説明

プラズマCVD成膜方法及びプラズマCVD成膜装置

【課題】N−H結合含有量の少ないプラズマCVD成膜方法を提供する。
【解決手段】真空雰囲気下で、ヘキサメチルジシラザンガスとアンモニアガスとアルゴンガスとをチャンバ12内に供給し、ウェハW表面にSiCN系膜の厚さ1〜10nm程度の薄膜を形成する。次いで、アルゴンガスを供給した状態で、さらに減圧し、ウェハWを加熱する。このアニール処理により、薄膜中のN−H結合が励起され、解離によりHが膜中から除去される。この薄膜形成処理と、アニール処理と、を繰り返し、所定厚さのSiCN系膜を成膜する。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、絶縁膜の形成方法に関し、特に、N−H結合含有量の少ないプラズマCVD成膜方法及びプラズマCVD成膜装置に関する。
【背景技術】
【0002】
近年、半導体デバイスの微細化が進行し、設計ルールは0.13μmにまで達している。0.13μm世代においては、半導体デバイスの性能に対する配線の性能が支配的となり、配線遅延がデバイスの動作速度を大きく左右する。このため、高速な回路の製造には、できるだけ配線遅延を抑制することが必要とされる。
【0003】
配線遅延を低減するため、配線材料はアルミニウム合金から銅へと移行している。銅は比抵抗が低く、また、エレクトロマイグレーション耐性が高く、高速な回路の構成に好適に用いられる。しかし、銅は、アルミニウム合金と異なり、ケミカルエッチングにより配線のパターンの形成することは難しい。このため、銅の配線を形成する方法として、所謂ダマシン法が採用されている。
【0004】
以下、ダマシン法について図8(a)〜8(e)を参照して説明する。まず、図8(a)に示すように、シリコン酸化膜等の層間絶縁膜101上に、シリコン窒化膜等のハードマスク102を形成する。続いて、図8(b)に示すように、フォトリソグラフィおよびエッチングにより、ハードマスク102に開口103を形成する。このとき、エッチングはハードマスク102はエッチングされるが、層間絶縁膜101はエッチングされない条件で行われる。
【0005】
続いて、開口103を備えたハードマスク102をマスクとして、層間絶縁膜101のエッチングを行う。これにより、図8(c)に示すようなトレンチホール104が形成される。さらに、トレンチホール104の内壁を含む表面全体にTiN等のバリアメタル膜105を形成した後、図8(d)に示すように、めっきによりトレンチホール104の内部を配線金属106で埋め込む。最後に、不要な金属膜を化学的機械的研磨法(CMP)により除去し、図8(e)に示すような銅配線層107が形成される。
【0006】
上記したダマシン法に用いるハードマスク102として、近年、SiCN系膜が開発されている。SiCN系膜は、ケイ素(Si)と炭素(C)と窒素(N)とを主成分として構成される。SiCN系膜は、例えば、ヘキサメチルジシラザンとアンモニアとを出発物質として形成される。SiCN系膜は、比誘電率が比較的低い、銅に対するバリヤ性が高い等の利点を有する。
【発明の開示】
【発明が解決しようとする課題】
【0007】
しかし、SiCN系膜からなるハードマスク102を用いてダマシン法を行う場合、開口103を形成するためのリソグラフィを行う際に、レジストがマスクパターン通りに露光されない現象がしばしば認められる。このような現象はレジストポイズニングと呼ばれている。
【0008】
SiCN系膜を用いた場合のレジストポイズニングは、膜中の窒素水素結合(N−H結合)が多いほど起こりやすいことが確認されている。これは、リソグラフィ工程での加熱処理において、膜中のN−H結合がアンモニア(NH)として脱離するためと考えられている。このため、膜中のN−H結合の少ないSiCN系膜を得ることが、配線パターンを高精度に形成するために必要である。
【0009】
しかし、従来より、膜中のN−H結合含有量の少ないSiCN系膜を成膜することのできる方法はなく、SiCN系膜をハードマスクとして使用した場合に、信頼性の高い半導体デバイスが製造できない虞があった。
【0010】
上記事情を鑑みて、本発明は、レジストポイズニングの発生を抑制できるプラズマCVD成膜方法及びプラズマCVD成膜装置を提供することを目的とする。
また、本発明は、埋め込み配線層の形成に好適に使用可能なプラズマCVD成膜方法及びプラズマCVD成膜装置を提供することを目的とする。
【課題を解決するための手段】
【0011】
上記目的を達成するため、本発明の第1の観点に係るプラズマCVD成膜方法は、
チャンバ内に配置されたサセプタに基板を載置する工程と、
前記チャンバ内に載置された前記基板に、シャワーヘッドを介して、絶縁膜形成原料を供給する工程と、
前記サセプタに第1の周波数の高周波電力を印加する工程と、
前記シャワーヘッドに第2の周波数の高周波電力を印加する工程と、
前記第1の周波数の高周波電力の印加及び前記第2の周波数の高周波電力の印加により、前記絶縁膜形成原料のプラズマを生成する工程と、
前記プラズマにより前記基板上に絶縁膜を形成する工程と、
を備える、ことを特徴とする。
【0012】
前記第1の周波数は、前記第2の周波数より低くてもよい。
【0013】
前記第1の周波数は、0.1〜13MHzであってもよい。
【0014】
前記第2の周波数は、13〜150MHzであってもよい。
【0015】
前記絶縁膜は、SiCN系膜であってもよい。
【0016】
前記絶縁膜形成原料は、Si、C、N、及びHを含んでもよい。
【0017】
前記絶縁膜を形成する工程は、400℃以下で行われてもよい。
【0018】
前記絶縁膜中に含まれるN−H結合を励起し、前記N−H結合を解離させて水素を除去する水素除去工程をさらに備え、
前記絶縁膜形成原料を供給する工程と、前記第1の周波数の高周波電力を印加する工程と、前記第2の周波数の高周波電力を印加する工程と、前記絶縁膜形成原料のプラズマを生成する工程と、前記絶縁膜を形成する工程と、前記水素除去工程とは、繰り返し行われてもよい。
【0019】
前記絶縁膜は、前記基板上に形成された層間絶縁膜上に形成され、
前記絶縁膜は、前記層間絶縁膜をエッチングするためのハードマスクとして用いられてもよい。
【0020】
上記目的を達成するため、本発明の第2の観点に係るプラズマCVD成膜装置は、
チャンバと、
前記チャンバ内に基板を載置するサセプタと、
前記チャンバ内に絶縁膜形成原料を供給する絶縁膜形成原料供給手段と、
前記チャンバ内に供給された絶縁膜形成原料を前記基板に均一に導入する複数のガス穴を有するシャワーヘッドと、
前記サセプタに第1の周波数の高周波電力を印加する第1の高周波電源と、
前記シャワーヘッドに第2の周波数の高周波電力を印加する第2の高周波電源と、
成膜装置の各部を制御する制御手段と、
を備え、
前記制御手段は、
前記絶縁膜形成原料供給手段を制御して前記シャワーヘッドを介して前記基板に絶縁膜形成原料を供給し、前記第1の高周波電源を制御して前記サセプタに第1の周波数の高周波電力を印加しつつ、前記第2の高周波電源を制御して前記シャワーヘッドに第2の周波数の高周波電力を印加して、前記チャンバー内に前記絶縁膜形成原料のプラズマを生成して前記基板上に絶縁膜を形成する、
ことを特徴とする。
【0021】
前記第1の周波数は、前記第2の周波数より低くてもよい。
【0022】
前記第1の周波数は、0.1〜13MHzであってもよい。
【0023】
前記第2の周波数は、13〜150MHzであってもよい。
【0024】
前記絶縁膜は、SiCN系膜であってもよい。
【0025】
前記絶縁膜形成原料は、Si、C、N、及びHを含んでもよい。
【0026】
前記制御手段は、前記絶縁膜を形成する際、前記チャンバ内を400℃以下に制御してもよい。
【0027】
前記制御手段は、
前記絶縁膜中に含まれるN−H結合を励起し、前記N−H結合を解離させて水素を除去する水素除去工程をさらに制御し、
前記絶縁膜形成原料を供給する工程と、前記第1の周波数の高周波電力を印加する工程と、前記第2の周波数の高周波電力を印加する工程と、前記絶縁膜形成原料のプラズマを生成する工程と、前記絶縁膜を形成する工程と、前記水素除去工程とを、繰り返し行うよう制御してもよい。
【発明の効果】
【0028】
以上説明したように、本発明によれば、膜へのダメージが低減されたプラズマCVD成膜方法及びプラズマCVD成膜装置が提供される。
【発明を実施するための最良の形態】
【0029】
以下、本実施の形態にかかる絶縁膜の形成方法について、図面を参照して説明する。本実施の形態の絶縁膜の形成方法によれば、シリコン(Si)と炭素(C)と窒素(N)とを主成分として構成される膜(以下、SiCN系膜)が形成される。SiCN系膜は、ダマシン法またはデュアルダマシン法を用いて層間絶縁膜に埋め込み配線層を形成するためのハードマスクとして機能する。
【0030】
図1に、本実施の形態の絶縁膜の形成方法を実施するための装置の構成例を示す。
本実施の形態の処理装置は、上下平行に対向する電極を有する、いわゆる平行平板型プラズマCVD装置として構成され、半導体ウェハ(以下、ウェハW)の表面にSiCN系膜をCVDにより成膜する。
【0031】
図1を参照して、処理装置11は、円筒形状のチャンバ12を有する。チャンバ12は、アルマイト処理(陽極酸化処理)されたアルミニウム等の導電性材料からなる。また、チャンバ12は接地されている。
【0032】
チャンバ12の底部には排気口13が設けられている。排気口13には、ターボ分子ポンプなどの真空ポンプを備える排気装置14が接続されている。排気装置14は、チャンバ12内を所定の圧力まで排気する。また、チャンバ12の側壁にはゲートバルブ15が設けられている。ゲートバルブ15を開放した状態で、チャンバ12の外部との間でのウェハWの搬入出がなされる。
【0033】
チャンバ12の底部には略円柱状のサセプタ支持台16が設けられている。サセプタ支持台16の上には、ウェハWの載置台としてのサセプタ17が設けられている。サセプタ17は下部電極としての機能を有し、サセプタ支持台16とサセプタ17との間は、セラミックなどの絶縁体18により絶縁されている。
【0034】
サセプタ支持台16の内部には、下部冷媒流路19が設けられている。下部冷媒流路19には冷媒が循環している。下部冷媒流路19を冷媒が循環することにより、サセプタ17そしてウエハWは所望の温度に制御される。
【0035】
サセプタ支持台16には、半導体ウエハWの受け渡しをするためのリフトピン20が設けられており、リフトピン20はシリンダ(図示せず)により昇降可能となっている。また、サセプタ17は、その上中央部が凸状の円板状に成形され、その上にウエハWと略同形の図示しない静電チャックが設けられている。サセプタ17上に載置されたウェハWは、直流電圧が印加されることにより静電吸着される。
【0036】
下部電極として機能するサセプタ17には、第1の高周波電源21が第1の整合器22を介して接続されている。第1の高周波電源21は0.1〜13MHzの範囲の周波数を有している。第1の高周波電源21に上記範囲の周波数を印加することにより、被処理体に対するダメージを低減させる等の効果が得られる。
【0037】
サセプタ17の上方には、このサセプタ17と平行に対向してシャワーヘッド23が設けられている。シャワーヘッド23のサセプタ17に対向する面には、多数のガス穴24を有する、アルミニウム等からなる電極板25が備えられている。また、シャワーヘッド23は、電極支持体26により、チャンバ12の天井部分に支持されている。シャワーヘッド23の内部には、上部冷媒流路27が設けられている。上部冷媒流路27には冷媒が循環し、シャワーヘッド23は所望の温度に制御される。
【0038】
さらに、シャワーヘッド23にはガス導入管28が接続されている。ガス導入管28は、ヘキサメチルジシラザン(HMDS)ガス源29と、アンモニア(NH)ガス源30と、アルゴン(Ar)ガス源31と、に、図示しないマスフローコントローラ、バルブ等を介して接続されている。
【0039】
各ガス源29〜31からの処理ガスは、ガス導入管28を介してシャワーヘッド23の内部に形成された中空部(図示せず)に混合されて供給される。シャワーヘッド23内に供給されたガスは、中空部で拡散され、シャワーヘッド23のガス穴24からウェハWの表面に供給される。
【0040】
シャワーヘッド23には、第2の高周波電源32が接続されており、その給電線には第2の整合器33が介在されている。第2の高周波電源32は、13〜150MHzの範囲の周波数を有しており、このように高い周波数を印加することにより、シャワーヘッド23は上部電極として機能し、チャンバ12内に好ましい解離状態でかつ高密度のプラズマを形成する。
【0041】
コントローラ34は、ウェハWへの成膜処理を含む、処理装置11全体の動作を制御する。なお、コントローラ34の詳細な動作については、理解を容易にするため省略する。
【0042】
以下、上記処理装置11を用いた絶縁膜の形成方法について説明する。図2に、本実施の形態の製造方法のタイミング図を示す。なお、図2に示すタイミング図は一例であり、同様の効果を奏する構成であればいかなるものであってもよい。
【0043】
まず、その表面に絶縁膜を備える未処理のウェハWが、図示しない搬送アームに保持されて開放状態のゲートバルブ15を介してチャンバ12内に搬入される。搬送アームは、ウェハWを上昇位置にあるリフトピン20に受け渡し、チャンバ12内から退出する。その後、ウェハWはリフトピン20の下降により、サセプタ17上に載置される。ウェハWは、静電チャックによりサセプタ17上に固定される。
【0044】
次いで、コントローラ34は、排気装置14により、チャンバ12内を、例えば、1.3×10−2Pa(1×10−4Torr)とする。また同時に、コントローラ34は、サセプタ17の温度を、400℃以下の温度、例えば、350℃に設定する。
【0045】
その後、各ガス源29〜31から、HMDS、NHおよびArガスが、所定の流量でチャンバ12内に供給される。処理ガスの混合ガスは、シャワーヘッド23のガス穴24からウエハWに向けて均一に吐出される。HMDS、NHおよびArの供給は、例えば、HMDS/NH/Ar=30/10/100の流量比(各sccm)で行われる。
【0046】
その後、第2の高周波電源32から、例えば、60MHzの高周波電力が上部電極(シャワーヘッド23)に印加される。これにより、上部電極と下部電極(サセプタ17)との間に高周波電界が生じ、混合ガスのプラズマが生成する。他方、第1の高周波電源21からは、例えば、2MHzの高周波電力が下部電極に印加される。これにより、プラズマ中のイオンがサセプタ17側へ引き込まれ、ウェハW表面近傍のプラズマ密度が高められる。このような上下の電極23、17への高周波電力の印加により、処理ガスのプラズマが生成され、このプラズマによるウェハWの表面での化学反応により、ウェハWの表面にSiCN系膜が形成される。
【0047】
ここで、コントローラ34は、上下電極23、17への高周波電力の印加を数秒間行い、ウェハW表面に、例えば、1nm〜5nm(10Å〜50Å)の厚さのSiCN系膜の薄膜を形成する。高周波電力の印加開始から所定時間後、コントローラ34は、上部電極および下部電極への高周波電力の印加を停止するとともに、HMDSガス源29およびNHガス源30からのHMDSおよびNHの導入を停止する。以上で成膜工程は終了する。このとき、Arは、チャンバ12内を流れている。
【0048】
コントローラ34は、Arガスによるチャンバ12内のパージを所定時間行い、チャンバ12内から、残存したHMDSおよびNHを除去する。このとき、コントローラ34は、サセプタ17の温度を、450℃以下の温度、例えば、400℃に設定し、また、圧力を、例えば、1.3×10−3Pa(1×10−5Torr)とする。
【0049】
コントローラ34は、サセプタ17の400℃での加熱を所定時間行い、アニールを行う。アニール工程では、ウェハW表面に成膜されたSiCN系膜中に存在するN−H結合を励起し、これにより、N−H結合が解離して水素(H)が脱離する。脱離したHは、H等として、排気ガスとしてチャンバ12外に排出される。ここで、成膜されているSiCN系膜は、厚さ1nm〜5nm程度の、数原子層分の薄膜である。このため、Hの脱離は膜表面以外でも容易に起こり、SiCN系膜からのN−H結合の除去は十分に行われる。
【0050】
ここで、成膜直後の薄膜には存在していた1200cm−1付近のN−H結合の吸収ピークが、アニール後には完全に消失していることを、例えば、FTIR(フーリエ変換赤外分光分析)により確認している。従って、成膜された薄膜からN−H結合が確実に除去されていることがわかる。
【0051】
コントローラ34は、膜中のN−H結合からHを除去するのに十分な時間、上記アニール処理を行う。所定時間後、コントローラ34は、チャンバ12内にArを流しつつ、サセプタ17の温度を成膜時の温度(350℃)まで低下させ、また、圧力を1.3×10−2Pa(1×10−4Torr)とする。
【0052】
その後、コントローラ34は、再び、上述したSiCN系膜の薄膜の成膜を開始する。すなわち、コントローラ34は、ガス源からのHMDSおよびNHの供給を開始する。次いで、上部電極および下部電極に高周波電力を印加する。成膜処理を上記と同様に所定時間行うことにより、既に成膜された薄膜上に、新たに、1nm〜5nmの厚さのSiCN系膜の薄膜が成膜される。
【0053】
成膜処理の後、コントローラ34は、上部電極および下部電極への高周波電力の印加を停止し、HMDSおよびNHの供給を停止する。次いで、サセプタ17の温度を400℃に設定し、チャンバ12内の圧力を1.3×10−3Pa(1×10−5Torr)とするとともに、チャンバ12内をArガスによりパージする。
【0054】
コントローラ34は、再び、サセプタ17を400℃に所定時間保持し、アニール処理を行う。これにより、SiCN系膜、特に、新たに形成した膜中のN−H結合のHが脱離する。このようにして、新たに形成されたSiCN系膜に対するN−H結合の除去が行われる。
【0055】
その後、コントローラ34はサセプタ17の温度を350℃まで低下させ、チャンバ12内の圧力を1.3×10−2Pa(1×10−4Torr)とする。コントローラ34は、このようにして、成膜処理と、アニール処理と、各処理間のパージと、を繰り返す。コントローラ34は、薄膜が積層して形成されるSiCN系膜全体の厚さが、所定の厚さ、例えば、500nm(5000Å)に達する回数、上記各処理を繰り返す。
【0056】
所定回数上記各処理を繰り返した後、コントローラ34は、サセプタ17の加熱を停止するとともに、チャンバ12内の圧力をチャンバ12外の圧力程度まで戻す。その後、静電チャックは解除され、リフトピン20が上昇する。次いで、ゲートバルブ15が開放されて、搬送アームがチャンバ12内に侵入する。搬送アームによりウェハWがチャンバ12外に搬出される。
【0057】
以上で、処理装置11を用いたSiCN系膜の形成処理は終了し、図3に示すような、絶縁膜40上にSiCN系膜41が形成された結果物が得られる。ウェハWには、その後、SiCN系膜41のパターニング、次いで、パターニングされたSiCN系膜41をハードマスクとする絶縁膜40のエッチングが施され、例えば、図4〜図6に示すような埋め込み配線層42が形成される。
【0058】
図4〜図6において、配線層42はバリヤ層42aを介して設けられている。ここで、図4に示す配線層42は、ダマシン法を用いて形成した例である。また、図5および図6に示す配線層42は、デュアルダマシン法を用いて、トレンチホール43とビアホール44とを形成した例である。また、図5に示す配線層42は、ハードマスク(SiCN系膜41)を1層用い、図6に示す配線層42は、ハードマスクを2層用いて形成したものである。
【0059】
以上説明したように、本発明によれば、SiCN系膜の成膜を、数nmの厚さの薄膜を積層して行っている。薄膜の成膜処理の間には、熱アニールによる、薄膜中(特に、膜表面)のN−H結合の除去が行われる。これにより、最終的に膜中のN−H結合含有量の少ないSiCN系膜が形成される。
【0060】
N−H結合含有量の少ないSiCN系膜を形成することにより、リソグラフィ工程での加熱時におけるNHの発生等を抑えることができる。図7に、アニール処理時間を変えて、膜中に残存するN−H結合の量を変化させた薄膜から、レジスト処理条件で発生するNHをガス分析により検出した結果を示す。図7に示すように、膜中に存在するN−H結合と発生NH強度とは正の相関を示し、N−H結合の減少に伴って、発生するNH強度も低下する。このことから、適正なアニール処理で、薄膜から十分にN−H結合を除去することにより形成した絶縁膜を使用することで、レジストの変質(いわゆるレジストポイズニング)を低減することができ、信頼性の高いリソグラフィ処理(パターニング)が可能となることがわかる。従って、SiCN系膜をハードマスクとして用いた、信頼性の高い配線層形成処理(特に、ダマシン処理)が可能となる。なお、レジストポイズニングの定量化は、例えばパターンニングされた基板表面のSEM(走査電子顕微鏡)撮影し、その画像のパターニングされたラインとラインとの間の間隔により行うことができる。何故なら、レジストポイズニングが発生すると、ラインエッジが削られて顕微鏡の焦点深度が合わず、ラインエッジが所謂ピンぼけ状態となるために、設計間隔よりも測定間隔の方が小さくなるからである。
【0061】
本発明は、上記の実施の形態に限られず、種々の変形、応用が可能である。以下、本発明に適用可能な上記の実施の形態の変形態様について、説明する。
【0062】
上記実施の形態では、SiCN系膜は、HMDSとNHを原料ガス化合物として形成した。しかし、原料化合物としては、Si、C、Nを含む化合物であって、単体で、又は、これらを適当に組み合わせた反応によりSiCN系膜が形成されるものならいかなるものでもよい。
【0063】
例えば、Si、C、Nをそれぞれ含む3種の原料ガス化合物を用いることもでき、この場合、Si含有化合物としてSiHを、C含有化合物としてC、CH、C、C、C等を、N含有化合物としてN、NF、NO、N、NO、N等を適当に組み合わせればよい。
【0064】
また、Si及びCを含む原料化合物と、Nを含む原料化合物の2種のガスを混合して成膜してもよい。この場合、N含有化合物としては上記したものを用い、Si及びCを含む化合物としてアルキルシラン、アルコキシシラン等の有機シランを用いて、これらを適当に組み合わせればよい。アルキルシランとしては、例えば、メチルシラン(SiH(CH))、ジメチルシラン(SiH(CH)、トリメチルシラン(SiH(CH)、テトラメチルシラン(Si(CH)といったメチル化シランが挙げられ、アルコキシシランとしては、例えば、トリメトキシメチルシラン(Si(CH)(OCH)といったメトキシ化シランが挙げられる。また、これとは逆に、Si及びNを含む原料ガスとCを含む原料ガスを混合するようしてもよい。この場合、C含有化合物としては、上記のものから選択し、Si及びNを含む化合物としては、例えば、ジシラザン(SiH−NH−SiH)を用いて、これらを適当に組み合わせればよい。
【0065】
さらには、Si、C、Nを全て含む、HMDS以外の化合物を原料ガスとして用いることも可能である。このような化合物としては、シラザン結合(−Si−N−)を有する有機シラザン化合物を用いることができる。有機シラザン化合物を用いる場合、例えば、プラズマCVD法により熱重合させて成膜することができる。使用可能な有機シラザン化合物としては、例えば、トリエチルシラザン(SiEtNH)、トリプロピルシラザン(SiPrNH)、トリフェニルシラザン(SiPhNH)、テトラメチルジシラザン(SiMeH−NH−SiMeH)、ヘキサエチルジシラザン(SiEt−NH−SiEt)、ヘキサフェニルジシラザン(SiPh−NH−SiPh)、ヘプタメチルジシラザン(SiMe−NMe−SiMe)、ジプロピル−テトラメチルジシラザン(SiPrMe−NH−SiPrMe)、ジ−n−ブチル−テトラメチルジシラザン(SiBuMe−NH−SiBuMe)、ジ−n−オクチル−テトラメチルジシラザン(SiOcMe−NH−SiOcMe)、ジビニル−テトラメチルジシラザン(CH=CH−SiMe−NH−SiMe−CH=CH)などの鎖状シラザン化合物、トリエチル−トリメチルシクロトリシラザン((SiEtH−NMe))、1,1,3,3,5,5−ヘキサメチルシクロトリシラザン(HMCTS)や1,2,3,4,5,6−ヘキサメチルシクロトリシラザンなどの異性体を含むヘキサメチルシクロトリシラザン((SiMe−NH))、ヘキサエチルシクロトリシラザン((SiEt−NH))、ヘキサフェニルシクロトリシラザン((SiPh−NH))、オクタメチルシクロテトラシラザン((SiMe−NH))、オクタエチルシクロテトラシラザン((SiEt−NH))、テトラエチル−テトラメチルシクロテトラシラザン((SiHEt−NMe))、シアノプロピルメチルシクロシラザン(SiMeNC(CH−NH)、テトラフェニルジメチルジシラザン(SiMePh−NH−SiMePh)、ジフェニル−テトラメチルジシラザン((SiMePh)−NH)、トリビニル−トリメチルシクロトリシラザン((CH=CH−SiMe−NH))、テトラビニル−テトラメチルシクロテトラシラザン(CH=CH−SiMe−NH)などの環状シラザン化合物が挙げられる。上記式中、Meはメチル基(CH)、Etはエチル基(C)、Prはプロピル基(C)、Ocはn−オクチル基(n−C17)、Phはフェニル基(C)を示す。
【0066】
また、上記の例では、Si、C、Nを含む原料ガスが各1種類あればよいものとしたが、これに限らず、例えば、有機シランとNの他にCを加えたガスや、有機シラザンの他にNを加えたガスを用いてもよい。
【0067】
上記実施の形態では、成膜処理には平行平板型のプラズマCVD装置を用いた。しかし、これに限らず、ECR型、ICP型、TCP型、ヘリコン型等のプラズマ処理を用いてもよい。また、プラズマCVDに限らず、熱CVDを用いてもよい。さらに、反応物質を一原子層づつ吸着させて原子層レベルでの膜形成を行う、いわゆるALD(Atomic Layer Deposition)またはALE(Atomic Layer Epitaxy)を適用してもよい。
【0068】
上記実施の形態では、N−H結合の除去処理は、減圧下での加熱によりN−H結合を励起して行うものとした。しかし、N−H結合を励起する方法はこれに限られない。例えば、プラズマアニールを用いてもよく、この場合、Ar、He、Ne、Xe、N等の不活性ガスのプラズマに、SiCN系膜の薄膜を曝露するようにすればよい。プラズマアニールを用いることにより、N−H結合のHの脱離だけでなく、Arイオン等の活性種によるHの引き抜き等によりN−H結合を活性化して、これを除去することができる。
【0069】
上記実施の形態では、SiCN系膜をエッチングのハードマスクとして用いるものとした。しかし、これに限らず、配線層上に設けて配線材料の拡散を抑えるバリヤ層など、他の用途膜として用いてもよい。
【0070】
上記実施の形態では、SiCN系膜を例として説明した。しかし、これに限らず、少なくとも窒素と水素とを含むSiN系膜等の、N−H結合を含む絶縁膜に対して本発明を適用することができる。
【0071】
また、上記実施の形態の処理装置11をエッチャー等と組み合わせた構成としてもよい。この場合、処理装置11を含むクラスタリングシステム、インライン型のシステムとすることができる。
【図面の簡単な説明】
【0072】
【図1】本発明の実施の形態にかかる処理装置の構成を示す図である。
【図2】本発明の実施の形態にかかる絶縁膜の形成方法のタイミング図である。
【図3】本発明の実施の形態の絶縁膜の形成方法により形成された結果物の構成を示す図である。
【図4】本発明の実施の形態の絶縁膜の形成方法により形成された結果物に配線層を形成した図である。
【図5】本発明の実施の形態の絶縁膜の形成方法により形成された結果物に配線層を形成した図である。
【図6】本発明の実施の形態の絶縁膜の形成方法により形成された結果物に配線層を形成した図である。
【図7】アニール処理条件を変更して形成した薄膜のN−H結合量とレジスト処理時に発生するNHガスの検出強度との関係を示す図である。
【図8】ダマシン法を用いた配線層の形成工程を示す図である。
【符号の説明】
【0073】
11 処理装置
12 チャンバ
13 排気口
14 排気装置
15 ゲートバルブ
16 サセプタ支持台
17 サセプタ
18 絶縁体
19 下部冷媒流路
20 リフトピン
21 第1の高周波電源
22 第1の整合器
23 シャワーヘッド
24 ガス穴
25 電極板
26 電極支持体
27 上部冷媒流路
28 ガス導入管
29 HMDSガス源
30 NHガス源
31 Arガス源
32 第2の高周波電源
33 第2の整合器
34 コントローラ

【特許請求の範囲】
【請求項1】
チャンバ内に配置されたサセプタに基板を載置する工程と、
前記チャンバ内に載置された前記基板に、シャワーヘッドを介して、絶縁膜形成原料を供給する工程と、
前記サセプタに第1の周波数の高周波電力を印加する工程と、
前記シャワーヘッドに第2の周波数の高周波電力を印加する工程と、
前記第1の周波数の高周波電力の印加及び前記第2の周波数の高周波電力の印加により、前記絶縁膜形成原料のプラズマを生成する工程と、
前記プラズマにより前記基板上に絶縁膜を形成する工程と、
を備える、ことを特徴とするプラズマCVD成膜方法。
【請求項2】
前記第1の周波数は、前記第2の周波数より低いことを特徴とする請求項1に記載のプラズマCVD成膜方法。
【請求項3】
前記第1の周波数は、0.1〜13MHzである、ことを特徴とする請求項1又は2に記載のプラズマCVD成膜方法。
【請求項4】
前記第2の周波数は、13〜150MHzである、ことを特徴とする請求項1乃至3のいずれか1項に記載のプラズマCVD成膜方法。
【請求項5】
前記絶縁膜は、SiCN系膜であることを特徴とする請求項1乃至4のいずれか1項に記載のプラズマCVD成膜方法。
【請求項6】
前記絶縁膜形成原料は、Si、C、N、及びHを含むことを特徴とする請求項5に記載のプラズマCVD成膜方法。
【請求項7】
前記絶縁膜を形成する工程は、400℃以下で行われることを特徴とする請求項5又は6に記載のプラズマCVD成膜方法。
【請求項8】
前記絶縁膜中に含まれるN−H結合を励起し、前記N−H結合を解離させて水素を除去する水素除去工程をさらに備え、
前記絶縁膜形成原料を供給する工程と、前記第1の周波数の高周波電力を印加する工程と、前記第2の周波数の高周波電力を印加する工程と、前記絶縁膜形成原料のプラズマを生成する工程と、前記絶縁膜を形成する工程と、前記水素除去工程とは、繰り返し行われることを特徴とする請求項5乃至7のいずれか1項に記載のプラズマCVD成膜方法。
【請求項9】
前記絶縁膜は、前記基板上に形成された層間絶縁膜上に形成され、
前記絶縁膜は、前記層間絶縁膜をエッチングするためのハードマスクとして用いられることを特徴とする請求項1乃至8のいずれか1項に記載のプラズマCVD成膜方法。
【請求項10】
チャンバと、
前記チャンバ内に基板を載置するサセプタと、
前記チャンバ内に絶縁膜形成原料を供給する絶縁膜形成原料供給手段と、
前記チャンバ内に供給された絶縁膜形成原料を前記基板に均一に導入する複数のガス穴を有するシャワーヘッドと、
前記サセプタに第1の周波数の高周波電力を印加する第1の高周波電源と、
前記シャワーヘッドに第2の周波数の高周波電力を印加する第2の高周波電源と、
成膜装置の各部を制御する制御手段と、
を備え、
前記制御手段は、
前記絶縁膜形成原料供給手段を制御して前記シャワーヘッドを介して前記基板に前記絶縁膜形成原料を供給し、前記第1の高周波電源を制御して前記サセプタに第1の周波数の高周波電力を印加しつつ、前記第2の高周波電源を制御して前記シャワーヘッドに第2の周波数の高周波電力を印加して、前記チャンバー内に前記絶縁膜形成原料のプラズマを生成して前記基板上に絶縁膜を形成する、
ことを特徴とするプラズマCVD成膜装置。
【請求項11】
前記第1の周波数は、前記第2の周波数より低いことを特徴とする請求項10に記載のプラズマCVD成膜装置。
【請求項12】
前記第1の周波数は、0.1〜13MHzである、ことを特徴とする請求項10又は11に記載のプラズマCVD成膜装置。
【請求項13】
前記第2の周波数は、13〜150MHzである、ことを特徴とする請求項10乃至12のいずれか1項に記載のプラズマCVD成膜装置。
【請求項14】
前記絶縁膜は、SiCN系膜であることを特徴とする請求項10乃至13のいずれか1項に記載のプラズマCVD成膜装置。
【請求項15】
前記絶縁膜形成原料は、Si、C、N、及びHを含むことを特徴とする請求項14に記載のプラズマCVD成膜装置。
【請求項16】
前記制御手段は、前記絶縁膜を形成する際、前記チャンバ内を400℃以下に制御することを特徴とする請求項14又は15に記載のプラズマCVD成膜装置。
【請求項17】
前記制御手段は、
前記絶縁膜中に含まれるN−H結合を励起し、前記N−H結合を解離させて水素を除去する水素除去工程をさらに制御し、
前記絶縁膜形成原料を供給する工程と、前記第1の周波数の高周波電力を印加する工程と、前記第2の周波数の高周波電力を印加する工程と、前記絶縁膜形成原料のプラズマを生成する工程と、前記絶縁膜を形成する工程と、前記水素除去工程とを、繰り返し行うよう制御することを特徴とする請求項14乃至16のいずれか1項に記載のプラズマCVD成膜装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate


【公開番号】特開2007−221165(P2007−221165A)
【公開日】平成19年8月30日(2007.8.30)
【国際特許分類】
【出願番号】特願2007−113542(P2007−113542)
【出願日】平成19年4月23日(2007.4.23)
【分割の表示】特願2002−254994(P2002−254994)の分割
【原出願日】平成14年8月30日(2002.8.30)
【出願人】(000219967)東京エレクトロン株式会社 (5,184)
【Fターム(参考)】