説明

ドライバ回路

【課題】微細化に対して有利なドライバ回路を提供する。
【解決手段】ドライバ回路は、入力信号を所定の出力波形に変換し、第1、第2出力端子に出力するように構成された出力回路16と、一端が前記第1出力端子に接続された第1出力抵抗RPと、一端が前記第2出力端子に接続された第2出力抵抗RNと、一端および他端が前記第1、第2出力抵抗の他端に接続された出力抵抗スイッチ素子SW1と、前記出力抵抗スイッチ素子の両端の電圧に対応する第1、第2入力電圧がそれぞれ入力され、前記第1、第2入力電圧の基準電圧からの電圧差を増幅した電圧を第1、第2出力電圧として前記出力抵抗スイッチ素子の両端に再び出力するように構成され、停止信号が入力されると前記出力抵抗スイッチ素子の両端の間がハイインピーダンス状態となる2入力2出力増幅器19とを具備する。

【発明の詳細な説明】
【技術分野】
【0001】
この発明は、ドライバ回路に関し、例えば、可変出力インピーダンス LVDS(Low Voltage Differential Signaling)方式のドライバ回路等に適用されるものである。
【背景技術】
【0002】
従来より、ドライバ回路として、例えば、可変出力インピーダンス LVDS(Low Voltage Differential Signaling)方式のドライバ回路(以下、LVDSドライバ回路と称する)等がある。このLVDSドライバ回路は、2つの出力端子に接続される出力抵抗間をオン/オフ(ON/OFF)するためのスイッチが設けられているものがある。
【0003】
しかし、従来のLVDSドライバ回路の構成では、回路面積が増大し、微細化に対して不利であるという問題がある。
【0004】
それは、上記スイッチとして通常のCMOS製造プロセスで製造したMOSトランジスタ(MOSFET)を適用した場合、上記スイッチ(MOSFET)のオン抵抗(Rsw)は、LVDSドライバ回路の出力抵抗(例えば50Ω程度)よりも十分小さくする必要がある。その結果、上記スイッチ(MOSFET)のゲート幅(W)がかなり増大し、上記スイッチ(MOSFET)の占有面積が大幅に増大してしまうからである。上記スイッチ(MOSFET)の占有面積の大幅な増大は、ドライバ回路全体の面積の増加の原因となり、コスト的に不利である。
【0005】
加えて、上記スイッチ(MOSFET)の大幅な増大に伴って、スイッチのゲート・ドレイン間、ゲート・ソース間の寄生容量も増大するため、電源ノイズが混入しやすくなるという問題も発生する。
【0006】
上記のように、従来のドライバ回路は、微細化に対して不利であるという問題があった。
【特許文献1】特開平9−214314号公報
【特許文献2】特開2006−60320号公報
【発明の開示】
【発明が解決しようとする課題】
【0007】
この発明は、微細化に対して有利なドライバ回路を提供する。
【課題を解決するための手段】
【0008】
この発明の一態様によれば、入力信号を所定の出力波形に変換し、第1、第2出力端子に出力するように構成された出力回路と、一端が前記第1出力端子に接続された第1出力抵抗と、一端が前記第2出力端子に接続された第2出力抵抗と、一端および他端が前記第1、第2出力抵抗の他端に接続された出力抵抗スイッチ素子と、前記出力抵抗スイッチ素子の両端の電圧に対応する第1、第2入力電圧がそれぞれ入力され、前記第1、第2入力電圧の基準電圧からの電圧差を増幅した電圧を第1、第2出力電圧として前記出力抵抗スイッチ素子の両端に再び出力するように構成され、停止信号が入力されると前記出力抵抗スイッチ素子の両端の間がハイインピーダンス状態となる2入力2出力増幅器とを具備するドライバ回路を提供できる。
【発明の効果】
【0009】
この発明によれば、微細化に対して有利なドライバ回路が得られる。
【発明を実施するための最良の形態】
【0010】
以下、この発明の実施形態について図面を参照して説明する。尚、この説明においては、全図にわたり共通の部分には共通の参照符号を付す。
【0011】
[一実施形態(基本構成例)]
この発明の一実施形態に係るドライバ回路の基本構成例について、図1乃至図9を用いて説明する。この実施形態では、可変出力インピーダンス小振幅差動信号方式(LVDS:Low Voltage Differential Signaling)のドライバ回路を一例挙げて、説明する。
【0012】
<1.ドライバ・レシーバシステム>
まず、本例に係るドライバ回路を備えるドライバ・レシーバシステムについて、図1を用いて説明する。図1は、この実施形態に係るドライバ・レシーバシステムを示す図である。
【0013】
図示するように、本例に係るドライバ・レシーバシステムは、伝送線路L1、L2により接続されたLVDSドライバ(ドライバ回路)11、およびレシーバ12を備えている。
【0014】
LVDSドライバ11は、後述するように、入力された入力信号SINを、小振幅差動信号方式(LVDS)により増幅し、出力端子15−1、15−2から、所定のドライバ出力信号SOUTをレシーバ12に出力するように構成されている。このように、小振幅差動信号方式(LVDS)を用いることで、LVDSドライバ回路11が小信号振幅で差動伝送を行うことができるため、ノイズ発生量を低減でき、消費電力を低減することができる。
【0015】
レシーバ12は、伝送線路L1、L2を介して入力された上記ドライバ出力信号SOUTを受信するように構成されている。
【0016】
ここで、LVDSドライバ回路11は、一端および他端が差動出力端子間に接続された終端抵抗R0を備えていることが通常である。例えば、この終端抵抗R0の抵抗値は、100Ω程度である。
【0017】
また、LVDSドライバ回路11は、上記伝送線路L1、L2の伝送線路インピーダンスと、レシーバ12の入力部の上記終端抵抗R0のインピーダンスとのインピータンスの整合をとることによって、出力信号SOUTの反射を防止している。
【0018】
しかし、LVDSドライバ回路11の差動出力端子(例えば、出力ピン)15−1、15−2を他の回路と共用する等の場合には、差動出力端子15−1、15−2の間の出力抵抗を開放状態にする必要がある。
【0019】
そのため、まず第1に、LVDSドライバ回路11は、差動出力端子15−1、15−2の間が導通のオン(ON)状態と、差動出力端子15−1、15−2の間が非導通のオフ(OFF)状態とを形成し得る構成である必要がある。
【0020】
第2に、LVDSドライバ回路11は、上記差動出力端子15−1、15−2の間のオン状態とオフ状態の二状態の切り替えを、少ない素子面積の増加で実現する必要がある。
【0021】
第3に、LVDSドライバ回路11は、上記差動出力端子15−1、15−2の間のオン状態とオフ状態の二状態の切り替えに伴う出力抵抗値の変動を、製造プロセスや動作環境にかかわらず、低減する必要がある。
【0022】
<2.LVDSドライバ回路11の構成例>
次に、本例に係る上記LVDSドライバ回路11の構成例について、図2を用いて説明する。図示するように、LVDSドライバ回路11は、LVDS出力回路16、出力抵抗RP、RN、出力抵抗スイッチ素子SW1、および停止信号SSが入力される2入力−2出力増幅器19を備えている。
【0023】
LVDS出力回路16は、入力されたドライバ入力信号SINを、小振幅差動信号方式(LVDS)により所定の出力波形として出力端子15−1、15−2に変換出力するように構成されている。
【0024】
出力抵抗RPは、一端が出力端子(第1出力端子)15−1に接続され他端が出力抵抗スイッチ素子SW1の電流経路の一端に接続された出力抵抗である。
【0025】
出力抵抗RNは、一端が出力端子(第2出力端子)15−2に接続され他端が出力抵抗スイッチ素子SW1の電流経路の他端に接続された出力抵抗である。
【0026】
出力抵抗スイッチ素子SW1は、電流経路の一端および他端が、出力抵抗RP、RNの他端に接続されている。
【0027】
2入力−2出力増幅器19は、出力抵抗スイッチ素子SW1の両端の電圧に対応する第1、第2入力電圧Vin1,Vin2がそれぞれ入力され、第1、第2入力電圧の基準電圧Vcmからの電圧差を増幅した電圧を第1、第2出力電圧Vo1,Vo2として出力抵抗スイッチ素子SW1の両端(out1,out2)に再び出力するように構成されている。
【0028】
また、2入力−2出力増幅器19は、停止信号SSが入力されると、出力抵抗スイッチ素子SW1の両端の間がハイインピーダンス状態となるように構成されている。そのため、2入力−2出力増幅器19の出力端子(out1、out2)間は、停止信号SSが入力されると、開放状態として使用することができる。
【0029】
<3.LVDS出力回路16の構成例>
次に、本例に係る上記LVDS出力回路16の構成例について、図3を用いて説明する。図示するように、本例に係るLVDS出力回路16は、電流源Ic-1, Ic-2、PMOSトランジスタQP1、QP2、およびNMOSトランジスタQN1、QN2により構成されている。また、制御信号Φ、−Φの電圧状態は互いに逆の関係にある。そのため、例えば、図示するような電圧状態では、MOSトランジスタQP2、QN1がオンし、MOSトランジスタQP1、QN2がオフする。
【0030】
電流源Ic-1の入力は基準電源VDDに接続され、出力はPMOSトランジスタQP1、QP2のソースに接続されている。
【0031】
電流源Ic-2の入力は基準電源VSSに接続され、出力はNMOSトランジスタQN1、QN2のソースに接続されている。
【0032】
PMOSトランジスタQP1のドレインは出力端子15−1に接続され、ゲートには制御信号−Φが入力される。PMOSトランジスタQP2のドレインは出力端子15−2に接続され、ゲートには制御信号Φが入力される。
【0033】
NMOSトランジスタQN1のドレインは出力端子15−1に接続され、ゲートには制御信号−Φが入力される。NMOSトランジスタQN2のドレインは出力端子15−2に接続され、ゲートには制御信号Φが入力される。
【0034】
そのため、MOSスイッチQP1、QP2、QN1、QN2は、制御信号Φが基準電源VDDのときに、NMOSスイッチ(NchFET)QN1、QN2がオンし、MOSスイッチQP1、QP2(PchFET)はオフする。一方、制御信号Φが、接地電源VSSのときに、NMOSスイッチ(NchFET)QN1、QN2がオフし、PMOSスイッチ(PchFET)QP1、QP2がオンする。
【0035】
このように、この実施形態に係るLVDS出力回路16は、増幅部として働くバッファアンプ117を備えていない点で、後述する比較例に係るLVDS差動増幅回路116と相違している。
【0036】
<4.スイッチ素子SW1の構成例>
次に、本例に係る上記スイッチ素子SW1の構成例について、図4乃至図7を用いて説明する。図4に示すように、この説明では、出力抵抗スイッチ素子SW1がオン状態の、ドレイン−ソース間のオン抵抗の抵抗値を抵抗値ronとして説明する。
【0037】
<4−1.PMOSトランジスタで構成する一例>
図5に示す例は、出力抵抗スイッチ素子SW1をPMOSトランジスタQP3で構成した場合である。図示するように、PMOSトランジスタQP3のソースは出力抵抗RPを介して出力端子15−1に接続され、ドレインは出力抵抗RNを介して出力端子15−2に接続され、ゲートは接地電源VSSに接続されている。
【0038】
<4−2.NMOSトランジスタで構成する一例>
図6に示す例は、出力抵抗スイッチ素子SW1をNMOSトランジスタQN3で構成した場合である。図示するように、NMOSトランジスタQN3のソースは出力抵抗RNを介して出力端子15−2に接続され、ドレインは出力抵抗RPを介して出力端子15−1に接続され、ゲートは基準電源VDDに接続されている。
【0039】
<4−3.CMOSスイッチで構成する一例>
図7に示す例は、出力抵抗スイッチ素子SW1をCMOSスイッチで構成した場合である。図示するように、CMOSスイッチは、MOSトランジスタQP4,QN4を備えている。
【0040】
PMOSトランジスタQP4のソースは出力抵抗RPを介して出力端子15−1に接続され、ドレインは出力抵抗RNを介して出力端子15−2に接続され、ゲートは基準電源VDDに接続されている。NMOSトランジスタQN4のソースはPMOSトランジスタQP4のドレインに接続され、ドレインはPMOSトランジスタQP4のソースに接続され、ゲートは接地電源VSSに接続されている。
【0041】
上記<4−1>乃至<4−3>において説明したオン抵抗の抵抗値ronは、それぞれ以下の式(1)のように表される。
【数1】

【0042】
ここで、上記VTN、TPは、それぞれNMOSトランジスタQN3,QP3の閾値電圧であり、上記μ、μはそれぞれ電子の移動度、ホールの移動度である。これらの値は、閾値電圧や移動度は温度によって変動する値である。また、Coxは酸化膜の単位面積容量、WおよびLは、それぞれトランジスタのチャネル幅、チャネル長である。
【0043】
上記式(1)において、移動度μ、μ、酸化膜の単位面積容量Cox、閾値電圧VTN、TPは、デバイスに固有の値である。チャネル長Lの最小値は微細加工精度により制限されており、通常MOSFETスイッチを設計する場合、オン抵抗値を小さくするためデザインルールで定められた最小値にする。また、基準電源VDDやオフセット電圧Vosは回路仕様により通常定められているものである。
【0044】
したがって、回路設計段階において、MOSFETスイッチのオン抵抗を決めるための、自由度のあるパラメータは、チャネル幅Wのみである。そのため、オン抵抗を小さくするためにはチャネル幅Wを大きくする必要がある。
【0045】
出力抵抗スイッチ素子SW1として、上記<4−1>乃至<4−3>で示したNchFETスイッチQN3、PchFETスイッチQP3、CMOSスイッチのいずれかを選択するかにあたっては、電子とホールの移動度や、仕様で定められた基準電源VDDとオフセット電圧Vosの電圧値などを考慮し、同抵抗値でも、最も面積が小さくなるような選択することが面積コスト的に好ましい。
【0046】
上記<4−1>乃至<4−3>のいずれの構成であっても、出力抵抗スイッチ素子SW1のオン抵抗の抵抗値ronは、以下の式(2)で表す関係がある。
【数2】

【0047】
このように、オン(ON)抵抗値ronを低減するためには、チャネル幅Wを大きくしなければならない。
【0048】
<5.2入力−2出力増幅器19の構成例>
次に、本例に係る上記2入力−2出力増幅器19の構成例について、図8を用いて説明する。図示するように、本例に係る2入力−2出力増幅器19は、スイッチ素子SW2、SW3、およびアンプamp1〜amp3を備えている。
【0049】
スイッチ素子SW2の電流経路の一端は出力抵抗RPの他端に接続され、電流経路の他端はこの増幅器19の第1入力(第1入力電圧Vin1)に接続されている。スイッチ素子SW3の電流経路の一端は出力抵抗RNの他端に接続され、電流経路の他端はこの増幅器19の第2入力(第2入力電圧Vin2)に接続されている。
【0050】
アンプamp1の第1入力端子には基準電圧Vcmが入力され、第2入力端子にはこの増幅器19の第1入力電圧Vin1および第2入力電圧Vin2が入力され、基準電圧Vcmからの差に応じた出力をアンプamp2, amp3の入力端子に出力するように構成されている。また、このアンプamp1は、利得−A1を有している。
【0051】
アンプamp2の出力電圧は、この増幅器19の第1出力電圧Vo1としてスイッチ素子SW1の電流経路の一端に出力される。アンプamp3の出力電圧は、この増幅器19の第2出力電圧Vo2としてスイッチ素子SW1の電流経路の他端に出力される。このアンプamp2,amp3はそれぞれ、利得−A2を有している。
【0052】
また、アンプamp2,amp3は、停止信号SSが入力されるとこのアンプamp2,amp3間がハイインピータンス状態となるように構成されている。
【0053】
<6.LVDSドライバ回路11の出力動作>
次に、本例に係るLVDSドライバ回路11の出力動作について、図9および図10を用いて説明する。図9においては、MOSトランジスタQP1、QP2、QN1、QN2を模式的にスイッチとして示している。
【0054】
図9に示すように、LVDS出力回路16のスイッチトランジスタQP1,QP2,QN1,QN2のゲートに制御信号Φ、−Φが入力されている。この制御信号Φ、−Φの出力波形は、図10の上段に示すようになる。
【0055】
そのため、LVDSドライバ回路11の出力波形(Vop、Von)は、図10の下段に示すようになる。図示するように、LVDSドライバ回路11は、オフセット電圧Vosを基準電圧として、小振幅の差動出力信号Vop、Vonを出力する。
【0056】
<7.比較例に係るドライバ回路のとの比較>
次に、本例に係るLVDSドライバ11と、比較例に係るLVDSドライバ111とを比較した説明について、図23乃至図28を用いて説明する。
【0057】
図23は比較例に係るLVDSドライバ111を示す図である。図示するように、比較例に係るLVDSドライバ111は、2つのスイッチ素子SW11、SW12を有し、出力回路としてバッファアンプ117を有している点で、上記この実施形態に係るLVDS出力回路11と相違している。
【0058】
<7−1.出力インピータンスRtotの比較>
まず、図23に示す比較例に係るLVDSドライバ111の出力抵抗に、ON/OFF用のスイッチ素子SW11、SW12を挿入したことによる、出力抵抗の変化を調べるため、出力端子(Vop)115−1から見た出力インピーダンスRtotを求める。
【0059】
飽和領域で動作するトランジスタ(MOSFET)で構成された電流源回路の出力抵抗は、MΩオーダーの高抵抗である。よって、出力抵抗Rp、Rnの抵抗値Rout、Rswよりも十分大きく無視できる。そのため、出力端子(Vop)115−1から見た出力インピーダンスは、図24に示す等価回路200のように簡略化することができる。ここで、動作点基準電圧Vosを生成しているバッファアンプ117の出力インピーダンスについても、実際は有限の値を持つため、このインピーダンスも考慮しなければならない。バッファアンプ117は、通常オペアンプを用いて構成される。
【0060】
例えば、図25にバッファアンプ117として、一般的な2段増幅器構成のオペアンプ回路を適用した場合を示す。入力電圧V+、V−の電位差を入力段増幅器で増幅し、出力電圧Voaとして出力する。この出力電圧Voaを入力とする出力増幅段の出力電圧が電圧Voである。
【0061】
尚、バッファアンプ117は、図26に示すように、入力段で−A1倍、出力段で−A2倍、合計A1*A1倍の利得をもつようなモデルにも簡略化することが可能である。
【0062】
ここで、図25に示すバッファアンプ117の構成の場合、出力増幅段はトランジスタMn1、Mp1のソース接地型増幅器で構成されている。そのため、図27に示すように、初段の−A1倍増幅段と、トランジスタMp1をモデル化した電圧制御電流源および、出力抵抗roで表した小信号等価回路図で表すことができる。この電圧制御電流源は、入力電圧が上記電圧Voaであり、トランスコンダクタンスgmを乗じた電流を流す。
【0063】
ここで、図25中のトランジスタMp1のサイズをWp/Lp(Wp;ゲート幅,Lp;ゲート長)とし、出力段トランジスタに流れるバイアス電流値をIo1とすると、図27に示した小信号等価回路のトランスコンダクタンスgmと出力抵抗roは、以下の式(3)のように与えられる。
【数3】

【0064】
ここで、λpはチャネル長変調係数であり、プロセス依存のあるトランジスタ(MOSFET)固有の値である。
【0065】
続いて、出力段の利得−A2は、−gm・roで表されるため、バッファアンプ117全体の利得Atは、以下の式(4)で表される。
【数4】

【0066】
さらに、図24で示すバッファアンプの等価回路200を、図27で示したモデルで置き換えると、図28のように表される。図28で示す等価回路200より、出力端子(Vop)端子115−1からみた出力インピーダンスRtotを求めると、以下の式(5)のように表される。
【数5】

【0067】
さらに、フィードバックをかけたバッファアンプにすることよって、バッファアンプ117の出力抵抗roは、ループ利得(1+At)分の1に改善される。バッファアンプ117の出力抵抗を、Ro_bufとすると、出力インピーダンスRtotは、以下の式(5a)のように表される。
【数6】

【0068】
ここで、抵抗値Routの値をもつRp、Rnは多結晶シリコン等で形成され、プロセス条件などによる絶対値変動はあるが、温度依存や電源電圧依存、トランジスタ(MOSFET)の閾値電圧などのプロセス変動にはほとんど影響しない。
【0069】
一方、トランジスタ(MOSFET)であるスイッチ素子は、上記式(1)に示したように、温度変動や電源電圧変動、また閾値電圧の変動により、スイッチSW11、SW12のオン抵抗Rswの値が大きく変動する。
【0070】
ここで、図23で示した比較例に係るLVDSドライバ回路116の出力端子115−1、115−2における出力電圧Vop、Vonが完全差動動作すると仮定すると、出力電圧Vosの電圧値は仮想接地状態になる。そのため、出力インピーダンスRtotは、以下の式(5b)のように表される。
【数7】

【0071】
しかし、実際は、出力電圧Vop、Vonに供給する電流値Icの誤差電流による同相成分、スイッチ制御信号Φ、−Φのスキュー等によって、完全差動動作をしない。
【0072】
よって、電流出力方式のLVDS出力ドライバ111には、バッファアンプ117が必ず必要となり、より安定した動作点電圧を得るには、上記式(5b)に示すように、バッファアンプ117の出力抵抗Ro_bufの値を十分小さくする必要がある。
【0073】
そのため、上記式(5a)より、LVDS出力ドライバ回路116の出力インピーダンスRtotのプロセス変動を小さくするためには、以下の式(6)の関係を満たす必要がある。
【数8】

【0074】
ここで、通常、抵抗値Routは例えば、50Ω程度と小さい値であるため、スイッチSW11、SW12のオン抵抗Rswが、トランジスタ(MOSFET)で構成されたものであるとすると、式(6)の関係を満たすためには、ゲート幅Wをかなり大きくしなければならず、そのスイッチSW11、SW12の素子面積は増大する。ここで、抵抗値Ro_bufは、周波数が高くなるにつれて大きくなるが、直流付近では数Ω程度と小さい値である。
【0075】
このように、比較例に係るLVDS出力ドライバ111のように、2つの出力抵抗ON/OFFスイッチ素子SW11、SW12を有する構成では、スイッチ素子SW11、SW12のゲート幅Wをかなり大きくする必要があるため、回路面積が大きくなる。
【0076】
即ち、通常CMOS製造プロセスにおいて、スイッチ素子SW11、SW12のオン抵抗Rswが、LVDS出力抵抗Rp, Rn(例えば、50Ω程度)よりも十分小さくなるようにするためには、ゲート幅Wをかなり大きくする必要があるためである。トランジスタ(MOSFET)であるスイッチ素子SW11、SW12の面積の増加は、回路面積の増加の原因となり、製造コストが増大する。加えて、トランジスタ(MOSFET)のゲート・ドレイン間、ゲート・ソース間の寄生容量も増大し、電源ノイズも混入しやすくなる。
【0077】
ここで、オン抵抗Rsw、Routの和の抵抗値をRtotとすると、抵抗値Rtotが、LVDSドライバ回路116の出力抵抗となる。そのため、オン抵抗Rswの抵抗値を設計段階で事前に見込んでおいて、出力抵抗Rtot=50Ωとなるようにオン抵抗Routを設定すれば足りるとも考えられる。
【0078】
しかし、実際には、スイッチ素子SW11のオン抵抗Rswのプロセスばらつきや動作条件による変動が、例えば、50%程度〜200%程度以上存在する。そのため、抵抗値Rtotの出力抵抗値や、差動出力振幅Vodの変動を仕様で規定された範囲内に抑えるためには、オン抵抗Rswは、オン抵抗Routに対してできるだけ小さいほうが良い。
【0079】
以上のように、比較例に係るLVDSドライバ回路116の構成例では、微細化に対して不利である。
【0080】
<7−2.電気的特性の詳細な比較>
続いて、この実施形態に係る図8に示したLVDSドライバ11と、比較例に係る図23に示したLVDSドライバ111の電気的特性を詳細に解析し、比較する。
【0081】
図23に示すように、比較例に係るLVDSドライバ回路111は、2つの出力抵抗Rp、Rnの間に2つのスイッチ素子(SW11、SW12)を挟み、その中点とバッファアンプ117の出力が接続されている。
【0082】
一方、図8に示したこの実施形態に係るLVDSドライバ11は、2つの出力抵抗Rp、Rnの間に、出力抵抗ON/OFF用のスイッチ素子SW1(抵抗値Rsw1)を1つだけ挟んでいる。
【0083】
スイッチ素子SW1の両端には、利得−A1を有するアンプamp1の出力を入力とした利得−A2をもつアンプamp2、amp3のそれぞれの出力電圧vo1、vo2にそれぞれ接続されている。スイッチ素子SW1の電流経路の両端には、同じオン(ON)抵抗値(Rsw2))をもつ巣スイッチ素子SW2、SW3が直列接続されている。
【0084】
スイッチ素子SW2、SW3の接続点は、スイッチ素子SW1の電流経路の両端の平均電圧((vo1+vo2)/2)となる。そして、この平均電圧は、アンプamp1の負の入力端子に接続されている。アンプamp1の正の入力端子は、基準電位Vcmに接続されている。
【0085】
上記に説明したように、第1として、この実施形態に係るLVDSドライバ11は、比較例に係るLVDSドライバ111が大面積を必要とする出力抵抗Rp−Rn間のトランジスタ(MOSFET)スイッチ素子を2つ必要とするのに対して、1つのスイッチ素子SW1のみ必要としない点で相違している。
【0086】
尚、本例の2入力−2出力増幅器19が備えるスイッチ素子SW2、SW3は、スイッチ素子SW1の電流経路の両端の平均電圧を生成させるだけの目的で設けられている。そのため、スイッチ素子SW2、SW3の抵抗値Rsw2はスイッチ素子SW1の抵抗値Rsw1に比べ十分大きくでき、スイッチ素子SW2、SW3の占有面積は小さくてよい。
【0087】
また、図11に示すように、上記アンプamp1、amp2、amp3をまとめてアンプamp4し、1つのオペアンプを備える構成とすることも可能である。図示するように、この2入力−2出力増幅器19についても同様に、2つの出力端子から2つの出力電圧Vo1、Vo2をそれぞれ出力する。
【0088】
次に、図8に示した2入力−2出力増幅器19の回路図を図12に示す。図示するように、2入力−2出力増幅器19は、初段増幅部33と出力段増幅部35とを備えている。
【0089】
初段増幅部33は、入力電圧V+、V-を入力とし、出力電圧Voaを出力としている。この初段増幅部33は、図25に示す比較例に係る初段出力部133と相違点はない。
【0090】
出力段増幅部35は、初段増幅部33の出力電圧Voaを入力とし、2つの出力電圧Vo1, Vo2を2出力としている。
【0091】
ここで、出力段増幅部35は、トランジスタ(MOSFET)Mp1、Mp2、Mn1、Mn2、およびキャパシタCcを備えている。
【0092】
ここで、図25に示す比較例に係るバッファアンプ117の出力段増幅部135と比較する。本例の出力段増幅部35は、比較例に係る出力段増幅部135を並列接続した構成である点で相違している。
【0093】
また、トランジスタMp1、Mp2のゲート幅は、それぞれ半分の値(Wp/2)である。トランジスタMn1、Mn2のゲート幅についても、それぞれ半分の値(Wn/2)である。キャパシタCcの容量値(位相補償容量)は、それぞれ半分の値(Cc/2)となるように構成されている。
【0094】
上記のように、本例に係る2入力−2出力増幅器19の全体の占有面積は、比較例に係るオペアンプ117の占有面積と同様にすることができる。即ち、この構成により、占有面積が増大することがない。
【0095】
尚、図8に示す出力抵抗RP、RN間をオフ(OFF)状態にするときには、スイッチ素子SW1、SW2をOFF状態にして、オペアンプamp2,amp3の出力電圧vo1、vo2をOFF(ハイインピーダンス)状態にすれば良い。より具体的に、出力電圧vo1、vo2をハイインピーダンス状態にするには、図12中のSTP端子、STP_X端子に制御信号SSを入力する。制御信号SSが入力されると、STP端子にVSS電圧が印加されトランジスタMn2をカットオフし、STP_X端子にVDD電圧が印加されトランジスタMp2をカットオフされる。
【0096】
続いて、図8に示したLVDSドライバ11の構成例を一例に挙げ、本例に係る出力抵抗Rtotを求める。
【0097】
まず、上記比較例に係るLVDSドライバ111の出力抵抗を求めたように、Vopからみたインピーダンスを計算するための小信号等価回路を考える。即ち、図12に示した2入力−2出力増幅器19の小信号等価回路を図13に示す。
【0098】
図13に示すように、スイッチ素子SW1、SW2の抵抗値をそれぞれRsw1、Rsw2、2入力−2出力増幅器19の初段増幅部33の利得をアンプ−A1、出力段増幅部35を電圧制御電流源回路(トランスコンダクタンス:gm/2)と出力抵抗(抵抗値Rout)で表している。
【0099】
本例に係る出力段増幅部35を構成するトランジスタ(MOSFET)Mp1、Mp2、Mn1、Mn2のゲート幅の大きさは、比較例に係る図25中のオペアンプ117の出力段増幅部135を構成するトランジスタのゲート幅のサイズの半分である(Wp/2,Wn/2)。そのため、本例に係る出力段増幅部35の電圧制御電流源回路のトランスコンダクタンスの値は、上記式(3)より、gm/2となる。出力抵抗は、同様に式(3)より、2roとなる。
【0100】
続いて、図13の小信号等価回路20をさらに簡略化すると、図14に示す回路と等価と見ることができる。
【0101】
図示するように、小信号等価回路20´の利得−A1の出力段増幅部33の入力は、入力電圧Vo1、Vo2の平均値と考えられる。そのため、2つの電圧制御電流源回路35の入力は、いずれも−A1(vo1+vo2)/2である。また、抵抗値Rsw2は、入力電圧Vo1、Vo2の平均値電圧を生成するだけの抵抗であるため、抵抗値Rsw1より十分大きい値と考えても良く、入力電圧Vo1、Vo2間の抵抗値は、ほぼ抵抗値Rsw1と考えられる。
【0102】
この図14に示す小信号等価回路20´を用いて、本例に係るLVDドライバ11の出力抵抗Rtotを求める。端子Vopから電流Iinを流しこんだとき、電流Iinは、端子電圧Vo1、Vo2を用いて次式(7)のように表される。
【数9】

【0103】
また、下記の式(8)の関係がある。
【数10】

【0104】
そのため、式(7)、式(8)より端子電圧Vo2を消去すると、下記式(9)のように、電流Iinを求めることができる。
【数11】

【0105】
さらに、上記式(9)より、端子VOPから見た出力抵抗Rtotは、以下の式(10)のように表される。
【数12】

【0106】
ここで、上記式(10)の第2項は、比較例に係る図25で示すオペアンプ117の出力インピーダンスと同値であり、その値はRo_bufとなる。第3項は、抵抗値Rsw/4と、抵抗値2roの並列抵抗を表している。フィードバックをかけないオペアンプの出力抵抗は、通常数kΩ〜数十kΩと大きい。もともと抵抗値Rswは、抵抗値Rout(例えば、約50Ω程度)よりも小さな値のため、第3項の並列抵抗値は、ほぼ抵抗値Rswだけで決定される。よって、出力抵抗Rtotは、次式(11a)のように近似できる。
【数13】

【0107】
また、電圧Vopと電圧Vonが完全差動で動作しているとすると、図14で示す抵抗値Rsw1の中点は仮想接地状態になる。そのため、Vo1+Vo2=0となり、端子電圧Vo1からみた抵抗値は、抵抗値2roとRsw1/2の並列抵抗になる。オン抵抗値roは抵抗値Rswに比べ十分大きいため、上記式(11a)は、下記式(11b)のように表される。
【数14】

【0108】
以上の式から、本例に係る図11に示したLVDSドライバ11の出力抵抗Rtotと、比較例に係る図23で示したLVDSドライバ111の出力抵抗Rtotとを比較すると、以下のように示される。
【数15】

【0109】
このように、完全差動動作状態である場合(式(11b))、そうでない場合(式11a)のいずれの場合であっても、本例に係るLVDSドライバ11のスイッチ素子SW1の抵抗値を低減することができる。
【0110】
例えば、本例の場合、上記式(11a)、式(11b)に示すように、比較例に比べ、スイッチ素子SW1の抵抗値を1/4に低減できることがわかる。但し、これは、比較例に係る図23で示すドライバ111のスイッチ素子SW11、SW12と、本例に係る図11中のスイッチ素子SW1が、同面積のMOSFETスイッチで構成されていた場合として考えている。
【0111】
このように、不要な抵抗となるスイッチ素子SW1の抵抗値Rsw1を低減することができる。また抵抗値Rswのプロセス変動や電源電圧変動、動作環境によるRtotの変動も抑えることができる。
【0112】
さらに、図23に示した比較例に係るLVDSドライバ111では、電圧Vop側にスイッチ素子SW11が設けられ、電圧Von側にもスイッチ素子SW12が設けられている。このように、スイッチ素子が2つあるため、本例のような1つのスイッチ素子SW1を備える場合に比べると、占有面積が2倍に増大し、さらに製造コストも増大する。
【0113】
また、比較例に係るLVDSドライバ111の構成例において、電圧Vopおよび電圧Vonから見た出力抵抗をハイインピーダンスにする場合、必ずしもスイッチSW11とスイッチ素子SW12の2つのスイッチ素子を必要としないとも考えられる。しかしながら、比較例に係るLVDSドライバ111の実動作の際に、電圧Vosを基準電圧とした電圧Vopと電圧Vonの差動振幅や過渡動作の回路構成上バランスを考慮すると、電圧Vop側または電圧Von側のいずれか一方のみにスイッチ素子を挿入するのは回路特性上好ましくない。そのため、比較例に係るLVDSドライバ111の構成例において、スイッチSW11およびスイッチ素子SW12の2つのスイッチ素子は、必要不可欠である。
【0114】
<8.この実施形態に係るドライバ回路の効果>
この実施形態に係るドライバ回路11によれば、少なくとも下記(1)乃至(4)の効果が得られる。
【0115】
(1)出力部(2入力−2出力増幅器19)のスイッチ素子SW1の占有面積を低減できるため、微細化に対して有利である。
上記のように本例に係るLVDSドライバ11は、単一のスイッチ素子SW1を備え、このスイッチ素子SW1のみにより、出力端子15−1、15−2間(電圧Vop、電圧Von間)をオン/オフすることができる。
【0116】
そのため、2入力−2出力増幅器19の占有面積を低減できる点で微細化に対して有利である。例えば、比較例に係るLVDSドライバ111では、2つのスイッチ素子SW11、SW12を必要とした構成であるため、形式的には、スイッチに関し2倍の占有面積を有する。
【0117】
さらに、本例によれば、スイッチ素子SW1自体の占有面積を低減することができる。
【0118】
例えば、本例に係るLVDSドライバ回路11出力抵抗Rp、Rnを、スイッチ素子を用いてオン/オフ(ON/OFF)する場合、Rout(例えば、50Ω程度)に対するMOSFETスイッチのON抵抗が占める割合を一定とした条件を考える。この条件では、本例に係るスイッチ素子SW1(MOSFET)は、比較例に係るスイッチ素子SW11、SW12に対して、素子面積を1/8に低減することができる。
【0119】
尚、2入力−2出力増幅器19が備えるスイッチ素子SW2、SW3の抵抗値Rsw1, Rsw2は、出力抵抗Routに対して十分大きな値でも良い。そのため、スイッチ素子SW1の素子面積に対しては無視することが可能である。
【0120】
(2) スイッチ素子SW1のオン抵抗を低減できる。
上記完全差動動作状態である場合(式(11b))、そうでない場合(式11a)に示したように、上記いずれの場合であっても、本例に係るLVDSドライバ11のスイッチ素子SW1のオン抵抗値を低減することができる。
【0121】
例えば、本例の場合、上記式(11a)、式(11b)に示すように、比較例に比べ、スイッチ素子SW1の抵抗値を1/4に低減することができる。
【0122】
但し、これは、比較例に係る図23で示すドライバ111のスイッチ素子SW11、SW12と、本例に係る図11中のスイッチ素子SW1が、同面積のMOSFETスイッチで構成されていた場合とした一例である。
【0123】
(3)電源ノイズの混入を防止することができる。
上記(1)に示したように、本例の構成によれば、上記スイッチ素子SW1の占有面積を低減することができる。
【0124】
そのため、スイッチ素子SW1の占有面積の増大に伴って発生する、ゲート・ドレイン間およびゲート・ソース間の寄生容量も増大を防止することができる。そのため、電源ノイズの混入を防止することができる。
【0125】
(4)製造コストの低減に対して有利である。
ここで、例えば、通常のRout(例えば50Ω程度)に対して、十分小さい値のスイッチ素子のオン抵抗を製造するには、かなり大きな面積を必要とするため、製造コストが増大する。
【0126】
しかし、上記(1)、(2)に示したように、本例の構成によれば、上記スイッチ素子SW1の占有面積およびオン抵抗を低減することができる。そのため、通常のRout(例えば50Ω程度)に対して、十分小さい値のスイッチ素子SW1のオン抵抗を実現でき、かつ占有面積を低減できるため、製造コストの低減に対して有利である。
【0127】
[第2の実施形態(平均電圧発生回路と2出力増幅器を備える一例)]
次に、第2の実施形態に係るドライバ回路について、図15乃至図20を用いて説明する。この実施形態は、上記2入力−2出力増幅器19が平均電圧発生回路21と2出力増幅器22を備える一例に関するものである。この説明において、上記第1の実施形態と重複する部分の詳細な説明を省略する。
【0128】
まず、図15に示すように、2入力−2出力増幅器19が平均電圧発生回路21と2出力増幅器22を備えている点で上記第1の実施形態と相違している。
【0129】
平均電圧発生回路21は、出力抵抗スイッチ素子SW1の両端の電圧に対応する第1、第2入力電圧(Vin1,Vin2)がそれぞれ第1、第2入力電圧として入力され、この第1、第2入力電圧(Vin1,Vin2)の平均電圧(Vavg)を出力電圧として、2出力増幅器22の一入力端子(V−)に出力するように構成されている。
【0130】
2出力増幅器22は、上記一入力端子(V−)に入力された平均電圧(Vavg)と一入力端子(V+)に入力された基準電圧(Vcm)からの電圧差を増幅した電圧を第1、第2出力電圧(out1,out2)として出力抵抗スイッチ素子SW1の両端に再び出力(Vo1,Vo2)するように構成されている。また、2出力増幅器22は、停止信号SSが入力されると、出力抵抗スイッチ素子SW1の両端の間がハイインピーダンス状態となるように構成されている。
【0131】
上記2出力増幅器22と、任意の平均電圧発生回路22を組み合わせて構成されるこの実施形態に係る出力端子15−1側(Vop側)から見た出力抵抗Rtotは、次式(12)のように示される。
【数16】

【0132】
上記式(12)に示すように、出力抵抗スイッチ素子分の抵抗値Rsw1は、上記第1の実施形態と同様に、1/4程度に低減することができる。
【0133】
<平均電圧発生回路21−1>
平均電圧発生回路21の構成例としては、例えば、以下のようなものが挙げられる。
【0134】
図16に示す平均電圧発生回路21−1は、入力(Vin1, Vin2)の間に電流経路が直列接続されたNMOSトランジスタQN5、QN6により構成されている。
【0135】
NMOSトランジスタQN5の電流経路の一端は入力(Vin1)に接続され、電流経路の他端は出力(Vavg)に接続され、ゲートは内部電源VDDに接続されている。
【0136】
NMOSトランジスタQN6の電流経路の一端は入力(Vin2)に接続され、電流経路の他端は出力(Vavg)に接続され、ゲートは内部電源VDDに接続されている。
【0137】
<平均電圧発生回路21−2>
図17に示す平均電圧発生回路21−2は、入力(Vin1, Vin2)の間に電流経路が直列接続されたPMOSトランジスタQP5、QP6により構成されている。
【0138】
PMOSトランジスタQP5の電流経路の一端は入力(Vin1)に接続され、電流経路の他端は出力(Vavg)に接続され、ゲートは接地電源VSSに接続されている。
【0139】
PMOSトランジスタQP6の電流経路の一端は入力(Vin2)に接続され、電流経路の他端は出力(Vavg)に接続され、ゲートは接地電源VSSに接続されている。
【0140】
<平均電圧発生回路21−3>
図18に示す平均電圧発生回路21−3は、入力(Vin1, Vin2)の間にCMOS接続されたMOSトランジスタQN7、QN8、QP7、QP8により構成されている。
【0141】
MOSトランジスタQN7の電流経路の一端は入力(Vin1)に接続され、電流経路の他端は出力(Vavg)に接続され、ゲートは接地電源VSSに接続されている。MOSトランジスタQP7の電流経路の一端は入力(Vin1)に接続され、電流経路の他端は出力(Vavg)に接続され、ゲートは内部電源VDDに接続されている。
【0142】
MOSトランジスタQN8の電流経路の一端は入力(Vin2)に接続され、電流経路の他端は出力(Vavg)に接続され、ゲートは接地電源VSSに接続されている。MOSトランジスタQP8の電流経路の一端は入力(Vin2)に接続され、電流経路の他端は出力(Vavg)に接続され、ゲートは内部電源VDDに接続されている。
【0143】
この平均電圧発生回路21−3は、入力(Vin1, Vin2)の間にCMOS接続されたMOSトランジスタQN7、QN8、QP7、QP8により構成されている。そのため、出力電圧Vavgが増大しても、オン抵抗の増大を抑制できる点で有利である。
【0144】
一方、平均電圧発生回路21−1、22−2は、構成するMOSトランジスタを低減できるため、微細化に対して有利である。
【0145】
<2出力増幅器22−1>
2出力増幅器22の構成例としては、例えば、以下のようなものが挙げられる。
【0146】
図19に示す2出力増幅器22−1は、アンプamp5、amp6、amp7を備えている。
【0147】
アンプamp5は、入力+に入力電圧V+が入力され、入力−に入力電圧V−が入力され、この差を増幅した出力電圧をアンプamp6、amp7の入力に出力する。
【0148】
アンプamp6、amp7は、アンプamp5の入力電圧を増幅し、出力電圧として出力端子out1,out2にそれぞれ出力する。また、制御信号SSが、アンプamp7に入力されると、アンプamp6、amp7がハイインピータンス状態となることにより、出力端子out1,out2間がハイインピータンス状態となるように構成されている。
【0149】
<2出力増幅器22−2>
図20に示す2出力増幅器22−2は、トランスコンダクタンスGmを有するトランスコンダクタンスgm1、gm2を備え、出力端子out1,out2に出力電流Iout1, Iout2をそれぞれ出力するように構成されている。
【0150】
トランスコンダクタンスgm1は入力+に入力電圧V+が入力され、入力−に入力電圧V−が入力され、この差を増幅した出力電流Iout1を出力端子out1に出力するように構成されている。
【0151】
トランスコンダクタンスgm2は入力+に入力電圧V+が入力され、入力−に入力電圧V−が入力され、この差を増幅した出力電流Iout2を出力端子out2に出力するように構成されている。
【0152】
また、制御信号SSが、トランスコンダクタンスgm1、gm2に入力されると、トランスコンダクタンスgm1、gm2間がハイインピータンス状態となることにより、出力端子out1,out2間がハイインピータンス状態となるように構成されている。
【0153】
上記のような構成により、2出力増幅器22−2は、正入力端子(V+側)と負入力端子(V−側)の差の電圧にトランスコンダクタンスGmを乗じた電流値Iout1,Iout2を出力端子out1,out2から出力することができる。例えば、2出力増幅器22−2は、負入力端子の電圧V−の方が正入力端子の電圧V+より高い場合は、出力端子out2から電流を吸い込むように動作する。尚、2出力増幅器22−2の出力端子out1, out2は理想的に無限大のインピーダンスを有することが望ましい。
【0154】
<2出力増幅器22−3>
図21に示す2出力増幅器22−2は、利得A3を有するアンプamp8, amp9を備えている。
【0155】
アンプamp8は、入力+に入力電圧V+が入力され、入力−に入力電圧V−が入力され、この差を増幅した出力電圧を出力端子out1に出力する。
【0156】
アンプamp9は、入力+に入力電圧V+が入力され、入力−に入力電圧V−が入力され、この差を増幅した出力電圧を出力端子out2に出力する。また、制御信号SSが、アンプamp8, amp9に入力されると、アンプamp8、amp9がハイインピータンス状態となることにより、出力端子out1,out2間がハイインピータンス状態となるように構成されている。
【0157】
上記のように、この実施形態に係るドライバ回路11によれば、少なくとも上記(1)乃至(4)と同様の効果が得られる。さらに、必要に応じ、本例のような構成を適用することが可能である。
【0158】
[第3の実施形態(2入力−2出力増幅器のその他の構成例)]
次に、第3の実施形態に係るドライバ回路について、図21、図22を用いて説明する。この実施形態は、上記2入力−2出力増幅器19のその他の構成例であって、上記平均電圧発生回路21を有してない一構成例に関するものである。この説明において、上記第1の実施形態と重複する部分の詳細な説明を省略する。
【0159】
図21に示すように、この実施形態に係る2入力−2出力増幅器19は、上記第2の実施形態に示した平均電圧発生回路21を有していない点で、相違している。
【0160】
この実施形態に係る2入力−2出力増幅器19は、利得A1を有するアンプ(増幅器)amp9、amp8を備えている。
【0161】
アンプamp10、amp11の正入力端子(+)は、それぞれ基準電圧Vcmに接続されている。アンプam10は、負入力端子(−)に入力電圧Vin1が入力され、この入力電圧Vin1の基準電圧Vcmからの差を増幅した出力電圧Vo1を出力端子out1に出力する。
【0162】
アンプamp11は、負入力端子(−)に入力電圧Vin2が入力され、この入力電圧Vin2の基準電圧Vcmからの差を増幅した出力電圧Vo2を出力端子out2に出力する。
【0163】
ここで、この実施形態に係るドライバ回路11は、比較例に係るドライバ回路111に比べ、占有面積を増大することはない。例えば、上記アンプamp10、amp11は、比較例に係るオペアンプ117を構成するMOSFETのゲート幅(W)を1/2程度にスケーリングしたものを用いた場合を考える。この場合であっても、本例に係る2入力−2出力増幅器19の占有面積は、比較例にバッファアンプ117の占有面積と変わらない。そのため、この実施形態に係るドライバ回路11を適用した場合であっても、占有面積が増大することはない。
【0164】
但し、アンプamp10、amp11のひとつあたりの出力抵抗は、比較例に係るバッファアンプ117の抵抗値Ro_bufに対して、倍増(2Ro_buf)してしまう。
【0165】
しかしながら、出力端子15−1側(電圧Vop側)からみた出力抵抗Rtotは、次式(13)のように示される。
【数17】

【0166】
上式(13)に示すように、出力抵抗Rtotは、少なくともRtot<Rout+Ro_buf+Rsw1/2であるため、比較例に係るドライブ回路111の出力抵抗よりも低減することができる。
【0167】
また、出力抵抗は、Rtot<Rout+RRo_bufでもあるので、抵抗値Ro_bufが、オン抵抗Rsw1より十分小さい場合、面積的に大きくなるオン抵抗Rsw1の抵抗値を大きくしても、出力抵抗RtotをほとんどRo_bufで決定できる利点がある。
【0168】
この実施形態に係るドライバ回路11によれば、少なくとも上記(1)乃至(4)と同様の効果が得られる。
【0169】
さらに、本例の構成では、出力抵抗は、Rtot<Rout+RRo_bufでもあるので、抵抗値Ro_bufが、オン抵抗Rsw1より十分小さい場合、面積的に大きくなるオン抵抗Rsw1の抵抗値を大きくしても、出力抵抗RtotをほとんどRo_bufで決定できる点で有利である。
【0170】
[比較例(LVDS出力回路が2つのスイッチ素子を備える一例)]
次に、上記実施形態および比較例1乃至比較例3に係るドライバ回路と比較するために、比較例に係るドライバ回路について、図23乃至図28を用いて説明する。この比較例は、LVDS出力回路が2つのスイッチ素子を備える一例に関するものである。この説明において、上記第1乃至第3の実施形態と重複する部分の詳細な説明を省略する。
【0171】
図23は比較例に係るLVDSドライバ111を示す図である。図示するように、比較例に係るLVDSドライバ111は、2つのスイッチ素子SW11、SW12を有し、出力回路としてバッファアンプ117を有している点で、上記第1乃至第3の実施形態に係るLVDS出力回路11と相違している。
【0172】
図24は、出力端子(Vop)115−1から見た出力インピーダンスを説明するための等価回路200を示す簡略化した図である。
【0173】
図25は、バッファアンプ117として、一般的な2段増幅器構成のオペアンプ回路を適用した場合を示す図である。
【0174】
図26は、入力段で−A1倍、出力段で−A2倍、合計A1*A1倍の利得をもつようなモデルに簡略化して示すバッファアンプ117を示す図である。
【0175】
図27は、オペアンプ117を初段の−A1倍増幅段と、トランジスタMp1をモデル化した電圧制御電流源および、出力抵抗roで表した小信号等価回路図である。
【0176】
図28は、図24で示すバッファアンプ117を、図27のようなモデルで置き換えた場合の小信号等価回路図である。
【0177】
この比較例に係るLVDSドライバ回路の構成では、回路面積が増大し、微細化に対して不利である。
【0178】
それは、上記スイッチ素子SW11、SW12として通常のCMOS製造プロセスで製造したMOSトランジスタ(MOSFET)を適用した場合、スイッチ素子SW11、SW12(MOSFET)のオン抵抗(Rsw)は、LVDSドライバ回路の出力抵抗Rout(例えば50Ω程度)よりも十分小さくする必要がある。その結果、上記スイッチ素子SW11、SW12のゲート幅(W)がかなり増大し、上記スイッチ素子SW11、SW12の占有面積が大幅に増大してしまうからである。上記スイッチ素子SW11、SW12の占有面積の大幅な増大は、ドライバ回路111全体の面積の増加の原因となり、コスト的に不利である。
【0179】
加えて、上記スイッチ素子SW11、SW12の大幅な増大に伴って、スイッチのゲート・ドレイン間、ゲート・ソース間の寄生容量も増大するため、電源ノイズが混入しやすくなる。
【0180】
素子SW11、SW12のオン抵抗Rswと出力抵抗Routの和の抵抗値を抵抗Rtotとすると、抵抗Rtotが比較例に係るLVDSドライバ回路111の出力抵抗となる。ここで、オン抵抗Rswの抵抗値を設計段階で事前に見込んでおいて、抵抗Rtot=50Ωとなるように出力抵抗Routを設定する手法も有効とも考えられる。
【0181】
しかし、スイッチ素子SW11、SW12のオン抵抗Rswの製造プロセスの際のばらつきや動作条件による変動が50%〜200%以上あり、抵抗Rtotの出力抵抗値や、差動出力振幅Vodの変動を仕様で規定された範囲内に抑えるためには、オン抵抗Rswは出力抵抗Routに対してできるだけ小さいほうが良い。
【0182】
以上のことを考慮すると、比較例に係るON/OFFスイッチ素子SW11、SW12付きLVDSドライバ回路111の構成では、占有面積が増大するため、微細化に対して不利である。
【0183】
以上、第1乃至第3の実施形態および比較例を用いて本発明の説明を行ったが、この発明は上記各実施形態および比較例に限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で種々に変形することが可能である。また、上記各実施形態および比較例には種々の段階の発明が含まれており、開示される複数の構成要件の適宜な組み合わせにより種々の発明が抽出され得る。例えば各実施形態に示される全構成要件からいくつかの構成要件が削除されても、発明が解決しようとする課題の欄で述べた課題の少なくとも1つが解決でき、発明の効果の欄で述べられている効果の少なくとも1つが得られる場合には、この構成要件が削除された構成が発明として抽出され得る。
【図面の簡単な説明】
【0184】
【図1】この発明の第1の実施形態に係るドライバ・レシーバシステムを示す図。
【図2】第1の実施形態に係るLVDSドライバ(ドライバ回路)を示すブロック図。
【図3】図1中のLVDS出力回路(出力回路)を示す回路図。
【図4】図1中のスイッチ素子がオン状態のドレイン−ソース間のオン抵抗を示す図。
【図5】第1の実施形態に係る出力抵抗スイッチ素子をPMOSトランジスタで構成した図。
【図6】第1の実施形態に係る出力抵抗スイッチ素子をNMOSトランジスタで構成した図。
【図7】第1の実施形態に係る出力抵抗スイッチ素子をCMOSスイッチで構成した図。
【図8】第1の実施形態に係る2入力−2出力増幅器の一構成例を示す回路図。
【図9】第1の実施形態に係る出力回路のスイッチトランジスタのゲートに制御信号(Φ、−Φ)が入力された場合を示す図。
【図10】第1の実施形態に係るドライバ回路のスイッチ制御信号と出力背景とを示す図。
【図11】第1の実施形態に係る2入力2出力増幅器中の複数のアンプを1にまとめてた構成例を示す回路図。
【図12】第1の実施形態に係る2入力2出力増幅器の一構成例を示す回路図。
【図13】第1の実施形態に係る図12に示す2入力2出力増幅器の小信号等価回路図。
【図14】図13中の小信号等価回路をさらに簡略化した等価回路図。
【図15】この発明の第2の実施形態に係るドライバ回路を示すブロック図。
【図16】第2の実施形態に係る平均電圧発生回路の一構成例を示す回路図。
【図17】第2の実施形態に係る平均電圧発生回路の一構成例を示す回路図。
【図18】第2の実施形態に係る平均電圧発生回路の一構成例を示す回路図。
【図19】第2の実施形態に係る2出力増幅器の一構成例を示す図。
【図20】第2の実施形態に係る2出力増幅器の一構成例を示す図。
【図21】第2の実施形態に係る2出力増幅器の一構成例を示す図。
【図22】この発明の第3の実施形態に係るドライバ回路を示すブロック図。
【図23】比較例に係るドライバ回路を示す回路図。
【図24】比較例に係る出力端子から見た出力インピーダンスを説明するための等価回路図。
【図25】比較例に係るバッファアンプであって、2段増幅器構成のオペアンプ回路を適用した場合を示す図。
【図26】比較例に係るバッファアンプの構成例であってモデルとして簡略化して示す図。
【図27】比較例に係るオペアンプであって、初段の増幅段とトランジスタをモデル化した電圧制御電流源および出力抵抗で表した小信号等価回路図。
【図28】比較例に係る図24中のバッファアンプを、図27のようなモデルで置き換えた場合の小信号等価回路図。
【符号の説明】
【0185】
11…LVDSドライバ(ドライバ回路)、15−1、15−2…出力端子、SW1…出力抵抗スイッチ素子、RN、RP…出力抵抗、16…LVDS出力回路(出力回路)、19…2入力2出力増幅器。

【特許請求の範囲】
【請求項1】
入力信号を所定の出力波形に変換し、第1、第2出力端子に出力するように構成された出力回路と、
一端が前記第1出力端子に接続された第1出力抵抗と、
一端が前記第2出力端子に接続された第2出力抵抗と、
一端および他端が前記第1、第2出力抵抗の他端に接続された出力抵抗スイッチ素子と、
前記出力抵抗スイッチ素子の両端の電圧に対応する第1、第2入力電圧がそれぞれ入力され、前記第1、第2入力電圧の基準電圧からの電圧差を増幅した電圧を第1、第2出力電圧として前記出力抵抗スイッチ素子の両端に再び出力するように構成され、停止信号が入力されると前記出力抵抗スイッチ素子の両端の間がハイインピーダンス状態となる2入力2出力増幅器とを具備すること
を特徴とするドライバ回路。
【請求項2】
前記2入力2出力増幅器は、前記出力抵抗スイッチ素子の両端の電圧に対応する第1、第2入力電圧がそれぞれ第1、第2入力電圧として入力され、前記第1、第2入力電圧の平均電圧を出力電圧として出力するように構成された平均電圧発生回路と、
前記平均電圧発生回路の出力が第1入力端子に入力され、前記第1入力端子に入力された平均電圧と第2入力端子に入力された基準電圧からの電圧差を増幅した電圧を第1、第2出力電圧として前記出力抵抗スイッチ素子の両端に再び出力するように構成され、前記停止信号が入力されると、前記出力抵抗スイッチ素子の両端の間がハイインピーダンス状態となるように構成された2出力増幅器とを備えること
を特徴とする請求項1に記載のドライバ回路。
【請求項3】
前記2入力2出力増幅器は、第1入力端子に前記基準電圧が入力され、第2入力端子に前記第1入力電圧が入力され、前記第1入力電圧の前記基準電圧からの差を増幅した出力電圧を前記第1出力端子に出力するように構成された第1アンプと、
第1入力端子に前記基準電圧が入力され、第2入力端子に前記第2入力電圧が入力され、この前記第2入力電圧の前記基準電圧からの差を増幅した出力電圧を前記第2出力端子に出力するように構成された第1アンプを備えること
を特徴とする請求項1に記載のドライバ回路。
【請求項4】
前記平均電圧発生回路は、前記第1、第2入力電圧の間に電流経路が直列接続され、それぞれの制御電極に基準電源が接続された第1、第2トランジスタを備えること
を特徴とする請求項2に記載のドライバ回路。
【請求項5】
前記2出力増幅器は、第1入力に前記平均電圧発生回路の出力電圧が入力され、第2入力に前記基準電圧が入力され、この差を増幅した出力電圧を出力する第3アンプと、
前記第3アンプの出力電圧を増幅し、出力電圧として前記第1出力端子に出力する第4アンプと、
前記第3アンプの出力電圧を増幅し、出力電圧として前記第2出力端子に出力し、前記制御信号が入力されると、前記出力端子間がハイインピータンス状態となるように構成された第5アンプとを備えること
を特徴とする請求項2または4に記載のドライバ回路。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate

【図14】
image rotate

【図15】
image rotate

【図16】
image rotate

【図17】
image rotate

【図18】
image rotate

【図19】
image rotate

【図20】
image rotate

【図21】
image rotate

【図22】
image rotate

【図23】
image rotate

【図24】
image rotate

【図25】
image rotate

【図26】
image rotate

【図27】
image rotate

【図28】
image rotate


【公開番号】特開2008−172514(P2008−172514A)
【公開日】平成20年7月24日(2008.7.24)
【国際特許分類】
【出願番号】特願2007−3541(P2007−3541)
【出願日】平成19年1月11日(2007.1.11)
【出願人】(000003078)株式会社東芝 (54,554)
【Fターム(参考)】