説明

記憶素子及び記憶装置

【課題】外部放射線に対し耐性を有し、誤動作なく安定した動作する信頼性の高い記憶素子の提供。
【解決手段】記憶素子は、情報を磁性体の磁化状態により保持する記憶層と、記憶層に記憶された情報の基準となる磁化を有する磁化固定層と、記憶層と上記磁化固定層の間に設けられる非磁性体による中間層とを有する。そして記憶層、中間層、磁化固定層を有する層構造の積層方向に流れる電流に伴って発生するスピントルク磁化反転を利用して記憶層の磁化を反転させることにより情報の記憶を行うとともに、記憶層は、Bを含有する強磁性層を含み、Bにふくまれる10Bの同位体比率が、自然界における19.9%よりも低くなっている。

【発明の詳細な説明】
【技術分野】
【0001】
本開示は、強磁性層の磁化状態を情報として記憶する記憶層と、磁化の向きが固定された磁化固定層とを有し、電流を流すことにより記憶層の磁化の向きを変化させる記憶素子及びこの記憶素子を備えた記憶装置に関する。
【先行技術文献】
【特許文献】
【0002】
【特許文献1】特開2003−17782号公報
【特許文献2】米国特許第6256223号明細書
【特許文献3】特開2008−227388号公報
【特許文献4】特開平9−321039号公報
【非特許文献】
【0003】
【非特許文献1】PHYs. Rev. B,54.9353(1996)
【非特許文献2】J. Magn. Mat.,159,L1(1996)
【非特許文献3】Nature Materials., 5, 210(2006)
【非特許文献4】神戸製鋼技報,Vol.53No.3(2003.12月),p23
【背景技術】
【0004】
モバイル端末から大容量サーバに至るまで、各種情報機器の飛躍的な発展に伴い、これを構成するメモリやロジックなどの素子においても高集積化、高速化、低消費電力化など、さらなる高性能化が追求されている。特に半導体不揮発性メモリの進歩は著しく、大容量ファイルメモリとしてのフラッシュメモリは、ハードディスクドライブを駆逐する勢いで普及が進んでいる。一方、コードストレージ用さらにはワーキングメモリへの展開を睨み、現在一般に用いられているNORフラッシュメモリ、DRAMなどを置き換えるべくFeRAM(Ferroelectric Random Access Memory)、MRAM(Magnetic Random Access Memory)、PCRAM(Phase-Change Random Access Memory)などの開発が進められている。これらのうち一部はすでに実用化されている。
【0005】
なかでもMRAMは、磁性体の磁化方向によりデータ記憶を行うために高速かつほぼ無限(1015回以上)の書換えが可能であり、すでに産業オートメーションや航空機などの分野で使用されている。MRAMはその高速動作と信頼性から、今後コードストレージやワーキングメモリへの展開が期待されているものの、現実には低消費電力化、大容量化が困難であるという問題を有している。
これはMRAMの記録原理、ほぼ直交する2種類のアドレス配線(ワード線、ビット線)にそれぞれ電流を流して、各アドレス配線から発生する電流磁場によって、アドレス配線の交点にある磁気記憶素子の磁性層の磁化を反転して情報の記録を行うという、すなわち配線から発生する電流磁界により磁化を反転させるという方式に起因する本質的な問題である。
【0006】
この問題の一つの解答として、電流磁界によらない記録、すなわち磁化反転方式が検討されている。なかでもスピントルク磁化反転に関する研究は活発である(たとえば、特許文献1、2、3、非特許文献1、2参照)。
スピントルク磁化反転の記憶素子は、MRAMと同じくMTJ(Magnetic Tunnel Junction)により構成されている場合が多い。この構成は、ある方向に固定された磁性層を通過するスピン偏極電子が、他の自由な(方向を固定されない)磁性層に進入する際にその磁性層にトルクを与えること(これをスピントランスファトルクとも呼ぶ)を利用したもので、あるしきい値以上の電流を流せば自由磁性層が反転する。0/1の書換えは電流の極性を変えることにより行う。
この反転のための電流の絶対値は0.1μm程度のスケールの素子で1mA以下である。 しかもこの電流値が素子体積に比例して減少するため、スケーリングが可能である。さらに、MRAMで必要であった記録用電流磁界発生用のワード線が不要であるため、セル構造が単純になるという利点もある。
【0007】
以下、スピントルク磁化反転を利用したMRAMを、ST−MRAM(Spin Torque-Magnetic Random Access Memory)と呼ぶ。スピントルク磁化反転は、またスピン注入磁化反転と呼ばれることもある。高速かつ書換え回数がほぼ無限大であるというMRAMの利点を保ったまま、低消費電力化、大容量化を可能とする不揮発メモリとして、ST−MRAMに大きな期待が寄せられている。
【発明の概要】
【発明が解決しようとする課題】
【0008】
ところで(従来型の)MRAMと比較して、ST−MRAMには記録原理の違いとそれに伴い記録電流が小さくなるという特性がある。
ここで注意すべき点は、記録電流が小さくなることにより、擾乱電流に対する耐性が低下する可能性があるということである。擾乱電流としては、たとえば放射線照射によって生じる電流が考えられる。すなわち、放射線、たとえばアルファ線、熱中性子、高エネルギー宇宙線の入射に伴う電子・正孔対の生成が電流を発生させ、これがスピントルク磁化反転に十分な電流値となった場合には情報が書き換えられてしまう可能性がある。
【0009】
この問題は、MRAM以外の半導体デバイスでは既に認識されており、たとえば放射線の発生源となる元素を基板やパッケージから除去する、あるいは放射線発生源となる元素を含む領域をアクティブ領域から遠ざける、などの工夫もなされている。(例えば特許文献4参照)。
【0010】
そこで本開示においては、放射線照射によって発生する内部電流によるデータの書き換え、あるいは素子内部のトンネルバリア層破壊などを防止し、放射線照射の環境下においても安定して動作する記憶素子、並びにこの記憶素子を有する記憶装置を提供することを目的とする。
【課題を解決するための手段】
【0011】
本開示の記憶素子は、情報を磁性体の磁化状態により保持する記憶層と、上記記憶層に記憶された情報の基準となる磁化を有する磁化固定層と、上記記憶層と上記磁化固定層の間に設けられる非磁性体による中間層とを有し、上記記憶層、上記中間層、上記磁化固定層を有する層構造の積層方向に流れる電流に伴って発生するスピントルク磁化反転を利用して上記記憶層の磁化を反転させることにより情報の記憶を行うとともに、上記記憶層は、Bを含有する強磁性層を含み、上記Bにふくまれる10Bの同位体比率が、自然界における19.9%よりも低くなっている。
【0012】
本開示の記憶装置は、情報を磁性体の磁化状態により保持する記憶素子と、互いに交差する2種類の配線とを備える。上記記憶素子は、情報を磁性体の磁化状態により保持する記憶層と、該記憶層に記憶された情報の基準となる磁化を有する磁化固定層と、上記記憶層と上記磁化固定層の間に設けられる非磁性体による中間層とを有し、上記記憶層、上記中間層、上記磁化固定層を有する層構造の積層方向に流れる電流に伴って発生するスピントルク磁化反転を利用して上記記憶層の磁化を反転させることにより情報の記憶を行うとともに、上記記憶層はFe、Coの少なくとも一方およびBを含有し、上記Bにふくまれる10Bの同位体比率が、自然界における19.9%よりも低くなっており、上記2種類の配線の間に上記記憶素子が配置され、上記2種類の配線を通じて、上記記憶素子に上記積層方向の電流が流れ、これに伴ってスピントルク磁化反転が起こる。
【0013】
このような本開示では、放射線照射によって発生する内部電流によるデータの書き換え、あるいは素子内部のトンネルバリア層破壊などを防止することができる。
【発明の効果】
【0014】
本開示によれば、記憶層、磁化固定層等に用いられる材料の外部放射線の吸収効率が低められていることから、素子内部の放射線の発生を抑制し、過剰な電流が発生する確率の低い記憶素子を構成することができる。
これにより、動作エラーを低減させることができ、安定して動作する、信頼性の高いメモリを実現することができる。
また、放射線によるエラー発生を気にすることなく書き込み電流を低減させることができ、記憶素子に書き込みを行う際の消費電力を低減することが可能になる。
従って、記憶装置全体の消費電力を低減することが可能になる。
【図面の簡単な説明】
【0015】
【図1】実施の形態の記憶装置の概略構成の斜視図である。
【図2】実施の形態の記憶装置の断面図である。
【図3】実施の形態の記憶素子の層構造を示す断面図である。
【図4】実施の形態の記憶素子の層構造の組成を示す断面図である。
【発明を実施するための形態】
【0016】
以下、本開示の実施の形態を次の順序で説明する。
<1.実施の形態の記憶装置の構成>
<2.実施の形態の記憶素子>
<3.実施の形態の具体的構成>
【0017】
<1.実施の形態の記憶装置の構成>

まず、本開示の実施の形態となる記憶装置の構成について説明する。
実施の形態の記憶装置の模式図を、図1及び図2に示す。図1は斜視図、図2は断面図である。
【0018】
図1に示すように、実施の形態の記憶装置は、互いに直交する2種類のアドレス配線(例えばワード線とビット線)の交点付近に、磁化状態で情報を保持することができるST−RAMによる記憶素子3が配置されて成る。
即ち、シリコン基板等の半導体基体10の素子分離層2により分離された部分に、各記憶装置を選択するための選択用トランジスタを構成する、ドレイン領域8、ソース領域7、並びにゲート電極1が、それぞれ形成されている。このうち、ゲート電極1は、図中前後方向に延びる一方のアドレス配線(ワード線)を兼ねている。
【0019】
ドレイン領域8は、図1中左右の選択用トランジスタに共通して形成されており、このドレイン領域8には、配線9が接続されている。
そして、ソース領域7と、上方に配置された、図1中左右方向に延びるビット線6との間に、スピントルク磁化反転により磁化の向きが反転する記憶層を有する記憶素子3が配置されている。この記憶素子3は、例えば磁気トンネル接合素子(MTJ素子)等により構成される。
【0020】
図2に示すように、記憶素子3は2つの磁性層15、17を有する。この2層の磁性層15、17のうち、一方の磁性層を磁化M15の向きが固定された磁化固定層15として、他方の磁性層を磁化M17の向きが変化する磁化自由層即ち記憶層17とする。
また、記憶素子3は、ビット線6と、ソース領域7とに、それぞれ上下のコンタクト層4を介して接続されている。
これにより、2種類のアドレス配線1、6を通じて、記憶素子3に上下方向の電流を流して、スピントルク磁化反転により記憶層17の磁化M17の向きを反転させることができる。
【0021】
このような記憶装置では、選択トランジスタの飽和電流以下の電流で書き込みを行う必要があり、トランジスタの飽和電流は微細化に伴って低下することが知られているため、記憶装置の微細化のためには、スピントランスファの効率を改善して、記憶素子3に流す電流を低減させることが好適である。
【0022】
ところでST−MRAMにおいては、記憶層17および磁化固定層15に用いられる磁性体としてFeCoB(鉄コバルトホウ素)合金を用いることが有効である。この材料は磁気抵抗変化率その他諸特性を向上させるため、ST−MRAMに非常に好ましい材料であるが、放射線耐性の観点で考慮すべき問題を含んでいる。
ST−MRAMで用いられるFeCoBには、10%ないし40%のホウ素を含むことが考えられるが、ホウ素には質量数10と質量数11の2種類の同位体が存在する(以下それぞれ10B、11Bとする)。このうち、自然界に19.9%と高い割合で存在する10Bは、中性子の吸収断面積が非常に大きく、この特性を利用して原子炉における制御棒材料として用いられることもある。
【0023】
この10Bは自然界に存在する低エネルギー中性子を効率よく吸収することにより核分裂を起こし、リチウム、アルファ線、ガンマ線を放出する。これら発生した二次放射線がデバイス内に電子正孔対を発生させ、電流を発生させる起源となりうる。
このため、10Bを大量に含有する材料を用いたST−MRAMは、記録電流以上の電流によるデータの書き換えなどのソフトエラー、あるいはトンネルバリア破壊などのハードエラーが発生する確率が高くなる虞がある。
【0024】
本実施の形態では、記憶層17はホウ素を含み、ホウ素の同位体である10Bの比率が19.9%よりも小さくなる構成としている。
また、記憶層17はCoとFeの少なくとも一方およびホウ素を含み、ホウ素の同位体である10Bの比率が19.9%よりも小さくなる構成としている。
【0025】
<2.実施の形態の記憶素子>

つぎに本開示の実施の形態となる記憶素子の概要について説明する。
本開示の実施の形態は、前述したスピントルク磁化反転により、記憶素子の記憶層の磁化の向きを反転させて、情報の記録を行うものである。
記憶層は、強磁性層を含む磁性体により構成され、情報を磁性体の磁化状態(磁化の向き)により保持するものである。
記憶素子3は、例えば図3に一例を示す層構造とされ、少なくとも2つの強磁性体層としての記憶層17、磁化固定層15を備え、またその2つの磁性層の間の中間層16を備える。
【0026】
記憶層17は、膜面に垂直な磁化を有し、情報に対応して磁化の向きが変化される。
磁化固定層15は、記憶層17に記憶された情報の基準となる、ある方向に固定された磁化を有する。
中間層16は、非磁性体であって、記憶層17と磁化固定層15の間に設けられる。
そして記憶層17、中間層16、磁化固定層15を有する層構造の積層方向にスピン偏極した電子を注入することにより、記憶層17の磁化の向きが変化して、記憶層17に対して情報の記録が行われる。
また、磁化固定層15の下には下地層14が形成されている。記憶層17の上(つまり記憶層17から見て中間層16とは反対側)には酸化物キャップ層18が形成されている。
下地層14およびキャップ層18としては、Ta、Ti、W、Ru等各種金属およびTiN等の導電性窒化物を用いることができる。また、下地層14およびキャップ層18は単層で用いても良いし、異なる材料を複数積層しても良い。
【0027】
ここでスピントルク磁化反転について簡単に説明する。
電子は2種類のスピン角運動量をもつ。仮にこれを上向き、下向きと定義する。非磁性体内部では両者が同数であり、強磁性体内部では両者の数に差がある。記憶素子3を構成する2層の強磁性体である磁化固定層15及び記憶層17において、互いの磁気モーメントの向きが反方向状態のときに、電子を磁化固定層15から記憶層17への移動させた場合について考える。
【0028】
磁化固定層15は、高い保磁力のために磁気モーメントの向きが固定された固定磁性層である。
磁化固定層15を通過した電子はスピン偏極、すなわち上向きと下向きの数に差が生じる。非磁性層である中間層16の厚さが充分に薄く構成されていると、磁化固定層15の通過によるスピン偏極が緩和して通常の非磁性体における非偏極(上向きと下向きが同数)状態になる前に他方の磁性体、すなわち記憶層17に電子が達する。
記憶層17では、スピン偏極度の符号が逆になっていることにより、系のエネルギーを下げるために一部の電子は反転、すなわちスピン角運動量の向きをかえさせられる。このとき、系の全角運動量は保存されなくてはならないため、向きを変えた電子による角運動量変化の合計と等価な反作用が記憶層17の磁気モーメントにも与えられる。
電流すなわち単位時間に通過する電子の数が少ない場合には、向きを変える電子の総数も少ないために記憶層17の磁気モーメントに発生する角運動量変化も小さいが、電流が増えると多くの角運動量変化を単位時間内に与えることができる。
【0029】
角運動量の時間変化はトルクであり、トルクがあるしきい値を超えると記憶層17の磁気モーメントは歳差運動を開始し、その一軸異方性により180度回転したところで安定となる。すなわち反方向状態から同方向状態への反転が起こる。
磁化が同方向状態にあるとき、電流を逆に記憶層17から磁化固定層15へ電子を送る向きに流すと、今度は磁化固定層15で反射される際にスピン反転した電子が記憶層17に進入する際にトルクを与え、反方向状態へと磁気モーメントを反転させることができる。ただしこの際、反転を起こすのに必要な電流量は、反方向状態から同方向状態へと反転させる場合よりも多くなる。
【0030】
磁気モーメントの同方向状態から反方向状態への反転は直感的な理解が困難であるが、磁化固定層15が固定されているために磁気モーメントが反転できず、系全体の角運動量を保存するために記憶層17が反転する、と考えてもよい。このように、0/1の記録は、磁化固定層15から記憶層17の方向またはその逆向きに、それぞれの極性に対応する、あるしきい値以上の電流を流すことによって行われる。
情報の読み出しは、従来型のMRAMと同様、磁気抵抗効果を用いて行われる。すなわち上述の記録の場合と同様に膜面垂直方向に電流を流す。そして、記憶層17の磁気モーメントが、磁化固定層15の磁気モーメントに対して同方向であるか反方向であるかに従い、素子の示す電気抵抗が変化する現象を利用する。
【0031】
磁化固定層15と記憶層17の間の中間層16として用いる材料は金属でも絶縁体でも構わないが、より高い読み出し信号(抵抗の変化率)が得られ、かつより低い電流によって記録が可能とされるのは、中間層16として絶縁体を用いた場合である。このときの素子を強磁性トンネル接合(Magnetic Tunnel Junction:MTJ)と呼ぶ。
【0032】
スピントルク磁化反転によって、磁性層の磁化の向きを反転させるときに、必要となる電流の閾値Icは、磁性層の磁化容易軸が面内方向であるか、垂直方向であるかによって異なる。
本実施の形態の記憶素子3は垂直磁化型であるが、面内磁化型の記憶素子の場合における磁性層の磁化の向きを反転させる反転電流をIc_paraとすると、
同方向から逆方向(なお、同方向、逆方向とは、磁化固定層の磁化方向を基準としてみた記憶層の磁化方向)に反転させる場合、
Ic_para=(A・α・Ms・V/g(0)/P)(Hk+2πMs)
となり、逆方向から同方向に反転させる場合、
Ic_para=−(A・α・Ms・V/g(π)/P)(Hk+2πMs)
となる。(以上を式(1)とする)
【0033】
一方、垂直磁化型の記憶素子3の反転電流をIc_perpとすると、同方向から逆方向に反転させる場合、
Ic_perp=(A・α・Ms・V/g(0)/P)(Hk−4πMs)
となり、逆方向から同方向に反転させる場合、
Ic_perp=−(A・α・Ms・V/g(π)/P)(Hk−4πMs)
となる。(以上を式(2)とする)
【0034】
ただし、Aは定数、αはダンピング定数、Msは飽和磁化、Vは素子体積、Pはスピン分極率、g(0)、g(π)はそれぞれ同方向時、逆方向時にスピントルクが相手の磁性層に伝達される効率に対応する係数、Hkは磁気異方性である(非特許文献3参照)。
【0035】
上記各式において、垂直磁化型の場合の(Hk−4πMs)と面内磁化型の場合の(Hk+2πMs)とを比較すると、垂直磁化型が低記録電流化により適していることが理解できる。
【0036】
本実施の形態では、磁化状態により情報を保持することができる磁性層(記憶層17)と、磁化の向きが固定された磁化固定層15とを有する記憶素子3を構成する。
メモリとして存在し得るためには、書き込まれた情報を保持することができなければならない。情報を保持する能力の指標として、熱安定性の指標Δ(=KV/kBT)の値で判断される。このΔは、下記式(3)により表される。
【0037】
Δ =K・V/kB・T=Ms・V・Hk・(1/2kB・T) 式(3)

ここで、Hk:実効的な異方性磁界、kB:ボルツマン定数、T:温度、Ms:飽和磁化量、V:記憶層17の体積、K:異方性エネルギーである。
実効的な異方性磁界Hkには、形状磁気異方性、誘導磁気異方性、結晶磁気異方性等の影響が取り込まれており、単磁区の一斉回転モデルを仮定した場合、これは保磁力と同等となる。
【0038】
熱安定性の指標Δと電流の閾値Icとは、トレードオフの関係になることが多い。そのため、メモリ特性を維持するには、これらの両立が課題となることが多い。
記憶層17の磁化状態を変化させる電流の閾値は、実際には、例えば記憶層17の厚さが2nmであり、平面パターンが100nm×150nmの略楕円形のTMR素子において、+側の閾値+Ic=+0.5mAであり、−側の閾値−Ic=−0.3mAであり、その際の電流密度は約3.5×106A/cm2である。これらは、上記の式(1)にほぼ一致する。
【0039】
これに対して、電流磁場により磁化反転を行う通常のMRAMでは、書き込み電流が数mA以上必要となる。
従って、ST−MRAMの場合には、上述のように書き込み電流の閾値が充分に小さくなるため、集積回路の消費電力を低減させるために有効であることが分かる。
また、通常のMRAMで必要とされる、電流磁界発生用の配線が不要となるため、集積度においても通常のMRAMに比較して有利である。
【0040】
そして、スピントルク磁化反転を行う場合には、記憶素子3に直接電流を流して情報の書き込み(記録)を行うことから、書き込みを行う記憶素子3を選択するために、記憶素子3を選択トランジスタと接続して記憶装置を構成する。
本実施の形態では、記憶層17はCoとFeの少なくとも一方とB(ホウ素)を含む磁性層である。
さらに、選択トランジスタの飽和電流値を考慮して、記憶層17と磁化固定層15との間の非磁性の中間層16として、絶縁体から成るトンネル絶縁層を用いて磁気トンネル接合(MTJ)素子を構成する。
トンネル絶縁層を用いて磁気トンネル接合(MTJ)素子を構成することにより、非磁性導電層を用いて巨大磁気抵抗効果(GMR)素子を構成した場合と比較して、磁気抵抗変化率(MR比)を大きくすることができ、読み出し信号強度を大きくすることができるためである。
【0041】
そして、特に、このトンネル絶縁層としての中間層16の材料として、酸化マグネシウム(MgO)を用いることにより、磁気抵抗変化率(MR比)を大きくすることができる。
また、一般に、スピントランスファの効率はMR比に依存し、MR比が大きいほど、スピントランスファの効率が向上し、磁化反転電流密度を低減することができる。
従って、トンネル絶縁層の材料として酸化マグネシウムを用い、同時に上記の記憶層17を用いることにより、スピントルク磁化反転による書き込み閾値電流を低減することができ、少ない電流で情報の書き込み(記録)を行うことができる。また、読み出し信号強度を大きくすることができる。
これにより、MR比(TMR比)を確保して、スピントルク磁化反転による書き込み閾値電流を低減することができ、少ない電流で情報の書き込み(記録)を行うことができる。また、読み出し信号強度を大きくすることができる。
【0042】
このようにトンネル絶縁層を酸化マグネシウム(MgO)膜により形成する場合には、MgO膜が結晶化していて、001方向に結晶配向性を維持していることがより望ましい。 なお、本実施の形態において、記憶層17と磁化固定層15との間の中間層16(トンネル絶縁層)は、酸化マグネシウムから成る構成とする他にも、例えば酸化アルミニウム、窒化アルミニウム、SiO2、Bi23、MgF2、CaF、SrTiO2、AlLaO3、Al−N−O等の各種の絶縁体、誘電体、半導体を用いて構成することもできる。
【0043】
トンネル絶縁層の面積抵抗値は、スピントルク磁化反転により記憶層17の磁化の向きを反転させるために必要な電流密度を得る観点から、数十Ωμm2程度以下に制御する必要がある。
そして、MgO膜から成るトンネル絶縁層では、面積抵抗値を上述の範囲とするために、MgO膜の膜厚を1.5nm以下に設定する必要がある。
また、記憶層17の磁化の向きを、小さい電流で容易に反転できるように、記憶素子3を小さくすることが望ましい。
従って、好ましくは、記憶素子3の面積を0.01μm2以下とする。
【0044】
ここで本開示における記憶層17に含まれるホウ素の同位体比率の影響について説明する。
ホウ素は自然界において、同位元素10Bを19.9%含んでいる。この10Bは、宇宙線が大気中において生成する熱中性子の吸収断面積が大きいため、これを効率よく吸収する。これに伴って以下の核変換反応が起こる。
10B+n→7Li+4He+γ線
この7Liあるいは4He(α線)が半導体領域に入射することにより、電子・正孔対が発生し、電流が流れることにより、データが書き換えられる虞がある。
【0045】
そこで本開示においては、Bの同位体である10Bに関し、自然界における存在比率である19.9%よりも小さくなるように調整されている。これにより放射線の発生確率を低下させ、記憶素子3としての動作エラー発生を防止することが可能となる。
また、本開示の実施の形態としての記憶層17および磁化固定層15に用いられる磁性層には、Co、Fe、B以外の元素を添加することも可能である。
異種元素の添加により、拡散の防止による耐熱性の向上や磁気抵抗効果の増大、平坦化に伴う絶縁耐圧の増大などの効果が得られる。この場合の添加元素の材料としては、C、N、O、F、Mg、Si、P、Ti、V、Cr、Mn、Ni、Cu、Ge、Nb、Mo、Ru、Rh、Pd、Ag、Ta、W、Ir、Pt、Au、Zr、Hf、Re、Osまたはそれらの合金を用いることができる。
【0046】
なお、本開示における記憶層17は組成の異なる他の強磁性層を直接積層させることも可能である。また、強磁性層と軟磁性層とを積層させたり、複数層の強磁性層を軟磁性層や非磁性層を介して積層させたりすることも可能である。このように積層させた場合でも、本開示でいう効果が得られる。
特に複数層の強磁性層を非磁性層に介して積層させた構成としたときには、強磁性層の層間の相互作用の強さを調整することが可能になるため、記憶素子3の寸法がサブミクロン以下になっても、磁化反転電流が大きくならないように抑制することが可能になるという効果が得られる。この場合の非磁性層の材料としては、Ru、Os、Re、Ir、Au、Ag、Cu、Al、Bi、Si、B、C、Cr、Ta、Pd、Pt、Zr、Hf、W、Mo、Nbまたはそれらの合金を用いることができる。
【0047】
磁化固定層15及び記憶層17のそれぞれの膜厚は、0.5nm〜30nmであることが好ましい。
記憶素子3のその他の構成は、スピントルク磁化反転により情報を記録する記憶素子3の従来公知の構成と同様とすることができる。
磁化固定層15は、強磁性層のみにより、或いは反強磁性層と強磁性層の反強磁性結合を利用することにより、その磁化の向きが固定された構成とすることが出来る。
反強磁性層の材料としては、FeMn合金、PtMn合金、PtCrMn合金、NiMn合金、IrMn合金、NiO、Fe23等の磁性体を挙げることができる。
また、これらの磁性体に、Ag、Cu、Au、Al、Si、Bi、Ta、B、C、O、N、Pd、Pt、Zr、Hf、Ir、W、Mo、Nb等の非磁性元素を添加して、磁気特性を調整したり、その他の結晶構造や結晶性や物質の安定性等の各種物性を調整したりすることができる。
【0048】
また、磁化固定層15は、単層の強磁性層から成る構成、或いは複数層の強磁性層を非磁性層を介して積層した積層フェリピン構造とすることが出来る。
積層フェリピン構造の磁化固定層15を構成する強磁性層の材料としては、Co、CoFe、FeCoB等を用いることができる。また、非磁性層の材料としては、Ru、Re、Ir、Os等を用いることができる。
【0049】
本開示における記憶層17にホウ素が含まれる場合には、その同位体である10Bに関し、自然界における存在比率である19.9%よりも小さくなるように調整されている。これにより放射線の発生確率を低下させ、エラー発生を防止することが可能となる。また、記憶素子3の膜構成は、記憶層17が磁化固定層15の下側に配置される構成でも問題ない。
さらに、本実施の形態において、中間層16を、酸化マグネシウム層とした場合には、磁気抵抗変化率(MR比)を高くすることができる。
このようにMR比を高くすることによって、スピン注入の効率を向上して、記憶層17の磁化M1の向きを反転させるために必要な電流密度を低減することができる。
本実施の形態の記憶素子3は、下地層14からキャップ層18までを真空装置内で連続的に形成して、その後エッチング等の加工により記憶素子3のパターンを形成することにより、製造することができる。
【0050】
上述の本実施の形態によれば、記憶層17、磁化固定層15等に用いられる材料の中性子の吸収効率が低められていることから、放射線の発生を抑制し、過剰な電流が発生する確率の低い記憶素子3を構成することができる。
これにより、動作エラーを低減させることができ、安定して動作する、信頼性の高い記憶装置を実現することができる。
また、放射線によるエラー発生を気にすることなく書き込み電流を低減させることができ、記憶素子3に書き込みを行う際の消費電力を低減することが可能になる。
従って、記憶装置全体の消費電力を低減することが可能になり、情報保持特性が優れた、安定して動作する信頼性の高い記憶装置を実現することができる。
【0051】
また、図3に示した記憶素子3を備え、図1に示した構成の記憶装置は、製造する際に、一般の半導体MOS形成プロセスを適用できるという利点を有している。
従って、本実施の形態の記憶装置を、汎用メモリとして適用することが可能になる。
【0052】
<3.実施の形態の具体的構成>

ここで、本実施の形態についてより具体的に説明する。
MRAMおよびST−MRAMは、CMOS回路を有する半導体基板の上に記憶層17部分等を形成させることで作製することが可能である。本実施の形態ではあらかじめ用意されたCMOS基板(ST−MRAMとして動作させられるように設計した回路構成を有する)を用い、その上に図3に示した構成の記憶素子3を形成する。
具体的には、図3に示した構成の記憶素子3において、各層の材料及び膜厚を次のように選定する。
図4に示すように、
・下地層14:膜厚10nmのTa膜と膜厚25nmのRu膜の積層膜
・磁化固定層15:膜厚2.5nmのFeCoB膜
・中間層(トンネル絶縁層)16:膜厚0.9nmの酸化マグネシウム膜
・記憶層17:膜厚0.8nmのFeCoB膜
・キャップ層18:膜厚5nmのTa膜
上記膜構成で、記憶層17および磁化固定層15の強磁性層におけるFeCoBの組成はFe64%−Co16%−B20%である。
酸化マグネシウム(MgO)膜から成る中間層16はRFマグネトロンスパッタ法を用いて成膜し、その他の膜はDCマグネトロンスパッタ法を用いて成膜する。
【0053】
さらに、記憶素子3の各層を成膜した後に、磁場中熱処理炉で、300℃・2時間の熱処理を行う。
ここでマグネトロンスパッタで用いるスパッタリングターゲットのうち、FeCoBターゲットに関しては、純度99.9%のCoおよびFe、および同位体分離により10B濃度を10%に低下させたBを、上記組成比になるよう秤量調整し、焼結させることによって作製した。これにより、Bにふくまれる10Bの同位体比率が、自然界における19.9%よりも低くなっている。
同位体分離の方法として、ここでは化学交換蒸留法、すなわち錯化材への11Bの溶解度が10Bよりも小さいことを利用して分離精製を繰り返す方法を採用した(非特許文献4参照)。
つぎにスパッタリングによる成膜を行った後、フォトリソグラフィによる素子パターニング、反応性イオンエッチングによる加工、素子分離埋め込み、上部電極配線等の工程を得たのち、記憶装置として機能しうる部分をすべて備えたST−MRAMを完成させる。
ここで、加工されたビットは直径50nmの円筒形とする。
以上の手順により作製した記憶素子3においては、放射線の発生による電流の発生が抑制されるために、素子の動作エラーの発生する確率が低下していると期待される。
【0054】
以上実施の形態について説明してきたが、本開示では、上述の各実施の形態で示した記憶素子3の膜構成に限らず、様々な膜構成を採用することが可能である。
例えば実施の形態では、磁化固定層15をFeCoBとしたが、実施の形態に限定されるものではなく、本開示の要旨を逸脱しない範囲でその他様々な構成が取り得る。
また、実施の形態では、単一の下地、キャップ材料、記憶素子形状しか示していないが、それらに限定されるものではなく、本開示の要旨を逸脱しない範囲でその他様々な構成が取り得る。
また実施の形態では、磁化固定層15は単層であったが、2層の強磁性層と非磁性層から成る積層フェリピン構造を用いても良い。また、さらに、積層フェリピン構造膜に反強磁性膜を付与した構造でもよい。
また、記憶素子3の膜構成は、記憶層17が磁化固定層15の上側に配置される構成でも、下側に配置される構成でも全く問題はない。
【0055】
なお、本開示の技術は以下のような構成を採ることもできる。
(1)情報を磁性体の磁化状態により保持する記憶層と、
上記記憶層に記憶された情報の基準となる磁化を有する磁化固定層と、
上記記憶層と上記磁化固定層の間に設けられる非磁性体による中間層とを有し、
上記記憶層、上記中間層、上記磁化固定層を有する層構造の積層方向に流れる電流に伴って発生するスピントルク磁化反転を利用して上記記憶層の磁化を反転させることにより情報の記憶を行うとともに、
上記記憶層は、Bを含有する強磁性層を含み、
上記Bにふくまれる10Bの同位体比率が、自然界における19.9%よりも低くなっている記憶素子。
(2)上記記憶層は、Fe、Coの少なくとも一方を含有する合金領域を含んでいる上記(1)に記載の記憶素子。
(3)上記記憶層及び上記磁化固定層は、膜面に垂直な磁化を有する上記(1)又は(2)に記載の記憶素子。
【符号の説明】
【0056】
1 ゲート電極、2 素子分離層、3 記憶素子、4 コンタクト層、6 ビット線、7 ソース領域、8 ドレイン領域、9 配線、10 半導体基体、14 下地層、15 磁化固定層、16 中間層、17 記憶層、18 キャップ層

【特許請求の範囲】
【請求項1】
情報を磁性体の磁化状態により保持する記憶層と、
上記記憶層に記憶された情報の基準となる磁化を有する磁化固定層と、
上記記憶層と上記磁化固定層の間に設けられる非磁性体による中間層とを有し、
上記記憶層、上記中間層、上記磁化固定層を有する層構造の積層方向に流れる電流に伴って発生するスピントルク磁化反転を利用して上記記憶層の磁化を反転させることにより情報の記憶を行うとともに、
上記記憶層は、Bを含有する強磁性層を含み、
上記Bにふくまれる10Bの同位体比率が、自然界における19.9%よりも低くなっている記憶素子。
【請求項2】
上記記憶層は、Fe、Coの少なくとも一方を含有する合金領域を含んでいる請求項1に記載の記憶素子。
【請求項3】
上記記憶層及び上記磁化固定層は、膜面に垂直な磁化を有する請求項2に記載の記憶素子。
【請求項4】
情報を磁性体の磁化状態により保持する記憶素子と、
互いに交差する2種類の配線とを備え、
上記記憶素子は、情報を磁性体の磁化状態により保持する記憶層と、該記憶層に記憶された情報の基準となる磁化を有する磁化固定層と、上記記憶層と上記磁化固定層の間に設けられる非磁性体による中間層とを有し、上記記憶層、上記中間層、上記磁化固定層を有する層構造の積層方向に流れる電流に伴って発生するスピントルク磁化反転を利用して上記記憶層の磁化を反転させることにより情報の記憶を行うとともに、上記記憶層はFe、Coの少なくとも一方およびBを含有し、上記Bにふくまれる10Bの同位体比率が、自然界における19.9%よりも低くなっており、
上記2種類の配線の間に上記記憶素子が配置され、
上記2種類の配線を通じて、上記記憶素子に上記積層方向の電流が流れ、これに伴ってスピントルク磁化反転が起こる記憶装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate


【公開番号】特開2012−253207(P2012−253207A)
【公開日】平成24年12月20日(2012.12.20)
【国際特許分類】
【出願番号】特願2011−124945(P2011−124945)
【出願日】平成23年6月3日(2011.6.3)
【出願人】(000002185)ソニー株式会社 (34,172)
【Fターム(参考)】