説明

誘電体薄膜形成用組成物、誘電体薄膜の形成方法及び該方法により形成された誘電体薄膜

【課題】薄膜キャパシタ等において、チューナビリティ、リーク電流特性及び誘電率を向上させ得る誘電体薄膜形成用組成物、誘電体薄膜の形成方法及び誘電体薄膜を提供する。
【解決手段】一般式:Ba1-xSrxTiy3(式中0.2<x<0.6、0.9<y<1.1)で示される複合金属酸化物Aに、Cu(銅)を含む複合酸化物Bが混合した混合複合金属酸化物の形態をとる薄膜を形成するための液状組成物であり、複合金属酸化物Aを構成するための原料及び複合酸化物Bを構成するための原料が上記一般式で示される金属原子比を与えるような割合で、かつAとBとのモル比B/Aが0.001≦B/A<0.15の範囲内となるように、有機溶媒中に溶解している有機金属化合物溶液からなることを特徴とする。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、リーク電流特性に優れ、しかも高チューナビリティ、高誘電率の薄膜キャパシタ等を形成し得る誘電体薄膜形成用組成物、誘電体薄膜の形成方法及び該方法により形成された誘電体薄膜に関するものである。本明細書で「チューナブル(tunable)」とは、印加する電圧を変化させると静電容量が変化し得ることをいい、「チューナビリティ(tunability)」とは、静電容量の可変性又は変化率をいう。
【背景技術】
【0002】
高周波用フィルタ、高周波用アンテナ、フェーズシフタ等の高周波チューナブルデバイスには、可変容量素子(チューナブル素子)として、上部電極及び下部電極とこの両電極間に形成された誘電体層から構成される薄膜キャパシタ等が組み込まれている。薄膜キャパシタは、両電極間に印加する電圧の変化によってその静電容量を変化させるコンデンサとして機能する。このような薄膜キャパシタを構成する誘電体層には、高い誘電率を有するチタン酸ストロンチウム(SrTiO3)、チタン酸バリウムストロンチウム(以下、「BST」という)、チタン酸バリウム(BaTiO3)等のペロブスカイト型酸化物を用いて形成された誘電体薄膜が使用されている。誘電体薄膜を形成する方法としては、真空蒸着法、スパッタリング法、レーザーアブレーション法等の物理的気相成長法、CVD(Chemical Vapor Deposition)法等の化学的気相成長法の他に、ゾルゲル法等の化学溶液法が用いられている(例えば、特許文献1参照。)。
【0003】
そして、高周波チューナブルデバイスに組み込まれる薄膜キャパシタには、印加電圧に対する静電容量の可変性(チューナビリティ)が求められ、電圧を印加させたときに制御できる静電容量の幅がより大きいこと、即ち高チューナビリティであることが望まれる。その理由は、チューナビリティが高いものほど、より小さい電圧変化で、より広い共振周波数帯域に対応することができるからである。具体的に、チューナビリティは、電圧を印加する前の静電容量をC0Vとし、tVの電圧を印加させた後の静電容量をCtVとすると、チューナビリティ=(C0V−CtV)/C0V×100%で表される。例えば、図5に示すように、5Vの電圧を印加すると、印加電圧がないときのC0VからC5Vまで静電容量が変化するが、このとき、C0VからC5Vまでの幅が大きければ大きいほどチューナビリティが高く、高チューナビリティの薄膜キャパシタであると言える。このようなチューナビリティを高める技術として、高周波帯域における使用に際して所望のインピーダンスを維持しつつ、誘電率の高い材料を用いて高チューナビリティを確保し得るチューナブルキャパシタが開示されている(例えば、特許文献2参照)。
【先行技術文献】
【特許文献】
【0004】
【特許文献1】特開昭60−236404号公報(6ページの右上欄10行目〜左下欄3行目)
【特許文献2】特開2008−53563号公報(段落[0004]、段落[0008])
【発明の概要】
【発明が解決しようとする課題】
【0005】
しかしながら、上記従来の特許文献2に示された技術では、誘電体層を形成する際に、第1の誘電体層よりも低い誘電率の第2の誘電体層を、第1の誘電体層の主面の一部を覆うように形成するといった煩雑な工程を踏まなければならない。
【0006】
そこで、本発明者らは、誘電体薄膜を形成する際に用いられる材料に着目し、この材料の改良という観点から、高いチューナビリティを発現させるとともに、薄膜キャパシタ等の基本特性であるリーク電流特性、誘電率についても向上させ得る本発明に至った。
【0007】
本発明の目的は、薄膜キャパシタ等において、リーク電流特性、チューナビリティ及び誘電率を向上させ得る誘電体薄膜形成用組成物、誘電体薄膜の形成方法及び誘電体薄膜を提供することにある。
【課題を解決するための手段】
【0008】
本発明の第1の観点は、BST誘電体薄膜を形成するための誘電体薄膜形成用組成物において、一般式:Ba1-xSrxTiy3(式中0.2<x<0.6、0.9<y<1.1)で示される複合金属酸化物Aに、Cu(銅)を含む複合酸化物Bが混合した混合複合金属酸化物の形態をとる薄膜を形成するための液状組成物であり、複合金属酸化物Aを構成するための原料及び複合酸化物Bを構成するための原料が上記一般式で示される金属原子比を与えるような割合で、かつAとBとのモル比B/Aが0.001≦B/A<0.15の範囲内となるように、有機溶媒中に溶解している有機金属化合物溶液からなることを特徴とする。
【0009】
本発明の第2の観点は、第1の観点に基づく発明であって、更に複合金属酸化物Aを構成するための原料が、有機基がその酸素又は窒素原子を介して金属元素と結合している化合物であることを特徴とする。
【0010】
本発明の第3の観点は、第2の観点に基づく発明であって、更に複合金属酸化物Aを構成するための原料が、金属アルコキシド、金属ジオール錯体、金属トリオール錯体、金属カルボン酸塩、金属β−ジケトネート錯体、金属β−ジケトエステル錯体、金属β−イミノケト錯体、及び金属アミノ錯体からなる群より選ばれた1種又は2種以上であることを特徴とする。
【0011】
本発明の第4の観点は、第1の観点に基づく発明であって、更に複合酸化物Bを構成するための原料が、有機基がその酸素又は窒素原子を介してCu(銅)元素と結合している化合物であることを特徴とする。
【0012】
本発明の第5の観点は、第4の観点に基づく発明であって、更に複合酸化物Bを構成するための原料が、カルボン酸塩化合物、硝酸塩化合物、アルコキシド化合物、ジオール化合物、トリオール化合物、β−ジケトネート化合物、β−ジケトエステル化合物、β−イミノケト化合物、及びアミノ化合物からなる群より選ばれた1種又は2種以上であることを特徴とする。
【0013】
本発明の第6の観点は、第5の観点に基づく発明であって、更にカルボン酸塩化合物が、ナフテン酸銅、n−オクタン酸銅、2−エチルヘキサン酸銅、n−ヘプタン酸銅、n−ヘキサン酸銅、2−エチル酪酸銅、n−吉草酸銅、i−吉草酸銅、n−酪酸銅、i−酪酸銅又はプロピオン酸銅であることを特徴とする。
【0014】
本発明の第7の観点は、第5の観点に基づく発明であって、更に硝酸塩化合物が、硝酸銅であることを特徴とする。
【0015】
本発明の第8の観点は、第1ないし第7の観点に基づく発明であって、更にβ−ジケトン、β−ケトン酸、β−ケトエステル、オキシ酸、ジオール、トリオール、高級カルボン酸、アルカノールアミン及び多価アミンからなる群より選ばれた1種又は2種以上の安定化剤を、組成物中の金属合計量1モルに対して、0.2〜3モルの割合で更に含有することを特徴とする。
【0016】
本発明の第9の観点は、第1ないし第8の観点に基づく発明であって、更にBとAとのモル比B/Aが0.002≦B/A≦0.1であることを特徴とする。
【0017】
本発明の第10の観点は、第1ないし第9の観点に基づく誘電体薄膜形成用組成物を耐熱性基板に塗布し乾燥する工程を所望の厚さの膜が得られるまで繰返し行った後、空気中、酸化雰囲気中又は含水蒸気雰囲気中で該膜を結晶化温度以上で焼成することを特徴とする誘電体薄膜の形成方法である。
【0018】
本発明の第11の観点は、第10の観点に基づく方法により形成されたCuを含むBST誘電体薄膜である。
【0019】
本発明の第12の観点は、第11の観点に基づく発明であって、更に膜厚が100〜500nmの範囲にある誘電体薄膜を誘電体層として薄膜キャパシタを形成し、この薄膜キャパシタの印加電圧を20Vとしたとき、リーク電流密度が3.0×10-6A/cm2以下、チューナビリティが70%以上となり、薄膜キャパシタの印加電圧を0Vとしたとき、誘電率が300以上となることを特徴とする。
【0020】
本発明の第13の観点は、第12の観点に基づく誘電体薄膜を有する薄膜コンデンサ、キャパシタ、IPD(Integrated Passive Device)、DRAMメモリ用コンデンサ、積層コンデンサ、トランジスタのゲート絶縁体、不揮発性メモリ、焦電型赤外線検出素子、圧電素子、電気光学素子、アクチュエータ、共振子、超音波モータ、又はLCノイズフィルタ素子の複合電子部品である。
【0021】
本発明の第14の観点は、第13の観点に基づく100MHz以上の周波数帯域に対応した、誘電体薄膜を有する薄膜コンデンサ、キャパシタ、IPD、DRAMメモリ用コンデンサ、積層コンデンサ、トランジスタのゲート絶縁体、不揮発性メモリ、焦電型赤外線検出素子、圧電素子、電気光学素子、アクチュエータ、共振子、超音波モータ、又はLCノイズフィルタ素子の複合電子部品である。
【発明の効果】
【0022】
本発明の第1の観点の組成物では、一般式:Ba1-xSrxTiy3(式中0.2<x<0.6、0.9<y<1.1)で示される複合金属酸化物Aに、Cu(銅)を含む複合酸化物Bが混合した混合複合金属酸化物の形態をとる薄膜を形成するための液状組成物であり、複合金属酸化物Aを構成するための原料及び複合酸化物Bを構成するための原料が上記一般式で示される金属原子比を与えるような割合で、かつAとBとのモル比B/Aが0.001≦B/A<0.15の範囲内となるように、有機溶媒中に溶解させている。このため、この組成物を用いて形成された誘電体薄膜を備える薄膜キャパシタ等において、低いリーク電流密度と高いチューナビリティーを発現させることができる。
【図面の簡単な説明】
【0023】
【図1】可変容量素子における印加電圧の変化に伴う静電容量の変化を示す説明図である。
【発明を実施するための形態】
【0024】
次に本発明を実施するための形態を図面に基づいて説明する。
【0025】
本発明の誘電体薄膜形成用組成物は、BST誘電体薄膜を形成するための組成物である。この組成物を用いて形成される誘電体薄膜は、一般式:Ba1-xSrxTiy3(式中0.2<x<0.6、0.9<y<1.1)で示される複合金属酸化物Aに、Cu(銅)を含む複合酸化物Bが混合した混合複合金属酸化物の形態をとる。この組成物は、複合金属酸化物Aを構成するための原料と、複合酸化物Bを構成するための原料が上記一般式で示される金属原子比を与えるような割合で、かつBとAとのモル比B/Aが0.001≦B/A<0.15の範囲内となるように有機溶媒中に溶解している有機金属化合物溶液からなる。
【0026】
即ち、本発明の組成物は、Cu(銅)を含む複合酸化物Bを構成するための原料を添加して調製されたものであり、これを用いて形成された誘電体薄膜を備えることにより、リーク電流特性に優れ、しかも高チューナビリティー、高誘電率の薄膜キャパシタ等にすることができる。このCu(銅)を含む原料を添加することによってリーク電流密度を低下させ得る技術的な理由は、Cu(銅)の添加によって膜が緻密化するからであると推察される。また、高いチューナビリティーを発現させ得る理由は、Cu(銅)の添加によって膜中の結晶粒が大きく成長し、誘電率が向上するからであると推察される。
【0027】
複合金属酸化物A用原料は、Ba、Sr及びTiの各金属元素に、有機基がその酸素又は窒素原子を介して結合している化合物が好適である。例えば、金属アルコキシド、金属ジオール錯体、金属トリオール錯体、金属カルボン酸塩、金属β−ジケトネート錯体、金属β−ジケトエステル錯体、金属β−イミノケト錯体、及び金属アミノ錯体からなる群より選ばれた1種又は2種以上が例示される。特に好適な化合物は、金属アルコキシド、その部分加水分解物、有機酸塩である。
【0028】
具体的に、Ba化合物としては、2−エチル酪酸バリウム、2−エチルヘキサン酸バリウム酢酸バリウム、酢酸バリウム等のカルボン酸塩や、バリウムジイソプロポキシド、バリウムジブトキシド等の金属アルコキシドが挙げられる。Sr化合物としては、2−エチル酪酸ストロンチウム、2-エチルヘキサン酸ストロンチウム、酢酸ストロンチウム等のカルボン酸塩や、ストロンチウムジイソプロポキシド、ストロンチウムジブトキシド等の金属アルコキシドが挙げられる。Ti化合物としては、チタニウムテトラエトキシド、チタニウムテトライソプロポキシド、チタニウムテトラブトキシド、チタニウムジメトキシジイソプロポキシド等の金属アルコキシドが挙げられる。金属アルコキシドはそのまま使用しても良いが、分解を促進させるためにその部分加水分解物を使用しても良い。
【0029】
また、複合酸化物B用原料は、Cu(銅)元素に、有機基がその酸素又は窒素原子を介して結合している化合物が好適である。例えば、カルボン酸塩化合物、硝酸塩化合物、アルコキシド化合物、ジオール化合物、トリオール化合物、β−ジケトネート化合物、β−ジケトエステル化合物、β−イミノケト化合物、及びアミノ化合物からなる群より選ばれた1種又は2種以上が例示される。特に好適な化合物は、ナフテン酸銅、2−エチル酪酸銅、n−オクタン酸銅、2−エチルヘキサン酸銅、n−ヘプタン酸銅、n−ヘキサン酸銅、2−エチル酪酸銅、n−吉草酸銅、i−吉草酸銅、n−酪酸銅、i−酪酸銅又はプロピオン酸銅等のカルボン酸塩化合物、或いは硝酸銅等の硝酸塩化合物である。しかし、カルボン酸塩化合物のうち、酢酸銅を原料として得られた誘電体薄膜形成用組成物は、沈殿を生じやすく、保存安定性に問題があるため好ましくない。
【0030】
本発明の誘電体薄膜形成用組成物を調製するには、これらの原料を所望の誘電体薄膜組成に相当する比率で適当な溶媒に溶解して、塗布に適した濃度に調製する。具体的には、組成物中の各原料割合は、成膜後の誘電体薄膜において複合金属酸化物A中の金属原子比が上記割合となるように調整される。即ち上記一般式中のx値及びy値が上記一般式を満たすように原料割合を調整する理由は、x値が0.2以下では誘電損失の増加が生じ、一方、0.6以上になるとチューナビリティの低下を生じるからである。また、上記一般式中のy値が上記範囲になるように原料割合を調整する理由は、y値が0.9以下又は1.1以上になるとチューナビリティの低下を生じるからである。また、成膜後の誘電体薄膜において、BとAとのモル比B/Aが0.001≦B/A<0.15の範囲内となるように調整される。このように調製されることにより、この組成物を用いて形成された成膜後の誘電体薄膜において、低いリーク電流密度と高いチューナビリティを発現させることができる。なお、B/Aが0.001未満ではCu(銅)を含む原料の添加による上記効果が十分に得られず、0.15以上になるとチューナビリティーが低下する。このうち、B/Aは0.002≦B/A≦0.1の範囲内であることが好ましい。本明細書において、BとAのモル比B/Aとは、複合酸化物Bに含まれるCu(銅)のモル数と複合金属酸化物Aのモル数の比をいう。
【0031】
ここで用いる誘電体薄膜形成用組成物の溶媒は、使用する原料に応じて適宜決定されるが、一般的には、カルボン酸、アルコール、エステル、ケトン類(例えば、アセトン、メチルエチルケトン)、エーテル類(例えば、ジメチルエーテル、ジエチルエーテル)、シクロアルカン類(例えば、シクロヘキサン、シクロヘキサノール)、芳香族系(例えば、ベンゼン、トルエン、キシレン)、その他テトラヒドロフランなど、或いはこれらの2種以上の混合溶媒を用いることができる。
【0032】
カルボン酸としては、具体的には、n−酪酸、α−メチル酪酸、i−吉草酸、2−エチル酪酸、2,2−ジメチル酪酸、3,3−ジメチル酪酸、2,3−ジメチル酪酸、3−メチルペンタン酸、4−メチルペンタン酸、2−エチルペンタン酸、3−エチルペンタン酸、2,2−ジメチルペンタン酸、3,3−ジメチルペンタン酸、2,3−ジメチルペンタン酸、2−エチルヘキサン酸、3−エチルヘキサン酸を用いるのが好ましい。
【0033】
また、エステルとしては、酢酸エチル、酢酸プロピル、酢酸n−ブチル、酢酸sec−ブチル、酢酸tert−ブチル、酢酸イソブチル、酢酸n−アミル、酢酸sec−アミル、酢酸tert−アミル、酢酸イソアミルを用いるのが好ましく、アルコールとしては、1−プロパノール、2−プロパノール、1−ブタノール、2−ブタノール、イソ−ブチルアルコール、1−ペンタノール、2−ペンタノール、2−メチル−2−ペンタノール、2−メトキシエタノールを用いるのが好適である。
【0034】
なお、誘電体薄膜形成用組成物の有機金属化合物溶液中の有機金属化合物の合計濃度は、金属酸化物換算量で0.1〜20質量%程度とすることが好ましい。下限値未満では、一回の塗布あたりの膜厚が薄くなるため、所望の膜厚を有する誘電体薄膜に形成するのが困難になり、一方、上限値を越えると、焼成後の誘電体薄膜にクラックが生じる場合があるため好ましくない。
【0035】
この有機金属化合物溶液中には、必要に応じて安定化剤として、β−ジケトン類(例えば、アセチルアセトン、ヘプタフルオロブタノイルピバロイルメタン、ジピバロイルメタン、トリフルオロアセチルアセトン、ベンゾイルアセトン等)、β−ケトン酸類(例えば、アセト酢酸、プロピオニル酢酸、ベンゾイル酢酸等)、β−ケトエステル類(例えば、上記ケトン酸のメチル、プロピル、ブチル等の低級アルキルエステル類)、オキシ酸類(例えば、乳酸、グリコール酸、α−オキシ酪酸、サリチル酸等)、上記オキシ酸の低級アルキルエステル類、オキシケトン類(例えば、ジアセトンアルコール、アセトイン等)、ジオール、トリオール、高級カルボン酸、アルカノールアミン類(例えば、ジエタノールアミン、トリエタノールアミン、モノエタノールアミン)、多価アミン等を、(安定化剤分子数)/(金属原子数)で0.2〜3程度添加しても良い。
【0036】
本発明では、上記調製された有機金属化合物溶液を濾過処理等によって、パーティクルを除去して、粒径0.5μm以上(特に0.3μm以上とりわけ0.2μm以上)のパーティクルの個数が溶液1mL当り50個/mL以下とするのが好ましい。
【0037】
なお、当該有機金属化合物溶液中のパーティクルの個数の測定には、光散乱式パーティクルカウンターを用いる。
【0038】
有機金属化合物溶液中の粒径0.5μm以上のパーティクルの個数が50個/mLを越えると、長期保存安定性が劣るものとなる。この有機金属化合物溶液中の粒径0.5μm以上のパーティクルの個数は少ない程好ましく、特に30個/mL以下であることが好ましい。
【0039】
上記パーティクル個数となるように、調製後の有機金属化合物溶液を処理する方法は特に限定されるものではないが、例えば、次のような方法が挙げられる。第1の方法としては、市販の0.2μm孔径のメンブランフィルターを使用し、シリンジで圧送する濾過法である。第2の方法としては、市販の0.05μm孔径のメンブランフィルターと加圧タンクを組み合せた加圧濾過法である。第3の方法としては、上記第2の方法で使用したフィルターと溶液循環槽を組み合せた循環濾過法である。
【0040】
いずれの方法においても、溶液圧送圧力によって、フィルターによるパーティクル捕捉率が異なる。圧力が低いほど捕捉率が高くなることは一般的に知られており、特に、第1の方法、第2の方法について、粒径0.5μm以上のパーティクルの個数を50個以下とする条件を実現するためには、溶液を低圧で非常にゆっくりとフィルターに通すのが好ましい。
【0041】
本発明の誘電体薄膜形成用組成物を用いることで、BST複合金属酸化物Aに、Cu(銅)を含む複合酸化物Bが混合した混合複合金属酸化物の形態をとる誘電体薄膜を簡便に形成することができる。この組成物を用いて形成される薄膜中のBとAとのモル比B/Aは、0.001≦B/A<0.15の範囲内となる。BとAとのモル比B/Aがこの範囲内であれば、この薄膜を備える薄膜キャパシタ等において、リーク電流密度を低下させ、しかも高チューナビリティ、高誘電率を発現し得る。なお、上限値を越えるとチューナビリティ低下の原因となる。このうち、0.002≦B/A≦0.1が特に好ましい。
【0042】
本発明の誘電体薄膜形成用組成物を用いて、誘電体薄膜を形成するには、上記組成物をスピンコート、ディップコート、LSMCD(Liquid Source Misted Chemical Deposition)法等の塗布法により耐熱性基板上に塗布し、乾燥(仮焼成)及び本焼成を行う。
【0043】
使用される耐熱性基板の具体例としては、基板表層部に、単結晶Si、多結晶Si,Pt,Pt(最上層)/Ti,Pt(最上層)/Ta,Ru,RuO2,Ru(最上層)/RuO2,RuO2(最上層)/Ru,Ir,IrO2,Ir(最上層)/IrO2,Pt(最上層)/Ir,Pt(最上層)/IrO2,SrRuO3又は(LaxSr(1-x))CoO3等のペロブスカイト型導電性酸化物等を用いた基板が挙げられるが、これらに限定されるものではない。
【0044】
なお、1回の塗布では、所望の膜厚が得られない場合には、塗布、乾燥の工程を複数回繰返し行った後、本焼成を行う。ここで、所望の膜厚とは、本焼成後に得られる誘電体薄膜の厚さをいい、高容量密度の薄膜キャパシタ用途の場合、本焼成後の誘電体薄膜の膜厚が50〜500nmの範囲である。
【0045】
また、仮焼成は、溶媒を除去するとともに有機金属化合物や有機化合物を熱分解又は加水分解して複合酸化物に転化させるために行うことから、空気中、酸化雰囲気中、又は含水蒸気雰囲気中で行う。空気中での加熱でも、加水分解に必要な水分は空気中の湿気により十分に確保される。この加熱は、溶媒の除去のための低温加熱と、有機金属化合物や有機化合物の分解のための高温加熱の2段階で実施しても良い。
【0046】
本焼成は、仮焼成で得られた薄膜を結晶化温度以上の温度で焼成して結晶化させるための工程であり、これにより誘電体薄膜が得られる。この結晶化工程の焼成雰囲気はO2、N2、Ar、N2O又はH2等或いはこれらの混合ガス等が好適である。
【0047】
仮焼成は、150〜550℃で1〜30分間程度行われ、本焼成は450〜800℃で1〜60分間程度行われる。本焼成は、急速加熱処理(RTA処理)で行っても良い。RTA処理で本焼成する場合、その昇温速度は10〜100℃/秒が好ましい。
【0048】
このようにして形成された本発明の誘電体薄膜は、この薄膜を備える薄膜キャパシタ等において、リーク電流密度を低下させ、しかも高チューナビリティ、高誘電率を発現させ得る。具体的には、膜厚が100〜500nmの範囲にある誘電体薄膜を誘電体層として薄膜キャパシタを形成し、この薄膜キャパシタの印加電圧を20Vとしたとき、リーク電流密度が3.0×10-6A/cm2以下、チューナビリティが70%以上を達成する。また、薄膜キャパシタの印加電圧を0Vとしたとき、誘電率が300以上を達成する。また、本発明の誘電体薄膜は、IPDとしての基本的特性にも優れる。
【0049】
このため、本発明の誘電体薄膜は、薄膜コンデンサ、キャパシタ、IPD、DRAMメモリ用コンデンサ、積層コンデンサ、トランジスタのゲート絶縁体、不揮発性メモリ、焦電型赤外線検出素子、圧電素子、電気光学素子、アクチュエータ、共振子、超音波モータ、又はLCノイズフィルタ素子の複合電子部品における構成材料として使用することができる。このうち特に100MHz以上の周波数帯域に対応したものに使用することもできる。
【実施例】
【0050】
次に本発明の実施例を比較例とともに詳しく説明する。
【0051】
なお、以下の実施例及び比較例において、原料としては、次のものを用いた。
【0052】
Ba化合物: 2−エチル酪酸バリウム
Sr化合物: 2−エチル酪酸ストロンチウム
Ti化合物: チタニウムテトライソプロポキシド
Cu化合物: ナフテン酸銅、2−エチル酪酸銅、n−オクタン酸銅、2−エチルヘキサン酸銅、n−吉草酸銅、i−吉草酸銅、n−酪酸銅、i−酪酸銅、プロピオン酸銅、酢酸銅、硝酸銅
<実施例1>
有機溶媒として、十分に脱水処理した酢酸イソアミルを使用し、これにBa化合物及びSr化合物として、2−エチル酪酸バリウム及び2−エチル酪酸ストロンチウムを、Ba:Srのモル比が70:30となるように溶解させた。その後、得られた溶液にTi化合物として、チタニウムテトライソプロポキシドをBa:Sr:Tiのモル比が70:30:100となるように添加した。更にCu化合物としてナフテン酸銅を、BとAのモル比B/Aが0.02となるように添加して溶解させた。また、溶液安定化のため安定化剤(アセチルアセトン)を金属合計量に対して1倍モル加え、金属酸化物換算濃度が7質量%の薄膜形成用組成物を調製し、メンブランフィルターと加圧タンクを用いて濾過を行った。
【0053】
薄膜の形成は以下のCSD法(化学溶液堆積法)により行った。
【0054】
即ち、先ず、基板として表面にスパッタリング法にてPt下部電極膜を形成した6インチシリコン基板を用意した。この基板のPt下部電極膜上に、スピンコート法により、500rpmで3秒間、その後2000rpmで15秒間の条件で、上記調製した薄膜形成用組成物を塗布した。
【0055】
次いで、ホットプレートを用い、350℃で10分間加熱して乾燥・仮焼成を行った。この塗布、仮焼成の工程を4回繰返した後、昇温速度5℃/分で大気雰囲気中700℃、1時間焼成し、膜厚350nmの誘電体薄膜を得た。
【0056】
その後、メタルマスクを用い、表面に約250μm×250μm角のPt上部電極をスパッタリング法にて作製し、薄膜キャパシタを得た。
【0057】
<実施例2>
次の表1に示すように、ナフテン酸銅をBとAのモル比B/Aが0.03となるように添加したこと以外は、実施例1と同様に、薄膜形成用組成物を調製し、薄膜キャパシタを得た。
【0058】
<実施例3>
次の表1に示すように、ナフテン酸銅をBとAのモル比B/Aが0.05となるように添加したこと以外は、実施例1と同様に、薄膜形成用組成物を調製し、薄膜キャパシタを得た。
【0059】
<実施例4>
次の表1に示すように、ナフテン酸銅をBとAのモル比B/Aが0.10となるように添加したこと以外は、実施例1と同様に、薄膜形成用組成物を調製し、薄膜キャパシタを得た。
【0060】
<実施例5>
次の表1に示すように、安定化剤としてアセチルアセトンの代わりにジエタノールアミンを加えたこと以外は、実施例1と同様に、薄膜形成用組成物を調製し、薄膜キャパシタを得た。
【0061】
<実施例6>
次の表1に示すように、安定化剤としてアセチルアセトンの代わりにトリエタノールアミンを加えたこと以外は、実施例1と同様に、薄膜形成用組成物を調製し、薄膜キャパシタを得た。
【0062】
<実施例7>
次の表1に示すように、安定化剤としてアセチルアセトンの代わりにホルムアミドを加えたこと以外は、実施例1と同様に、薄膜形成用組成物を調製し、薄膜キャパシタを得た。
【0063】
<実施例8>
次の表1に示すように、安定化剤としてアセチルアセトンの代わりに1−アミノ2−プロパノールを加えたこと以外は、実施例1と同様に、薄膜形成用組成物を調製し、薄膜キャパシタを得た。
【0064】
<実施例9>
次の表1に示すように、安定化剤としてアセチルアセトンの代わりにプロピレングリコールを加えたこと以外は、実施例1と同様に、薄膜形成用組成物を調製し、薄膜キャパシタを得た。
【0065】
<実施例10>
次の表1に示すように、安定化剤としてアセチルアセトンの代わりに1−アミノ2−プロパノールを加えたこと以外は、実施例2と同様に、薄膜形成用組成物を調製し、薄膜キャパシタを得た。
【0066】
<実施例11>
次の表1に示すように、Cu化合物としてナフテン酸銅の代わりに2−エチル酪酸銅を添加したこと以外は、実施例2と同様に、薄膜形成用組成物を調製し、薄膜キャパシタを得た。
【0067】
<実施例12>
次の表1に示すように、安定化剤としてアセチルアセトンの代わりにホルムアミドを加えたこと、及び乾燥雰囲気中で焼成を行ったこと以外は、実施例11と同様に、薄膜形成用組成物を調製し、薄膜キャパシタを得た。
【0068】
<実施例13>
次の表1に示すように、Cu化合物として2−エチル酪酸銅の代わりに硝酸銅を添加したこと、及び酸素雰囲気中で焼成を行ったこと以外は、実施例12と同様に、薄膜形成用組成物を調製し、薄膜キャパシタを得た。
【0069】
<実施例14>
次の表1に示すように、ナフテン酸銅をBとAのモル比B/Aが0.001となるように添加したこと以外は、実施例8と同様に、薄膜形成用組成物を調製し、薄膜キャパシタを得た。
【0070】
<実施例15>
次の表1に示すように、ナフテン酸銅をBとAのモル比B/Aが0.002となるように添加したこと以外は、実施例8と同様に、薄膜形成用組成物を調製し、薄膜キャパシタを得た。
【0071】
<実施例16>
次の表1に示すように、ナフテン酸銅をBとAのモル比B/Aが0.005となるように添加したこと以外は、実施例8と同様に、薄膜形成用組成物を調製し、薄膜キャパシタを得た。
【0072】
<実施例17>
次の表1に示すように、ナフテン酸銅をBとAのモル比B/Aが0.01となるように添加したこと以外は、実施例8と同様に、薄膜形成用組成物を調製し、薄膜キャパシタを得た。
【0073】
<実施例18>
次の表1に示すように、Cu化合物としてナフテン酸銅の代わりにn−オクタン酸銅を添加したこと、及びn−オクタン酸銅をBとAのモル比B/Aが0.01となるように添加したこと以外は、実施例1と同様に、薄膜形成用組成物を調製し、薄膜キャパシタを得た。
【0074】
<実施例19>
次の表1に示すように、Cu化合物としてn−オクタン酸銅の代わりに2−エチルヘキサン酸銅を添加したこと以外は、実施例18と同様に、薄膜形成用組成物を調製し、薄膜キャパシタを得た。
【0075】
<実施例20>
次の表1に示すように、Cu化合物としてn−オクタン酸銅の代わりにn−吉草酸銅を添加したこと以外は、実施例18と同様に、薄膜形成用組成物を調製し、薄膜キャパシタを得た。
【0076】
<実施例21>
次の表1に示すように、Cu化合物としてn−オクタン酸銅の代わりにi−吉草酸銅を添加したこと以外は、実施例18と同様に、薄膜形成用組成物を調製し、薄膜キャパシタを得た。
【0077】
<実施例22>
次の表1に示すように、Cu化合物としてn−オクタン酸銅の代わりにn−酪酸銅を添加したこと以外は、実施例18と同様に、薄膜形成用組成物を調製し、薄膜キャパシタを得た。
【0078】
<実施例23>
次の表1に示すように、Cu化合物としてn−オクタン酸銅の代わりにi−酪酸銅を添加したこと以外は、実施例18と同様に、薄膜形成用組成物を調製し、薄膜キャパシタを得た。
【0079】
<実施例24>
次の表1に示すように、Cu化合物としてn−オクタン酸銅の代わりにプロピオン酸銅を添加したこと以外は、実施例18と同様に、薄膜形成用組成物を調製し、薄膜キャパシタを得た。
【0080】
<実施例25>
次の表1に示すように、Cu化合物としてn−オクタン酸銅の代わりに酢酸銅を添加したこと以外は、実施例18と同様に、薄膜形成用組成物を調製し、薄膜キャパシタを得た。
【0081】
<実施例26>
次の表1に示すように、ナフテン酸銅をBとAのモル比B/Aが0.14となるように添加したこと以外は、実施例1と同様に、薄膜形成用組成物を調製し、薄膜キャパシタを得た。
【0082】
<比較例1>
Cu化合物を添加しなかったこと以外は、実施例1と同様に、薄膜形成用組成物を調製し、薄膜キャパシタを得た。
【0083】
<比較例2>
次の表1に示すように、ナフテン酸銅をBとAのモル比B/Aが0.0005となるように添加したこと以外は、実施例1と同様に、薄膜形成用組成物を調製し、薄膜キャパシタを得た。
【0084】
<比較例3>
次の表1に示すように、ナフテン酸銅をBとAのモル比B/Aが0.15となるように添加したこと以外は、実施例1と同様に、薄膜形成用組成物を調製し、薄膜キャパシタを得た。
【0085】
【表1】

<比較試験及び評価>
実施例1〜26及び比較例1〜3で得られた薄膜キャパシタについて、リーク電流密度、チューナビリティー及び誘電率を評価した。また、実施例1〜26及び比較例1〜3で調製した誘電体薄膜形成用組成物に含まれる液中パーティクル数を測定し、組成物の保存安定性を評価した。これらの結果を次の表2に示す。
【0086】
(1) リーク電流密度:薄膜キャパシタの上部電極と誘電体薄膜直下のPt下部電極間にて直流電圧を印加して、リーク電流密度の電圧依存性(I−V特性)を評価し、印加電圧20Vでのリーク電流密度値を代表値とした。なお、I−V特性の測定には、電流電圧測定装置(ケースレー社製 型式名:236 SMU)を用い、Bias step 0.5V、Delay time 0.1sec、Temperature 23℃、Hygrometry 50±10%の条件で測定した。
【0087】
(2) チューナビリティ:薄膜キャパシタのPt上部電極とPt下部電極間に、10MHzにて20Vのバイアス電圧を印加し、バイアス電圧を印加してないときの静電容量C0Vと、20V印加時の静電容量C20Vから、次の式(1)より算出される静電容量の変化率T(%)を算出した。なお、静電容量の変化率T(%)は、インピーダンスマテリアルアナライザ(ヒューレット・パッカード社製:HP4291A)を用いて測定した。
【0088】
T=(C0V−C20V)/C0V×100 (1)
(3) 誘電率:厚さdで面積をSとする薄膜キャパシタのPt上部電極とPt下部電極間に、10MHzにてバイアス電圧0V印加のときの静電容量C0Vから、次の式(2)より誘電率εを算出した。真空の誘電率は8.854×10-12(F/m)を用いた。なお、静電容量C0Vは、インピーダンスマテリアルアナライザ(ヒューレット・パッカード社製:HP4291A)を用いて測定した。
【0089】
ε=C0V×d/S/8.854×10-12 (2)
(4) 保存安定性:調製した誘電体薄膜形成用組成物をメンブランフィルター(日本インテグリス株式会社製:孔径0.05μm)と加圧タンクを用いて濾過を行い、洗浄済みガラス製スクリュー管瓶(和歌山CIC研究所洗浄品)に移し、温度を7℃に保った状態で2ヶ月間保存した。濾過直後(2時間静置後)の組成物と2ヶ月経過後の保存後の組成物について0.5μm以上の液中パーティクル数(個/ml)を、パーティクルカウンター(リオン株式会社製:KS−42B)によりそれぞれ確認した。なお、表2中、保存後の組成物に含まれる液中パーティクル数が50個/ml未満の場合を「良」とし、50個/ml以上の場合を「不良」とした。
【0090】
【表2】

表1及び表2から明らかなように、実施例1〜26と比較例1を比較すると、実施例1〜26では、リーク電流密度、チューナビリティ、誘電率の評価において十分に優れた結果が得られた。
【0091】
また、実施例1〜26と比較例2を比較すると、B/Aが0.001に満たない比較例2では、銅を添加していない比較例1と同じ誘電率を示し、銅添加による効果がほぼ得られないことが確認された。また、実施例1〜26と比較例3を比較すると、B/Aが0.15以上の比較例3では、チューナビリティが大幅に低下することが確認された。
【0092】
また、複合酸化物Bの原料に酢酸銅を使用して調製した実施例25の誘電体薄膜形成用組成物では、2ヶ月保存後に液中パーティクルの大幅な増加が確認され、保存安定性が悪い結果となった。これに対し、酢酸銅以外のものを複合酸化物Bの原料に使用して調製した誘電体薄膜形成用組成物では、2ヶ月保存後も液中パーティクルの数が少なく、保存安定性に優れることが確認された。

【特許請求の範囲】
【請求項1】
BST誘電体薄膜を形成するための誘電体薄膜形成用組成物において、
一般式:Ba1-xSrxTiy3(式中0.2<x<0.6、0.9<y<1.1)で示される複合金属酸化物Aに、Cu(銅)を含む複合酸化物Bが混合した混合複合金属酸化物の形態をとる薄膜を形成するための液状組成物であり、
前記複合金属酸化物Aを構成するための原料及び前記複合酸化物Bを構成するための原料が、前記一般式で示される金属原子比を与えるような割合で、かつ前記Aと前記Bとのモル比B/Aが0.001≦B/A<0.15の範囲内となるように、有機溶媒中に溶解している有機金属化合物溶液からなる
ことを特徴とする誘電体薄膜形成用組成物。
【請求項2】
前記複合金属酸化物Aを構成するための原料が、有機基がその酸素又は窒素原子を介して金属元素と結合している化合物である請求項1記載の誘電体薄膜形成用組成物。
【請求項3】
前記複合金属酸化物Aを構成するための原料が、金属アルコキシド、金属ジオール錯体、金属トリオール錯体、金属カルボン酸塩、金属β−ジケトネート錯体、金属β−ジケトエステル錯体、金属β−イミノケト錯体、及び金属アミノ錯体からなる群より選ばれた1種又は2種以上である請求項2記載の誘電体薄膜形成用組成物。
【請求項4】
前記複合酸化物Bを構成するための原料が、有機基がその酸素又は窒素原子を介してCu(銅)元素と結合している化合物である請求項1記載の誘電体薄膜形成用組成物。
【請求項5】
前記複合酸化物Bを構成するための原料が、カルボン酸塩化合物、硝酸塩化合物、アルコキシド化合物、ジオール化合物、トリオール化合物、β−ジケトネート化合物、β−ジケトエステル化合物、β−イミノケト化合物、及びアミノ化合物からなる群より選ばれた1種又は2種以上である請求項4記載の誘電体薄膜形成用組成物。
【請求項6】
前記カルボン酸塩化合物が、ナフテン酸銅、n−オクタン酸銅、2−エチルヘキサン酸銅、n−ヘプタン酸銅、n−ヘキサン酸銅、2−エチル酪酸銅、n−吉草酸銅、i−吉草酸銅、n−酪酸銅、i−酪酸銅又はプロピオン酸銅である請求項5記載の誘電体薄膜形成用組成物。
【請求項7】
前記硝酸塩化合物が、硝酸銅である請求項5記載の誘電体薄膜形成用組成物。
【請求項8】
β−ジケトン、β−ケトン酸、β−ケトエステル、オキシ酸、ジオール、トリオール、高級カルボン酸、アルカノールアミン及び多価アミンからなる群より選ばれた1種又は2種以上の安定化剤を、前記組成物中の金属合計量1モルに対して、0.2〜3モルの割合で更に含有する請求項1ないし7いずれか1項に記載の誘電体薄膜形成用組成物。
【請求項9】
BとAとのモル比B/Aが0.002≦B/A≦0.1である請求項1ないし8いずれか1項に記載の誘電体薄膜形成用組成物。
【請求項10】
請求項1ないし9のいずれか1項に記載の誘電体薄膜形成用組成物を耐熱性基板に塗布し乾燥する工程を所望の厚さの膜が得られるまで繰返し行った後、空気中、酸化雰囲気中又は含水蒸気雰囲気中で該膜を結晶化温度以上で焼成することを特徴とする誘電体薄膜の形成方法。
【請求項11】
請求項10記載の方法により形成されたCuを含むBST誘電体薄膜。
【請求項12】
膜厚が100〜500nmの範囲にある誘電体薄膜を誘電体層として薄膜キャパシタを形成し、前記薄膜キャパシタの印加電圧を20Vとしたとき、リーク電流密度が3.0×10-6A/cm2以下、チューナビリティが70%以上となり、前記薄膜キャパシタの印加電圧を0Vとしたとき、誘電率が300以上となる請求項11記載のCuを含むBST誘電体薄膜。
【請求項13】
請求項12記載の誘電体薄膜を有する薄膜コンデンサ、キャパシタ、IPD、DRAMメモリ用コンデンサ、積層コンデンサ、トランジスタのゲート絶縁体、不揮発性メモリ、焦電型赤外線検出素子、圧電素子、電気光学素子、アクチュエータ、共振子、超音波モータ、又はLCノイズフィルタ素子の複合電子部品。
【請求項14】
請求項13に記載する100MHz以上の周波数帯域に対応した、誘電体薄膜を有する薄膜コンデンサ、キャパシタ、IPD、DRAMメモリ用コンデンサ、積層コンデンサ、トランジスタのゲート絶縁体、不揮発性メモリ、焦電型赤外線検出素子、圧電素子、電気光学素子、アクチュエータ、共振子、超音波モータ、又はLCノイズフィルタ素子の複合電子部品。

【図1】
image rotate


【公開番号】特開2012−54538(P2012−54538A)
【公開日】平成24年3月15日(2012.3.15)
【国際特許分類】
【出願番号】特願2011−158537(P2011−158537)
【出願日】平成23年7月20日(2011.7.20)
【出願人】(000006264)三菱マテリアル株式会社 (4,417)
【Fターム(参考)】