説明

成膜方法及び成膜装置

【課題】低誘電率化、ウェットエッチング耐性の向上及びリーク電流の低減化が達成されたSiBCN膜を形成することが可能な成膜方法を提供する。
【解決手段】被処理体Wが収容されて真空引き可能になされた処理容器4内に、ボロン含有ガスと窒化ガスとシラン含有ガスと炭化水素ガスとを供給して被処理体の表面にボロンと窒素とシリコンと炭素を含む薄膜を形成する成膜方法において、ボロン含有ガスと窒化ガスとを交互に間欠的に供給するサイクルを1回以上行ってBN膜を形成する第1の工程と、シラン系ガスと炭化水素ガスと窒化ガスとを間欠的に供給するサイクルを1回以上行ってSiCN膜を形成する第2の工程とを有する。これにより、低誘電率化、ウェットエッチング耐性の向上及びリーク電流の低減化が達成されたボロンと窒素とシリコンと炭素とを含む薄膜を形成する。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、半導体ウエハ等の被処理体に薄膜を形成する成膜方法及び成膜装置に関する。
【背景技術】
【0002】
一般に、半導体集積回路を製造するためにはシリコン基板等よりなる半導体ウエハに対して、成膜処理、エッチング処理、酸化処理、拡散処理、改質処理、自然酸化膜の除去処理等の各種の処理が行なわれる。これらの処理は、ウエハを1枚ずつ処理する枚葉式の処理装置や複数枚のウエハを一度に処理するバッチ式の処理装置で行われる。例えばこれらの処理を縦型の、いわゆるバッチ式の処理装置にて行う場合には、まず、半導体ウエハを複数枚、例えば25枚程度収容できるカセットから、半導体ウエハを縦型のウエハボートへ移載してこれに多段に支持させる。
【0003】
このウエハボートは、例えばウエハサイズにもよるが30〜150枚程度のウエハを載置できる。このウエハボートは、排気可能な処理容器内にその下方より搬入(ロード)された後、処理容器内が気密に維持される。そして、処理ガスの流量、プロセス圧力、プロセス温度等の各種のプロセス条件を制御しつつ所定の熱処理が施される。
【0004】
ここで上記半導体集積回路の特性を向上させる要因の1つとして、集積回路中の絶縁膜の特性を向上させることは重要である。上記集積回路中の絶縁膜としては、一般的にはSiO 、PSG(Phospho Silicate Glass)、P(プラズマ)−SiO、P(プラズマ)−SiN、SOG(Spin On Glass)、Si (シリコン窒化膜)等が用いられる。そして、特にシリコン窒化膜は、絶縁特性がシリコン酸化膜より比較的良好なこと、及びエッチングストッパ膜や層間絶縁膜としても十分に機能することから多用される傾向にある。
【0005】
そして、最近にあっては回路素子の特性の向上を目的として更なる低誘電率化(Low−k化)及びエッチングに対する更なる耐性の向上の要求が強く望まれている。このような状況下において、縦型の、いわゆるバッチ式の縦型の処理装置においても、ウエハをそれ程の高温に晒さなくても目的とする処理が可能なことから、原料ガス等を間欠的に供給しながら原子レベルで1層〜数層ずつ、或いは分子レベルで1層〜数層ずつ繰り返し成膜する方法が提案さている。このような成膜方法は一般的にはALD(Atomic Layer Deposition)と称されている。
【0006】
例えば特許文献1では、リモートプラズマ原子層蒸着法(RP−ALD)を用いてシリコンナイトライド薄膜(SiN膜)とボロンナイトライド膜(BN膜)とを交互に多層に積層して多層のラミネート構造の膜を形成する成膜方法が提案されている。また、特許文献2では、熱処理によりシリコンナイトライド膜にエッチング耐性の向上に有効な炭素(C)を添加させて低誘電率化とエッチング耐性の向上を図るようにしたSiCN膜のALD法による成膜方法も提案されている。
【先行技術文献】
【特許文献】
【0007】
【特許文献1】特開2004−047956号公報
【特許文献2】特開2008−227460号公報
【特許文献3】特開2006−287194号公報
【発明の概要】
【発明が解決しようとする課題】
【0008】
ところで、上記した各種のシリコンナイトライド系の絶縁膜は従来のシリコン窒化膜の絶縁膜よりも低誘電率化され、且つエッチング耐性にも優れているが、必要とされる特性に十分に達するものではなかった。特に、この絶縁膜のリーク電流に対する特性は十分なものではなかった。
【0009】
本発明は、以上のような問題点に着目し、これを有効に解決すべく創案されたものである。本発明は、低誘電率化、ウェットエッチング耐性の向上及びリーク電流の低減化が達成されたボロンと窒素とシリコンと炭素とを含む薄膜(SiBCN膜)を形成することが可能な成膜方法及び成膜装置である。
【課題を解決するための手段】
【0010】
請求項1に係る発明は、被処理体が収容されて真空引き可能になされた処理容器内に、ボロン含有ガスと窒化ガスとシラン含有ガスと炭化水素ガスとを供給して前記被処理体の表面にボロンと窒素とシリコンと炭素を含む薄膜を形成する成膜方法において、前記ボロン含有ガスと前記窒化ガスとを交互に間欠的に供給するサイクルを1回以上行ってBN膜を形成する第1の工程と、前記シラン系ガスと前記炭化水素ガスと前記窒化ガスとを間欠的に供給するサイクルを1回以上行ってSiCN膜を形成する第2の工程とを有することを特徴とする成膜方法である。
【0011】
これにより、ボロンと窒素とシリコンと炭素とを含む薄膜(SiBCN膜)の低誘電率化、ウェットエッチング耐性の向上及びリーク電流の低減化を達成することが可能となる。
【0012】
請求項15に係る発明は、被処理体に対して所定の薄膜を形成するための成膜装置において、真空引き可能になされた縦型の筒体状の処理容器と、前記被処理体を複数段に保持して前記処理容器内に挿脱される保持手段と、前記処理容器の外周に設けられる加熱手段と、前記処理容器内へシラン系ガスを供給するシラン系ガス供給手段と、前記処理容器内へ窒化ガスを供給する窒化ガス供給手段と、前記処理容器内へボロン含有ガスを供給するボロン含有ガス供給手段と、前記処理容器内へ炭化水素ガスを供給する炭化水素ガス供給手段と、請求項1乃至14のいずれか一項に記載の成膜方法を実行するように制御する制御手段と、を備えたことを特徴とする成膜装置である。
【発明の効果】
【0013】
本発明の成膜方法及び成膜装置によれば、次のような作用効果を発揮することができる。
被処理体が収容されて真空引き可能になされた処理容器内に、ボロン含有ガスと窒化ガスとシラン含有ガスと炭化水素ガスとを供給して被処理体の表面にボロンと窒素とシリコンと炭素を含む薄膜を形成する成膜方法において、ボロンと窒素とシリコンと炭素とを含む薄膜(SiBCN膜)の低誘電率化、ウェットエッチング耐性の向上及びリーク電流の低減化を達成することができる。
【図面の簡単な説明】
【0014】
【図1】本発明の係る成膜装置の一例を示す縦断面構成図である。
【図2】成膜装置(加熱手段は省略)を示す横断面構成図である。
【図3】本発明の成膜方法の第1実施例を示すフローチャートである。
【図4】本発明の成膜方法の第1実施例における各種ガスの供給のタイミングを示すタイミングチャートである。
【図5】本発明の成膜方法の第1実施例によって形成される積層構造の薄膜を示す断面図である。
【図6】各膜の希フッ化水素に対するエッチング量及び比誘電率とリーク電流を示すグラフである。
【図7】SiBCN膜を形成した時のサイクル数の成膜条件と各特性の相対評価を示す表である。
【図8】成膜レートの温度依存性を示すグラフである。
【図9】本発明の成膜方法の第2実施例を示すフローチャートである。
【図10】本発明の成膜方法の第2実施例における中間工程の各種ガスの供給のタイミングを示すタイミングチャートである。
【図11】本発明の成膜方法の第2実施例によって形成される積層構造の薄膜を示す断面図である。
【発明を実施するための形態】
【0015】
以下に、本発明に係る成膜方法及び成膜装置の一実施例を添付図面に基づいて詳述する。図1は本発明の係る成膜装置の一例を示す縦断面構成図、図2は成膜装置(加熱手段は省略)を示す横断面構成図である。尚、ここではシラン系ガスとしてジクロロシラン(DCS)を用い、窒化ガスとしてアンモニアガス(NH )を用い、ボロン含有ガスとしてBCl ガスを用い、炭化水素ガスとしてC ガス(エチレンガス)を用い、ボロンと窒素とシリコンと炭素とを含む薄膜であるSiBCN膜(ボロン炭素含有のシリコン窒化膜)を成膜する場合を例にとって説明する。
【0016】
図示するように、この成膜装置2は、下端が開口された有天井の円筒体状の処理容器4を有している。この処理容器4の全体は、例えば石英により形成されており、この処理容器4内の天井には、石英製の天井板6が設けられて封止されている。また、この処理容器4の下端開口部には、例えばステンレススチールにより円筒体状に成形されたマニホールド8がOリング等のシール部材10を介して連結されている。尚、ステンレス製のマニホールド8を設けないで、全体を円筒体状の石英製の処理容器で構成した装置もある。
【0017】
上記処理容器4の下端は、上記マニホールド8によって支持されており、このマニホールド8の下方より多数枚の被処理体としての半導体ウエハWを多段に載置した保持手段としての石英製のウエハボート12が昇降可能に挿脱自在になされている。本実施例の場合において、このウエハボート12の支柱12Aには、例えば50〜100枚程度の直径が300mmのウエハWを略等ピッチで多段に支持できるようになっている。
【0018】
このウエハボート12は、石英製の保温筒14を介してテーブル16上に載置されており、このテーブル16は、マニホールド8の下端開口部を開閉する例えばステンレススチール製の蓋部18を貫通する回転軸20上に支持される。そして、この回転軸20の貫通部には、例えば磁性流体シール22が介設され、この回転軸20を気密にシールしつつ回転可能に支持している。また、蓋部18の周辺部とマニホールド8の下端部には、例えばOリング等よりなるシール部材24が介設されており、処理容器4内のシール性を保持している。
【0019】
上記した回転軸20は、例えばボートエレベータ等の昇降機構(図示せず)に支持されたアーム26の先端に取り付けられており、ウエハボート12及び蓋部18等を一体的に昇降して処理容器4内へ挿脱できるようになされている。尚、上記テーブル16を上記蓋部18側へ固定して設け、ウエハボート12を回転させることなくウエハWの処理を行うようにしてもよい。
【0020】
このマニホールド8には、処理容器4内の方へ窒化ガスとして、例えばアンモニア(NH )ガスを供給する窒化ガス供給手段28と、成膜ガスであるシラン系ガスとして例えばDCS(ジクロロシラン)ガスを供給するシラン系ガス供給手段30と、ボロン含有ガスとして例えばBCl ガスを供給するボロン含有ガス供給手段32と、炭化水素ガスとして例えばC (エチレン)ガスを供給する炭化水素ガス供給手段34と、パージガスとして不活性ガス、例えばN ガスを供給するパージガス供給手段36とが設けられる。
【0021】
具体的には、上記窒化ガス供給手段28は、上記マニホールド8の側壁を内側へ貫通して上方向へ屈曲されて延びる石英管よりなるガス分散ノズル38を有している。このガス分散ノズル38には、その長さ方向に沿って複数(多数)のガス噴射孔38Aが所定の間隔を隔てて形成されており、各ガス噴射孔38Aから水平方向に向けて略均一にアンモニアガスを噴射できるようになっている。
【0022】
また同様に上記シラン系ガス供給手段30も、上記マニホールド8の側壁を内側へ貫通して上方向へ屈曲されて延びる石英管よりなるガス分散ノズル40を有している。このガス分散ノズル40には、その長さ方向に沿って複数(多数)のガス噴射孔40A(図2参照)が所定の間隔を隔てて形成されており、各ガス噴射孔40Aから水平方向に向けて略均一にシラン系ガスであるDCSガスを噴射できるようになっている。
【0023】
また同様にボロン含有ガス供給手段32も、上記マニホールド8の側壁を内側へ貫通して上方向へ屈曲されて延びる石英管よりなるガス分散ノズル42を有している。このガス分散ノズル42には、上記シラン系ガスのガス分散ノズル40と同様にその長さ方向に沿って複数(多数)のガス噴射孔42A(図2参照)が所定の間隔を隔てて形成されており、各ガス噴射孔42Aから水平方向に向けて略均一にBCl ガスを噴射できるようになっている。
【0024】
また同様に炭化水素ガス供給手段34も、上記マニホールド8の側壁を内側へ貫通して上方向へ屈曲されて延びる石英管よりなるガス分散ノズル44を有している。このガス分散ノズル44には、上記シラン系ガスのガス分散ノズル44と同様にその長さ方向に沿って複数(多数)のガス噴射孔44A(図2参照)が所定の間隔を隔てて形成されており、各ガス噴射孔44Aから水平方向に向けて略均一にC ガスを噴射できるようになっている。
【0025】
また同様に上記パージガス供給手段36は、上記マニホールド8の側壁を貫通して設けたガスノズル46を有している。上記各ノズル38、40、42、44、46には、それぞれのガス通路48、50、52、54、56が接続されている。そして、各ガス通路48、50、52、54、56には、それぞれ開閉弁48A、50A、52A、54A、56A及びマスフローコントローラのような流量制御器48B、50B、52B、54B、56Bが介設されており、NH ガス、DCSガス、BCl ガス、C ガス及びN ガスをそれぞれ流量制御しつつ供給できるようになっている。
【0026】
一方、上記処理容器4の側壁の一部には、その高さ方向に沿ってノズル収容凹部60が形成されると共に、このノズル収容凹部60に対向する処理容器4の反対側には、この内部雰囲気を真空排気するために処理容器4の側壁を、例えば上下方向へ削りとることによって形成した細長い排気口62が設けられている。具体的には、上記ノズル収容凹部60は、上記処理容器4の側壁を上下方向に沿って所定の幅で削りとることによって上下に細長い開口64を形成し、この開口64をその外側より覆うようにして断面凹部状になされた上下に細長い例えば石英製の区画壁66を容器外壁に気密に溶接接合することにより形成されている。
【0027】
これにより、この処理容器4の側壁の一部を凹部状に外側へ窪ませることにより一側が処理容器4内へ開口されて連通されたノズル収容凹部60が一体的に形成されることになる。すなわち区画壁66の内部空間は、上記処理容器4内に一体的に連通された状態となっている。上記開口64は、ウエハボート12に保持されている全てのウエハWを高さ方向においてカバーできるように上下方向に十分に長く形成されている。そして、図2に示すように、上記ノズル収容凹部60内に上記各ガス分散ノズル38、40、42、44が並んで設けられている。
【0028】
一方、上記開口64に対向させて設けた排気口62には、これを覆うようにして石英よりなる断面コ字状に成形された排気口カバー部材68が溶接により取り付けられている。この排気口カバー部材68は、上記処理容器4の側壁に沿って上方に延びており、処理容器4の上方にガス出口70を形成している。このガス出口70には、処理容器4内を真空引きする真空排気系72が設けられる。具体的には、この真空排気系72は、上記ガス出口70に接続された排気通路74を有しており、この排気通路74には、開閉可能になされると共に弁開度が調整可能になされた圧力調整弁76及び真空ポンプ78が順次介設されている。そして、この処理容器4の外周を囲むようにしてこの処理容器4及びこの内部のウエハWを加熱する筒体状の加熱手段80が設けられている。
【0029】
そして、以上のように構成された成膜装置2の全体の動作は、例えばコンピュータ等よりなる制御手段82により制御されるようになっており、この動作を行うコンピュータのプログラムはフレキシブルディスクやCD(Compact Disc)やハードディスクやフラッシュメモリ等の記憶媒体84に記憶されている。具体的には、この制御手段82からの指令により、上記各開閉弁の開閉動作による各ガスの供給の開始、停止や流量制御、プロセス温度やプロセス圧力の制御等が行われる。
【0030】
また、上記制御手段82は、これに接続されるユーザインターフェース(図示せず)を有しており、これはオペレータが装置を管理するためにコマンドの入出力操作等を行なうキーボードや、装置の稼働状況を可視化して表示するディスプレイ等からなっている。更に、通信回線を介して上記各制御のための通信を上記制御手段82に対して行なうようにしてもよい。
【0031】
次に、以上のように構成された成膜装置2を用いて行なわれる本発明の成膜方法(いわゆるALD成膜)について説明する。本発明方法では、ボロン含有ガスと窒化ガスとを交互に間欠的に供給するサイクルを1回以上行ってBN膜を形成する第1の工程と、シラン系ガスと炭化水素ガスと窒化ガスとを間欠的に供給するサイクルを1回以上行ってSiCN膜を形成する第2の工程とを行うことにより、ボロンと窒素とシリコンと炭素とを含む積層構造の薄膜(SiBCN膜)を形成する。
【0032】
<成膜方法の第1実施例>
まず、本発明方法の第1実施例について図3乃至図5も参照して説明する。図3は本発明の成膜方法の第1実施例を示すフローチャート、図4は本発明の成膜方法の第1実施例における各種ガスの供給のタイミングを示すタイミングチャート、図5は本発明の成膜方法の第1実施例によって形成される積層構造の薄膜を示す断面図である。まず、常温の多数枚、例えば50〜100枚の300mmのウエハWが載置された状態のウエハボート12を予め所定の温度になされた処理容器4内にその下方より上昇させてロードし、蓋部18でマニホールド8の下端開口部を閉じることにより容器内を密閉する。
【0033】
そして処理容器4内を真空引きして所定のプロセス圧力に維持すると共に、加熱手段80への供給電力を増大させることにより、ウエハ温度を上昇させてプロセス温度を維持する。上記BCl ガスをボロン含有ガス供給手段32から供給し、NH ガスを窒化ガス供給手段28から供給し、DCSガスをシラン系ガス供給手段30から供給し、C ガスを炭化水素ガス34から供給する。
【0034】
具体的には、BCl はガス分散ノズル42の各ガス噴射孔42Aから水平方向へ噴射され、NH ガスはガス分散ノズル38の各ガス噴射孔38Aから水平方向へ噴射され、また、DCSガスはガス分散ノズル40の各ガス噴射孔40Aから水平方向へ噴射され、またC ガスはガス分散ノズル44の各ガス噴射孔44Aから水平方向へ噴射される。
【0035】
具体的には、図3乃至図5に示すように、ボロン含有ガスと窒化ガスとを交互に間欠的に供給するサイクルを1回以上行ってBN膜を形成する第1の工程S1と、シラン系ガスと炭化水素ガスと窒化ガスとを間欠的に供給するサイクルを1回以上行ってSiCN膜を形成する第2の工程S2とを上記した順序で所定の回数だけ繰り返し行う。この際、各ガスの時間的に隣り合う供給期間の間には、処理容器4内の残留ガスを排除するパージ工程を行うのがよい。尚、このパージ工程を設けなくてもよい。また時間的に隣り合う同じガスの供給工程同士間が1サイクルとなる。これにより、回転しているウエハボート12に支持されているウエハWの表面に積層構造のSiBCN薄膜を形成する。
【0036】
具体的には、この第1実施例の第1工程S1では、処理容器4内を予め真空引きした状態でボロン含有ガスであるBCl と窒化ガスであるNH とが交互にパルス状に間欠的に供給される。あるパルス状のBCl の供給工程と次のBCl の供給工程との間が1サイクルであり、ここでは複数回、例えばx回(サイクル)繰り返して行う。上記”x”は1以上の整数である。BCl の供給工程(図4(A)参照)とNH の供給工程(図4(B)参照)との間には、上述のようにパージ工程を行う休止期間86を設け、このパージ工程の時に処理容器4内の残留ガスを排除する。このパージ工程は、全てのガスの供給を停止した状態で真空排気系72で処理容器4内の真空引きを継続的に行うようにしてもよいし、パージガスを供給しつつ処理容器4内を真空引きするようにしてもよいし、或いは両者を組み合わせるようにしてパージ工程を行うようにしてもよい。
【0037】
上記BCl 供給工程の時にウエハWの表面にBCl ガス分子が付着し、次にNH 供給工程でNH ガスを供給した時にこのNH が上記ウエハ表面に付着していたBCl と反応してBN(ボロンナイトライド)が生成されることになり、この操作がxサイクルだけ繰り返されてBN膜88が形成されることになる。
【0038】
この時のプロセス条件の一例は、BCl の供給工程の期間T1は、例えば5〜30秒程度の範囲内、例えば30秒程度、NH の供給工程の期間T2は、例えば15〜30秒程度の範囲内、例えば20秒程度、パージ工程を行う休止期間86の長さT3は、例えば1〜10秒程度、例えば8秒程度である。
【0039】
またBCl の流量は、例えば1000sccm程度、NH の流量は、例えば10000sccm程度である。またプロセス温度は、例えば500〜700℃の範囲内である。この場合、温度が500℃よりも低いと、成膜反応が十分に生じないのみならず成膜レートも小さくなり過ぎるので好ましくなく、また700℃よりも高いと、下層に形成されている各種の膜の特性が劣化するので好ましくない。ここで、より好ましいプロセス温度は550〜630℃の範囲内である。
【0040】
尚、ここでは各ガスの供給時には、処理容器4内の雰囲気を連続的に排気しているが、BCl ガスの供給工程の一部で、BCl ガスの処理容器4内への供給は継続的に行いつつ真空排気系72の圧力調整弁76を閉状態として処理容器4内の排気を一時的に停止してBCl ガスを貯め込むようにしたホールド期間を設けるようにしてもよい。このホールド期間t1(図4(A)参照)の長さは、BCl の供給工程の全体の長さの50〜300%程度の長さであり、供給工程の後半側で行うようにする。このホールド期間を設けることにより、ウエハWの表面に対するBCl ガスの吸着量を増加させて形成されるBN膜の厚さを増加させることが可能となる。
【0041】
上述のようにして第1の工程S1が終了したら、次に第2の工程S2を行う。この第2の工程では、処理容器4内を真空引きした状態で、ここではシラン系ガスであるDCSと炭化水素ガスであるC と窒化ガスであるNH とをこの順序で間欠的に互いに異なるタイミングで順に供給するようにしている。すなわち、ここでも各ガスはパルス状に間欠的に供給されており、最初にDCSが供給され、次にC ガスが供給され、最後にNH が供給され、このサイクルが繰り返し行われている。すなわち、あるパルス状のDCSの供給工程と次のDCSの供給工程との間が1サイクルであり、ここでは複数回、例えばy回(サイクル)繰り返して行う。上記”y”は1以上の整数である。
【0042】
この場合にも、DCSの供給工程(図4(C)参照)とC の供給工程(図4(D)参照)との間、C の供給工程(図4(D)参照)とNH の供給工程(図4(E)参照)との間及びNH の供給工程(図4(E)参照)とDCSの供給工程(図4(C)参照)との間には、前述と同様のパージ工程を行う休止期間90を設け、このパージ工程の時に処理容器4内の残留ガスを排除している。このパージ工程の態様は上記第1の場合と同じである。
【0043】
上記DCS供給工程の時にウエハWの表面にDCSガス分子が付着し、次にC 供給工程の時にこのC ガス分子が更に付着し、そしてNH 供給工程の時に上記NH ガスとウエハ表面に付着していたDCSガス及びC ガスが反応してSiCN(炭素含有シリコンナイトライド)が生成されることになり、この操作がyサイクルだけ繰り返されてSiCN膜92が形成されることになる。
【0044】
この時のプロセス条件の一例は、DCSの供給工程の期間T4は、例えば1〜5秒程度の範囲内、例えば3秒程度、C の供給工程の期間T5は、例えば1〜5秒程度の範囲内、例えば3秒程度、NH の供給工程の長さT6は、例えば15〜30秒程度の範囲内、例えば25秒程度、パージ工程を行う休止期間90の長さは、例えば1〜10秒程度の範囲内、例えば5秒程度である。ここで、上記C の供給工程の期間T5の長さを適宜選択することにより、ウェットエッチング耐性に影響を与える炭素含有量をコントロールすることができる。
【0045】
またDCSの流量は、例えば500〜2500sccmの範囲内、C の流量は、例えば2000〜5000sccmの範囲内、NH の流量は、例えば5000〜10000sccmの範囲内である。またプロセス温度は第1の工程と同じ、例えば500〜700℃の範囲内である。この場合、温度が500℃よりも低いと、成膜反応が十分に生じないのみならず成膜レートも小さくなり過ぎるので好ましくなく、また700℃よりも高いと、下層に形成されている各種の膜の特性が劣化するので好ましくない。ここで、より好ましいプロセス温度は550〜630℃の範囲内である。
【0046】
このようにして、第2の工程が終了したならば、この第1の工程と第2の工程とよりなる1サイクルを所定のサイクル数、例えばz回行ったかを判断する(S3)。尚、”z”は1以上の整数であり、z=1でもよい。上記判断の結果、所定のサイクル数zに達していない場合には(S3のNO)、上記第1の工程S1及び第2の工程S2を繰り返し行って図5に示すようにBN膜88及びSiCN膜92を交互に積層して行く。そして、所定のサイクル数zに達したならば(S3のYES)、成膜処理を終了することになる。
【0047】
これにより、図5に示すようなラミネート構造になされたSiBCN膜96が形成されることになる。尚、DCSとC とNH の各ガスをそれぞれこの順序で異なるタイミングで順に間欠的に供給するようにしたが、これに限定されず、DCSガスを最初に供給すると共に、他の2つのガスであるC とNH の内のいずれか一方のガスを上記DCSガスと同時に供給するようにしてもよい。例えばC ガスをDCSガスと同時供給するようにすればDCSとC の同時供給工程とNH の供給工程とが交互にパルス状に間欠的に行われることになる。
【0048】
以上のように形成されたSiBCN膜96は、例えば希釈フッ化水素に対するウェットエッチングレートが非常に小さくてウェットエッチング耐性が高く、誘電率も低いのみならず、リーク電流も抑制することができる。このように形成された積層構造のSiBCN膜96の比誘電率は、例えば4.5〜7.0未満程度であって低誘電率化が達成でき、従来用いていたSiN膜(比誘電率:7.0程度)の比誘電率と比較してかなり小さくすることができる。
【0049】
このように、本発明によれば、被処理体Wが収容されて真空引き可能になされた処理容器4内に、ボロン含有ガスと窒化ガスとシラン含有ガスと炭化水素ガスとを供給して被処理体の表面にボロンと窒素とシリコンと炭素を含む薄膜を形成する成膜方法において、ボロンと窒素とシリコンと炭素とを含む薄膜(SiBCN膜)の低誘電率化、ウェットエッチング耐性の向上及びリーク電流の低減化を達成することができる。
【0050】
<本発明方法による薄膜の評価>
次に、上述のように本発明の成膜方法によって形成された積層構造のSiBCN膜96について各種特性を求めたので、その評価結果について図6及び図7も参照して説明する。ここでは、先に説明した本発明の成膜方法の第1実施例を用いて積層構造のSiBCN膜を形成した。また、比較例として上記第1実施例においてC ガスを用いないで炭素を含有させない積層構造のSiBN膜を形成し、各種特性を測定した。図6は各膜の希フッ化水素に対するエッチング量及び比誘電率とリーク電流を示すグラフであり、図6(A)は各膜のエッチング量と比誘電率を示し、図6(B)は各膜の電界強度とリーク電流との関係を示す。
【0051】
図7は上記SiBCN膜を形成した時のサイクル数の成膜条件と、各特性の相対評価を示す表である。図7中で”x”、”y”はサイクル数を示している。ここでは図7に示すように、SiBCN膜を形成する際に、第1の工程のBN膜を形成するサイクル数xは”2”で、第2の工程のSiCN膜を形成するサイクル数yは”1”の場合と、BN膜を形成するサイクル数xは”1”で、第2の工程のSiCN膜を形成するサイクル数yは”2”の場合の2種類について作成した。
【0052】
また、第1の工程及び第2の工程を含む全体のサイクル数z(図3参照)は”1”である。更に、比較例のSiBN膜を形成する場合も、C ガスの供給を行っていない点以外は、上記第1実施例のSiBCN膜の形成と同じ態様で行った。従って、図6(A)に示すように(BN) (SiN) 膜と(BN) (SiN) 膜とを比較例として作成した。尚、プロセス温度は630℃に設定している。
【0053】
図6(A)において、図中の左側半分は比較例のSiBN膜の特性を示し、右側半分は本発明のSiBCN膜を示している。図6(A)の横軸には、ウエハボート12中の高さ方向におけるウエハ位置が示されており、ウエハボート12を高さ方向に5等分のゾーンに区画して上方より下方に向けて”T”(トップ)、TC(トップセンタ)、C(センタ)、CB(センタボトム)、B(ボトム)として表している。また各膜の比誘電率は”K”として示されている。
【0054】
ここで上記両膜は、共に比誘電率Kが”4.5”の場合と”5.5”の場合があった。すなわち、サイクル数xが”2”でサイクル数yが”1”の時が比誘電率Kは”4.5”であり、サイクル数xが”1”でサイクル数yが”2”の時が比誘電率Kは”5.5”であった。これにより炭素(C)の添加量は、比誘電率には関係しないことが判る。また、比誘電率の値に関しては、5以下になっており、従来の絶縁膜であるSiN膜の比誘電率である”7.0”よりもかなり低くなっていることから、低誘電率化が達成できていることが判る。また同一の比誘電率Kの場合を比較すると、比較例のSiBN膜よりも本発明のSiBCN膜の方がエッチング量が少なくてウェットエッチング耐性が高く、良好な特性を示していることが判る。
【0055】
また、本発明のSiBCN膜同士では、(BN) (SiCN) の方が(BN) (SiCN) よりもエッチング量が小さくてウェットエッチング耐性が高いことが判る。これに対して、比誘電率に関しては、上記の逆であり、(BN) (SiCN) の方が(BN) (SiCN) よりも低いことが判る。いずれにしても、上記両SiBCN膜の特性は良好な結果を示していることが判る。
【0056】
また、図6(B)に示すように、本発明の両膜は電界強度に対するリーク電流は低くなって良好な結果を示しており、特に(BN) (SiCN) は、(BN) (SiCN) よりもリーク電流は低くなっており、より良好な特性を示していることが判る。この結果、上記本発明の両膜は共に良好な結果を示しているので、サイクル数(繰り返し数)x、yの関係は、少なくとも”1/2≦x/y≦2”の関係式を満たすことにより、良好な特性のSiBCN膜が得られることが判る。
【0057】
<成膜レートの温度依存性の評価>
次に、本発明方法の成膜レートの温度依存性について実験を行ったので、その評価結果について説明する。ここでは先に説明した成膜方法を用いてSiBCN膜を形成した。ただしプロセス温度を450℃から650℃の範囲内で変化させている。図8は成膜レートの温度依存性を示すグラフである。図8では横軸に成膜温度(℃と1000/T:T=273.1+℃)をとり、縦軸に1サイクルの成膜レートをとっている。
【0058】
このグラフによれば、プロセス温度650℃で成膜レートはほぼ2Å/サイクルであるが、これから温度が低くなるに従って成膜レートは次第に小さくなってきており、500℃ではほぼ1.0Å/サイクルになっている。そして、温度が更に低くなると成膜レートは急激に小さくなってきており、温度450℃ではほぼ0.4Å/サイクルまで低下している。ここで、1.0Å/サイクルよりも成膜レートが小さくなり過ぎるとスループットが大幅に低下するので好ましくない。従って、プロセス温度の下限は500℃であり、より好ましく成膜レートが比較的大きいほぼ1.3Å/サイクル以上となる550℃以上であることが判る。また、プロセス温度が500℃よりも低い場合には、SiCN膜の形成が少なくなってBN膜の占める比率が多くなり過ぎ、この結果、膜質が低下するので好ましくない。
【0059】
<第2実施例>
次に本発明の成膜方法の第2実施例について説明する。図9は本発明の成膜方法の第2実施例を示すフローチャート、図10は本発明の成膜方法の第2実施例における中間工程の各種ガスの供給のタイミングを示すタイミングチャート、図11は本発明の成膜方法の第2実施例によって形成される積層構造の薄膜を示す断面図である。尚、先に説明した図3乃至図5に示す部分と同一部分については同一参照符号を付してその説明を省略する。
【0060】
すなわち、先に説明した本発明の成膜方法の第2実施例の場合には、図3に示したように第1の工程S1を行ったならば、次に第2の工程S2を行うようにしたが、これに限定されず、図9に示すように、上記第1の工程S1と第2の工程S2との間に中間工程S1−1を行うようにしてもよい。
【0061】
この中間工程S1−1では、上記シラン系ガスと上記窒化ガスとを交互に供給するサイクルを1回以上行ってSiN(シリコンナイトライド膜)を形成するようにしている。具体的には、図10に示すようにシラン系ガスであるDCS(図10(A)参照)とNH (図10(B)参照)とがパルス状に交互に繰り返すように供給され、SiN膜98が形成される。この結果、図11に示すように、BN膜88、SiN膜98、SiCN膜92の順序で繰り返される積層形のSiBCN膜96が形成されることになる。
【0062】
具体的には、この中間工程S1−1では、処理容器4内を予め真空引きした状態でシラン系ガスであるDCSと窒化ガスであるNH とが交互にパルス状に間欠的に供給される。あるパルス状のDCSの供給工程と次のDCSの供給工程との間が1サイクルであり、ここでは複数回、例えばm回(サイクル)繰り返して行う。上記”m”は1以上の整数である。DCSの供給工程(図10(A)参照)とNH の供給工程(図10(B)参照)との間には、上述のようにパージ工程を行う休止期間102を設け、このパージ工程の時に処理容器4内の残留ガスを排除する。このパージ工程は、全てのガスの供給を停止した状態で真空排気系72で処理容器4内の真空引きを継続的に行うようにしてもよいし、パージガスを供給しつつ処理容器4内を真空引きするようにしてもよいし、或いは両者を組み合わせるようにしてパージ工程を行うようにしてもよい。
【0063】
上記DCS供給工程の時にウエハWの表面にDCSガス分子が付着し、次にNH 供給工程でNH ガスを供給した時にこのNH が上記ウエハ表面に付着していたDCSと反応してSiN(シリコンナイトライド)が生成されることになり、この操作がmサイクルだけ繰り返されてSiN膜98が形成されることになる。
【0064】
この時のプロセス条件の一例は、DCSの供給工程の期間T7は、例えば1〜5秒程度の範囲内、例えば3秒程度、NH の供給工程の期間T8は、例えば15〜30秒程度の範囲内、例えば25秒程度、パージ工程を行う休止期間102の長さT9は、例えば1〜10秒程度、例えば5秒程度である。
【0065】
またDCSの流量は、例えば500〜2500sccm程度の範囲内、NH の流量は、例えば5000〜10000sccm程度の範囲内である。またプロセス温度は、例えば500〜700℃の範囲内である。この場合、温度が500℃よりも低いと、成膜反応が十分に生じないのみならず成膜レートも小さくなり過ぎるので好ましくなく、また700℃よりも高いと、下層に形成されている各種の膜の特性が劣化するので好ましくない。ここで、より好ましいプロセス温度は550〜630℃の範囲内である。
【0066】
この場合にも、先の第1実施例の場合と同様な作用効果を発揮することができる。特に、この場合には、炭化水素ガスであるC を供給する回数が減少するので、その分、膜中に含まれる炭素濃度を減少させて、その含有量を精度良くコントロールすることができる。
【0067】
尚、上記各実施例において、炭化水素ガスであるC を供給する際にも、図4(A)を参照して説明したBCl の供給時に行ったようなホールド期間を設けるようにし、膜中に含有される炭素(C)の含有量をコントロールするようにしてもよい。また、上記各実施例において行われたパージ工程の一部、或いは全部をなくして省略するようにしてもよい。
【0068】
また上記実施例では、ボロン含有ガスとしてBCl を用いたが、これに限定されず、上記ボロン含有ガスとしては、BCl 、B 、BF 、B(CH 、TEB、TDMAB、TMABよりなる群より選択される1以上のガスを用いることができる。
【0069】
また上記実施例では、窒化ガスとしてNH を用いたが、これに限定されず、上記窒化ガスとしては、アンモニア[NH ]、窒素[N ]、一酸化二窒素[N O]、一酸化窒素[NO]よりなる群より選択される1以上のガスを用いることができる。
【0070】
また上記実施例では、シラン系ガスとしてDCSを用いたが、これに限定されず、上記シラン系ガスとしては、ジクロロシラン(DCS)、ヘキサクロロジシラン(HCD)、モノシラン[SiH ]、ジシラン[Si ]、ヘキサメチルジシラザン(HMDS)、テトラクロロシラン(TCS)、ジシリルアミン(DSA)、トリシリルアミン(TSA)、ビスターシャルブチルアミノシラン(BTBAS)、ジイソプロピルアミノシラン(DIPAS)よりなる群より選択される1以上のガスを用いることができる。
【0071】
また上記実施例では、炭化水素ガスとしてC を用いたが、これに限定されず、上記炭化水素ガスとしては、アセチレン、エチレン、メタン、エタン、プロパン、ブタンよりなる群より選択される1以上のガスを用いることができる。
【0072】
また、ここでは被処理体として半導体ウエハを例にとって説明したが、この半導体ウエハにはシリコン基板やGaAs、SiC、GaNなどの化合物半導体基板も含まれ、更にはこれらの基板に限定されず、液晶表示装置に用いるガラス基板やセラミック基板等にも本発明を適用することができる。
【符号の説明】
【0073】
2 成膜装置
4 処理容器
12 ウエハボート(保持手段)
28 窒化ガス供給手段
30 シラン系ガス供給手段
32 ボロン含有ガス供給手段
34 炭化水素ガス供給手段
36 パージガス供給手段
38,40,42,44 ガス分散ノズル
72 真空排気系
80 加熱手段
82 制御手段
88 BN膜
92 SiCN膜
96,100 SiBCN膜
98 SiN膜
W 半導体ウエハ(被処理体)


【特許請求の範囲】
【請求項1】
被処理体が収容されて真空引き可能になされた処理容器内に、ボロン含有ガスと窒化ガスとシラン含有ガスと炭化水素ガスとを供給して前記被処理体の表面にボロンと窒素とシリコンと炭素を含む薄膜を形成する成膜方法において、
前記ボロン含有ガスと前記窒化ガスとを交互に間欠的に供給するサイクルを1回以上行ってBN膜を形成する第1の工程と、
前記シラン系ガスと前記炭化水素ガスと前記窒化ガスとを間欠的に供給するサイクルを1回以上行ってSiCN膜を形成する第2の工程とを有することを特徴とする成膜方法。
【請求項2】
前記第2の工程では、前記シラン系ガスと前記炭化水素ガスと前記窒化ガスとが互いに異なるタイミングで供給されることを特徴とする請求項1記載の成膜方法。
【請求項3】
前記第2の工程では、前記シラン系ガスが最初に供給されることを特徴とする請求項2記載の成膜方法。
【請求項4】
前記第2の工程では、前記シラン系ガスが最初に供給されると共に、前記炭化水素ガスと前記窒化ガスの内のいずれか一方のガスが前記シラン系ガスと同時に供給されることを特徴とする請求項1記載の成膜方法。
【請求項5】
前記第1の工程には、前記ボロン含有ガスの供給を行いつつ前記処理容器内の排気を停止させるホールド期間を有することを特徴とする請求項1乃至4のいずれか一項に記載の成膜方法。
【請求項6】
前記各ガスの時間的に隣り合う供給期間の間には、前記処理容器内の残留ガスを排除するパージ工程が行われることを特徴とする請求項1乃至5のいずれか一項に記載の成膜方法。
【請求項7】
前記第1の工程と前記第2の工程とよりなるサイクルを1回以上行うようにしたことを特徴とする請求項1乃至6のいずれか一項に記載の成膜方法。
【請求項8】
前記第1の工程と前記第2の工程との間には、前記シラン系ガスと前記窒化ガスとを交互に供給するサイクルを1回以上行ってSiN膜を形成する中間工程を行うことを特徴とする請求項1乃至7のいずれか一項に記載の成膜方法。
【請求項9】
前記各工程にけるプロセス温度は、500〜700℃の範囲内であることを特徴とする請求項1乃至8のいずれか一項に記載の成膜方法。
【請求項10】
前記第1の工程内のサイクル数xと前記第2の工程内のサイクル数yとの関係が”1/2≦x/y≦2”の関係式を満たすことを特徴とする請求項1乃至9のいずれか一項に記載の成膜方法。
【請求項11】
前記ボロン含有ガスは、BCl 、B 、BF 、B(CH 、TEB、TDMAB、TMABよりなる群より選択される1以上のガスであることを特徴とする請求項1乃至10のいずれか一項に記載の成膜方法。
【請求項12】
前記窒化ガスは、アンモニア[NH ]、窒素[N ]、一酸化二窒素[N O]、一酸化窒素[NO]よりなる群より選択される1以上のガスであることを特徴とする請求項1乃至11のいずれか一項に記載の成膜方法。
【請求項13】
前記シラン系ガスは、ジクロロシラン(DCS)、ヘキサクロロジシラン(HCD)、モノシラン[SiH ]、ジシラン[Si ]、ヘキサメチルジシラザン(HMDS)、テトラクロロシラン(TCS)、ジシリルアミン(DSA)、トリシリルアミン(TSA)、ビスターシャルブチルアミノシラン(BTBAS)、ジイソプロピルアミノシラン(DIPAS)よりなる群より選択される1以上のガスであることを特徴とする請求項1乃至12のいずれか一項に記載の成膜方法。
【請求項14】
前記炭化水素ガスは、アセチレン、エチレン、メタン、エタン、プロパン、ブタンよりなる群より選択される1以上のガスであることを特徴とする請求項1乃至13のいずれか一項に記載の成膜方法。
【請求項15】
被処理体に対して所定の薄膜を形成するための成膜装置において、
真空引き可能になされた縦型の筒体状の処理容器と、
前記被処理体を複数段に保持して前記処理容器内に挿脱される保持手段と、
前記処理容器の外周に設けられる加熱手段と、
前記処理容器内へシラン系ガスを供給するシラン系ガス供給手段と、
前記処理容器内へ窒化ガスを供給する窒化ガス供給手段と、
前記処理容器内へボロン含有ガスを供給するボロン含有ガス供給手段と、
前記処理容器内へ炭化水素ガスを供給する炭化水素ガス供給手段と、
請求項1乃至14のいずれか一項に記載の成膜方法を実行するように制御する制御手段と、
を備えたことを特徴とする成膜装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate


【公開番号】特開2013−21301(P2013−21301A)
【公開日】平成25年1月31日(2013.1.31)
【国際特許分類】
【出願番号】特願2012−87434(P2012−87434)
【出願日】平成24年4月6日(2012.4.6)
【出願人】(000219967)東京エレクトロン株式会社 (5,184)
【Fターム(参考)】