説明

表面検査装置

【課題】角度検出感度を向上させるとともに、検出可能な角度範囲を広くする。
【解決手段】波長域が互いに異なる山形輝度分布が互いに重なり合うように帯状面光源を構成し、各波長域の撮影画像の該山形輝度分布に対応する画素値分布に基づいて検査面の角度を2段階で検出する。第1段階では、R、G、Bの画素値間の大小関係と曲線近似情報とに基づいて、光源面上周期内参照光位置xを決定し、第2段階では、明度の値と曲線近似情報とに基づいて、周期内参照光位置xがどの周期iに属するか、すなわち、周期始点位置Xiを求める。次いで参照光位置X=Xi+xを検査ラインでの検出角に変換する。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、光の正反射を利用して検査面の角度を検出する表面検査装置に関する。
【背景技術】
【0002】
図8及び図9に示すように、検査面10、例えば車の塗装面の微細な凹凸欠陥を検出するために、照明装置20と撮像装置30とが不図示のロボットアームに取り付けられている。検査面10に対し照明装置20と撮像装置30とを一体的に図示矢印方向へ相対的に移動させながら、照明装置20から射出した光の検査面10上の正反射光を撮像装置30で撮像する。検査面10上の凹凸部11の傾斜面での正反射光を撮像したとき、その画素に対応する照明装置20の光源面21上の光射出点(参照光点)は、上記移動に伴うこの傾斜面の角度変化に応じて変化する。
【0003】
そこで、下記特許文献1では、光源面21の走査方向一端Aから他端Bまでの範囲の輝度分布を、図13(A)に示すよう勾配を持たせることにより、参照光点の位置変化を画素値の変化に対応させ、画素値の変化に基づいて塗装欠陥を検出している。
【0004】
凹凸部11の傾斜角が比較的大きいと、重度の欠陥と判定される。一方、この傾斜角が比較的小さくても、欠陥部分の面積が広ければ重度の欠陥と判定する必要がある。
【0005】
しかし、小さな傾斜角の場合、参照光点の位置変化量が小さいので、SN比が小さくなり、欠陥を検出することができない(検出感度が低い)。輝度勾配を大きくすると、検出可能な角度範囲に対応したAB間の幅が狭くなり、検出対象の角度によっては、検出感度が低下したり、見逃したりすることがあった。
【0006】
このような問題を解決するために、下記特許文献2では、光源面21にスリットを配置してAB間の輝度分布を図13(B)に示すようにして、明部と暗部の境界領域の輝度勾配を大きくしている。暗部では欠陥を検出できないため、撮像装置30を2台並設して、一方の撮像装置30から見た暗部が他方の撮像装置30から見た明部となるようにしている。
【0007】
しかし、この条件が満たされるのは一部の領域であり、盲点が生ずる。また、明部では輝度分布がフラットになり、上記の原理では欠陥を検出できない。
【0008】
一方、下記特許文献3では、照明装置20として、図11(C)に示すようなR(赤)とB(青)とG(緑)の輝度分布のものを用い、検査面10に対し照明装置20を平行に配置し、撮像装置30をその光軸が検査面10と垂直になるように配置し、凹凸部11の上部でのBの正反射光量と、この上部の一端側でのRの正反射光量と、他端側でのGの正反射光量とを、画像から読み取り、これら正反射光量の大小の組み合わせに基づいて凹凸欠陥や異物などの欠陥の種類を判定している。
【0009】
しかしながら、凹凸欠陥における傾斜角がどの程度であるかを検出することができない。
【0010】
下記特許文献4では、赤色から青色に向かって徐々に波長が変化する光を、その波長の変化が入射角が変化する方向に沿って生じるようにした照明装置を用い、はんだ付け部からの正反射光の撮影画像から、はんだ付け部の色彩を演算で求め、これに基づきはんだの表面状態の適否を判別している。
【0011】
しかし、赤色から青色に向かって徐々に波長が変化する光を用いているので、小さな傾斜角の場合、参照光点の位置変化量が小さい。このため、SN比が小さく、上記引用文献1と同様の問題が生ずる。
【先行技術文献】
【特許文献】
【0012】
【特許文献1】特開平5−209734号公報
【特許文献2】特開平11−63959号公報
【特許文献3】特開2010−112941号公報
【特許文献4】特開2009−128303号公報
【発明の概要】
【発明が解決しようとする課題】
【0013】
本発明の目的は、上記問題点に鑑み、角度検出感度を向上させることが可能な表面検査装置を提供することにある。
【0014】
本発明の他の目的は、角度検出感度を向上させつつ角度検出感度のむらを低減することが可能な表面検査装置を提供することにある。
【0015】
本発明のさらに他の目的は、角度検出感度を向上させるとともに検出可能な角度範囲を広くすることが可能な表面検査装置を提供することにある。
【0016】
本発明のさらに他の目的は、角度検出感度を向上させつつ角度検出感度のむらを低減するとともに検出可能な角度範囲を広くすることが可能な表面検査装置を提供することにある。
【課題を解決するための手段】
【0017】
本発明の第1態様では、
波長域が互いに異なる複数の帯状光源が並設されている照明手段と、
該照明手段から射出され光検査面で正反射されて入射した光を、該複数の波長域のそれぞれに分光する分光手段と、
該分光された光のそれぞれが結像されるイメージセンサを備えた撮像手段と、
該撮像手段で撮像された画像のデータに基づいて検査面の角度を検出する画像処理手段と、
を備えた表面検査装置であって、
該照明手段は、該複数の帯状光源の光源面上の、帯状光源長手方向と直角な方向の線に沿った参照光位置に対する輝度分布が、該複数の帯状光源のそれぞれについて帯状光源面の中点から離れるにつれて輝度が小さくなり、且つ、隣り合う帯状光源の輝度分布が少なくとも輝度のピーク位置まで重なり合うように構成され、
該画像処理手段は、同一参照光位置に対応する、該複数の波長域のそれぞれに対応した画素値について、最大画素値の波長域と2番目に大きい画素値の波長域との組み合わせに基づいて参照光位置が含まれる範囲を決定し、該最大画素値に基づいて又は該最大画素値と該2番目に大きい画素値とに基づいて、該範囲内での参照光位置を決定し、参照光位置と該角度との関係とに基づいて、該角度を求める第1処理手段を有する。
【0018】
本発明による表面検査装置の第2態様では、第1態様において、該画像処理手段の該第1処理手段は、該2番目に大きい画素値と該最大画素値との比の値に基づいて、該範囲内での該参照光位置を決定する。
【0019】
本発明による表面検査装置の第3態様では、第2態様において、該画像処理手段の該第1処理手段は、参照光位置に対する、該複数の波長域のそれぞれに対応した、明度に依存しないように規格化した画素値の分布について、各ピーク画素値での、該ピーク画素値の波長域と異なる波長域の規格化画素値が略0になるように、各規格化画素値から所定値をオフセット値として減算し、該減算の後に、該比の値に基づいて、該範囲内での参照光位置を決定する。
【0020】
本発明による表面検査装置の第4態様では、第3態様において、基準位置からの参照光位置が該比の値に比例するように該比の値に乗ぜられる補正値を、明度に依存しないように規格化した最大画素値の関数又は該比の関数として近似的に求めるための情報が格納された記憶手段をさらに備え、
該画像処理手段の該第1処理手段は、該比の値に該補正値を乗じて、該参照光位置を決定する。
【0021】
本発明による表面検査装置の第5態様では、第1態様において、該撮像手段で撮像される画像の、該複数の波長域のそれぞれの該輝度分布に対応した、該量に対する画素値分布について、同一参照光位置に対応した、該複数の波長域のそれぞれの画素値のうちの最大画素値の、明度に依存しないように規格化したものの分布を、近似的に求めるための第1情報が格納された第1近似式情報記憶手段をさらに備え、
該画像処理手段の該第1処理手段は、該第1情報に基づく、該最大画素値の規格化画素値分布の近似式における該範囲内での規格化最大画素値に対応した参照光位置を求める。
【0022】
本発明による表面検査装置の第6態様では、第2乃至5態様のいずれか1つにおいて、該照明手段は、該波長域が互いに異なる複数の帯状光源が複数組並設され、組毎に該輝度分布が異なり、該複数の組について互いに対応する組内参照光位置に対する該画像の画素値の比が該組内参照光位置によらず略一定であり、
該参照光位置に対する、同一参照光位置に対応した、該複数の波長域のそれぞれの画素値に基づく明度の分布を各組について近似的に求めるための、又は、明度に関し隣り合う組の明度分布を区別する境界線を近似的に求めるための第2情報が格納された第2近似式情報記憶手段を備え、
該画像処理手段は、同一参照光位置に対応する、該複数の波長域のそれぞれに対応した画素値を該組に依存しないように規格化して該第1処理手段により組内の該参照光位置を求め、
該画像処理手段はさらに、該第2情報に基づく、該明度の分布又は該境界線の近似式と該組内の参照光位置とに基づいて該組内の参照光位置がどの組であるかを決定し、該組内の参照光位置と該決定した組とに基づいて、全範囲における参照光位置を求める第2処理手段を有する。
【発明の効果】
【0023】
上記第1態様の構成によれば、複数の帯状光源の光源面上の、帯状光源長手方向と直角な方向の線に沿った参照光位置に対する輝度分布が、該複数の帯状光源のそれぞれについて帯状光源面の中点から離れるにつれて輝度が小さくなり、且つ、隣り合う帯状光源の輝度分布が少なくとも輝度のピーク位置まで重なり合うように構成され、同一参照光位置に対応する、該複数の波長域のそれぞれに対応した画素値について、最大画素値の波長域と2番目に大きい画素値の波長域との組み合わせに基づいて参照光位置が含まれる範囲を決定し、該最大画素値に基づいて又は該最大画素値と該2番目に大きい画素値とに基づいて、該範囲内での参照光位置を決定し、参照光位置と該角度との関係とに基づいて、該角度を求めるので、角度検出感度を向上させることができるという効果を奏する。
【0024】
上記第2態様の構成によれば、該2番目に大きい画素値と該最大画素値との比の値に基づいて、該範囲内での該参照光位置を決定するので、画素値分布の全範囲について、角度検出感度を向上させつつ角度検出感度のむらを低減することが可能となるという効果を奏する。
【0025】
上記第3態様の構成によれば、参照光位置に対する、該複数の波長域のそれぞれに対応した規格化画素値の分布について、各ピーク画素値での、該ピーク画素値の波長域と異なる波長域の画素値が略0になるように、各規格化画素値から所定値をオフセット値として減算し、該減算の後に、該比の値に基づいて、該範囲内での参照光位置を決定するので、SN比の低い信号を除去して角度検出誤差を低減できるとともに、計算が簡単になって画像処理速度を向上させることもできるという効果を奏する。
【0026】
上記第4態様の構成によれば、該比の値に補正値を乗じて参照光位置を決定するので、角度検出感度のむらをさらに低減することができるという効果を奏する。
【0027】
上記第5態様の構成によれば、同一参照光位置に対応した、該複数の波長域のそれぞれの画素値のうちの最大画素値の規格化画素値分布を近似的に求めるための第1情報に基づく、該最大画素値の規格化画素値分布の近似式における該範囲内での規格化最大画素値に対応した参照光位置を求めるので、より高いSN比で角度を検出することができ、これにより角度検出感度を向上させることができるという効果を奏する。
【0028】
上記第6態様の構成によれば、該波長域が互いに異なる複数の帯状光源が複数組並設され、組毎に該輝度分布が異なり、該複数の組について互いに対応する組内参照光位置に対する該画像の画素値の比が該組内参照光位置によらず略一定である照明手段を備え、同一参照光位置に対応する、該複数の波長域のそれぞれに対応した画素値を該組に依存しないように規格化して第1処理手段により組内の該参照光位置を求め、第2情報に基づく、明度の分布又はその境界線の近似式と該組内の参照光位置とに基づいて該組内の参照光位置がどの組であるかを決定し、該組内の参照光位置と該決定した組とに基づいて、全範囲における参照光位置を求めるので、角度検出感度を向上させるとともに検出可能な角度範囲を広くすることができるという効果を奏する。
【0029】
本発明の他の目的、特徴的な構成及び効果は、以下の説明を特許請求の範囲及び図面の記載と関係づけて読むことにより明らかになる。
【図面の簡単な説明】
【0030】
【図1】本発明の実施例1に係る表面検査装置の概略構成図である。
【図2】主に撮像装置の概略構成を示す照明撮像装置概略斜視図である。
【図3】(A)は照明装置の概略構成を示す側面図、(B)は(A)中のLEDアレイ部の正面図である。
【図4】図3中の任意の同色LED1列の接続図である。
【図5】(A)は光源面上の走査方向に沿った参照光位置Xに対するR、G、Bのそれぞれの輝度Yを示す線図であり、(B)は検査面の角度を変えて参照光位置Xを図1のAB間で変化させたときの撮像装置のR、G、Bに対応したラインセンサのそれぞれの特定点画素値の変化を示す線図であり、(C)は(B)のデータに基づいた、参照光位置Xに対する明度を示す線図である。
【図6】(A)は画素値に基づいて周期内参照光位置xを決定する方法を説明する線図であり、(B)は(A)の画素値を規格化した線図であり、(C)は(B)の各周期内参照光位置xに対応した、R、B、Gのうちの最大画素値の線図であり、(D)は周期内参照光位置xに対する各周期での明度Vを示す線図である。
【図7】図1の検査点角度検出部で実行される、R、G、Bの画素値から検査ライン上の任意の点の傾斜角を求める処理の概略フローチャートである。
【図8】検査面に対し照明装置と撮像装置とを一体的に図示矢印方向へ相対的に移動させたときに、撮影画像に対応した光源面上の参照光位置Xが変化する様子を示す説明図である。
【図9】検査面に対し照明装置と撮像装置とを一体的に図示矢印方向へ相対的に移動させたときに、撮影画像に対応した光源面上の参照光位置Xが変化する様子を示す説明図である。
【図10】(A)は検査面上の凹凸部側面図、(B)はこの凹凸部を図8及び図9のように走査したときに図1の角度情報記憶部に格納される角度分布の説明図である。
【図11】本発明の実施例2に係り、(A)は照明装置の概略構成を示す側面図、(B)は(A)中のNDフィルタのAB間の透過率を示す特性図、(C)は参照光位置Xを(A)のAB間で変化させたときのR、B及びGに対応したラインセンサのそれぞれの特定点画素値の変化を示す線図であり、(C)は光整形拡散板上の参照光位置Xに対する明度を示す線図である。
【図12】本発明の実施例3に係り、(A)はオフセット減算説明図、(B)は各画素から(A)のオフセットを減算した後の、周期内参照光位置xに対する画素値分布を示す線図、(C)及び(D)は近似計算説明図である。
【図13】(A)〜(C)はいずれも背景技術の問題点説明図であって、照明装置の参照光位置Xに対する輝度分布を示す線図である。
【実施例1】
【0031】
図1は、本発明に係る表面検査装置の実施例を示す概略構成図である。
【0032】
検査面10は、例えば車の塗装面であり、その微細な凹凸欠陥を検出するために、照明装置20と撮像装置30とを備えた照明撮像装置LIDが不図示のロボットアームに取り付けられている。検査面10に対し照明装置20と撮像装置30とを一体的に図示矢印方向へ相対的に移動させながら、照明装置20から射出した光の検査面10上の正反射光を、撮像装置30で撮像する。
【0033】
図3(A)は、照明装置20の概略構成を示す側面図である。図3(B)は照明装置20を構成するLEDアレイ部の正面図である。
【0034】
照明装置20では、矩形の熱伝導良導体である基板22上に、複数のLEDランプ23が列間を狭められるように千鳥格子状に配設されている。各LEDランプ23は、基板22に固着された小基板230と、小基板230上に固着されたLED231と、LED231のアノードとカソードにそれぞれ導通した端子部とを備えている。LEDアレイは、図3中にR(赤)、G(緑)及びB(青)で示す、波長域が比較的狭い単色のR列、G列及びB列がこの順に、周期的に配置されてLEDアレイ部が構成されている。全てのR列は製造上のばらつきを除き互いに同一特性のLEDを備え、G列及びB列についても同様である。
【0035】
3色LED列240〜246はいずれも、1組の互いに接近したR列、G列及びB列からなる。LEDアレイ部に対向して透明基板25が並設され、透明基板25上にシート状の光整形拡散板26が接合されている。透明基板25のLED側の面の走査方向両端部には、LEDアレイの一端部のR列及び他端部のB列のそれぞれの半分を遮光するように遮光板270、271が接着されている。図3中の位置A及びBはそれぞれ、図1、図2、図8及び図9中の位置A、Bに対応している。
【0036】
各LED列は図4に示すように、隣合うLED231が直列接続され、これに更に可変抵抗器28が直列接続され、この直列接続回路に所定の定電圧が印加され、可変抵抗器28の抵抗値によりLED列の発光量が調整される。図1中の輝度調整装置28Gは、各LED列の可変抵抗器28を備えている。
【0037】
光整形拡散板26(Light Shaping Diffusers)は、光をその屈折機能で拡散させるとともに整形するものであり、例えば、サーフェス・レリーフ・ホログラムパターンにより、表面にマイクロレンズのようなものをランダムに形成したものである。光整形拡散板26は、同一色のLED列の方向の拡散角がこれと直角な方向のそれよりも充分大きくなるように光を整形して、光整形拡散板26上でのLED列に平行な方向の線上で輝度が略均一になるようにする。これにより、各LED列に対応して光整形拡散板26の面に帯状光源が形成される。ここで拡散角とは、輝度が最大値の半分になる全角であり、LEDの放射角に依存する。
【0038】
照明装置20は、複数の帯状光源の光源面上の、帯状光源長手方向と直角な方向の線に沿った参照光位置Xに対する輝度分布、即ちAB間の輝度分布が、該複数の帯状光源のそれぞれについて帯状光源面の中点から離れるにつれて輝度が小さくなり、且つ、隣り合う帯状光源の輝度分布が少なくとも輝度のピーク位置まで重なり合うように構成されており、この輝度分布は、例えば図5(A)に示す如くなる。
【0039】
輝度のピーク値に関しては、このように3色LED列毎に段階的に変化するように、輝度調整装置28Gが調整される。図5(A)中のR0、G0及びB0はそれぞれ3色LED列240のR列、G列及びB列に対応した帯状面光源の輝度分布曲線であり、R1、G1及びB1はそれぞれ3色LED列241のR列、G列及びB列に対応した帯状面光源の輝度分布である。
【0040】
次に、撮像装置30の概略構成を、図2を参照して説明する。
【0041】
撮像装置30では、検査面10上の検査ライン12で反射された光が結像レンズ300を介してダイクロイックプリズム301でR、B及びGの光に分光され、それぞれラインセンサ30R、30G及び30B上に結像される。検査ライン12での正反射に対応した入射光の、図1に示す光源面21の走査方向AB間における位置(参照光位置)は、検査面10上の検査ライン12での角度により定まる。例えば、検査ライン12の位置の凹凸部の接平面S0〜S2に、光源面21上の参照光点RP0〜RP2が対応する。接平面の角度を連続的に一方向へ変化させたときの、光源面21上のAB間の例えば中央ラインに対応する、ラインセンサ30R、30G及び30Bのそれぞれの中央点画素値は、図5(B)に示すように変化する。
【0042】
図5(B)中のDR0、DG0、DB0、DR1、DG1及びDB1はそれぞれ、図5(A)中のR0、G0、B0、R1、G1及びB1に対応している。図5(B)中の横軸は、図5(A)と同じく図1のAB間の参照光位置Xである。
【0043】
実際には、光源面21からの射出角に依存する輝度や、検査ライン12での反射角や、波長に依存する反射率等のパラメータで、参照光位置Xに対応した画素値が異なるが、結果として図5(B)のような関係が成立するように、輝度調整装置28Gを調整する。図5(A)は、説明の簡単化のために上記パラメータを無視して表したものである。
【0044】
図5(B)中の小黒点は、1周期内参照光位置xが互いに等しい任意の点を示す。これらの点が、点線で示す1直線上に存在するように、輝度調整装置28Gが調整されている(実際の調整結果は、許容範囲内でこれらの点が略1直線上に存在すればよい)。このような規則的な周期性を利用して、参照光位置Xの計算を、後述のように簡単化している。
【0045】
図3(A)で遮光板270及び271を設けた理由は、端部領域においてもSN比を所定値以上に保つことにより参照光位置xの検出誤差を低減するとともに、周期性を確保して、処理を簡単化するためである。図6(A)は図5(B)中の1周期分を示す。
【0046】
次に、本実施例での参照光位置決定原理を説明する。本実施例では参照光位置Xを2段階で求める。第1段階では、図6(A)に示す1周期内の参照光位置xを求め、第2段階ではこの周期内参照光位置xが、図5(C)に示す画素明度分布のどの周期i(iは図5(C)に示す0〜4の範囲の整数値)に含まれるかを決定し、この周期iの始点位置Xiに周期内参照光位置xを加算したXi+xを、参照光位置Xとして求める。すなわち、階層的に参照光位置Xを決定する。ここに画素明度Vは、簡単化のためV=DR+DG+DBとする。明度Vは、ラインセンサ30R、30B及び30Gの相対的感度に応じてR、G、Bの画素値に重み付けしたものであってもよい。
【0047】
1).第1段階
1周期内参照光位置xに対応するR、B、Gの1組の画素値のうち、画素値が大きいほどSN比が大きい。検出誤差を小さくするために、この最大画素値のみを用いて周期内参照光位置xを求めたい。図6(A)において、例えばBの画素値が最大でこの値がD0である場合、Bの画素値がD0となる周期内参照光位置xは、2点存在する。R、B、Gの1組の画素値のうち2番目に大きい画素値がGであれば登り曲線上の画素値に対応する周期内参照光位置xを求め、Rであれば下り曲線上の画素値に対応する周期内参照光位置xを求める。
【0048】
これを一般化すれば、図6(A)に示すように、R、G、Bの画素値のピーク点P0、P1、P2、P3のxと、隣り合うピーク点間の画素値の交点C0、C1、C2のxとを境界点とする6つの領域に、1周期を分割する。そして、図6(C)に示すようなRGB1組内最大画素値の曲線を、曲線、折れ線又は直線で近似するための複数の画素値を、予め測定し、周期内参照光位置xと対応させておき、次のようにして周期内参照光位置xを求める。
【0049】
図6(C)は、どの周期であるかに依らず一律的に周期内参照光位置xを求めるために、周期内参照光位置xに対応したR、G及びBの画素値DR、DG及びDBが規格化されている。種々の規格化が考えられるが、本実施例では、これらDR、DG及びDBをそれぞれ、r=DR/V、g=DG/V、b=DB/Vと明度に依存しないよう規格化する。
【0050】
(1)最大画素値がRであれば領域A0又はA6であると決定し、2番目に大きい画素値がGであれば領域A0、すなわち曲線P0−C0上の点であるとして周期内参照光位置xを求め、2番目に大きい画素値がBであれば領域A6、すなわち曲線C2−P3上の点であるとして周期内参照光位置xを求める。
【0051】
(2)最大画素値がGであれば領域A1又はA2であると決定し、2番目に大きい画素値がRであれば領域A1、すなわち曲線C0−P1上の点であるとして周期内参照光位置xを求め、2番目に大きい画素値がBであれば領域A2、すなわち曲線P1−C1上の点であるとして周期内参照光位置xを求める。
【0052】
以下同様であり、以上のことから容易に理解できるので、その説明を省略する。
【0053】
なお、隣り合うピーク点間の画素値の交点C0、C1、C2の高さは、勾配が比較的大きく且つSN比が比較的大きい部分を用いた方が角度検出感度を高くすることができることから、ピーク点の略半値であることが好ましい。
【0054】
2).第2段階
図6(D)は、図5(C)を、図6(C)に対応して1周期に纏めて表したものである。周期内参照光位置xでの明度V(x)が、どの曲線に最も近いかを判定することで、周期内参照光位置xがどの周期であるかを決定する。換言すれば、図6(D)中の上下に隣り合う曲線の中点を結ぶ曲線を図6(E)に示すような周期判定用境界線とし、どの境界線間(V=0とV=∞の境界線も想定する。)に明度V(x)が含まれるかで、周期内参照光位置xがどの周期であるかを決定する。
【0055】
以上のような参照光位置決定原理によれば、波長域が互いに異なる山形輝度分布が互いに重なり合うように帯状面光源を構成し、各波長域の撮影画像の該山形輝度分布に対応する画素値分布に基づいて検査面の角度を検出するので、従来の図13(A)に示すような勾配よりも大きな勾配を用いることができ、これにより検出願度が向上するという効果を奏する。さらに、周期毎に明度Vを異ならせて周期内参照光位置xがどの周期であるかを決定するので、検査可能な角度範囲を広げることができるという効果を奏する。
【0056】
図1に戻って、入力部41は、制御部40に対する設定値及び指示の入力用であり、表示部42はこの入力を対話的に行うと共に指示に応じて欠陥情報等を表示させるためのものである。近似式情報記憶部43には、上述の図6(C)及び、図6(D)又は図6(E)の曲線を、曲線、折れ線又は直線で近似的に決定するための曲線近似情報として、測定点(x,d)及び(V,x)が複数格納されている。すなわち、近似式情報記憶部43には、撮像装置30で撮像される画像の、複数の波長域のそれぞれの輝度分布に対応した、xに対する画素値分布について、同一参照光位置xに対応した、該複数の波長域のそれぞれの画素値のうちの最大画素値の画素値分布を近似的に求めるための情報と、xに対する明度Vの分布又は明度に関し隣り合う組の明度分布を区別する境界線を各周期について近似的に求めるための情報とが格納されている。
【0057】
通常、参照光位置xに対応した規格化画素値分布が、該複数の波長域について略同一であり、また、画素分布がピーク値の軸に関し対称であるので、近似式情報を大幅に削減することができる。
【0058】
参照光位置xの替わりに、xに対応した量、例えば基準面に対する検査ライン12での角度であってもよい。この情報は、近似式の係数などであってもよいことは勿論である。
【0059】
制御部40は、不図示のロボットアームから、検査面10に対する照明撮像装置LIDの位置情報を取得する。制御部40は、撮像装置30に制御信号を供給して、ラインセンサ30R、30G及び30Bから画像データを画像メモリ44にDMA(ダイレクトメモリアクセス)転送させる。この転送後に、検査点角度検出部45に対するレディ信号を活性にする。検査点角度検出部45は、この活性化に応答して、各画素(R、G、Bの画素値DR、DG、DBの1組)について図7に示す処理を開始する。以下、括弧内は図中のステップ識別符号である。
【0060】
(S10)明度V=DR+DG+DBを求める。
【0061】
(S11)画素値DR、DG及びDBを上述のように明度Vで規格化する。
【0062】
(S12)画素値DR、DG及びDBの間の大小関係と近似式情報記憶部43内の、図6(C)に対応した情報とに基づいて、上述のように周期内参照光位置xを決定する。
【0063】
(S13)明度Vの値と近似式情報記憶部43内の、図6(D)に対応した情報とに基づいて、周期内参照光位置xがどの周期iに属するかを決定する。すなわち、周期始点位置Xiを求める。
【0064】
(S14)実験又は計算により定めた、参照光位置Xと検査ライン12での基準面に対する傾斜角(検出角θ)との関係に基づいて、参照光位置Xをこの検出角θに変換する。
【0065】
検査点角度検出部45は、撮像装置30での画素位置に対応した検査ライン12上の各点での検出角θを、照明撮像装置LIDの位置・姿勢情報と共に角度情報記憶部46に格納し(第1段階の角度マップを角度情報記憶部46内に作成し)、制御部40に対し角度検出完了信号を活性にする。
【0066】
このような処理を、検査面10に対し照明撮像装置LIDを相対的に走査させながら繰り返すことにより、検査面10上の角度分布が角度情報記憶部46内に得られる。
【0067】
表面欠陥検出部47は、上記処理と平行して、角度情報記憶部46内の情報に基づき、良面(検出角が比較的緩やかに変化する広い範囲の面)に対する欠陥点の角度を、両者の検出角度差により求める(第2段階の角度マップを角度情報記憶部46内に作成する)。
【0068】
このような処理により、例えば図10(A)に示すような凹凸部11が形成された検査面10に対し、図8及び図9に示すように照明撮像装置LIDを矢印方向へ走査することにより、図10(B)に示すような角度情報を取得することができる。図10(B)は第2段階の角度マップの概略を視覚的に示すものであり、その升目は、検査面10上の、撮像装置30の対応する、R、G、Bの1組の画素点に対応している。図11(B)中の互いに異なるハッチングを施した部分は、互いに検出角が異なることを示している。白抜き部分は、良面を示している。図10(C)に示すような凹凸部11Aが形成された検査面10についての角度マップの概略を視覚的に図10(D)に示す。黒塗り部分は、傾斜角が大きいために参照光点が光源面21上に存在しなかった部分であり、その両側の角度分布から当該部分を判定でき、それぞれの側の角度より絶対値が大きい角度をこの角度マップに記入しておく。
【0069】
表面欠陥検出部47は次いで、角度情報記憶部46内の欠陥点の角度の分布と欠陥部サイズとに基づいて、欠陥部毎に重度又は軽度の欠陥であるか否かを判定し、その結果を欠陥情報記憶部48に格納するとともに、表示部42に表示させ、欠陥の程度に応じて作業者に警報で報知する。
【0070】
従来では塗装欠陥検査を人と装置とで行い、装置が低感度であったことから、自動検査のレベルが人のそれに至らず、人の検査負担を軽減出来ていなかったが、本実施例1によれば、角度検出感度が高く且つ比較的広い範囲で角度を検出できるので、その画像処理により表面欠陥検出をより確実かつ正確に行うことが可能となり、これにより、人の検査負担を軽減させて、自動車等の製造コスト低減に寄与するところが大きい。
【実施例2】
【0071】
図11は、本発明の実施例2の説明図である。
【0072】
この実施例2では、図11(A)に示すように、照明装置20Aにおいて、透明基板25にND(Neutral Density)フィルタ29が接合されている。NDフィルタ29は、図11(B)に示すように、照明装置20AのAB間で透過率が直線的に変化している。
【0073】
NDフィルタ29を用いずに検査ライン12の傾斜角を連続的に変化させたときの撮像装置30での画素値のピーク値が図11(C)に示すよう一定になるように、各LEDに電流を供給する。この条件の下でNDフィルタ29を用いることにより、画素値の明度Vは図11(D)に示すように、参照光位置Xに対し略直線的に変化する。図11(D)中の小黒点は、周期内参照光位置xが互いに同一な点を示しており、実施例1と同様にしてどの周期に属するかを定めることができる。周期内参照光位置xについても、上記実施例1と同じ方法で求めることができる。
【0074】
他の点は、実施例1と同一である。
【実施例3】
【0075】
上記実施例1、2では、画素値のピークレベル付近でカーブが緩やかになるため、角度検出感度が低下する。部分的に感度が低下すると、全体としての検出誤差が大きくなるので、できるだけ角度検出感度を参照光位置に依存しないようにした方が好ましい。
【0076】
そこで、本実施例ではこの問題を解決するため、上記第1段階での処理の替わりに、次のように隣り合う2色を考慮して周期内参照光位置xを求める。
【0077】
まず、図12(A)に示すような1周期について、足部交点を結んだ直線のレベルofsを各規格化画素値r、g、bから減算することにより、図12(B)に示すような画素値分布にして、SN比の低い部分を除去する。これにより、領域A0〜A5のそれぞれについて隣り合う2色のみでxを算出できるので、計算が簡単になるとともに画像処理速度を向上されることもできる。
【0078】
ここで、領域A0について、比DG/DRはxと1対1に対応している。DG/DR=(DG/V)/(DR/V)であるので、比DG/DRは規格化されている。そこで、x=C*DG/DR(=C*g/r)により、xを近似的に求める。ここに「*」は乗算記号である。係数Cは、簡単化のため、定数であるとする。この式の意味を分かりやすくするために、図12(C)に示すように、各画素値曲線を点線のように直線近似して考える。
【0079】
ここで、領域A0での上記直線近似は、DGを0〜1の範囲に規格化したパラメータp及びxの範囲を0〜1の範囲に規格化したパラメータqを用いてq=p/(1−p)と表すことができる。図12(D)中の直線q=p、q=1−pはそれぞれ上式右辺のg(x)及びr(x)に対応している。範囲0≦p≦0.5では、図12(D)に実線で示すようにほぼ直線的に変化する。図12(C)において、領域A0では両端を除き、画素値rが対応する近似直線より僅か大きく、画素値gが対応する近似直線より僅か小さい程度であるので、xは、ほぼ図12(D)に示す実線のように略直線となる。
【0080】
この近似式の利点は、領域A0の画素値ピーク点付近も含めて比g/rに関しxが略直線的に変化するので、実施例1の場合よりも角度検出感度が向上する点である。
【0081】
C*g/rがrに関し線形に変化するように、Cを規格化画素値rの関数C(r)として実験的に求めておくことにより、角度検出感度をさらに向上させる。C(r)の値は、領域A0の幅x0に略等しく、領域A0の両端でx0となる。
【0082】
他の領域についても同様にしてxを求める。すなわち、一般に、以下のようにしてxを求める。
【0083】
DR≧DGのとき(領域A0)、x=C(r)*g/r
DG>DRのとき(領域A1)、x=C(g)*(2−r/g)
DG>DBのとき(領域A2)、x=C(g)(*(2+b/g)
DB>DGのとき(領域A3)、x=C(b)*(4−g/b)
以下、同様である。関数C(規格化画素値)は、各色について略同一である。
【0084】
係数Cを定数で近似する場合、図1の曲線近似情報記憶部43には、第2段階のみについての曲線近似情報を格納すればよく、構成が簡単になる。上式のように関数C(規格化画素値)を用いる場合には、これを近似的に求めるための情報を曲線近似情報記憶部43に格納しておく。
【0085】
なお、係数Cを、上記各領域について、対応する最大画素値と2番目に大きい画素値の比の関数とすることにより、最大画素値付近での角度検出感度を更に向上させてもよい。 また、一般に、周期内参照光位置xを、上記各領域について、対応する最大画素値と2番目に大きい画素値の比ρの関数x(ρ)で表し、この関数の曲線を近似的に求めるための情報を曲線近似情報記憶部43に格納し、この情報とρとの値からxを求める構成であってもよい。例えば、DR≧DGのとき(領域A0)、x=C(ρ)*ρ、ρ=g/rなるx(ρ)は、この一般化した関数の表現形態の1つである。
【0086】
次に、m=MIN(DR,DG,DB)、M=MIN(DR,DG,DB)のとき、HSB色空間での飽和度Sは、S=(M−m)/Mと表される。ここに、MIN及びMAXはそれぞれ、括弧内の画素値のうちの最小値及び最大値である。
【0087】
飽和度Sは、正反射しているとき1となり、正反射していないときは値が低くなるので、正反射であるか否かを飽和度Sで判定する。ごみなどは光を拡散させるので飽和度Sが小さくなり、ごみなどの判定にも飽和度Sを用いる。
【0088】
他の点は、実施例1と同一である。
【0089】
本実施例3によれば、角度検出感度が高く且つ検出対象の角度に対する感度が安定し、さらに、比較的広い範囲で角度を検出できるので、その画像処理により表面欠陥検出をより確実かつ正確に行うことが可能となり、これにより、人の検査負担をさらに軽減させて、自動車等の製造コスト低減に寄与するところが大きい。
【0090】
以上において、本発明の好適な実施例を説明したが、本発明には他にも種々の変形例が含まれ、上記各実施例で述べた構成要素の他の組み合わせ、各構成要素の機能を実現する他の構成を用いたもの、当業者であればこれらの構成又は機能から想到するであろう他の構成も、本発明に含まれる。
【0091】
例えば、請求項1の「参照光位置に対応した該角度」は、通常の「角度」の単位に限定されず、角度に対応した表現形態のものであればよく、参照光位置自体であってもよい。
【0092】
また、実施例3の処理方法で画素値のピーク付近の領域の角度を検出し、実施例1の処理方法でその他の領域の角度を検出する構成であってもよい。
【0093】
また、上記規則的な周期性を考慮せずに、それぞれの不規則な周期について図6(C)の関係を予め定めておく構成であってもよい。この場合、可変抵抗器28を固定抵抗としてもよい。この不規則な周期は、例えば、図5(C)で周期0〜4の曲線を互いに入れ替えたものになるものであってもよい。
【0094】
また、上記原理から、R、B、GのLED列の並び順は任意でよい。さらに、R、G、BのLEDにさらに赤外のLEDを加えてもよい。この場合、上記原理から1周期を6列(6は、4個から2個を取り出す組み合わせの数)のLED列とすることができる。LEDの色は2色以上であればよい。
【0095】
さらに、遮光板270及び271を設けずに、この部分に対応した単色帯状面光源面上の参照光位置も検出する構成であってもよい。この場合も、図10(D)のような角度マップを得ることができる。
【0096】
また、照明装置20又は撮像装置30と検査面10との間の距離をパラメータとして、上記曲線近似情報を記憶部43に格納し、この距離に応じて角度を検出する構成であってもよい。
【0097】
また、実施例2でNDフィルタ29を用いずに、発散角が比較的大きい赤外のLEDも基板22上に配置し、光整形拡散板26での輝度分布が図11に示すようにAB間で勾配を持つようにし、上述の明度Vの替わりに、赤外の検出画素値を用い、図11(D)で説明した上記処理と同様にして周期始点位置Xiを求める構成であってもよい。
【0098】
さらに、照明装置は、光源面での、走査方向に沿った輝度分布が、山形で、隣り合う波長域輝度分布が重なり合う帯状面光源を用いたものであればよく、LEDの替わりにレーザダイオードを用いたり、光整形拡散板26として半円柱マイクロレンズアレイを用いたものであってもよい。
【0099】
また、ラインセンサの画素位置に応じて、上記第2段階での明度Vを補正、例えばVを定数倍したもので、どの周期であるかを判別することにより、ラインセンサの画素毎の感度のばらつきや帯状光源の長手方向に沿った輝度のばらつきを補正する構成であってもよい。
【0100】
また、画像処理により、本実施例で述べた欠陥以外の欠陥も検出する構成であってもよい。
【0101】
また、上記実施例では理解を容易にするために撮像装置30が1次元カメラである場合を説明したが、2次元カメラであってもよい。この場合、検査ライン12を複数としそれぞれにエリアセンサ上のラインを対応させ、各ラインにつき上記同様に処理をすればよい。
【符号の説明】
【0102】
LID 照明撮像装置
10 検査面
11 凹凸部
12 検査ライン
20、20A 照明装置
21 光源面
231 LED
240〜246 3色LED列
25 透明基板
26 光整形拡散板
30 撮像装置
30R、30G、30B ラインセンサ
40 制御部
43 近似式情報記憶部
44 画像メモリ
45 検査点角度検出部
46 角度情報記憶部
47 表面欠陥検出部
48 欠陥情報記憶部
RP0〜RP2 参照光点
S0〜S2 接平面

【特許請求の範囲】
【請求項1】
波長域が互いに異なる複数の帯状光源が並設されている照明手段と、
該照明手段から射出され光検査面で正反射されて入射した光を、該複数の波長域のそれぞれに分光する分光手段と、
該分光された光のそれぞれが結像されるイメージセンサを備えた撮像手段と、
該撮像手段で撮像された画像のデータに基づいて検査面の角度を検出する画像処理手段と、
を備えた表面検査装置であって、
該照明手段は、該複数の帯状光源の光源面上の、帯状光源長手方向と直角な方向の線に沿った参照光位置に対する輝度分布が、該複数の帯状光源のそれぞれについて帯状光源面の中点から離れるにつれて輝度が小さくなり、且つ、隣り合う帯状光源の輝度分布が少なくとも輝度のピーク位置まで重なり合うように構成され、
該画像処理手段は、同一参照光位置に対応する、該複数の波長域のそれぞれに対応した画素値について、最大画素値の波長域と2番目に大きい画素値の波長域との組み合わせに基づいて参照光位置が含まれる範囲を決定し、該最大画素値に基づいて又は該最大画素値と該2番目に大きい画素値とに基づいて、該範囲内での参照光位置を決定し、参照光位置に対応した該角度を求める第1処理手段を有する、
ことを特徴とする表面検査装置。
【請求項2】
該画像処理手段の該第1処理手段は、該2番目に大きい画素値と該最大画素値との比の値に基づいて、該範囲内での該参照光位置を決定する、
ことを特徴とする請求項1に記載の表面検査装置。
【請求項3】
該画像処理手段の該第1処理手段は、参照光位置に対する、該複数の波長域のそれぞれに対応した、明度に依存しないように規格化した画素値の分布について、各ピーク画素値での、該ピーク画素値の波長域と異なる波長域の規格化画素値が略0になるように、各規格化画素値から所定値をオフセット値として減算し、該減算の後に、該比の値に基づいて、該範囲内での参照光位置を決定する、
ことを特徴とする請求項2に記載の表面検査装置。
【請求項4】
基準位置からの参照光位置が該比の値に比例するように該比の値に乗ぜられる補正値を、明度に依存しないように規格化した最大画素値の関数又は該比の関数として近似的に求めるための情報が格納された記憶手段をさらに備え、
該画像処理手段の該第1処理手段は、該比の値に該補正値を乗じて、該参照光位置を決定する、
ことを特徴とする請求項3に記載の表面検査装置。
【請求項5】
該撮像手段で撮像される画像の、該複数の波長域のそれぞれの該輝度分布に対応した、該量に対する画素値分布について、同一参照光位置に対応した、該複数の波長域のそれぞれの画素値のうちの最大画素値の、明度に依存しないように規格化したものの分布を、近似的に求めるための第1情報が格納された第1近似式情報記憶手段をさらに備え、
該画像処理手段の該第1処理手段は、該第1情報に基づく、該最大画素値の規格化画素値分布の近似式における該範囲内での規格化最大画素値に対応した参照光位置を求める、
ことを特徴とする請求項1に記載の表面検査装置。
【請求項6】
該照明手段は、該波長域が互いに異なる複数の帯状光源が複数組並設され、組毎に該輝度分布が異なり、該複数の組について互いに対応する組内参照光位置に対する該画像の画素値の比が該組内参照光位置によらず略一定であり、
該参照光位置に対する、同一参照光位置に対応した、該複数の波長域のそれぞれの画素値に基づく明度の分布を各組について近似的に求めるための、又は、明度に関し隣り合う組の明度分布を区別する境界線を近似的に求めるための第2情報が格納された第2近似式情報記憶手段を備え、
該画像処理手段は、同一参照光位置に対応する、該複数の波長域のそれぞれに対応した画素値を該組に依存しないように規格化して該第1処理手段により組内の該参照光位置を求め、
該画像処理手段はさらに、該第2情報に基づく、該明度の分布又は該境界線の近似式と該組内の参照光位置とに基づいて該組内の参照光位置がどの組であるかを決定し、該組内の参照光位置と該決定した組とに基づいて、全範囲における参照光位置を求める第2処理手段を有する、
ことを特徴とする請求項2乃至5のいずれか1つに記載の表面検査装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate


【公開番号】特開2012−58091(P2012−58091A)
【公開日】平成24年3月22日(2012.3.22)
【国際特許分類】
【出願番号】特願2010−201998(P2010−201998)
【出願日】平成22年9月9日(2010.9.9)
【出願人】(510243551)合同会社アイプロ (1)
【Fターム(参考)】