説明

電子材料用洗浄水、電子材料の洗浄方法及びガス溶解水の供給システム

【課題】従来のガス溶解水に比べて格段に高い洗浄効果を発揮する電子材料用洗浄水を提供する。
【解決手段】溶存ガスとして酸素とアルゴンとを含むガス溶解水よりなる電子材料用洗浄水であって、溶存酸素濃度が8mg/L以上であり、溶存酸素ガス量と溶存アルゴンガス量との合計に対して2体積%以上の溶存アルゴンガスを含む電子材料用洗浄水。この電子材料用洗浄水を用いて電子材料を洗浄する方法。酸素/アルゴンガス溶解水よりなる本発明の電子材料用洗浄水は、溶存ガス量が少なく、また、使用する薬品量も少ないものであっても高い洗浄効果を得ることができることから、安全に容易かつ安価に製造することができる。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、半導体、液晶用基板等の電子材料(電子部品や電子部材等)をウェット洗浄するための電子材料用洗浄水と、この電子材料用洗浄水を用いた電子材料の洗浄方法、並びにこの電子材料用洗浄水の製造方法に関する。
本発明はまた、この電子材料用洗浄水としてのガス溶解水の供給システムに関する。
【背景技術】
【0002】
半導体用シリコン基板、液晶用ガラス基板、フォトマスク用石英基板などの電子材料の表面から、微粒子、有機物、金属などを除去するために、いわゆるRCA洗浄法と呼ばれる過酸化水素をベースとする濃厚薬液による高温でのウェット洗浄が行われていた。RCA洗浄法は、電子材料の表面の金属などを除去するために有効な方法であるが、高濃度の酸、アルカリや過酸化水素を多量に使用するために、廃液中にこれらの薬液が排出され、廃液処理において中和や沈殿処理などに多大な負担がかかるとともに、多量の汚泥が発生する。
【0003】
そこで、特定のガスを超純水に溶解し、必要に応じて微量の薬品を添加して調製したガス溶解水が高濃度薬液に代わって使用されるようになってきている。ガス溶解水による洗浄であれば、被洗浄物への薬品の残留の問題も少なく、洗浄効果も高いため、洗浄用水の使用量の低減を図ることができる。
【0004】
従来、電子材料用洗浄水としてのガス溶解水に用いられる特定のガスとしては、水素ガス、酸素ガス、オゾンガス、希ガス、炭酸ガスなどがある。特に、アンモニアを極微量添加した水素ガス溶解水は、超音波を併用した洗浄工程で使用すると、極めて高い微粒子除去効果を発揮する(例えば、特許文献1)。
【特許文献1】特開2007−243113号公報
【発明の開示】
【発明が解決しようとする課題】
【0005】
ガス溶解水を用いる洗浄であっても、被洗浄物が大きなものになると洗浄水の使用量が多くなり、従って、例えば、水素ガス溶解水を用いる場合には、水素ガスの使用量も多くなることから、安全対策のための費用がかかるようになってくる。このようなことから、洗浄コストの更なる削減のためにも、より安価で洗浄効果の高いガス溶解水が求められている。
【0006】
本発明は上記従来の実状に鑑みてなされたものであって、従来のガス溶解水に比べて格段に高い洗浄効果を発揮する電子材料用洗浄水と、この電子材料用洗浄水を用いた電子材料の洗浄方法、並びにこの電子材料用洗浄水の製造方法を提供することを目的とする。
【0007】
本発明はまた、このようなガス溶解水を効率よく製造して、ユースポイントに供給することができるガス溶解水の供給システムを提供することを目的とする。
【課題を解決するための手段】
【0008】
本発明(請求項1)の電子材料用洗浄水は、溶存ガスとして酸素とアルゴンとを含むガス溶解水よりなる電子材料用洗浄水であって、溶存酸素濃度が8mg/L以上であり、溶存酸素ガス量と溶存アルゴンガス量との合計に対して2体積%以上の溶存アルゴンガスを含むことを特徴とする。
【0009】
請求項2の電子材料用洗浄水は、請求項1において、pHが7以上であることを特徴とする。
【0010】
請求項3の電子材料用洗浄水は、請求項2において、アンモニアを含むことを特徴とする。
【0011】
本発明(請求項4)の電子材料の洗浄方法は、請求項1ないし3のいずれか1項に記載の電子材料用洗浄水を用いて電子材料を洗浄することを特徴とする。
【0012】
請求項5の電子材料の洗浄方法は、請求項4において、前記電子材料用洗浄水を用いて超音波洗浄を行うことを特徴とする。
【0013】
本発明(請求項6)の電子材料用洗浄水の製造方法は、酸素ガスボンベからの酸素ガス、アルゴンガスボンベからのアルゴンガス、並びにPSA酸素濃縮装置を用いて空気から取り出した酸素ガス及びアルゴンガスより選ばれる酸素ガスとアルゴンガスとを水に溶解させて請求項1ないし3のいずれか1項に記載の電子材料用洗浄水を製造することを特徴とする。
【0014】
請求項7の電子材料用洗浄水の製造方法は、請求項6において、水を脱気処理して溶存ガスを除去し、その後、除去した溶存ガス量以下の前記酸素ガスとアルゴンガスとを溶解させることを特徴とする。
【0015】
本発明(請求項8)のガス溶解水の供給システムは、水を脱気処理して溶存ガスを除去する脱気装置と、該脱気装置からの脱気処理水に酸素ガス及びアルゴンガスを溶解させて、溶存酸素濃度が8mg/L以上であり、溶存酸素ガス量と溶存アルゴンガス量との合計に対して2体積%以上の溶存アルゴンガスを含むガス溶解水を調製するガス溶解装置と、該ガス溶解装置からのガス溶解水をユースポイントに供給する供給手段とを有することを特徴とする。
【0016】
請求項9のガス溶解水の供給システムは、請求項8において、前記脱気装置が、気体透過膜を備える減圧膜脱気装置であり、前記ガス溶解装置が気体透過膜を備えるガス溶解装置であることを特徴とする。
【発明の効果】
【0017】
溶存酸素濃度が8mg/L以上であり、溶存酸素ガス量と溶存アルゴンガス量との合計に対して2体積%以上の溶存アルゴンガスを含む酸素/アルゴンガス溶解水であれば、著しく優れた洗浄効果を得ることができる。
【0018】
このような酸素/アルゴンガス溶解水よりなる本発明の電子材料用洗浄水は、溶存ガス量が少なく、また、使用する薬品量も少ないものであっても高い洗浄効果を得ることができることから、安全に容易かつ安価に製造することができ、この電子材料用洗浄水を用いて、微粒子等で汚染された電子材料を少ない洗浄水量で安全に容易かつ安価に効率的に洗浄することができる。
【0019】
また、本発明のガス溶解水の供給システムによれば、このような洗浄効果に優れたガス溶解水を効率的に製造してユースポイントに供給することができる。
【発明を実施するための最良の形態】
【0020】
以下に本発明の実施の形態を詳細に説明する。
【0021】
[電子材料用洗浄水(ガス溶解水)]
本発明の電子材料用洗浄水は、溶存酸素濃度が8mg/L以上であり、溶存酸素ガス量と溶存アルゴンガス量との合計に対して2体積%以上の溶存アルゴンガスを含む酸素/アルゴンガス溶解水よりなる。
【0022】
本発明に係るガス溶解水の溶存酸素濃度が8mg/L未満では十分な洗浄効果を得ることができない。この溶存酸素濃度は高い程洗浄効果に優れたものとなるが、過度に高くても洗浄効果は頭打ちとなる一方で、ガス溶解水調製のためのコストが高くつくことから、電子材料用洗浄水としてのガス溶解水中の溶存酸素濃度は8〜50mg/L、特に10〜44mg/Lとすることが好ましい。
【0023】
また、ガス溶解水中の溶存アルゴンガス量は、溶存酸素ガス量と溶存アルゴンガス量との合計に対して2体積%以上であることにより、アルゴンガスの併用による洗浄効果の向上効果を確実に得ることができる。この割合が2体積%未満では、十分な洗浄効果の向上効果を得ることはできない。ただし、溶存アルゴンガス量が多過ぎても水に対するガスの溶解度において、相対的に溶存酸素濃度が低減するなどして洗浄効果が低下する傾向にあることから、ガス溶解水中の溶存酸素ガス量と溶存アルゴンガス量との合計に対する溶存アルゴンガスの割合は、2〜50体積%、特に2〜40体積%とすることが好ましい。
【0024】
なお、本発明において、酸素ガス及びアルゴンガスを溶解させる水としては、純水又は超純水を用いることができる。
【0025】
また、本発明の電子材料用洗浄水では、上述の酸素/アルゴンガス溶解水に更に、アンモニア、水酸化ナトリウム、水酸化カリウム、テトラメチルアンモニウムヒドロキシドなどのアルカリ剤や、フッ化水素、塩化水素、硫酸などの酸、キレート剤、界面活性剤などの薬剤の1種又は2種以上を添加して洗浄機能性を高めることもできる。特に、アンモニア等のアルカリ剤を添加して、ガス溶解水のpHを7以上、好ましくは9〜14のアルカリ性に調整することにより、微粒子等の洗浄効果を高めることができる。なお、このpH調整にはアルカリ性薬剤を用いる他、アルカリ性ガスを用いても良いが、取扱いが簡便で濃度管理を容易に行えるアンモニアを用いることが好ましい。特にアンモニアを1mg/L以上、例えば1〜200mg/L程度添加して、pH7〜11に調整した洗浄水を用いることにより、良好な洗浄効果を得ることができる。なお、この洗浄水のpHが過度に高かったりアンモニアの添加量が過度に多いと、被洗浄物に対するダメージが出るおそれがあり、好ましくない。アンモニアの添加は、ガスの溶解後であっても溶解前であっても良い。
【0026】
[電子材料の洗浄方法]
本発明の電子材料の洗浄方法は、上述の本発明の電子材料用洗浄水を用いて電子材料を洗浄する方法である。
【0027】
この洗浄方法としては特に制限はなく、被洗浄物に洗浄水を噴き付けて洗浄する方法や、洗浄水中に被洗浄物を浸漬して洗浄する方法など、従来公知のいずれの方法も採用することができるが、特に洗浄水中に被洗浄物を浸漬し、被洗浄物が浸漬された洗浄水に超音波を付与する超音波洗浄を行うことが、優れた洗浄効果を得ることができ好ましい。
【0028】
この超音波洗浄において、用いる超音波の周波数は、特に制限はないが一般的な洗浄に用いられる例えば20KHz〜3MHzであることがより好ましい。
【0029】
また、洗浄に用いる洗浄水の温度は、10〜90℃の範囲を採用することができるが、本発明の電子材料用洗浄水によれば、常温の洗浄水であっても優れた洗浄効果を得ることができることから、洗浄水温度は常温とすることが好ましい。
【0030】
なお、電子材料用洗浄水による被洗浄物の洗浄に当っては、密閉式の洗浄槽や配管を用いることにより、洗浄水の汚染を防止して、長期に亘り洗浄水の水質を高く維持することができ、好ましい。この場合には、例えば、多くの洗浄機に対して個々に洗浄水の製造装置を設けずに、一箇所で洗浄水を集約して製造し、それを主配管と分岐配管とを介して水質の安定した洗浄水として供給することができ、しかも、洗浄機で使用されなかった余剰の洗浄水は、水槽に戻し、再度洗浄機へ送る循環系を組むことができる。また、一旦洗浄に使用した洗浄水を回収して、次の洗浄に問題がないように不純物を取り除き、再度脱気して、必要量の酸素ガスとアルゴンガスを溶解させ、洗浄に再使用する回収循環系を組むことも可能となる。
【0031】
[電子材料用洗浄水の製造方法]
上述の本発明の電子材料用洗浄水を製造するには、常温に従って製造された純水又は超純水に、酸素ガスとアルゴンガスとを所定の濃度で溶解させれば良い。この場合、酸素ガスとアルゴンガスの溶解の順序には特に制限はなく、いずれか一方を先に溶解させて他方を後に溶解させても良く、また、両ガスを同時に溶解させても良い。また、酸素ガスとアルゴンガスとは予め所定の割合で混合した混合ガスとして純水又は超純水に溶解させても良い。
【0032】
ガス溶解水に用いる酸素ガス、アルゴンガスとしては、各々、酸素ガスボンベ、アルゴンガスボンベから供給されるものであっても良く、PSA(Pressure Swing Adsorption:圧力スイング吸着法)酸素濃縮装置により、大気中の空気から酸素ガスとアルゴンガスを取り出して用いても良い。即ち、PSA酸素濃縮装置により、空気(酸素濃度約20体積%、アルゴン濃度約1体積%)から酸素ガスを生成させる際には、アルゴンガスも生成されるため、酸素/アルゴン混合ガスを得ることができる。また、PSA酸素濃縮装置とガスボンベとを併用しても良い。好ましくは、PSA酸素濃縮装置により、予め所定のアルゴンガス濃度の酸素/アルゴン混合ガスを製造し、この混合ガスを純水又は超純水に溶解させる方法が、安価であり、また、ガスボンベの交換等の手間もなく有利である。
【0033】
また、酸素ガス及びアルゴンガスの溶解に当っては、純水又は超純水を予め脱気処理して溶存ガスを除去し、除去した溶存ガス量以下の酸素ガス及びアルゴンガスを溶解させることにより、ガスの溶解を円滑に行うことができるため、好ましい。
【0034】
この場合、脱気装置としては、気体透過膜を介して気相と水相とが仕切られた気体透過膜モジュールを用い、気相を減圧することにより、水相の溶存ガスをその成分に関わらず気体透過膜を介して気相に移行させる減圧膜脱気装置を用いることが好ましく、また、その後の酸素ガス及びアルゴンガスの溶解も気体透過膜モジュールを用いて、気相に供給した酸素ガス及びアルゴンガスを気体透過膜を介して水相に移行させて溶解させる装置を用いることが好ましい。このように、気体透過膜モジュールを用いる方法であれば、水中に容易にガスを溶解させることができ、また、溶存ガス濃度の調整、管理も容易に行うことができる。
【0035】
なお、前述の如く、洗浄水にアンモニア等の薬剤等を添加する場合、これらは、酸素ガス及びアルゴンガスの溶解の前に添加しても溶解の後に添加しても良い。アンモニア等のアルカリ剤を添加してpHを調整する場合には、pH計に連動する薬注ポンプで容易に注入制御することができる。
【0036】
[ガス溶解水の供給システム]
本発明のガス溶解水の供給システムは、本発明の電子材料用洗浄水としてのガス溶解水の供給システムとして有用なものであって、水を脱気処理して溶存ガスを除去する脱気装置と、該脱気装置からの脱気処理水に酸素ガス及びアルゴンガスを溶解させて、溶存酸素濃度が8mg/L以上であり、溶存酸素ガス量と溶存アルゴンガス量との合計に対して2体積%以上の溶存アルゴンガスを含むガス溶解水を調製するガス溶解装置と、該ガス溶解装置からのガス溶解水をユースポイントに供給する供給手段とを有することを特徴とする。
【0037】
このガス溶解水の供給システムは、更に次のものを備えることが好ましい。
(1) ユースポイントで使用された洗浄排水の少なくとも一部を洗浄用水に利用するために返送する排水返送手段
(2) ユースポイントから未使用のガス溶解水の少なくとも一部を洗浄用水に利用するために返送する未使用ガス溶解水返送手段
(3) ガス溶解装置に供給する洗浄用水を貯留するための水槽と、返送手段からの水を該水槽に導入する手段
(4) 該水槽からの水をガス溶解装置に供給するためのポンプ
(5) 該ポンプからの水を純化装置で純化してからガス溶解装置に供給する手段
(6) 循環する水及び補給する水の少なくとも一方に、薬剤を添加する手段
(7) 薬剤が添加された水中の薬剤の濃度を一定に保つように、該水中の薬剤濃度又はそれに準じるものを計測する計測部
【0038】
なお、脱気装置としては、前述の如く、気体透過膜を用いた減圧膜脱気装置が好ましく、ガス溶解装置としても気体透過膜を用いたガス溶解装置、具体的には、気体透過膜によって気室と水室とが隔てられたガス溶解膜モジュールであって、該ガス溶解膜モジュールの気室に溜まる凝縮水を排出するために、そのときの通水量で溶解するガス量より多い量のガスを該ガス溶解膜モジュールに供給し、供給したガスのうち溶解しなかった余剰分を該ガス溶解膜モジュール外に排出しながら、ガスを溶解させるガス溶解装置が好ましい。
【0039】
以下に、このようなガス溶解水の供給システムについて、図1,2を参照して説明する。
図1,2は、それぞれ本発明の実施の形態に係るガス溶解水の供給システムを示す系統図である。
【0040】
図1のガス溶解水の供給システムでは、貯留槽1に、ガス(酸素/アルゴン混合ガス)を溶解させた水で被洗浄物を洗浄した後の排水(洗浄排水)が配管15を経由して返送され、また、補給水配管1aを経由して補給水が供給される。補給水としては洗浄に供することが可能な程度の清浄度を有する純水又は超純水もしくは別装置で製造されたガス(酸素/アルゴン混合ガス)溶解水が望ましい。
【0041】
貯留槽1の清浄度を保つために、パージガス配管1bからパージガスを供給し、圧力調整機構1cにて大気圧よりも若干例えば10〜50mmAq程度、好ましくは30mmAq程度高い圧力となるように貯留槽1内を圧力調整し、外気が混入しないようにしてもよい。なお、被洗浄物の要求清浄度が高くない場合は、必ずしもパージガスは必要としない。また、安全性を考慮した上で、パージガスとして、溶解させるガスと同一のガス(酸素/アルゴン混合ガス)を用いれば、貯留槽1における該ガスの水からの気散が抑制できるので好ましい。
【0042】
貯留槽1は後述の洗浄処理槽14を兼ねることもできる。この場合、洗浄処理槽14に補給水配管1aが接続される。
【0043】
貯留槽1内の水は、圧送ポンプ2及び水温を一定に保つための熱交換器3を経由して、純化装置4に送られる。この純化装置4では、水中に存在する、洗浄に実質的に影響を与える異物を一部の水とともに除去する。
【0044】
なお、熱交換器3は、主に循環中に昇温する分を冷却するために用いられるが、熱交換器を設置せず、昇温した水を洗浄に用いても良い。また、逆に加温してもよい。熱交換器3の設置場所は、純化装置4よりも上流側が望ましい。
【0045】
純化装置4としては、例えば、限外濾過(UF)膜、精密濾過(MF)膜装置などが用いられ、異物はブライン水と共に系外へ排出される。
【0046】
補給水の補給場所は貯留槽1から、純化装置4の2次側の間のいずれでも良い。純化装置4の処理水量を少なくして異物を効率的に除去する観点からすると、純化装置4の2次側が好適であるが、装置運転上、複雑な制御を伴うので、補給水の制御が容易な貯留槽1に補給するのが好ましい。例えば、貯留槽1内の水位を一定に保つように補給水量を調整すれば、実質的に系外へ排出される水量とつりあわせることができ、制御も容易となる。
【0047】
純化装置4で異物が除去された水は、流量計5を経て、脱気装置6へ送られる。この脱気装置6としては、脱気膜6aを備え、脱気膜6aで気室と水室とが隔てられている膜脱気装置が好適である。この気室内を真空ポンプ6bにて吸引することで、水中の溶存ガスが脱気される。気室の凝縮水の排出をスムーズにするために、気室の下端から吸引することが望ましい。真空ポンプ6bに制限はなく、水封式やスクロール式などが用いられるが、真空の発生にオイルを用いるものはオイルが逆拡散して脱気膜を汚染することがあるので、オイルレスのものが望ましい。
【0048】
脱気装置6からの脱気処理水はガス溶解装置7へ送水される。ガス溶解装置7としては、気体透過膜7aによって気室と水室とを隔てたガス溶解膜モジュールが好適である。図1のシステムでは、このガス溶解装置7の気室に、PSA酸素濃縮装置8から、調整弁8a、流量計8bを介して酸素/アルゴン混合ガスが導入される。酸素/アルゴン混合ガスは、膜7aを透過して水室内の水に溶解する。余剰の酸素/アルゴン混合ガスは、ガス排出弁9aを有した排ガスライン9から系外に排出される。
【0049】
ガス溶解膜モジュールの気室に溜まる凝縮水を排出するために、その水量で溶解するガス量より多い量のガスを溶解膜モジュールに供給し、膜モジュールの下端を大気開放として、供給したガスのうち溶解しなかった余剰分を排出しながら、ガスを溶解させる場合、ガス排出弁9aを開けて、一部のガスを排出ライン9から排出しながらガス溶解運転を行うのが好ましい。この場合のガスの供給量は、この水量、水温での飽和ガスの量を1とした場合、1.1〜1.5倍程度が望ましく1.2〜1.4倍程度が経済的な観点と排出性から好ましい。溶存ガス濃度の調整は供給ガスの濃度を変えることで行う事が望ましい。
【0050】
なお、ガス排出弁9aを閉じたまま溶解させるようにしてもよく、この場合、流量計5で計測された水量と要求濃度とに応じた量の酸素/アルゴン混合ガスがPSA酸素濃縮装置8から供給される。酸素/アルゴン混合ガス流量はガス流量計8bで計測され、流量計8bの指示値が所望の値になるように調整弁8aでそのガス流量が調整される。流量計と調整弁が一体となっているマスフローコントローラーを用いても良い。また、酸素/アルゴン混合ガス量の調整は、溶存ガス濃度計12の指示値と連動させて、所望の指示値となるように調整してもよい。
【0051】
ガス溶解装置7からのガス溶解水は、その後、pH計11でpHが所定の範囲にあることが確認され、さらに、溶存ガス濃度計12にて溶存酸素濃度が所望の濃度にあることが確認された後、供給配管13を経て、洗浄処理槽14に供給される。
【0052】
なお、洗浄効果を上げるためにガス溶解水にアルカリ薬剤等の薬品を添加手段10によって添加することもできる。薬品の添加濃度は、それぞれの薬品用の濃度計、pH計、ORP計、導電率計などによって測定され、所望の濃度になるようにその供給量が調整される。その調整方法は、ポンプで注入している場合、そのパルス数やストローク長で調整でき、ガスで圧入している場合、そのガス圧力を調整することで注入量が調整できる。どちらの方法でも注入量を弁の開度で調整することもできる。注入場所はこの限りではないが、注入の制御性をよく(応答を早く)するため濃度計測器(図1ではpH計)の直前もしくはそれより少し上流側が望ましい。アルカリ剤等の薬品は補給水に添加されてもよい。
【0053】
洗浄処理槽14からの洗浄排水は、返送配管15によって貯留槽1へ返送される。
【0054】
図1では、ガス溶解装置7からのガス溶解水の全量を供給配管13によって洗浄処理槽14へ供給しているが、図2では、この供給配管13の末端を貯留槽1に接続し、供給配管13の途中から分岐供給配管15を分岐させ、この分岐供給配管15から各洗浄処理槽14へガス溶解水を供給している。
【0055】
各洗浄処理槽14からの洗浄排水は、配管16を経由して貯留槽1へ返送される。洗浄に用いなかった余剰のガス溶解水も貯留槽1へ返送され、この未使用水も、ガス溶解水の原水として再利用される。
【実施例】
【0056】
以下に実験例、実施例及び比較例を挙げて本発明をより具体的に説明する。
【0057】
なお、以下において、電子材料用洗浄水としてのガス溶解水は、予め純水中の溶存ガスが飽和度の10%以下となるように気体透過膜を備える減圧膜脱気装置で除去した脱気処理水に、PSA酸素濃縮装置を用いて大気中の空気から製造した酸素ガス、或いはアルゴンガスを含む酸素/アルゴン混合ガスの必要量を、ガス溶解用の気体透過膜モジュールにより溶解させて調製したものを用いた。洗浄水の温度は常温(23℃)である。
【0058】
また、被洗浄物としては、酸化セリウム研磨材で汚染されたシリコンウェハ基板を乾燥させた基板を用いた、洗浄機は、超音波付バッチ式洗浄機(超音波:周波数750KHz)を用いた。洗浄時間はいずれも3分間とした。
【0059】
洗浄効果は、トプコン社製「WM−1500」欠陥検査装置を用い、洗浄前と洗浄後の基板上の粒径0.12μm以上の微粒子数を測定し、除去率を算出することにより評価した。
【0060】
[実験例1]
PSA酸素濃縮装置で製造した酸素ガス、或いは酸素/アルゴン混合ガスを用い、全溶存ガス量の飽和度が38%(溶存酸素濃度として16mg/L)で一定となるようにして脱気処理水に溶解させてガス溶解水を調製し、各々のガス溶解水の洗浄効果を調べた。
脱気処理水に溶解させたガスの酸素/アルゴン混合比(混合ガスの全体を100体積%として各々のガスの体積百分率で示す。)と洗浄による微粒子の除去率との関係を図3に示した。なお、いずれのガス溶解水も、pHは7であった。
【0061】
図3より明らかなように、溶存アルゴンガス量が0%の、溶存酸素濃度16mg/Lのガス溶解水を用いた場合に比べて、溶存アルゴンガスを含む酸素/アルゴンガス溶解水を用いた場合の方が高い洗浄効果が得られる。
【0062】
[実施例1,2、比較例1]
ガス溶解水として、以下に示すものを用いたこと以外は実験例1と同様にしてそれぞれ洗浄効果を調べ、結果を図4に示した。
【0063】
実施例1:PSA酸素濃縮装置により、アルゴンガスを2体積%含む酸素/アルゴン混合ガス(混合ガス中のアルゴンガス濃度が2体積%)を得、この酸素/アルゴン混合ガスを、脱気処理水に種々の溶存酸素濃度となるように溶解させたガス溶解水(pH7)。
【0064】
実施例2:実施例1の種々の溶存酸素濃度のガス溶解水に、それぞれアンモニアを1mg/L添加したもの(pH9.4)。
【0065】
比較例1:アルゴンガスを含まない酸素ガスを種々の溶存酸素濃度となるように脱気処理水に溶解させたガス溶解水(pH7)。
【0066】
ガス溶解水の溶存酸素濃度と微粒子の除去率との関係を示す図4より、溶存アルゴンガスを含む酸素/アルゴンガス溶解水の方が、溶存アルゴンガスを含まない酸素ガス溶解水よりも洗浄効果が高く、また、酸素/アルゴンガス溶解水に更にアンモニアを添加してpH弱アルカリ性とすることにより、より一層優れた洗浄効果が得られることが分かる。
【0067】
なお、いずれの場合においても、溶存酸素濃度が8mg/L以上で洗浄効果が向上しており、溶存酸素濃度は8mg/L以上であることが好ましいことが分かる。
【図面の簡単な説明】
【0068】
【図1】本発明のガス溶解水の供給システムの実施の形態を示す系統図である。
【図2】本発明のガス溶解水の供給システムの別の実施の形態を示す系統図である。
【図3】実験例1におけるガス溶解水中の溶存酸素ガス/溶存アルゴンガス比(体積百分率)と、洗浄による微粒子の除去率との関係を示すグラフである。
【図4】実施例1,2及び比較例1におけるガス溶解水の溶存酸素濃度と洗浄による微粒子の除去率との関係を示すグラフである。
【符号の説明】
【0069】
1 貯留槽
2 ポンプ
3 熱交換器
4 純化装置
6 脱気装置
7 ガス溶解装置
8 PSA酸素濃縮装置
14 洗浄処理槽

【特許請求の範囲】
【請求項1】
溶存ガスとして酸素とアルゴンとを含むガス溶解水よりなる電子材料用洗浄水であって、
溶存酸素濃度が8mg/L以上であり、
溶存酸素ガス量と溶存アルゴンガス量との合計に対して2体積%以上の溶存アルゴンガスを含むことを特徴とする電子材料用洗浄水。
【請求項2】
請求項1において、pHが7以上であることを特徴とする電子材料用洗浄水。
【請求項3】
請求項2において、アンモニアを含むことを特徴とする電子材料用洗浄水。
【請求項4】
請求項1ないし3のいずれか1項に記載の電子材料用洗浄水を用いて電子材料を洗浄することを特徴とする電子材料の洗浄方法。
【請求項5】
請求項4において、前記電子材料用洗浄水を用いて超音波洗浄を行うことを特徴とする電子材料の洗浄方法。
【請求項6】
酸素ガスボンベからの酸素ガス、アルゴンガスボンベからのアルゴンガス、並びにPSA酸素濃縮装置を用いて空気から取り出した酸素ガス及びアルゴンガスより選ばれる酸素ガスとアルゴンガスとを水に溶解させて請求項1ないし3のいずれか1項に記載の電子材料用洗浄水を製造することを特徴とする電子材料用洗浄水の製造方法。
【請求項7】
請求項6において、水を脱気処理して溶存ガスを除去し、その後、除去した溶存ガス量以下の前記酸素ガスとアルゴンガスとを溶解させることを特徴とする電子材料用洗浄水の製造方法。
【請求項8】
水を脱気処理して溶存ガスを除去する脱気装置と、
該脱気装置からの脱気処理水に酸素ガス及びアルゴンガスを溶解させて、溶存酸素濃度が8mg/L以上であり、溶存酸素ガス量と溶存アルゴンガス量との合計に対して2体積%以上の溶存アルゴンガスを含むガス溶解水を調製するガス溶解装置と、
該ガス溶解装置からのガス溶解水をユースポイントに供給する供給手段とを有することを特徴とするガス溶解水の供給システム。
【請求項9】
請求項8において、前記脱気装置が、気体透過膜を備える減圧膜脱気装置であり、前記ガス溶解装置が気体透過膜を備えるガス溶解装置であることを特徴とするガス溶解水の供給システム。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate


【公開番号】特開2009−260020(P2009−260020A)
【公開日】平成21年11月5日(2009.11.5)
【国際特許分類】
【出願番号】特願2008−106926(P2008−106926)
【出願日】平成20年4月16日(2008.4.16)
【出願人】(000001063)栗田工業株式会社 (1,536)
【Fターム(参考)】