説明

半導体装置の製造方法

【課題】信頼性を向上させることが可能な半導体装置の製造方法を提供すること。
【解決手段】本発明は、窒化物半導体層11の表面に、パワー密度が0.2〜0.3W/cmである酸素プラズマ処理を行う工程を有する半導体装置の製造方法である。本発明によれば、酸素プラズマ処理によって、窒化物半導体層11に導電層26が形成されることにより、イオンマイグレーション現象が抑制される。このため、半導体装置の信頼性が向上する。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は半導体装置の製造方法に関し、特に窒化物半導体層を有する半導体装置の製造方法に関する。
【背景技術】
【0002】
窒化物半導体を用いた半導体装置、例えばFET(Field Effect Transistor:電界効果型トランジスタ)等の半導体装置は、高周波用出力増幅用素子として用いられることがある。特許文献1には、窒化物半導体層上に、水素含有率を調節したSiN(窒化シリコン)膜を設ける発明が開示されている。
【先行技術文献】
【特許文献】
【0003】
【特許文献1】特開2005−286135号公報
【発明の概要】
【発明が解決しようとする課題】
【0004】
従来の技術では、水分の浸入によって、半導体装置の信頼性が低下する可能性があった。本発明は上記課題に鑑み、信頼性を向上させることが可能な半導体装置の製造方法を提供することを目的とする。
【課題を解決するための手段】
【0005】
本発明は、窒化物半導体層の表面に、パワー密度が0.2〜0.3W/cmである酸素プラズマ処理を行う工程を有する半導体装置の製造方法である。本発明によれば、半導体装置の信頼性を向上させることが可能となる。
【0006】
上記構成において、前記酸素プラズマ処理を行う工程で供給されるガスは、酸素ガスのみである構成とすることができる。この構成によれば、良好な導電層を形成することができる。
【0007】
上記構成において、前記窒化物半導体層は、ガリウムを含む窒化物半導体層である構成とすることができる。この構成によれば、良好な導電層を形成することができる。
【0008】
上記構成において、前記窒化物半導体層は、窒化ガリウム、窒化アルミニウムガリウム、窒化アルミニウム、窒化インジウム、窒化インジウムアルミニウム又は窒化アルミニウムインジウムガリウムのいずれかを含む窒化物半導体層である構成とすることができる。この構成によれば、良好な導電層を形成することができる。
【発明の効果】
【0009】
本発明によれば、信頼性を向上させることが可能な半導体装置の製造方法を提供することができる。
【図面の簡単な説明】
【0010】
【図1】図1(a)から図1(c)は、実施例1に係る半導体装置の製造方法を例示する断面図である。
【図2】図2(a)から図2(c)は、実施例1に係る半導体装置の製造方法を例示する断面図である。
【図3】図3(a)及び図3(b)は、実施例1に係る半導体装置の製造方法を例示する断面図である。
【図4】図4(a)及び図4(b)は実験の結果を示す図である。
【発明を実施するための形態】
【0011】
実施例の説明の前に、まず半導体装置の信頼性が低下する原因について説明する。半導体装置のうち、FETでは、例えばi−GaN(窒化ガリウム)等の窒化物半導体からなるチャネル層上にソース電極、ドレイン電極及びゲート電極を形成する。各電極は、例えばAu等の金属からなる。
【0012】
半導体装置に水分が浸入した場合、電極を形成するAuが水分に溶け出し、イオン化することがある。この場合に、電極に電圧を印加すると、一方の電極から溶け出したAuイオンが移動し、別の電極で還元され析出する、いわゆるイオンマイグレーション現象が発生することがある。イオンマイグレーション現象について検証するため、ドレイン電圧Vd=50V,ゲート電圧Vg=−3〜−5Vのピンチオフ状態の半導体装置を、温度130℃、湿度85%の環境下に配置する加速試験を行った。その結果、ドレイン電極から溶け出したAuが、ソース電極及びゲート電極で析出した。イオンマイグレーション現象が発生すると、半導体装置が破壊される等、半導体装置の信頼性が低下する。特に、窒化物半導体を用いる半導体装置の場合、高電圧が印加されるため、イオンマイグレーション現象の影響が大きくなる。
【0013】
水分の浸入を抑制するために、透水性の低い保護膜が用いられることがある。しかしこの場合、保護膜の質、膜厚、電極等との密着性等を管理することが求められる。従って、半導体装置の構成や製造工程が複雑となることがあった。また、保護膜の質等にバラつきがあると、多数の半導体装置の中で耐湿性にバラつきが発生することがあった。
【0014】
本発明の発明者は、半導体装置の動作時に流れるドレイン電流と比較して微小なリーク電流が、ソース−ドレイン間又はソース−ゲート間に流れることで、半導体装置の耐湿性が大きく改善することを見出した。本発明は、この知見に基づくものである。
【0015】
次に図面を用いて、本発明の実施例について説明する。
【実施例1】
【0016】
実施例1は、酸素プラズマ処理を行う例である。図1(a)から図3(b)は、実施例1に係る半導体装置を例示する断面図である。なお、図1(a)から図3(b)は模式的な図であり、各層の厚さは簡略化して図示している。
【0017】
図1(a)に示すように、下から基板10、バリア層12、チャネル層14、電子供給層16、キャップ層18を積層してなる半導体基板を準備する。基板10は例えばSiC(炭化シリコン)からなる。バリア層12は、例えば厚さ300nmのAlN(窒化アルミニウム)からなる。チャネル層14は、例えば厚さ1000nmのi−GaNからなる。電子供給層16は、例えば厚さ20nmのAlGaN(窒化アルミニウムガリウム)からなる。キャップ層18は、例えば厚さ5nmのn−GaNからなる。バリア層12、チャネル層14、電子供給層16及びキャップ層18は、窒化物半導体層11を形成する。窒化物半導体層11は、例えばMOCVD法(Metal Organic Chemical Vapor Deposition:有機金属気相成長法)により、エピタキシャル成長されて形成される。なお、窒化物半導体層11は、キャップ層18がなく、バリア層12、チャネル層14、及び電子供給層16から形成されることもある。
【0018】
キャップ層18の一部の上にレジスト13を形成し、キャップ層18のエッチングを行う。エッチングにより、キャップ層18のレジスト13から露出した部分が除去され、リセス28が形成される。リセス28からは電子供給層16が露出する。
【0019】
図1(b)に示すように、蒸着法及びリフトオフ法により、リセス28にソース電極20及びドレイン電極22を形成する。より詳細には、レジスト15を形成し、金属を蒸着させる。レジスト15を除去する。ソース電極20及びドレイン電極22は、電子供給層16に近い順に、例えばTi/AlやTa/Al等の金属を積層してなるオーミック電極である。また、良好なオーミック電極を得るため、熱処理を行う。
【0020】
図1(c)に示すように、アッシャーを用いてキャップ層18の表面に、酸素プラズマ処理を行う。酸素プラズマ処理の条件は以下の通りである。なお、パワー密度とは、アッシャーが備える電極の単位面積あたりのパワーである。
アッシャーの電極面積:4000cm
プラズマのパワー:800W(パワー密度0.2W/cmに相当)
RF周波数:13.56MHz
処理時間:1分
【0021】
酸素プラズマ処理により、キャップ層18に含まれるN(窒素)が、O(酸素)と結びついて除去される。この結果、キャップ層18の酸素プラズマ処理が行われた領域は、酸素プラズマ処理が行われなかった領域よりも、Ga(ガリウム)の組成比が大きくなる。これにより、キャップ層18の上面に導電層26が形成される。
【0022】
図2(a)に示すように、キャップ層18、ソース電極20及びドレイン電極22上に、SiN(窒化シリコン)層30を形成する。SiN層30の厚さは例えば20nmである。SiN層30のエッチングを行い、ソース電極20とドレイン電極22との間の一部の領域で、SiN層30に開口部31を形成する。開口部31からはキャップ層18が露出する。このとき、開口部31の導電層26もエッチングされる。
【0023】
図2(b)に示すように、例えば蒸着法及びリフトオフ法により、キャップ層18上にゲート電極24を形成する。ゲート電極24は、キャップ層18に近い順に、例えばNi/Au等の金属を積層してなる。図2(c)に示すように、ゲート電極24上及びSiN層30上に、SiN層32を形成する。SiN層32の厚さは例えば40nmである。
【0024】
図3(a)に示すように、SiN層30及びSiN層32に開口部を形成し、ソース電極20及びドレイン電極22を露出させる。その後、ソース電極20及びドレイン電極22の各々に接触する2つの配線36を形成する。配線36は、例えばAu等の金属からなる。図3(b)に示すように、SiN層32上及び配線36上に、SiN層34を形成し、パッシベーションを行う。SiN層30,32及び34は耐湿性の保護層として機能する。以上で、実施例1に係る半導体装置の製造方法は終了する。
【0025】
ここで酸素プラズマ処理の効果を検証した実験について説明する。実験は、酸素プラズマ処理を行ったサンプル(実施例1)と、酸素プラズマ処理を行わなかったサンプル(比較例)とで、XPS(X−ray Photoelectron Spectroscopy:X線光電子分光)分析、及びゲート−ドレイン間電流の測定とを行ったものである。
【0026】
まず、XPS分析について説明する。この実験では、XPS分析により、キャップ層18のN/Ga比(窒素/ガリウム比)を測定した。結果を表1に示す。


表1に示すように、比較例ではN/Ga比が0.82であった。これに対して、実施例1ではN/Ga比が0.48であった。このことから、酸素プラズマ処理により、キャップ層18のGaの組成比が大きくなったことが分かった。
【0027】
次に電流の測定について説明する。この実験では、3インチのウェハを用い、ゲート−ドレイン間電圧Vgdを印加した場合の、ゲート−ドレイン間電流Igdを測定した。電流の測定は、ウェハのファセットを下にして、上、下、左、右、及び中央の5つの測定点で行った。上下左右のそれぞれの測定点は、ウェハの外周から約10mmの距離に位置する点とした。
【0028】
図4(a)及び図4(b)は実験の結果を示す図である。図4(a)は比較例、図4(b)は実施例1の測定結果をそれぞれ示す。横軸はゲート−ドレイン間電圧、縦軸はゲート−ドレイン間電流である。実線は上、点線は中央、破線は下、一点鎖線は左、三点鎖線は右、各々の測定点での結果を表す。
【0029】
図4(a)に示すように、酸素プラズマ処理を行っていない比較例では、Vgdを大きくした場合でも、Igdは数μAであった。これに対し、図4(b)に示すように、酸素プラズマ処理を行った実施例1では、Igdは数十μAとなった。例えば、比較例ではVgd=40Vにおいて、各測定点での測定結果は約1μAだった。実施例1ではVgd=40Vにおいて、各測定点での測定結果が約10μAだった。つまり、酸素プラズマ処理を行うことで、酸素プラズマ処理を行わない場合に比べて、Igdが約10倍になった。
【0030】
導電層26に電流が流れることにより、電極間を移動するAuイオンが少なくなり、イオンマイグレーション現象が抑制されると考えられる。又は、導電層26は、電流が流れることにより発熱する。導電層26の発熱により、浸入した水分が蒸発し、Auが溶け出すことが抑制されると考えられる。
【0031】
実施例1によれば、キャップ増18に導電層26を形成するため、イオンマイグレーション現象を抑制することができる。すなわち半導体装置の耐湿性が改善し、信頼性を向上させることが可能となる。また酸素プラズマ処理で導電層26を形成し、耐湿性を向上させることができる。このため半導体装置の構成や製造工程を簡単にすることができる。
【0032】
酸素プラズマ処理のパワー密度は、Gaの組成比が高い導電層26を形成できる程度の大きさとすればよい。ただし、パワーが高すぎると、窒化物半導体層11に与えるダメージが大きくなる。このためパワー密度は、0.2〜0.3W/cmであることが好ましい。またパワー密度を、0.2W/cmより大きく、0.3W/cm未満としてもよい。さらにパワー密度を、0.22〜028W/cmとしてもよい。既述したように、酸素プラズマ処理によりキャップ層18に含まれるNを除去して、Gaの組成比が大きい導電層26を形成する。酸素プラズマ処理において酸素ガス以外のガスが供給されると、良好な導電層26が形成されない可能性がある。良好な導電層26を形成するためには、酸素プラズマ処理で供給するガスは、酸素ガスのみであることが好ましい。
【0033】
窒化物半導体層11には、上記以外の窒化物半導体を用いてもよい。窒化物半導体は、窒素を含む半導体であり、例えばInN(窒化インジウム)、InGaN(窒化インジウムガリウム)、InAlN(窒化インジウムアルミニウム)、及びAlInGaN(窒化アルミニウムインジウムガリウム)等がある。つまり、窒化物半導体層11はn−GaN以外の窒化物半導体からなるとしてもよい。ただし、導電層26を良好に形成するためには、窒化物半導体層11はGaを含む窒化物半導体からなることが好ましく、またGaN又はAlGaNからなることが好ましい。
【0034】
導電層26に流れる電流は、半導体装置の動作時に流れるドレイン電流よりも数桁程度小さい。このため、導電層26に流れる電流による、半導体装置の特性の変動は極めて小さい。これにより、半導体装置の特性の悪化を抑制し、かつ耐湿性を改善させることができる。
【0035】
以上、本発明の実施例について詳述したが、本発明はかかる特定の実施例に限定されるものではなく、特許請求の範囲に記載された本発明の要旨の範囲内において、種々の変形・変更が可能である。
【符号の説明】
【0036】
基板 10
バリア層 12
チャネル層 14
電子供給層 16
キャップ層 18
ソース電極 20
ドレイン電極 22
ゲート電極 24
導電層 26
SiN層 30,32,34

【特許請求の範囲】
【請求項1】
窒化物半導体層の表面に、パワー密度が0.2〜0.3W/cmである酸素プラズマ処理を行う工程を有することを特徴とする半導体装置の製造方法。
【請求項2】
前記酸素プラズマ処理を行う工程で供給されるガスは、酸素ガスのみであることを特徴とする請求項1記載の半導体装置の製造方法。
【請求項3】
前記窒化物半導体層は、ガリウムを含む窒化物半導体層であることを特徴とする請求項1又は2記載の半導体装置の製造方法。
【請求項4】
前記窒化物半導体層は、窒化ガリウム、窒化アルミニウムガリウム、窒化アルミニウム、窒化インジウム、窒化インジウムアルミニウム又は窒化アルミニウムインジウムガリウムのいずれかを含む窒化物半導体層であることを特徴とする請求項1又は2記載の半導体装置の製造方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate


【公開番号】特開2012−33689(P2012−33689A)
【公開日】平成24年2月16日(2012.2.16)
【国際特許分類】
【出願番号】特願2010−171700(P2010−171700)
【出願日】平成22年7月30日(2010.7.30)
【出願人】(000154325)住友電工デバイス・イノベーション株式会社 (291)
【Fターム(参考)】