二無水物(ODPA)155.1gを2l容量のセパラブルフラスコに入れ、2−ヒドロキシエチルメタクリレート(HEMA)131.2gとγ―ブチロラクトン400mlを入れて室温下で攪拌し、攪拌しながらピリジン81.5gを加えて反応混合物を得た。反応による発熱の終了後に室温まで放冷し、16時間放置した。
【0198】
次に、氷冷下において、ジシクロヘキシルカルボジイミド(DCC)206.3gをγ−ブチロラクトン180mlに溶解した溶液を攪拌しながら40分かけて反応混合物に加え、続いて4,4’−ジアミノジフェニルエーテル(DADPE)93.0gをγ−ブチロラクトン350mlに懸濁したものを攪拌しながら60分かけて加えた。更に室温で2時間攪拌した後、エチルアルコール30mlを加えて1時間攪拌し、次に、γ−ブチロラクトン400mlを加えた。反応混合物に生じた沈殿物をろ過により取り除き、反応液を得た。
【0199】
得られた反応液を3lのエチルアルコールに加えて粗ポリマーから成る沈殿物を生成した。生成した粗ポリマーを濾別し、テトラヒドロフラン1.5lに溶解して粗ポリマー溶液を得た。得られた粗ポリマー溶液を28lの水に滴下してポリマーを沈殿させ、得られた沈殿物を濾別した後、真空乾燥して粉末状のポリマー(ポリマーA)を得た。ポリマーAの分子量をゲルパーミエーションクロマトグラフィー(標準ポリスチレン換算)で測定したところ、重量平均分子量(Mw)は20,000であった。
【0200】
<製造例2>((A)ポリイミド前駆体としてのポリマーBの合成)
製造例1の4,4’−オキシジフタル酸二無水物(ODPA)155.1gに代えて、3,3’,4,4’−ビフェニルテトラカルボン酸二無水物(BPDA)147.1gを用いた以外は、前述の製造例1に記載の方法と同様にして反応を行い、ポリマーBを得た。ポリマーBの分子量をゲルパーミエーションクロマトグラフィー(標準ポリスチレン換算)で測定したところ、重量平均分子量(Mw)は22,000であった。
【0201】
<製造例3>((A)ポリイミド前駆体としてのポリマーCの合成)
4,4’−オキシジフタル酸二無水物(ODPA)155.1gを2l容量のセパラブルフラスコに入れ、2−ヒドロキシエチルメタクリレート(HEMA)131.2gとγ―ブチロラクトン400mlを入れて室温下で攪拌し、攪拌しながらピリジン81.5gを加えて反応混合物を得た。反応による発熱の終了後に室温まで放冷し、16時間放置した。
【0202】
次に、氷冷下において、ジシクロヘキシルカルボジイミド(DCC)206.3gをγ−ブチロラクトン180mlに溶解した溶液を攪拌しながら40分かけて反応混合物に加え、続いて4,4’−ジアミノジフェニルエーテル(DADPE)93.0gをγ−ブチロラクトン350mlに懸濁したものを攪拌しながら60分かけて加えた。更に室温で2時間攪拌した後、8−アザアデニンを13.6g加えて2時間攪拌し、次に、γ−ブチロラクトン400mlを加えた。反応混合物に生じた沈殿物をろ過により取り除き、反応液を得た。
【0203】
得られた反応液を3lのエチルアルコールに加えて粗ポリマーから成る沈殿物を生成した。生成した粗ポリマーを濾別し、テトラヒドロフラン1.5lに溶解して粗ポリマー溶液を得た。得られた粗ポリマー溶液を28lの水に滴下してポリマーを沈殿させ、得られた沈殿物を濾別した後、真空乾燥して粉末状のポリマー(ポリマーC)を得た。ポリマーCの分子量をゲルパーミエーションクロマトグラフィー(標準ポリスチレン換算)で測定したところ、重量平均分子量(Mw)は22,000であった。
【0204】
<製造例4>((A)ポリイミド前駆体としてのポリマーDの合成)
製造例3の4,4’−オキシジフタル酸二無水物(ODPA)155.1gに代えて、3,3’,4,4’−ビフェニルテトラカルボン酸二無水物(BPDA)147.1gを用いた以外は、前述の製造例3に記載の方法と同様にして反応を行い、ポリマーDを得た。ポリマーDの分子量をゲルパーミエーションクロマトグラフィー(標準ポリスチレン換算)で測定したところ、重量平均分子量(Mw)は24,000であった。
【0205】
<製造例5>((A)ポリアミドとしてのポリマーEの合成)
(フタル酸化合物封止体AIPA−MOの合成)
容量5lのセパラブルフラスコに、5−アミノイソフタル酸{以下、AIPAと略す。}543.5g、N−メチル−2−ピロリドン1700gを投入、混合撹拌し、ウォーターバスで50℃まで加温した。これに、2−メタクリロイルオキシエチルイソシアネート512.0g(3.3mol)をγ−ブチロラクトン500gで希釈したものを滴下ロートで滴下投入し、そのまま50℃で2時間ほど撹拌した。
【0206】
反応の完了(5−アミノイソフタル酸の消失)を低分子量ゲルパーミエーションクロマトグラフィー{以下、低分子量GPCと記す。}で確認した後、この反応液を15リットルのイオン交換水に投入、撹拌、静置し、反応生成物の結晶化沈殿を待って濾別し、適宜水洗の後、40℃で48時間真空乾燥することにより、5−アミノイソフタル酸のアミノ基と2−メタクリロイルオキシエチルイソシアネートのイソシアネート基が作用したAIPA−MOを得た。得られたAIPA−MOの低分子量GPC純度は約100%であった。
【0207】
(ポリマーEの合成)
容量2lのセパラブルフラスコに、得られたAIPA−MOを100.89g(0.3mol)、ピリジンを71.2g(0.9mol)、GBLを400g投入、混合し、氷浴で5℃まで冷却した。これに、ジシクロヘキシルカルボジイミド(DCC)125.0g(0.606mol)をGBL125gに溶解希釈したものを、氷冷下、20分ほどかけて滴下し、続いて4,4’−ビス(4−アミノフェノキシ)ビフェニル{以下、BAPBと記す。}103.16g(0.28mol)をNMP168gに溶解させたものを、20分ほどかけて滴下し、氷浴で5℃未満を維持しつつ3時間、次いで氷浴を外して室温で5時間撹拌した。反応混合物に生じた沈殿物をろ過により取り除き、反応液を得た。
【0208】
得られた反応液に水840gとイソプロパノール560gの混合液を滴下し、析出する重合体を分離し、NMP650gに再溶解した。得られた粗ポリマー溶液を5lの水に滴下してポリマーを沈殿させ、得られた沈殿物を濾別した後、真空乾燥して粉末状のポリマー(ポリマーE)を得た。ポリマーEの分子量をゲルパーミエーションクロマトグラフィー(標準ポリスチレン換算)で測定したところ、重量平均分子量(Mw)は34,700であった。
【0209】
<製造例6>((A)ポリオキサゾール前駆体としてのポリマーFの合成)
容量3lのセパラブルフラスコ中で、2,2−ビス(3−アミノ−4−ヒドロキシフェニル)−ヘキサフルオロプロパン183.1g、N,N−ジメチルアセトアミド(DMAc)640.9g、ピリジン63.3gを室温(25℃)で混合攪拌し、均一溶液とした。これに、4,4’−ジフェニルエーテルジカルボニルクロリド118.0gをジエチレングリコールジメチルエーテル(DMDG)354gに溶解したものを滴下ロートより滴下した。この際、セパラブルフラスコは15〜20℃の水浴で冷却した。滴下に要した時間は40分、反応液温は最大で30℃であった。
【0210】
滴下終了から3時間後反応液に1,2−シクロヘキシルジカルボン酸無水物30.8g(0.2mol)を添加し、室温で15時間撹拌放置し、ポリマー鎖の全アミン末端基の99%をカルボキシシクロヘキシルアミド基で封止した。この際の反応率は投入した1,2−シクロヘキシルジカルボン酸無水物の残量を高速液体クロマトグラフィー(HPLC)で追跡することにより容易に算出することができる。その後上記反応液を2Lの水に高速攪拌下で滴下し重合体を分散析出させ、これを回収し、適宜水洗、脱水の後に真空乾燥を施し、ゲルパーミエーションクロマトグラフィー(GPC)法で測定した重量平均分子量9,000(ポリスチレン換算)の粗ポリベンゾオキサゾール前駆体を得た。
【0211】
上記で得られた粗ポリベンゾオキサゾール前駆体をγ−ブチロラクトン(GBL)に再溶解した後、これを陽イオン交換樹脂及び陰イオン交換樹脂にて処理し、それにより得られた溶液をイオン交換水中に投入後、析出したポリマーを濾別、水洗、真空乾燥することにより精製されたポリベンゾオキサゾール前駆体F(ポリマーF)を得た。
【0212】
<製造例7>((A)ポリイミドとしてのポリマーGの合成)
テフロン(登録商標)製の碇型攪拌器を取り付けた、ガラス製のセパラブル4つ口フラスコに、ディーンスタークトラップ付き冷却管を取り付けた。窒素ガスを通じながら、上記フラスコをシリコンオイル浴につけて攪拌した。
【0213】
2,2−ビス(3−アミノ−4−ヒドロキシフェニル)プロパン(クラリアントジャパン社製)(以後BAPという)72.28g(280ミリモル)、5−(2,5−ジオキソテトラヒドロ−3−フラニル)−3−メチル−シクロヘキセン−1,2ジカルボン酸無水物(東京化成工業株式会社製)(以後MCTCという)を70.29g(266ミリモル)、γ−ブチロラクトン254.6g、トルエン60gを加えて、室温で100rpmで4時間攪拌後、5−ノルボルネン−2,3―ジカルボン酸無水物(東京化成工業株式会社製)4.6g(28ミリモル)を加えて、窒素ガスを通じながらシリコン浴温度50℃で、100rpmで8時間加熱攪拌した。その後、シリコン浴温度180℃に加温し、100rpmで2時間加熱攪拌した。反応中トルエン、水の留出分を除去した。イミド化反応終了後、室温に戻した。
【0214】
その後上記反応液を3Lの水に高速攪拌下で滴下し重合体を分散析出させ、これを回収し、適宜水洗、脱水の後に真空乾燥を施し、ゲルパーミエーションクロマトグラフィー(GPC)法で測定した重量平均分子量23,000(ポリスチレン換算)の粗ポリイミドを得た。
【0215】
<実施例1>
ポリマーA、Bを用いて以下の方法でネガ型感光性樹脂組成物を調製し、調製した感光性樹脂組成物の評価を行った。ポリイミド前駆体であるポリマーA50gとB50g((A)樹脂に該当)を、8−アザアデニン((B)プリン誘導体に該当)0.2g、1−フェニル−1,2−プロパンジオン−2−(o−エトキシカルボニル)−オキシム(表1には「PDO」と記載する)((C)感光剤に該当)4g、1,3,5−トリス(4−t−ブチル−3−ヒドロキシ−2,6−ジメチルベンジル)−1,3,5−トリアジン−2,4,6−(1H,3H,5H)−トリオン1.5g、N−フェニルジエタノールアミン10g、メトキシメチル化尿素樹脂(MX−290)((D)架橋剤に該当)4g、テトラエチレングリコールジメタクリレート8g、N−[3−(トリエトキシシリル)プロピル]フタルアミド酸1.5g、及び2−ニトロソ−1−ナフト−ル0.05gと共に、N−メチル−2−ピロリドン(以下ではNMPという)80gと乳酸エチル20gから成る混合溶媒に溶解した。得られた溶液の粘度を、少量の前記混合溶媒を更に加えることによって約35ポイズ(poise)に調整し、ネガ型感光性樹脂組成物とした。
【0216】
前記ネガ型感光性樹脂組成物を、前述の方法に従って評価した結果、銅変色の評価が「最良」であり、銅密着の評価が「最良」であり、耐薬品性の評価が「良」であった。
【0217】
<実施例2、3>
実施例1の、本発明における(B)プリン誘導体としての8−アザアデニンの配合量を表1に示す組成内容に変更してネガ型感光性樹脂組成物を調製し、それぞれ実施例1と同様の評価を行った。いずれの場合においても、実施例1と同様の方法で評価し、その評価結果は実施例1と同様であった。
【0218】
<実施例4>
実施例1の、本発明における(B)プリン誘導体としての8−アザアデニンの配合量を表1に示す組成内容に変更してネガ型感光性樹脂組成物を調製し、実施例1と同様の評価を行った。銅変色を評価した結果は「良」であり、銅密着を評価した結果は「良」であった。耐薬品性の評価結果は、実施例1と同様であった。
【0219】
<実施例5>
実施例1の、本発明における(B)プリン誘導体としての8−アザアデニンの配合量を表1に示す組成内容に変更してネガ型感光性樹脂組成物を調製し、実施例1と同様の評価を行った。評価結果は、実施例1と同様であった。
【0220】
<実施例6>
実施例1の、本発明における(B)プリン誘導体としての8−アザアデニンに代えて、8−アザグアニンを表1に示す組成内容で用いてネガ型感光性樹脂組成物を調製し、実施例1と同様の評価を行った。評価結果は、実施例1と同様であった。
【0221】
<実施例7>
実施例1の、本発明における(B)プリン誘導体としての8−アザアデニンに代えて、アデニンを表1に示す組成内容で用いてネガ型感光性樹脂組成物を調製し、実施例1と同様の評価を行った。銅変色を評価した結果は「良」であり、銅密着を評価した結果は「良」であった。耐薬品性の評価結果は、実施例1と同様であった。
【0222】
<実施例8>
実施例1の、本発明における(B)プリン誘導体としての8−アザアデニンに代えて、N,N−ジメチルアデニンを表1に示す組成内容で用いてネガ型感光性樹脂組成物を調製し、実施例1と同様の評価を行った。銅変色を評価した結果は「良」であり、銅密着を評価した結果は「やや良」であった。耐薬品性の評価結果は、実施例1と同様であった。
【0223】
<実施例9>
実施例1の、本発明における(B)プリン誘導体としての8−アザアデニンに代えて、ヒポキサンチンを表1に示す組成内容で用いてネガ型感光性樹脂組成物を調製し、実施例1と同様の評価を行った。銅変色を評価した結果は「やや良」であり、銅密着を評価した結果は「やや良」であった。耐薬品性の評価結果は、実施例1と同様であった。
【0224】
<実施例10>
実施例1の組成にさらに(E)有機チタン化合物としてのチタニウムジイソプロポキサイドビス(エチルアセトアセテート)(E1)0.1gを加えた他は実施例1と同様にしてネガ型感光性樹脂組成物を調製した。耐薬品性評価を行った結果、膜の膜厚変動±1%以内であり、クラックも観察されず「最良」であった。その他評価結果は、実施例1と同様であった。
【0225】
<実施例11>
実施例1の組成にさらに(E)有機チタン化合物としてのチタニウムテトラ(n−ブトキサイド)(E2)0.1gを加えた他は実施例1と同様にしてネガ型感光性樹脂組成物を調製した。耐薬品性評価を行った結果、膜の膜厚変動±1%以内であり、クラックも観察されず「最良」であった。その他評価結果は、実施例1と同様であった。
【0226】
<実施例12>
実施例1の組成にさらに(E)有機チタン化合物としてのビス(η−2,4−シクロペンタジエン−1−イル)ビス(2,6−ジフルオロ−3−(1H−ピロール−1−イル)フェニル)チタニウム(E3)0.1gを加えた他は実施例1と同様にしてネガ型感光性樹脂組成物を調製した。耐薬品性評価を行った結果、膜の膜厚変動±1%以内であり、クラックも観察されず「最良」であった。その他評価結果は、実施例1と同様であった。
【0227】
<実施例13>
本発明における(A)樹脂として、ポリマーA50g及びポリマーB50gに代えてポリマーA100gを用いた他は実施例10と同様にしてネガ型感光性樹脂組成物を調製し、実施例1と同様の評価を行った。評価結果は、実施例10と同様であった。
【0228】
<実施例14>
本発明における(A)樹脂として、ポリマーA50g及びポリマーB50gに代えてポリマーE100gを用いた他は実施例1と同様にしてネガ感光性樹脂組成物を調製し、実施例1と同様の評価を行った。評価結果は、実施例1と同様であった。
【0229】
<実施例15>
ポリマーFを用いて以下の方法でポジ型感光性樹脂組成物を調製し、調製した感光性樹脂組成物の評価を行った。ポリオキサゾール前駆体であるポリマーF100g((A)樹脂に該当)を、下記式(33):
【化47】

で表される、フェノール性水酸基の77%をナフトキノンジアジド−4−スルホン酸エステル化した感光性ジアゾキノン化合物(東洋合成社製、(C)感光剤に該当)(表には「C1」と記載)20g、8−アザアデニン((B)プリン誘導体に該当)0.2g、3−t−ブトキシカルボニルアミノプロピルトリエトキシシラン6gと共に、γ−ブチロラクトン(溶媒として)100gに溶解した。得られた溶液の粘度を、少量のγ−ブチロラクトンを更に加えることによって約20ポイズ(poise)に調整し、ポジ型感光性樹脂組成物とした。
【0230】
前記ポジ型感光性樹脂組成物を、前述の方法に従って評価した結果、銅変色の評価が「最良」であり、銅密着の評価が「最良」であり、耐薬品性の評価が「良」であった。
【0231】
<実施例16>
本発明における(A)樹脂として、ポリマーF100gに代えてポリマーG100gを用いた他は実施例15と同様にしてポジ型感光性樹脂組成物を調製し、実施例15と同様の評価を行った。評価結果は、実施例15と同様であった。
【0232】
<比較例1>
実施例1の組成から8−アザアデニンに代えて、ベンゾトリアゾールを表1に示す配合量で加えた他は実施例1と同様にしてネガ型感光性樹脂組成物を調製し、実施例1と同様の評価を行った。前述の方法に従ったシリコンウエハー及び銅基板への塗布、乾燥、露光、現像、及び加熱処理によって得たポリイミド塗膜は、耐薬品性の評価が「良」であったが、本発明の(B)プリン誘導体を含まないため銅変色の評価は「不良」であり、銅密着の評価は「やや不良」であった。
【0233】
<比較例2>
比較例1の組成にベンゾトリアゾールを配合せず、さらに本発明における(A)ポリイミド前駆体として、ポリマーA50g及びポリマーB50gに代えてポリマーC50g及びポリマーD50gを用いた他は比較例1と同様にしてネガ型感光性樹脂組成物を調製し、実施例1と同様の評価を行った。前述の方法に従ったシリコンウエハー及び銅基板への塗布、乾燥、露光、現像、及び加熱処理によって得たポリイミド塗膜は、耐薬品性の評価が「良」であったが、銅変色の評価は「不良」であり、銅密着の評価は「やや良」であった。
【0234】
【表1】

【産業上の利用可能性】
【0235】
本発明の感光性樹脂組成物は、例えば半導体装置、多層配線基板等の電気・電子材料の製造に有用な感光性材料の分野で好適に利用できる。

【特許請求の範囲】
【請求項1】
(A)ポリイミド前駆体であるポリアミド酸、ポリアミド酸エステル、ポリオキサゾール前駆体となり得るポリヒドロキシアミド、ポリアミノアミド、ポリアミド、ポリアミドイミド、ポリイミド、ポリベンゾオキサゾール、ポリベンゾイミダゾール、及びポリベンズチアゾールから成る群より選ばれる少なくとも一種の樹脂:100質量部、
(B)プリン誘導体:該(A)樹脂100質量部を基準として0.01〜10質量部、並びに、
(C)感光剤:該(A)樹脂100質量部を基準として1〜50質量部
を含む感光性樹脂組成物。
【請求項2】
前記(A)樹脂は、下記一般式(1):
【化1】

{式中、Xは、4価の有機基であり、Yは、2価の有機基であり、nは、2〜150の整数であり、そしてR及びRは、それぞれ独立に、水素原子、又は下記一般式(2):
【化2】

(式中、R、R及びRは、それぞれ独立に、水素原子又は炭素数1〜3の有機基であり、そしてmは、2〜10の整数である。)で表される1価の有機基、又は炭素数1〜4の飽和脂肪族基である。}で表される構造を有するポリイミド前駆体、下記一般式(3):
【化3】

{式中、Xは、炭素数6〜15の3価の有機基であり、Yは、炭素数6〜35の2価の有機基であり、かつ同一の構造であるか、又は複数の構造を有してよく、Rは、炭素数3〜20のラジカル重合性の不飽和結合基を少なくとも一つ有する有機基であり、そしてnは、1〜1000の整数である。}
で表される構造を有するポリアミド、下記一般式(4):
【化4】

{式中、Yは、炭素原子を有する4価の有機基であり、Y、X及びXは、それぞれ独立に、2個以上の炭素原子を有する2価の有機基であり、nは、1〜1000の整数であり、nは、0〜500の整数であり、n/(n+n)>0.5であり、そしてX及びYを含むn個のジヒドロキシジアミド単位並びにX及びYを含むn個のジアミド単位の配列順序は問わない。}
で表される構造を有するポリオキサゾール前駆体、及び下記一般式(5):
【化5】

{式中、Xは、4〜14価の有機基であり、Yは、2〜12価の有機基であり、R及びRは、それぞれ独立に、フェノール性水酸基、スルホン酸基又はチオール基から選ばれる基を少なくとも一つ有する有機基を示し、nは、3〜200の整数であり、そしてm及びmは、0〜10の整数を示す。}
で表される構造を有するポリイミドから成る群より選ばれる少なくとも一種の樹脂である、請求項1に記載の感光性樹脂組成物。
【請求項3】
前記(B)プリン誘導体は、下記一般式(6):
【化6】

{式中、Rは、水素原子、ハロゲン原子、水酸基、アミノ基又は炭素数1〜10のアルキル基若しくは芳香族基であり、そしてR10は、水素原子、ハロゲン原子、炭素数1〜6のアルコキシ基、水酸基、ヒドロキシアルキル基又は炭素数1〜10のアルキル基若しくは芳香族基で置換されていてもよいアミノ基である。}で表される化合物、下記一般式(7):
【化7】

{式中、R11は、水素原子、ハロゲン原子、水酸基、アミノ基又は炭素数1〜10のアルキル基若しくは芳香族基であり、そしてR12及びR13は、それぞれ独立に、水素原子、水酸基、ヒドロキシアルキル基又は炭素数1〜10のアルキル基若しくは芳香族基である。}で表される化合物、下記一般式(8):
【化8】

{式中、R14は、水素原子、ハロゲン原子、水酸基、アミノ基又は炭素数1〜10のアルキル基若しくは芳香族基であり、そしてR15は、水素原子、ハロゲン原子、炭素数1〜6のアルコキシ基、水酸基、ヒドロキシアルキル基又は炭素数1〜10のアルキル基若しくは芳香族基で置換されていてもよいアミノ基である。}で表される化合物、及び下記一般式(9):
【化9】

{式中、R16は、水素原子、ハロゲン原子、水酸基、アミノ基又は炭素数1〜10のアルキル基若しくは芳香族基であり、そしてR17及びR18は、それぞれ独立に、水素原子、水酸基、ヒドロキシアルキル基又は炭素数1〜10のアルキル基若しくは芳香族基である。}で表される化合物から成る群より選ばれる少なくとも1種のプリン誘導体である、請求項1又は2に記載の感光性樹脂組成物。
【請求項4】
前記(B)プリン誘導体は、下記一般式(10):
【化10】

{式中、R19は、水素原子、ハロゲン原子、水酸基、アミノ基又は炭素数1〜10のアルキル基若しくは芳香族基である。}で表される化合物、下記一般式(11):
【化11】

{式中、R20は、水素原子、ヒドロキシアルキル基又は炭素数1〜10のアルキル基である。}で表される化合物、下記一般式(12):
【化12】

{式中、R21は、水素原子、ハロゲン原子、水酸基、アミノ基又は炭素数1〜10のアルキル基若しくは芳香族基である。}で表される化合物、及び下記一般式(13):
【化13】

{式中、R22は、水素原子、ヒドロキシアルキル基又は炭素数1〜10のアルキル基である。}で表される化合物から成る群より選ばれる少なくとも1種のプリン誘導体である、請求項1〜3のいずれか1項に記載の感光性樹脂組成物。
【請求項5】
前記(B)プリン誘導体は、上記一般式(12)で表される化合物、及び上記一般式(13)で表される化合物から成る群から選ばれる少なくとも一種の化合物である、請求項1〜3のいずれか1項に記載の感光性樹脂組成物。
【請求項6】
(D)架橋剤:前記(A)樹脂100質量部を基準として0.5〜20質量部をさらに含む、請求項1〜5のいずれか1項に記載の感光性樹脂組成物。
【請求項7】
(E)有機チタン化合物:前記(A)樹脂100質量部を基準として0.05〜10質量部をさらに含む、請求項1〜6のいずれか1項に記載の感光性樹脂組成物。
【請求項8】
前記(E)有機チタン化合物は、チタンキレート化合物、テトラアルコキシチタン化合物及びチタノセン化合物から成る群から選ばれる少なくとも1種の化合物である、請求項7に記載の感光性樹脂組成物。
【請求項9】
(1)請求項1〜8のいずれか1項に記載の感光性樹脂組成物を基板上に塗布することによって感光性樹脂層を該基板上に形成する工程と、
(2)該感光性樹脂層を露光する工程と、
(3)該露光後の感光性樹脂層を現像してレリーフパターンを形成する工程と、
(4)該レリーフパターンを加熱処理することによって硬化レリーフパターンを形成する工程と
を含む、硬化レリーフパターンの製造方法。
【請求項10】
前記基板が、銅又は銅合金から形成されている、請求項9に記載の方法。
【請求項11】
請求項9又は10に記載の製造方法により得られる硬化レリーフパターンを含む半導体装置。

【公開番号】特開2012−194520(P2012−194520A)
【公開日】平成24年10月11日(2012.10.11)
【国際特許分類】
【出願番号】特願2011−169793(P2011−169793)
【出願日】平成23年8月3日(2011.8.3)
【出願人】(309002329)旭化成イーマテリアルズ株式会社 (771)
【Fターム(参考)】