説明

パルス幅検出回路、直流成分キャンセル回路及び受信回路

【課題】受信電流のパルス幅に応じたほぼ正確なパルス幅を持つ受信信号を出力する受信回路を提供すること。
【解決手段】第1フィルタ回路24は、電圧信号VA1を高域通過フィルタを通した第1の成分と、前記電圧信号VA1の低周波成分もしくは直流成分に基づく第2の成分を含む第1の処理信号S1を生成する。第2フィルタ回路25は、第1の処理信号S1を増幅した電圧信号VA2を高域通過フィルタを通した成分からなる第2の処理信号S2を生成する。そして、2値化回路26は、第2の処理信号S2を増幅した電圧信号VA3を2値化して受信信号RXを生成する。

【発明の詳細な説明】
【技術分野】
【0001】
本発明はパルス幅検出回路、直流成分キャンセル回路及び受信回路に関するものである。
近年の電子機器では、光ファイバーを使用した光通信システムや、空間を介した赤外線による光通信システムが実用化されている。このような光通信システムにおいて、受信回路は、受信光を電気信号に変換し、その電気信号を増幅し、更に2値化した受信信号を生成する。そして、受信精度を向上させるために、入力信号(受信光)に対応した受信信号の生成を正確に行う必要がある。
【背景技術】
【0002】
従来、光通信システムの受信回路は、微少な振幅の入力信号を増幅するために複数段のアンプを含む。入力信号の振幅は、光源と受光素子の距離が離れるほど小さくなる。複数段のアンプは、振幅が5〜3桁程度異なる入力信号から受信信号を生成するように総合(トータル)ゲインが設定されている。受信回路は、アンプにて増幅した信号を所定のしきい値電圧に基づいて2値化して生成した受信信号を出力する。
【0003】
また、受信回路は、入力信号のエッジを取り出すためにフィルタ回路を含む。
フィルタ回路は、複数段のアンプの間に適宜挿入接続される。受信回路は、フィルタ回路にて入力信号のエッジ位置に応じたパルス信号を生成し、該パルス信号を上記複数段のアンプにて増幅する。このようにフィルタ回路を用いることで、受信回路は入力信号のパルス幅にほぼ等しいパルス幅を持つ受信信号を生成する。
【0004】
振幅の大きな入力信号は、スソ引きが起きた波形(立ち下がりが緩やかな波形)を持つ。このスソ引きの部分もアンプにより増幅される。一方、2値化のためのしきい値は、図5に示すように、振幅の小さな入力信号を増幅した信号Saと、振幅の大きな入力信号を増幅した信号Sbとから受信信号RXを生成するように設定されている。そして、信号Sbは、スソ引き部分を持つ。従って、信号Saから生成した受信信号RXのパルス幅(実線で示す)に比べて、信号Sbから生成した受信信号RXのパルス幅(2点鎖線で示す)が大きくなってしまう。
【0005】
これに対し、フィルタ回路は、入力信号の立ち上がりエッジに対応する第1パルスと、入力信号の立ち下がりエッジに対応する第2パルスを持つ信号を生成する。第1パルスの立ち上がりエッジと第2パルスの立ち上がりエッジの波形は、増幅してもあまり変化しない。従って、受信回路は、この第1パルスの立ち上がりエッジと第2パルスの立ち下がりエッジを用いることで、入力信号のパルス幅と実質的にほぼ等しいパルス幅を持つ受信信号RXを生成する。
【0006】
また、フィルタ回路は、アンプのオフセット電圧をキャンセルする機能を有している。複数段のアンプのみを直列に接続した場合、最終段のアンプの出力信号には格段のアンプのオフセット電圧を増幅した直流成分を含む。この直流成分は、2値化回路における正確な受信信号RXの生成を阻害する。即ち、直流成分が2値化回路におけるしきい値電圧を超えた場合、該2値化回路は一定(Hレベル)の受信信号を出力する。
【0007】
フィルタ回路は、入力信号の所定周波数成分(直流成分、又は直流から通信周波数を含む周波数帯より低い周波数までの成分を含む)を除去する高帯域通過フィルタ(HPF)である。従って、複数段のアンプの間に挿入接続されたフィルタ回路は、前段のアンプのオフセット電圧の影響を除去する。
【0008】
また、受信回路は、直流成分キャンセル回路を含み、該直流成分キャンセル回路は初段のアンプ(プリアンプ)の入出力端子間に接続されている。直流成分キャンセル回路は、プリアンプの出力電圧に基づいて、プリアンプに入力される電流の直流成分を打ち消すように生成したキャンセル電流をプリアンプの入力にフィードバックする。
【0009】
空間を介して信号光を受光する光通信システムでは、受光素子に信号光とともに太陽光等が入射される。受光素子は、太陽光等の直流成分を含む受信電流を生成する。この直流成分は、上記アンプのオフセット電圧と同様に正確な受信信号の生成を阻害するからである。
【発明の開示】
【発明が解決しようとする課題】
【0010】
ところで、複数のフィルタ回路を含む受信回路では、受信信号に誤を生じることがある。即ち、図6に示すように、入力信号Sinに基づいて第1フィルタ回路から第1処理信号S1が出力され、該信号S1に基づいて第2フィルタ回路から第2処理信号S2が出力される。この第2処理信号S2は、第1処理信号S1の立ち上がりエッジと立ち下がりエッジに対応するパルスを含む。従って、第2処理信号S2としきい値電圧とを比較した場合、第1パルスP1から第2パルスP2(丸で囲むパルス)までHレベルの受信信号RXを出力し、第4パルスP4(丸で囲むパルス)以降Hレベルの受信信号RXを出力する。
【0011】
また、一般的な積分型やLPF(低域通過フィルタ)直流成分キャンセル回路では、図7(a)に示すように、入力信号Vinと基準電圧VrefのDCオフセットを、図7(b)に示すようにキャンセルする(出力信号Voutのピークレベルを基準電圧Vrefに近づける)ように動作する。しかし、入力信号Vinが長時間続いた場合に出力信号Voutが図7(c)に示すように直流的にずれる(直流成分がキャンセルできなくなる)。これは、直流成分キャンセル回路が入力信号Vinの平均値レベルを基準電圧Vrefに近づけるように働き、図8に示すように、入力信号Vinの平均値レベル(破線で示す)が変動するからである。
【0012】
本発明は上記問題点を解決するためになされたものであって、その目的は入力信号から正確にパルス幅を検出し2値化した信号を出力することのできるパルス幅検出回路を提供することにある。
【0013】
また、DC成分をほぼ正確にキャンセルすることができる直流成分キャンセル回路を提供することにある。
また、受信電流のパルス幅に応じたほぼ正確なパルス幅を持つ受信信号を出力する受信回路を提供することにある。
【課題を解決するための手段】
【0014】
上記目的を達成するため、請求項1に記載の発明によれば、前記出力信号のピーク電圧を保持した保持電圧を出力する電圧保持回路と、前記保持電圧と基準電圧とを比較して前記帰還信号を生成する増幅器と、を備えた。従って、保持電圧の平均レベルは時間経過に対する変動が少ないため、電圧信号のオフセットをほぼ正確にキャンセルされる。
【0015】
請求項2に記載の発明のように、前記増幅器は、入力信号の電流を電圧に変換した電圧信号と、一定レベルの基準信号を出力するものであり、前記電圧保持回路は前記電圧信号のピーク電圧を保持した保持電圧を出力し、前記増幅器は前記保持電圧と前記基準信号とを比較して前記帰還信号を生成する。従って、容易に電圧信号のオフセットを解消することができる。
【発明の効果】
【0016】
以上詳述したように、請求項1,2に記載の発明によれば、DC成分をほぼ正確にキャンセルすることができる直流成分キャンセル回路を提供することができる。
【発明を実施するための最良の形態】
【0017】
以下、本発明を具体化した一実施形態を図1〜図4に従って説明する。
図1(a)は、光通信装置の受信に係る部分のブロック回路図である。
光通信装置10は、フォトダイオード(PD)11と受信回路12を含む。
【0018】
フォトダイオード11は、受信した光に対応した受信電流IPDを生成する。
受信回路12は、受信電流IPDを電流−電圧(I−V)変換して受信電圧を生成し、その受信電圧を2値化して生成した受信信号RXを出力する。
【0019】
受信回路12は、複数(本実施形態では3つ)のアンプ21,22,23、フィルタ回路24,25、2値化回路26を含む。
初段の第1アンプ(プリアンプ)21は、入力端子にフォトダイオード11が接続されている。第1アンプ21は、フォトダイオード11が生成する受信電流IPDを電圧信号VA1に電流−電圧(I−V)変換する。
【0020】
第1〜第3アンプ21〜23は直列接続され、第1及び第2フィルタ回路24,25は第1〜第3アンプ21〜23それぞれの間に挿入接続されている。
即ち、第1アンプ21の出力端子には第1フィルタ回路24が接続されている。第1フィルタ回路24は、電圧信号VA1を高域通過フィルタ(HPF)を通したと等価な第1の成分と、電圧信号VA1の直流成分に基づく第2の成分とを含む第1処理信号S1を生成する。
【0021】
第1フィルタ回路24の出力端子には第2アンプ22が接続されている。第2アンプ22は、第1処理信号S1を増幅した電圧信号VA2を出力する。
第2アンプ22の出力端子には第2フィルタ回路25が接続されている。第2フィルタ回路25は、電圧信号VS2を高域通過フィルタを通した成分からなる第2処理信号S2を生成する。
【0022】
第2フィルタ回路25の出力端子には第3アンプ23が接続されている。第3アンプ23は、第2処理信号S2を増幅した電圧信号VA3を出力する。
第3アンプ23の出力端子には2値化回路26が接続されている。2値化回路26は、最終段の第3アンプ23の出力信号VA3を2値化した受信信号RXを出力する。例えば、2値化回路26はコンパレータを含み、該コンパレータは出力信号を所定のしきい値電圧と比較して2値化した受信信号RXを生成する。
【0023】
この受信信号RXは、入力信号(本実施携帯の場合は受信電流IPD)のパルス幅とほぼ等しいパルス幅を有している。即ち、受信回路12は、入力信号のパルス幅を検出し、該パルス幅に応じた出力信号(本実施例の場合は受信信号RX)を生成するパルス幅検出回路としての機能を有している。
【0024】
第1〜第3アンプ21〜23は、総合のゲインが、振幅が異なる複数の入力信号に応答して受信信号RXを生成可能に設定されている。受信電流IPDの振幅は、光通信装置を有する機器が通信可能な空間的な距離に対応し、機器間が離れているほど振幅が小さくなる。従って、空間的に所定範囲内の機器間の通信を可能とするために、振幅の小さな受信電流IPDに応答して第3アンプ23から出力される電圧信号VA3が2値化回路26のしきい値電圧を超えるように総合のゲインが設定されている。
【0025】
第1アンプ21には、入出力端子間に直流成分キャンセル回路27が接続されている。直流成分キャンセル回路27の入力端子は第1アンプ21の出力端子に接続され、直流成分キャンセル回路27の出力端子は第1アンプ21の入力端子に接続されている。
【0026】
直流成分キャンセル回路27は、太陽光等のDC光(フォトダイオード11に流れる受信電流IPDの直流成分を生成する光)によってフォトダイオード11に流れる受信電流IPDに含まれる直流成分(DC成分)の影響を打ち消すために設けられている。このDC成分は、通信に使用される周波数帯より低い周波数成分を含む。直流成分キャンセル回路27は電圧信号VA1に含まれる直流成分に応じてそれを打ち消すように生成した電流を第1アンプ21の入力にフィードバックする。
【0027】
第1及び第2フィルタ回路24,25について説明する。
図1(b)は、第1フィルタ回路24の回路図である。
第1フィルタ回路24は、コンデンサC1、抵抗R1、アッテネータ31を含む。コンデンサC1の第1端子には電圧信号VA1が印加され、コンデンサC1の第2端子は抵抗R1の第1端子に接続され、抵抗R1の第2端子は低電位電源(例えばグランド)に接続されている。コンデンサC1にはアッテネータ31が並列に接続されている。そして、第1フィルタ回路24は、コンデンサC1と抵抗R1の接続点から第1処理信号S1を出力する。
【0028】
第1フィルタ回路24のコンデンサC1は、図1(a)の第1及び第2アンプ21,22の間に直列に接続されている。従って、コンデンサC1は、第1アンプ21から出力される電圧信号VA1の交流成分を透過させ、直流成分を除去する働きをする。アッテネータ31は、電圧信号VA1の低周波成分もしくは直流成分を減衰させる働きをする素子であり、例えば抵抗よりなる。
【0029】
即ち、第1フィルタ回路24は、第1アンプ21から出力される電圧信号VA1に含まれる交流成分を高域通過フィルタを通したと等価な第1の成分(交流成分)と、電圧信号VA1に含まれる低周波成分もしくは直流成分に基づく第2の成分(低周波成分もしくは直流成分)を含む第1処理信号S1を生成する。
【0030】
従って、第1処理信号S1は、入力される電圧信号VA1を高域通過フィルタを通した波形に、電圧信号VA1の低周波成分もしくは直流成分を加算した波形を持つ。
第2フィルタ回路25は、図示しないが通常のフィルタ回路であり、コンデンサ及び抵抗から構成される。第2フィルタ回路25は、入力される電圧信号VA2を高域通過フィルタを通した成分(交流成分)からなる第2処理信号S2を出力する。
【0031】
尚、第1フィルタ回路24に含まれるアッテネータ31の損失は、後段のアンプ(第2アンプ22及び第3アンプ23)の利得を加味し、誤動作が発生しないように設定されている。詳しくは、アッテネータ31の損失は、第2フィルタ回路25から出力される第2処理信号S2が意図しない場所で2値化回路26のしきい値電圧を超えないように設定されている。例えば、第1〜第3アンプ21〜23それぞれの利得を10倍とした場合、電圧信号VA1の交流成分に対するアッテネータ31と第2アンプ22の総合利得は10倍となる。これに対し、電圧信号VA1の低周波成分もしくは直流成分に対するアッテネータ31及び第2アンプ22の総合利得を1〜2倍とするように、アッテネータ31の損失(アッテネータを抵抗で構成した場合にはその抵抗値)が設定されている。
【0032】
第1及び第2フィルタ回路24,25の動作を図2に従って説明する。尚、第2及び第3アンプ22,23は、それぞれ第1及び第2フィルタ回路24,25の出力信号を増幅しているため、図2には、第1及び第2フィルタ回路24,25から出力される第1及び第2処理信号S1,S2に代えて、それらを増幅した電圧信号VA2,VA3の波形を示す。
【0033】
第1フィルタ回路24は、入力される電圧信号VA1を高域通過フィルタを通した第1の成分(交流成分)に、電圧信号VA1の低周波成分もしくは直流成分に基づく第2の成分(低周波成分もしくは直流成分)を加算した第1処理信号S1を出力する。この第1処理信号S1の波形は、電圧信号VA1の信号部分41,42と、低周波成分もしくは直流成分の部分43を持つ。この低周波成分もしくは直流成分43は、信号部分41,42の振幅を見かけ上小さくする。例えば、電圧信号VA1の立ち上がりエッジに対応する信号部分41は、立ち上がりの振幅に比べて立ち下がりの振幅が相対的に上小さい。また、電圧信号VA1の立ち下がりエッジに対応する信号部分42は、立ち下がりの振幅に比べて立ち上がりの振幅が相対的に小さい。
【0034】
第2フィルタ回路25は第1フィルタ回路24の出力信号(実際には第2アンプ22が出力する電圧信号VA2)を高域通過フィルタを通した成分を持つ第2処理信号S2を出力する。この第2処理信号S2は、入力信号の振幅に応じた振幅を持つ。第1処理信号S1の信号部分41の立ち上がりエッジに対応する部分44の振幅は、立ち上がりエッジに対応する部分45の振幅より大きい。そして、部分44は2値化回路26の入力立ち上がりエッジを検出する第1のしきい値電圧Vth1を越え、部分45は立ち下がりエッジを検出する第2のしきい値電圧Vth2を越えない(下回らない)。
【0035】
同様に、信号部分42の立ち下がりエッジに対応する部分46は第2のしきい値電圧Vth2を越え、立ち上がりエッジに対応する部分47は第1のしきい値電圧Vth1を越えない。
【0036】
従って、2値化回路26は、2回目の微分後の信号(第2フィルタ回路25から出力される第2処理信号S2)を第3アンプ23にて増幅した電圧信号VA3から、ほぼ正確な(受信電流IPDのパルス幅とほぼ等しい)パルス幅を持つ受信信号RXを出力する。
【0037】
次に、直流成分キャンセル回路27について詳述する。
図3は、第1アンプ21と直流成分キャンセル回路27の回路図である。
第1アンプ21は、抵抗R11,R12、トランジスタT1,T2、電流源51,52を含む。第1及び第2抵抗R11,R12は、それぞれ第1端子が高電位電源に接続され、第2端子が第1及び第2トランジスタT1,T2にそれぞれ接続されている。
【0038】
第1及び第2トランジスタT1,T2は、NPNトランジスタであり、コレクタが第1及び第2抵抗R11,R12にそれぞれ接続され、エミッタが第1及び第2電流源51,52にそれぞれ接続され、ベースに基準信号REFが共通に印加されている。
【0039】
第1及び第2電流源51,52は、第1端子がそれぞれ第1及び第2トランジスタT1,T2に接続され、第2端子が低電位電源に接続されている。
第1アンプ21は、第1トランジスタT1と第1電流源51の間の第1ノードN1に入力信号(受信電流IPD)が印加されている。そして、第1アンプ21は、第1抵抗R11と第1トランジスタT1の間の第2ノードN2の電位を持つ信号と、第2抵抗R12と第2トランジスタT2の間の第3ノードN3の電位を持つ信号を、電圧信号VA1として出力する。
【0040】
第1アンプ21は、同じ電気的特性を持つ素子から構成されている。詳述すると、第1抵抗R11と第2抵抗R12は実質的に同じ抵抗値を持つ。第1トランジスタT1と第2トランジスタT2は実質的に同じ電気手特性を持つ。更に、第1電流源51と第2電流源52は実質的に同一値の電流を流すように構成されている。
【0041】
そして、第1及び第2トランジスタT1,T2のベースには基準信号REFが共通に印加されている。従って、第1ノードN1に印加される受信電流IPDの電流値が0(ゼロ)の場合、第2及び第3ノードN2,N3は実質的に同じ電位となる。
【0042】
第1抵抗R11と第1トランジスタT1と第1電流源51は、受信電流IPDの電流に応じて第2ノードN2の電位を変更し、該第2ノードN2の電位を電圧信号VA2として出力する。
【0043】
従って、第1抵抗R11と第1トランジスタT1と第1電流源51は電流電圧変換回路21aを構成し、第2抵抗R12と第2トランジスタT2と第2電流源52は基準電圧生成回路21bを構成する。
【0044】
直流成分キャンセル回路27は、ピークホールド回路(電圧保持回路)53とアンプ54を含む。ピークホールド回路53は、入力端子が第2ノードN2に接続され、出力端子がアンプ54に接続されている。アンプ54は、第1入力端子が第3ノードN3に接続され、第2入力端子がピークホールド回路53に接続され、出力端子が第1ノードN1に接続されている。
【0045】
ピークホールド回路53はコンデンサを有し、該コンデンサに第2ノードN2の電位に応じた電荷を蓄積することで、該ノードN2の電位のピークレベルを保持した信号Vpを出力する。
【0046】
アンプ54は、両入力端子間の電位差に応じて生成した電流を第1ノードN1(第1アンプ21の入力)に供給し、両入力端子間の電位差を少なくするように動作する。
上記の直流成分キャンセル回路27の動作を説明する。
【0047】
第2ノードN2の電位VN2は、入力信号(受信電流IPD)に基づいて図4に実線で示すようにパルス状に変化する。一方、第3ノードN3の電位VN3は、基準信号REFに基づき一定電位である。そして、第2ノードN2の電位VN2のピークレベルと第3ノードN3の電位VN3の電位差がオフセットレベルに相当する。
【0048】
ピークホールド回路53は、第2ノードN2の電位VN2のピークレベルを保持し、図4に破線で示すように変化する信号Vpを出力する。この信号Vpの変動幅は電位VN2の変動幅に比べて極めて小さく、信号Vpの平均値レベルは電位VN2のピークレベルとほぼ等しい。
【0049】
アンプ54は、電位VN3と信号Vpの平均値レベルの電位差を打ち消す(0(ゼロ)にする)よう働く。従って、直流成分キャンセル回路27は、第2ノードN2の電位VN2のピークレベルと第3ノードN3の電位VN3をほぼ等しくし、入力信号のオフセットレベル(受信電流IPDのDC成分)をほぼ正確にキャンセルする。
【0050】
以上記述したように、本実施形態によれば、以下の効果を奏する。
(1)第1フィルタ回路24は、電圧信号VA1を高域通過フィルタを通した第1の成分と、前記電圧信号VA1の低周波成分もしくは直流成分に基づく第2の成分を含む第1処理信号S1を生成する。第2フィルタ回路25は、第1処理信号S1を増幅した電圧信号VA2を高域通過フィルタを通した成分からなる第2処理信号S2を生成する。そして、2値化回路26は、第2処理信号S2を増幅した電圧信号VA3を2値化して受信信号RXを生成する。その結果、受信電流IPDのパルス幅とほぼ等しいパルス幅を持つ受信信号RXを生成することができる。
【0051】
(2)受信回路12は、複数段のアンプ21〜23を含み、第1及び第2フィルタ回路24,25は各アンプ21〜23の間に挿入接続されている。その結果、必要な信号を増幅させることができる。
【0052】
(3)直流成分キャンセル回路27は、ピークホールド回路53とアンプ54を含む。ピークホールド回路53は、第1アンプ21から出力される電圧信号VA1(第2ノードN2の電圧VN2)ピーク電圧を保持した保持電圧Vpを生成する。アンプ54は、保持電圧Vpと基準電圧(第3ノードN3の電圧VN3)とを比較して第1アンプ21の入力端子に、両入力端子の電位差を打ち消すように生成した電流を帰還する。保持電圧Vpの平均レベルは時間経過に対する変動が少ないため、受信電流IPDのDC成分をほぼ正確にキャンセルすることができる。
【0053】
尚、前記実施形態は、以下の態様に変更してもよい。
・空間を介して入射される信号光を受ける受信回路に具体化したが、光ファイバを介して信号光を受ける受信回路に具体化してもよい。また、光以外により受信した信号から受信信号を生成する受信回路に具体化しても良い。
【0054】
・光通信システムにおける受信回路に具体化したが、パルス幅検出回路として他のシステムに適用しても良い。
・受信回路12の構成を適宜変更しても良い。例えば、光ファイバを用いた光通信システムでは太陽光等がフォトダイオード11に入射されないため、直流成分キャンセル回路27を省略することができる。
【0055】
・第1及び第2フィルタ回路24,25の挿入位置を適宜変更して実施しても良い。
・第1及び第2フィルタ回路24,25の組を、複数組備えた回路に具体化してもよい。
【図面の簡単な説明】
【0056】
【図1】(a)、(b)は、それぞれ本実施形態の受信回路の回路図である。
【図2】本実施形態の動作波形図である。
【図3】プリアンプ及び直流成分キャンセル回路の回路図である。
【図4】直流成分キャンセル回路の動作波形図である。
【図5】入力信号と出力信号を示す波形図である。
【図6】従来の動作波形図である。
【図7】(a)〜(c)は、それぞれ従来の動作波形図である。
【図8】従来の動作波形図である。
【符号の説明】
【0057】
21〜23 増幅器(アンプ)
24 第1フィルタ回路
25 第2フィルタ回路
26 2値化回路
27 直流成分キャンセル回路
53 電圧保持回路(ピークホールド回路)
54 増幅器
RX 2値信号(受信信号)
S1 第1処理信号
S2 第2処理信号
IPD 受信電流
VA1 電圧信号
Vp 保持電圧

【特許請求の範囲】
【請求項1】
入力信号を増幅する増幅器の入出力端子間に接続され、該増幅器の出力信号に基づいて前記入力信号のオフセット電圧を解消するように前記増幅器の入力端子に供給する帰還信号を生成する直流成分キャンセル回路であって、
前記出力信号のピーク電圧を保持した保持電圧を出力する電圧保持回路と、
前記保持電圧と基準電圧とを比較して前記帰還信号を生成する増幅器と、
を備えたことを特徴とする直流成分キャンセル回路。
【請求項2】
前記増幅器は、入力信号の電流を電圧に変換した電圧信号と、一定レベルの基準信号を出力するものであり、
前記電圧保持回路は前記電圧信号のピーク電圧を保持した保持電圧を出力し、
前記増幅器は前記保持電圧と前記基準信号とを比較して前記帰還信号を生成することを特徴とする請求項1記載の直流成分キャンセル回路。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate


【公開番号】特開2008−109685(P2008−109685A)
【公開日】平成20年5月8日(2008.5.8)
【国際特許分類】
【出願番号】特願2007−298902(P2007−298902)
【出願日】平成19年11月19日(2007.11.19)
【分割の表示】特願2002−668(P2002−668)の分割
【原出願日】平成14年1月7日(2002.1.7)
【出願人】(000005223)富士通株式会社 (25,993)
【Fターム(参考)】