説明

有機薄膜トランジスタおよびその製造方法

【課題】有機TFTにおいて、電子注入効率とホール注入効率を改善した電極と有機半導体の組み合わせをそれぞれ判別する手法を提供し、また、n型チャネルTFTとp型チャネルFETの2種類のTFTを実現し、さらに、相補型有機薄膜トランジスタ(有機CTFT)および、有機CTFTによる所望の任意回路構成を形成する有機CTFTアレイを提供する。
【解決手段】半導体−電極界面、および、半導体−ゲート絶縁体界面におけるフェルミエネルギーの差の大きさを与える数式を用いて、TFT材料を変えずに電極および絶縁膜の表面修飾だけを選択的に変化してn型とp型のTFTを実現する。任意回路を構成するために、p型チャネルTFT用のソース電極とゲート電極、および、n型チャネルTFT用のドレイン電極とゲート電極をすべてつないでおいて、表面修飾のプロセスを行い、その後、光照射などにより不要配線を切断する。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は有機薄膜トランジスタおよびその製造方法に関し、特に、相補型有機薄膜トランジスタ(有機CTFT)およびその製造方法に関わり、特に有機薄膜トランジスタによる所望の任意回路構成に関する。
【背景技術】
【0002】
薄型表示装置(薄型ディスプレイ)では、有機EL(Electro Luminescence)素子や液晶を用いた画素を駆動する素子として、アモルファスシリコンや多結晶シリコンをチャネルに用いた薄膜トランジスタ(TFT)が使用されている。アモルファスシリコンや多結晶シリコンを用いたTFTでは比較的高温プロセスを必要とするため、一般にガラス基板などが用いられ、可塑性を持たせることは現状では困難である。また、製造プロセスに真空設備を使うため、一般に製造コストも高くなる。そのため、これらの表示装置では、フレキシブルな表示装置の実現や製造コスト低減のために、駆動回路に使用するTFTも有機材料で形成することを目的とした研究が広くなされている。有機薄膜トランジスタ(有機TFT)では、チャネルを構成する半導体層を印刷法、スプレー法、インクジェット法等の簡便なプロセスで形成でき、無機半導体を用いたTFTに比べて格段に安価に製造できると期待されている。また、大面積で且つ軽量、薄型の表示・集積回路を平易に作製できる可能性があり、液晶ディスプレイ、有機ELディスプレイ、ICカード等への応用が期待されている。
【0003】
フレキシブルな表示装置を実現するためには、画素を駆動する周辺回路も含めてフレキシブルである必要がある。画素を駆動する回路に使用するTFTにおいては、10cm2/V・s程度以上のキャリア移動度が要求されるが、分子量の小さな有機分子をチャネルに用いたTFTでこの要求を満たすことが実証されている。Rubrene分子の単結晶をチャネルに用いた有機TFTで15(cm/V・s)のキャリア移動度が得られている。また、高純度化したペンタセン(pentacene)分子の単結晶に対し、室温で35(cm/V・s)のキャリア移動度が報告されている。しかし、性能を上げ易い低分子からなる有機TFTでは、製造に真空蒸着を用いることが一般的であり、製造面で不利である。一方、製造コストを抑え易い、高分子からなる有機TFTは、TFTの性能が著しく低く、限られた用途にしか適用することができない。
【0004】
こうした課題を解決する手段として、低分子を溶媒に溶解し、塗布することによりチャネルの半導体層を形成する方法がある。低分子のTFTへの適用例として最も代表的な有機分子であるペンタセンについては、例えば、ペンタセン分子の誘導体を合成し、溶媒に対する溶解性を上げた溶液を用いて薄膜を形成する技術について報告されている。また、ペンタセン分子を直接溶媒に溶解して塗布により薄膜を形成する技術が知られている。更に、ペンタセン分子を有機溶媒に溶解する手順についての報告もある。
【0005】
更に、有機TFTを塗布により安価に製造するためには、有機半導体ばかりではなく、金属線による配線及び電極も塗布によって作成することが望ましい。そのためには金属を微粒子にし、有機物などで覆うことで溶媒への溶解性を持たせ、その様な微粒子が溶解した金属インクまたはペーストを印刷によって所定の場所に分配し、その後に所定の温度で処理をすることによって有機物を除去し、金属の配線や電極を形成するという方法がある。現在、銀や金のペーストで印刷によって配線を行う方法は確立されている。
【0006】
一方で、シリコンを用いた電界効果トランジスタ(FET)においては、チャネルを伝導するキャリアが電子(n型チャネルMOS)とホール(p型チャネルMOS)の2種類のFETを直列させ、消費電力が小さいことを特徴とする相補型MOS(CMOS)デバイスが、集積化の必須の要件となっている。
【0007】
ところが、有機TFTにおいては、つい最近まで、そのほとんどがp型のFETとしてしか動作しないことが知られていた。その原因はいくつか提案されているが、依然、論争中である。例えば、非特許文献1では、n型チャネルとp型チャネル有機TFTの例が示されているが、n型とp型のTFTは別々の有機半導体を用いることにより実現されていて、経済的に有利なプロセスには言及されていない。また、n型チャネルTFTの移動度はp型チャネルTFTと比べて2桁程度小さい値となっている。また、n型とp型のTFTを構成する原理指針は示されていない。
【0008】
ソースとドレイン電極として、互いに異なる仕事関数を有する材料からなることを特徴とする有機半導体素子が報告されている。例えば、p型有機半導体素子で使用するソース電極の材料としては、仕事関数がなるべく大きなもの(金、白金、パラジウム、クロム、セレン、ニッケルなどの金属、インジウムすず酸化物(いわゆるITO)、イリジウム亜鉛酸化物(いわゆるIZO)、酸化亜鉛やこれらの合金、あるいは、酸化錫、ヨウ化銅など)が好ましいとされている。ドレイン電極の材料としては、その仕事関数がソース電極の仕事関数より小さな金属又は化合物(銀、鉛、錫、アルミニウム、カルシウム、インジウムなどの金属、リチウムなどのアルカリ金属、マグネシウムなどのアルカリ土類金属、またはこれらの合金、あるいは、アルカリ金属化合物、アルカリ土類金属化合物など)が適するとされている。しかし、有機半導体材料が電極材料と接するとき、電極−有機半導体界面において、一般に、電荷のやり取りや電荷のスクリーニングが起こるため、電極の仕事関数だけではn型/p型は決定されない。
【0009】
p型半導体特性を持つユニット(例えばチオフェン単位)とn型半導体特性を持つユニット(例えばチアゾール環)とを高分子主鎖に導入することによって、電気的にp型特性とn型特性を共に示す有機半導体高分子を提供し、それを利用して低いオフ電流を示し、また、両特性を共に示すことを特徴とする有機薄膜トランジスタ用の有機半導体高分子が報告されている。しかし、バルクの性質が規定できても、FETに用いられる電極−有機半導体界面、および、ゲート絶縁体−有機半導体界面での半導体の電子構造が決定できないため、有機TFTの特性を定めることにならない。
【0010】
化学量論比からずれることによって、酸素空孔又は格子間金属を生じて高い導電率を示す金属酸化物(酸化錫、酸化チタン、酸化ゲルマニウム、酸化銅、酸化銀、酸化インジウム、酸化タリウム、チタン酸バリウム、チタン酸ストロンチウム、クロム酸ランタン、酸化タングステン、酸化ユーロピウム、酸化アルミニウム、クロム酸鉛)、化学量論比のときに、最も導電率の高い金属酸化物(酸化レニウム、酸化チタン、チタン酸ランタン、ニッケル酸ランタン、酸化銅ランタン、酸化ルテニウム銅、イリジウム酸ストロンチウム、クロム酸ストロンチウム、チタン酸リチウム、酸化イリジウム、酸化モリブデン)、導電性の金属酸化物(酸化バナジウム、酸化クロム、鉄酸化カルシウム、鉄酸化ストロンチウム、コバルト酸ストロンチウム、バナジウム酸ストロンチウム、ルテニウム酸ストロンチウム、コバルト酸ランタン、酸化ニッケル)、導電性の金属酸化物ブロンズ(酸化タングステン、酸化モリブデン、酸化レニウムのペロブスカイト構造のA位置の原子の無いところに、水素原子、アルカリ金属、アルカリ土類金属、又は、希土類金属が入ったタングステンブロンズ(MWO、MMO、MReO)等の金属酸化物を半導体層として用いた有機FETが開示されている。この場合、これらの金属酸化物は半導体材料としてもちいているだけで、電極として用いているわけではない。
【0011】
特許文献1、および特許文献2においては、ゲート絶縁膜−有機半導体界面に特性制御層を介在させることにより、p型チャネルTFT、または、n型チャネルTFTにおいて有機TFTの閾値電圧を制御する手法が開示されている。さらに、特許文献2においては、ゲート絶縁膜−有機半導体界面に介在させた特性制御層を熱、光、アルカリ性の液体により除去する手法が開示されている。この場合、p型(n型)の有機半導体材料をn型(p型)に転換して用いる手法ではないため、例えば、n型の有機半導体の移動度を大きく改善することにはならない。また、異なる材料を有機半導体薄膜としてプロセスするため、経済的に有利なプロセスではない。
【0012】
特許文献3においては、ゲート絶縁膜−有機半導体界面に有機シラン化合物から形成されキャリア輸送機構を有する単分子膜からなるアンカー膜により、有機TFTにおけるキャリア層の構造を制御して移動度を改善した有機TFTが開示されている。また、p型半導体材料とn型半導体材料を使い分ける実施例になっている。この特許文献3においては、有機シラン化合物はキャリア輸送機構を有する分子に限定されていて、p型(n型)の有機半導体材料をn型(p型)に転換して用いる手法ではないため、例えば、n型の有機半導体の移動度を大きく改善することにはならない。また、異なる材料を有機半導体薄膜としてプロセスするため、経済的に有利なプロセスではない。
【0013】
特許文献4においては、ゲート絶縁膜−有機半導体界面にアンバイポーラ特性(両極特性)を付与する電圧制御層を介在させることにより、n型とp型の両方で駆動する有機TFTが開示されている。この場合、アンバイポーラ特性を示す有機TFTにおいて一般にn型チャネルTFTの移動度はp型チャネルTFTと比べて2桁程度小さい値となることが知られている。また、この特許文献4においては、アンバイポーラ特性(両極特性)を付与する電圧制御層の形成手法について、経済的に有利なプロセス手法の開示は無い。
【0014】
特許文献5においては、ソース/ドレイン電極−有機半導体界面、および、ゲート絶縁膜−有機半導体界面に有機シラン系化合物から形成される緩衝膜を介在させることにより、ソース/ドレイン電極−有機半導体界面のエネルギー障壁を低減された有機TFTか開示されている。この特許文献5においては、n型チャネルTFTとp型チャネルTFTに関する緩衝膜の選択性、および、プロセス方法についての開示は無い。
【0015】
一方で、非特許文献2においては、電極−無機半導体の界面において、真空準位シフトΔを電極と半導体の構成元素の物理定数から一般的に導く手法が議論されている。この真空準位シフトΔを用いると、電極−無機半導体界面においてキャリア(電子、および、ホール)注入に関するショットキー障壁Φが計算でき、熱イオン励起モデルなどの適当なキャリア注入機構を用いて、キャリア注入速度(一秒間に注入される電荷数)が計算できる。すなわち、キャリアが電子の場合、ショットキー障壁Φは、(数1)
Φ=φ−χ+Δ (数1)
と求めることが出来る。このとき、真空準位シフトΔは、電子が電極から半導体に注入される場合に、ショットキー障壁Φが大きくなるときに正の符号をとることとし、φMは、電極の仕事関数、χは、半導体の電子親和力(真空準位と伝導帯下端エネルギーの差)である。さらに、非特許文献2によると、ショットキー障壁Φは、(数2)
Φ=γ(φ−χ)+(1−γ)E/2 (数2)
で与えられる。ここで、(数3)〜(数5)は次の通りである。
γ=1−eMS/εit(E+κ) (数3)
κ=4e/(ε)−2e/(εitMS) (数4)
εit=1/(1/(2ε)+1/(2ε)) (数5)
ここで、E:半導体のバンドギャップエネルギー、e:電子の素電荷量、dMS:電極−半導体界面における電極と半導体を構成する原子間距離、N:電極−半導体界面における単位面積あたりのボンド(原子間結合)の個数、a:電極−半導体界面における界面方向の構成原子の最近接原子数、ε:半導体の比誘電率、d:電極−半導体界面における界面方向の構成原子間距離、ε:電極の比誘電率である。電極が金属の場合は、ε〜無限大であるので、(数5)は、
εit〜2ε(数6)
を用いる。電極が金属でない場合には、(式5)をそのまま用いることが出来る。
ところが、非特許文献2に議論は、界面での原子間結合が主として化学結合の電極−無機半導体界面にだけ適応が議論されていて、一般的に、比較的結合が弱い、電極−有機半導体界面には適応できない。
【0016】
【特許文献1】特開2006−278639号公報
【特許文献2】特開2006−278638号公報
【特許文献3】特開2006−179703号公報
【特許文献4】特開2005−268721号公報
【特許文献5】特開2007−157752号公報
【非特許文献1】応用物理,第74巻,第9号,第1196頁(2005).
【非特許文献2】フィジカルレビューレターズ誌,第84巻,第26号,第6078頁(2000)(Physical Review Letters, 84 (26), 6080(2000)).
【発明の開示】
【発明が解決しようとする課題】
【0017】
本発明の実施例においては、有機TFTにおいて、電子注入効率とホール注入効率を改善した電極と有機半導体の組み合わせをそれぞれ判別する手法を提供し、n型チャネルTFTとp型チャネルFETの2種類のTFTを実現し、さらに、相補型有機薄膜トランジスタ(有機CTFT)および、有機CTFTによる所望の任意回路構成を形成する相補型有機TFT(有機CTFT)アレイを提供する。さらに、相補型有機薄膜トランジスタ(有機CTFT)を同一の有機半導体を用いても実現でき、経済的に有利なプロセスによる相補型有機TFT(有機CTFT)アレイの製造方法を提供する。
【課題を解決するための手段】
【0018】
半導体−電極界面、および、半導体−ゲート絶縁体界面におけるフェルミエネルギーの差の大きさを与える数式を用いて、TFT材料を変えずに電極および絶縁膜の表面修飾だけを選択的に変化してn型とp型のTFTを実現する。このとき、任意回路を構成するために、まずp型チャネルTFT用のソース電極とゲート電極、および、n型チャネルTFT用のドレイン電極とゲート電極をすべてつないでおいて、表面修飾のプロセスを行い、その後、光照射(走査型レーザー露光装置など)により不要配線を切断する。
【発明の効果】
【0019】
本発明によれば、有機TFTによる有機CTFTデバイスが製造可能となり、有機CTFTによる大面積で且つ軽量、薄型の集積回路を平易に作製でき、また、液晶ディスプレイ、有機ELディスプレイ、ICカード、タグ等への応用が可能となる。
【発明を実施するための最良の形態】
【0020】
以下に、本願発明の実施例を図面を用いて詳細に説明する。
(実施例1)
本実施例では、非特許文献2の議論を拡張して、電極−有機半導体の界面において、ショットキー障壁Φを電極と半導体の構成元素の物理定数から一般的に導く手法を導く。電極−有機半導体の組み合わせとして、水素終端シリコン表面−ポリチオフェン高分子、金−ペンタセン結晶、銀−ペンタセン結晶、金−各種チオール単分子膜、銀−各種チオール単分子膜等の電子状態を第一原理計算による理論計算および走査トンネル顕微鏡による電子状態測定により調べた結果、(数7)から(数11)を用いて、ショットキー障壁Φを一般的に見積もることができることがわかった。
すなわち、キャリアが電子の場合、ショットキー障壁Φは、
Φ=γ(φ−χ)+(1−γ)E/2 (数7)
で与えられる。ここで、(数8)〜(数10)は次の通りである。
γ=1−αMSMS/εit(E+κ) (数8)
κ=aα/(ε)−2αMS/(εitMS) (数9)
εit=1/(1/(2ε)+1/(2ε)) (数10)
特に電極が金属の場合は、
εit〜2ε (数11)
であり、φ:電極の仕事関数、χ:有機半導体の電子親和力、E:有機半導体のバンドギャップエネルギー、αMS:電極−有機半導体間の相互作用補正係数、e:電子の素電荷量、dMS:電極−有機半導体界面における電極と有機半導体の原子間距離、N:電極−有機半導体界面における単位面積あたりのボンド(化学結合、または、その他の相互作用)の個数、a:電極−有機半導体界面における界面方向の電極構成原子の最近接原子数、α:電極−有機半導体界面における界面方向の電極構成要素間の相互作用補正係数、ε:有機半導体の比誘電率、d:電極−有機半導体界面における界面方向の電極構成原子間距離、ε:電極の比誘電率(電極が金属の場合は、εM〜無限大)である。αMSおよびαは、それぞれ、電極−有機半導体間および電極構成要素間の相互作用に関する、相互作用の種類による補正係数で、金属結合や無機半導体のイオン結合や共有結合に対しては、ほぼα=1の値を、一般的に相互作用の小さなファン・デル・ワールス力(分子間力)に対しては、α=0.7〜1程度の値を、また、銀とペンタセン分子のようにある程度の電荷の移動が期待される相互作用に対しては、α=0.4〜1の値を用いると、ショットキー障壁Φの良い見積もりが得られることがわかった。
【0021】
この見積もり手法を用いて、一種類の電極から出発して一種類の有機半導体を用いて、n型チャネルFETとp型チャネルFETを実現することができる例として、次のもの等が可能であることがわかった。
(1)電極として、銀および酸化銀を用い、有機半導体として、ペンタセン結晶(単結晶、または、多結晶)を用いる。
(2)電極:銀および硫化銀(または、硫黄原子に炭化水素分子が結合したチオール分子)、有機半導体:ペンタセン結晶(単結晶、または、多結晶)。
(3)電極:チタン、酸化チタン、有機半導体:ペンタセン結晶(単結晶、または、多結晶)。
(4)電極:炭化チタン、酸化チタン、有機半導体:ペンタセン結晶(単結晶、または、多結晶)。
(実施例2)
本実施例では、本発明によるn型チャネル有機TFTの基本セルの一例を開示する。
【0022】
図1Aは本発明によるn型チャネル有機TFTの基本セルの構造を模式的に示す鳥瞰図である。図1Bは本発明によるn型チャネル有機TFTの基本セルの構造を模式的に示す断面図である。図1A、Bにおいて、有機半導体薄膜17は、本実施例においてはペンタセン結晶粒から成る多結晶ペンタセン薄膜である。基板11、ゲート電極12、ゲート絶縁膜13、ソース電極14、ドレイン電極16、有機半導体薄膜17、ゲート絶縁膜修飾構造81、および、電極修飾構造82が基本セルを構成する。
【0023】
本実施例では、n型チャネルTFT20のゲート絶縁膜修飾構造81の一例として、パラ−アミノフェニルトリメトキシシランをシランカップリング反応によりゲート絶縁膜13に堆積させ、0.3分子層〜5.0分子層のアミノフェニル基でゲート絶縁膜修飾する。また、金、銀、または白金によるソース電極14とドレイン電極16については、4−アミノチオフェノールによる電極修飾構造82を形成する。これらの修飾構造により、n型チャネルTFTの特徴である、電極からの電子注入効率の改善とチャネル部分での電子移動度の改善ができる。
(実施例3)
本実施例においては、本発明により形成される有機TFTの製造方法の一例を開示する。図2A−Fは、本発明により形成される有機TFTの製造方法の一例を示す断面図である。本実施例では可塑性を有する材料を用い、リソグラフィーに依らない、印刷や塗布などの方法で本発明の有機TFTを構成する方法について説明する。図2A−Fは製造方法を具体的に説明する図である。
【0024】
図2Aに示す様に、プラスチック製の基板61上に導電性インクを使用してゲート電極62を印刷する。これを焼成しゲート電極62を形成するが、基板にプラスチックを用いている為、その軟化温度に注意しなければならない。本実施例では、基板61に厚さ100μmの高耐熱高透明性ポリイミドシートを用いており、焼成温度は250℃程度まで上げられる。そのため、導電性インクに銀超微粒子分散水溶液を用いた場合に必要な焼成温度の120℃には十分耐えることができる。
【0025】
基板61及びゲート電極62の上にポリメチルメタクリレート(PMMA)をスピン塗布し十分乾燥させ、ゲート絶縁膜63を形成する。ここではホットプレートを用い100℃で10分乾燥を行なった。また、ゲート絶縁膜63は印刷などにより所望の形状に形成することができる。図2A−Fの例では、基板の一部にゲート絶縁膜を形成した例を示している。更に,感光性薄膜64を形成する。本実施例ではポジレジストをスピン塗布し膜厚100nmの膜を得た。
【0026】
次に、ソース電極68とドレイン電極70を形成する為に撥液パターンを形成する。撥液膜65としてパーフロロオクタンで0.1wt%まで希釈したフッ化アルキル系シランカップリング剤(ダイキン工業、商品名オプツール)をスピン塗布し,図2B断面図に矢印で示すように、水銀ランプで紫外線をプラスチック基板61の面から照射する。本実施例で使用した感光性薄膜64の感光に必要な紫外線は波長365nmのi線なので、積層したゲート絶縁膜63(高分子膜−ポリメチルメタクリレート(PMMA)膜)へのダメージを避ける為、300nm以下の波長の紫外線はフィルタによりカットして照射することが望ましい。ゲート電極62には金属電極が既に形成されている為、照射された紫外線は有機半導体薄膜71が形成される領域を透過することが出来ず、ソース電極68とドレイン電極70に対応する領域のみ感光性薄膜が感光する。30秒程度の照射後、感光性薄膜を現像することによりソース電極68とドレイン電極70に対応する領域の感光性薄膜64が除去され,その領域の撥水膜65がリフトオフされる。こうして有機半導体薄膜71が形成される領域に撥液膜65が形成される(図2C)。ゲート電極62と同様に導電性インクを用いてソース電極68とドレイン電極70を形成する(図2D)。
次に、感光性薄膜64の溶剤を用いて感光性薄膜64を除去することにより撥水膜65がリフトオフされる。本実施例では感光性薄膜溶剤としてアセトンを用いた。この段階で、(実施例2)で示したように、パラ−アミノフェニルトリメトキシシランをシランカップリング反応によりゲート絶縁膜13に堆積させ、0.3分子層〜5.0分子層のアミノフェニル基でゲート絶縁膜修飾構造81を形成する。また、ソース電極68とドレイン電極70については、4−アミノチオフェノールによる電極修飾構造82を形成する(図2E)。
【0027】
次にチャネルを形成する為、有機半導体薄膜71を塗布する。ノズルの位置制御機構、溶液の吐出量制御機構、及び溶液の加熱機構の付いた吐出機を用い、窒素雰囲気下でチャネルに有機半導体薄膜71の溶液を供給する。本実施例では非特許文献5にあるように溶媒にトリクロロベンゼンを用い、ペンタセンを0.1wt%分散後、200℃に加熱して溶解させたものを溶液として用いる。ノズルを通してこの溶液をおよそ3μリットル供給する。溶液の急激な温度低下による溶液中での結晶成長を防ぐ為、基板は170℃程度に加熱すると良い。供給された溶液は乾燥し、図2Fに示す様に有機半導体薄膜71が形成される。こうしてリソグラフィーを用いない、印刷・塗布等の安価な方法で有機TFTが構成できた。
【0028】
本実施例において、基板にポリイミド、絶縁膜にPMMAを用いたが、これ以外にも基板にポリフェニルビニルを始めとする可塑性の各種プラスチック基板を、絶縁膜にもポリイミド、ポリビニルフェノール等を用いても何ら問題はない。また、可塑性を必要としない場合には、基板に無機の絶縁膜を用いることにより、印刷・塗布等の作製プロセスの選択肢が増加する利点を享受することができる。ゲート電極を形成した後、スピンオングラス(SOG)により絶縁膜を形成し、ポジレジストをスピンコートし水銀ランプを用いて裏面から紫外線を照射する。ゲート電極により遮光された領域以外のレジストは現像により溶解・除去されるため、レジストパターンはゲート電極と同じパターンとなる。この状態でフッ化アルキル系シランカップリング剤をスピン塗布する。続いて、アセトン等を用いてレジストを除去することによりフッ化アルキル系シランカップリング剤をリフトオフし、所望の撥液パターンを得る。この方法ではSOGの焼成に450℃程度の熱処理が必要であること、レジストの除去に有機溶媒を使うことから、基板その他に有機材料を用いている場合には使用することが出来ない。この方法は製造プロセスの手順数が少なくなることや、撥液膜形成の為に金属を必要としないという利点を有する。
(実施例4)
本実施例では、本発明による有機CTFTアレイの基本セルの一例を開示する。
【0029】
図3Aは、本発明による有機CTFTアレイの基本セルの構造を模式的に示す鳥瞰図である。図3Cは、図1Aに対応する回路を示す図である。図1Aにおいて、有機半導体薄膜17は、本実施例においてはペンタセン結晶粒から成る多結晶ペンタセン薄膜である。ソース電極14とソース電極15、有機半導体薄膜17、ドレイン電極16、ゲート電極12が基本セルを構成する。有機CTFTを構成する場合には、n型チャネルTFT20のうち1個とp型チャネルTFT21のうち1個のドレイン電極16を接続して、ソース電極15を接地電極、ソース電極14を動作電圧印加電極として、ゲート電極12に電圧信号を入力して、ドレイン電極16を出力電極とすることにより、有機CTFTとして動作する。図3Aに示す基本セルは、各電極の接続方法を変えることにより、NAND、NOR、非反転バッファなど、論理回路を構成するのに必要な全ての論理ゲートを構成することが出来、基本セルアレイを導電性インク印刷や光リソグラフィーなどの一般的なプロセスにより任意に配線することにより、有機薄膜トランジスタによる所望の任意回路(特に、論理回路)を構成することができる。
【0030】
本実施例では、n型チャネルTFT20とp型チャネルTFT21のソース電極とドレイン電極について、同一の材料(本実施例では銀)から出発して、ソース電極とドレイン電極に選択的にゲート絶縁膜修飾構造、および、電極修飾構造を構成することにより、n型チャネルTFT20とp型チャネルTFT21を形成する。そのため、図3Aに示す基本セルを作成するときに、n型チャネルTFT20とp型チャネルTFT21のそれぞれのソース電極、ドレイン電極、および、ゲート電極を繋いでおいて、共通の電圧が印加できるようにする。図3Bは、図3Aに示す基本セルのプロセスを行うために電極間の配線を施した基本セルの構造の一例を示す鳥瞰図である。図3Dは、図3Bに示される基本セルに対応する回路を示す図である。図3Bに示すように、n型チャネルTFT20のソース電極、ドレイン電極、および、ゲート電極は電源電圧ライン18により酸化電位を印加して、p型チャネルTFT21のソース電極、ドレイン電極、および、ゲート電極は電源電圧ライン19により還元電位を印加することによりソース電極、ドレイン電極、および、ゲート絶縁膜に選択的にゲート絶縁膜修飾構造、および、電極修飾構造を構成することができる。その後、図3Bの不要な配線部分を除去することにより、図3Aで示される基本セルを作製できる。不要な配線部分の除去方法としては、光リソグラフィーなどの一般的なプロセスを用いることもできるが、ソース電極、ドレイン電極、および、配線の全て、または、一部をビス(エチレンチオ)テトラチアフルバレン(BET−TTF)やポリ(エチレンジオキシチオフェン)/ポリ(スチレン・スルフォン酸)(PEDOT/PSS)などのように強い光照射により変質する有機物質等により作製しておいて、走査型レーザー露光装置などの光照射により不要配線を切断することもできる。
【0031】
図3Eは、本発明による有機CTFTアレイの基本セルの構造の他の一例を模式的に示す鳥瞰図である。不要な配線部分を除去する場合に、ゲート電極12の例に示すように、余分に配線を残すことも可能である。
(実施例5)
本実施例では、本発明における有機TFT用電極の表面処理の連続加工を実現する製造装置の一部の模式図例を開示する。図4A−Cは、本発明による、有機TFT用電極の表面処理の連続加工を実現する製造装置の一部の一例を示す図である。
図4Aは、2槽式連続加工製造装置の一例の概略図である。容器42と容器43は、連続基板31を通過させることにより、それぞれ、例えば、ゲート絶縁膜修飾構造と電極修飾構造を構成するために用いる。
図4Bは、連続基板において電圧印加用配線と有機薄膜トランジスタアレイ部の配置の一例を示す概略図である。
図4Cは、相補型有機薄膜トランジスタ用電極およびゲート絶縁膜の表面処理槽の模式図例である。容器40は、装置全体の雰囲気を保つために例えば乾燥窒素で満たされるが、使用する有機半導体や電極材料の特性によっては、必ずしも必要とは限らない。基板31上には、n型チャネルTFTとp型チャネルTFT用のソース電極およびドレイン電極が形成してあり、可塑性を有するフレキシブル基板を用いている。基板31は、基板誘導ローラー32と33(巻き出し側)が回転するに従い送り出され、基板誘導ローラー32と33(巻き取り側)が回転することにより巻き出される。容器40の前後には、電極の表面加工以外の製造装置が連続して設置することもできる。
【0032】
基板31は、溶液容器34内で、基板誘導ローラー33に誘導され、酸化還元用溶液41に浸される。このとき、ポテンショスタット35により、n型チャネルTFTとp型チャネルTFT用の電極は、以下のように表面加工される。ポテンショスタット35は、参照電極36、作用電極37、酸化還元用電極38、および、酸化還元用電極39を有している。参照電極36は、酸化還元用溶液41の電位(参照電位)をポテンショスタット35に入力する。ポテンショスタット35は、この参照電位を基準として、作用電極37と酸化還元用電極38、および、酸化還元用電極39の電位を制御する。このとき、酸化還元用電極38、および、酸化還元用電極39に流れる電流も制御されるが、対極としては作用電極37に電流が流れ、参照電極36には電流が流れないように回路が構成されている。本実施例の場合は、酸化還元用電極38は酸化電位に保たれ、n型チャネルTFT用の電極表面を酸化するために用いられ、一方、酸化還元用電極39は、p型チャネルTFT用の電極となる銀電極表面が酸化されないように、還元電位に保たれた。こうすると、管理された環境の下でn型チャネルTFTとp型チャネルTFT用の電極の表面加工をすることができ、基板31の送りを連続に行なうことができ、安定した性能の製品を低コストで実現できる。
【0033】
有機TFT用電極の表面処理として、厚さ0.3分子層から5分子層のペンタフルオロベンゼンチオール、ペルフルオロアルキルチオール、トリフルオロメタンチオール、ペンタフルオロエタンチオール、ヘプタフルオロプロパンチオール、ノナフルオロブタンチオール、ブタンナトリウムチオール、ブタン酸ナトリウムチオール、ブタノールナトリウムチオール、または、アミノチオフェノールを含む薄膜を吸着した電極、厚さ0.3原子層から5原子層の硫黄、酸素、ハロゲン元素、カルシウム、マグネシウム、または、それらの元素と電極元素との化合物からなる薄膜が覆った電極が有効な例となる。また、ゲート絶縁膜の表面処理として、厚さ0.3分子層から5分子層のアミン系シラン基による薄膜が有効な例となる。
【0034】
図5、図6、および、図7は、本発明による基本セルを用いた有機CTFTアレイの作製手順を示す回路図である。図5では、基本セル611において、n型チャネルTFTとp型チャネルTFTおのおののソース電極、ドレイン電極、および、ゲート電極が繋いだ構造になっている。この段階で、有機TFT用電極とゲート絶縁膜の表面処理を行い、n型チャネルTFTとp型チャネルTFT用の構造を形成する。図6では、基本セル611において、不要配線を除去した構造になっている。図7では、一例として、基本セル611において、NOR回路を形成した回路図を示している。必要な配線は、例えば、導電性インク印刷や光リソグラフィーなどの一般的なプロセスにより行うことができる。
【0035】
ここで、INA、INB、OUT、VSS、VDDは、それぞれ、A入力、B入力、出力、電源電圧SS、電源電圧DDである。同様の配線を必要な基本セル全てについて施すことにより、所望の任意(論理)回路が形成できる。
【図面の簡単な説明】
【0036】
【図1A】本発明の実施例により形成されるn型チャネル有機TFTの基本セルの構造の一例を示す鳥瞰図。
【図1B】図1Aに示される基本セルの断面図。
【図2A】本発明の実施例により形成されるn型チャネル有機TFTの基本セルの製造方法の各工程を示す断面図。
【図2B】本発明の実施例により形成されるn型チャネル有機TFTの基本セルの製造方法の各工程を示す断面図。
【図2C】本発明の実施例により形成されるn型チャネル有機TFTの基本セルの製造方法の各工程を示す断面図。
【図2D】本発明の実施例により形成されるn型チャネル有機TFTの基本セルの製造方法の各工程を示す断面図。
【図2E】本発明の実施例により形成されるn型チャネル有機TFTの基本セルの製造方法の各工程を示す断面図。
【図2F】本発明の実施例により形成されるn型チャネル有機TFTの基本セルの製造方法の各工程を示す断面図。
【図3A】本発明の実施例により形成される基本セルの構造の一例を示す鳥瞰図。
【図3B】図3Aに示す基本セルのプロセスを行うために電極間の配線を施した基本セルの構造の一例を示す鳥瞰図。
【図3C】図3Aに示される基本セルに対応する回路図。
【図3D】図3Bに示される基本セルに対応する回路図。
【図3E】本発明の実施例により形成される基本セルの構造の他の一例を示す鳥瞰図。
【図4A】本発明の実施例における相補型有機薄膜トランジスタ用電極およびゲート絶縁膜の表面処理の連続加工を実現する製造装置の一部の模式図(2槽式連続加工製造装置の一例)。
【図4B】本発明の実施例における相補型有機薄膜トランジスタ用電極およびゲート絶縁膜の表面処理の連続加工を実現する製造装置の一部の模式図(連続基板において電圧印加用配線と有機薄膜トランジスタアレイ部の配置の一例)。
【図4C】本発明の実施例における相補型有機薄膜トランジスタ用電極およびゲート絶縁膜の表面処理の連続加工を実現する製造装置の一部の模式図(相補型有機薄膜トランジスタ用電極およびゲート絶縁膜の表面処理槽の一例)。
【図5】本発明の実施例における相補型有機薄膜トランジスタアレイのプロセスの一例を示す回路図。
【図6】本発明の実施例における相補型有機薄膜トランジスタアレイのプロセスの一例を示す回路図。
【図7】本発明の実施例における相補型有機薄膜トランジスタアレイのプロセスの一例を示す回路図。
【符号の説明】
【0037】
11…基板、12…ゲート電極、13…ゲート絶縁膜、14、15…ソース電極、16…ドレイン電極、17…有機半導体薄膜、18、19…電源電圧ライン(および設置電圧ライン)、20…n型チャネルTFT、21…p型チャネルTFT、31…基板、32、33…基板誘導ローラー、34…溶液容器、35…ポテンショスタット(2出力)、36…参照電極、37…作用電極、38、39…酸化還元用電極、40…容器、41…酸化還元用溶液、42、43…容器、47、48…酸化還元用配線、61…基板、62…ゲート電極、63…ゲート絶縁膜、64…感光性薄膜、65…撥液膜、68…ソース電極、70…ドレイン電極、71…有機半導体薄膜、81…ゲート絶縁膜修飾構造、82…電極修飾構造、611…基板、613、614…酸化還元用配線、616、617、618…電源、入出力ラッチ等、619…有機薄膜トランジスタアレイ部。

【特許請求の範囲】
【請求項1】
基板上に設けられたゲート絶縁体と、
前記ゲート絶縁体上の一部に設らけれたソース電極と、
前記ゲート絶縁体上の前記ソース電極と対峙する位置に設らけれたドレイン電極と、
前記ソース電極およびドレイン電極に挟まれて前記ゲート絶縁体上に設けられた有機半導体薄膜とを有し、
前記ソース電極、又はドレイン電極の少なくとも一方が、酸化金属、還元された前記酸化金属、あるいは有機薄膜のいずれか、または前記酸化金属、還元された前記酸化金属、あるいは前記有機薄膜のいずれかの表面と前記有機半導体薄膜との間に介在する前記酸化金属と異なる他の金属をさらに有し、
前記ゲート絶縁体と前記有機半導体薄膜との間に介在する前記ゲート絶縁体と異なる絶縁体を有することを特徴とする有機薄膜トランジスタ。
【請求項2】
前記ソース電極と前記ドレイン電極が第1の金属で構成され、
前記ソースおよびドレイン電極の表面が、前記第1の金属を含む厚さ0.3原子層乃至5原子層を有する化合物からなる第1の薄膜で覆われ、
前記ゲート絶縁体表面が、厚さ0.3分子層乃至5分子層を有する第2の薄膜で覆われていることを特徴とする請求項1に記載の有機薄膜トランジスタ。
【請求項3】
前記第1の金属が、金、銀、銅、またはチタンのいずれかであり、
前記第1の薄膜が、厚さ0.3分子層乃至5分子層を有するペンタフルオロベンゼンチオール、ペルフルオロアルキルチオール、トリフルオロメタンチオール、ペンタフルオロエタンチオール、ヘプタフルオロプロパンチオール、ノナフルオロブタンチオール、ブタンナトリウムチオール、ブタン酸ナトリウムチオール、ブタノールナトリウムチオール、または、アミノチオフェノールで覆われる構造を有し、
前記第2の薄膜が、厚さ0.3分子層乃至5分子層を有するアミン系分子基で覆われる構造を有することを特徴とする請求項2に記載の有機薄膜トランジスタ。
【請求項4】
前記第1の金属が、金、銀、銅、またはチタンのいずれか一つで構成され、
前記第1の薄膜が、厚さ0.3原子層乃至5原子層を有する硫黄、酸素、ハロゲン元素、カルシウム、マグネシウム、または、それらの元素と電極元素との化合物からなる薄膜で覆われる構造を有し、
前記第2の薄膜が、厚さ0.3分子層乃至5分子層を有するアミン系分子基で覆われる構造を有することを特徴とする請求項2に記載の有機薄膜トランジスタ。
【請求項5】
基板上に設けられた第1のゲート絶縁体と、前記第1のゲート絶縁体上の一部を覆うように設らけれた第1のソース電極および第1のドレイン電極と、前記第1のソース電極および第1のドレイン電極に挟まれて前記第1のゲート絶縁体上に設けられた第1の有機半導体薄膜とを具備してなる第1の素子と、
前記基板上に設けられた第2のゲート絶縁体と、前記第2のゲート絶縁体上の一部を覆うように設らけれた第2のソース電極および第2のドレイン電極と、前記第2のソース電極および第2のドレイン電極に挟まれて前記第2のゲート絶縁体上に設けられた第2の有機半導体薄膜とを具備してなる第2の素子とを有し、
前記第1のソース電極、又は第1のドレイン電極の少なくとも一つが、酸化金属、還元された前記酸化金属、あるいは有機薄膜のいずれか、または前記酸化金属、還元された前記酸化金属、あるいは前記有機薄膜のいずれかの表面と前記有機半導体薄膜との間に介在する前記酸化金属と異なる他の金属をさらに有し、
前記第2のソース電極および第2のドレイン電極は、前記酸化金属、還元された前記酸化金属、あるいは前記有機薄膜のいずれかの表面と前記有機半導体薄膜との間に介在する前記酸化金属と異なる他の金属を有することなく、
前記第1のゲート絶縁体と前記有機半導体薄膜との間に介在する前記ゲート絶縁体と異なる絶縁体を有すること特徴とする有機薄膜トランジスタ。
【請求項6】
前記第1および第2のソース電極と、前記第1および第2のドレイン電極が、金、銀、銅、または、チタンのいずれか一つで構成され、
前記第1のソース電極の表面が、厚さ0.3原子層乃至5原子層を有する硫黄、酸素、ハロゲン元素、カルシウム、マグネシウム、またはそれらの元素と前記電極を構成する元素との化合物からなる薄膜で覆われる構造を有し、
前記ゲート絶縁体表面が、厚さ0.3分子層乃至5分子層を有するアミン系分子基で覆われる構造を有することを特徴とする請求項5に記載の有機薄膜トランジスタ。
【請求項7】
基板上に第1および第2のゲート電極を形成する工程と、
前記第1および第2のゲート電極を覆うようにゲート絶縁膜を形成する工程と、
前記ゲート絶縁膜表面の一部を覆うように前記第1および第2のゲート電極上にそれぞれ、第1および第2のソース電極および第1および第2のドレイン電極を形成する工程と、
前記第1のソース電極および前記第1のドレイン電極を酸化または還元することにより前記ソースおよびドレイン電極上に第1の薄膜を形成する第1の酸化還元工程と、
前記第1のゲート電極上に形成された前記ゲート絶縁体を酸化または還元することにより前記ゲート絶縁体上に第2の薄膜を形成する第2の酸化還元工程と、
前記第1および第2の薄膜の一部を除去する除去工程と、
前記第1および第2のソース電極、前記第1および第2のドレイン電極および前記ゲート絶縁体上に有機半導体薄膜を形成する工程とを有することを特徴とする有機薄膜トランジスタの製造方法。
【請求項8】
前記第1および第2の酸化還元工程における前記酸化または還元が、電気化学的な溶液反応、または、溶液による化学反応、または、気相反応のいずれかにより行われることを特徴とする請求項7に記載の有機薄膜トランジスタの製造方法。
【請求項9】
前記第1および第2の酸化還元工程の少なくとも一工程は、前記第1および第2の電極および前記ゲート絶縁体が形成された可塑性を有する基板を、溶液中または気相中に連続的に通過させることにより、酸化または還元を行うことを特徴とする請求項7に記載の有機薄膜トランジスタの製造方法。
【請求項10】
前記第1および第2の酸化還元工程において、前記ソース、ドレイン電極、および前記ゲート絶縁体を構成する材料と異なる物質を前記ソース、ドレイン電極、および前記ゲート絶縁体の表面に吸着、または吸着した一部の物質を脱離加工することを特徴とする請求項7に記載の有機薄膜トランジスタの製造方法。

【図1A】
image rotate

【図1B】
image rotate

【図2A】
image rotate

【図2B】
image rotate

【図2C】
image rotate

【図2D】
image rotate

【図2E】
image rotate

【図2F】
image rotate

【図3A】
image rotate

【図3B】
image rotate

【図3C】
image rotate

【図3D】
image rotate

【図3E】
image rotate

【図4A】
image rotate

【図4B】
image rotate

【図4C】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate


【公開番号】特開2009−164368(P2009−164368A)
【公開日】平成21年7月23日(2009.7.23)
【国際特許分類】
【出願番号】特願2008−1024(P2008−1024)
【出願日】平成20年1月8日(2008.1.8)
【出願人】(000005108)株式会社日立製作所 (27,607)
【Fターム(参考)】