説明

欠陥検査方法および欠陥検査装置

【課題】
検査装置の感度設定にかかる処理時間とユーザ負担を低減すると共に、LSIテスタによる電気的特性検査にかかるコストの増加、及び、電気特性検査が困難な領域の発生に対処する。
【解決手段】
パターンが形成された試料に光源から発射された光を照射し、この光が照射された試料からの反射光を検出器で検出して画像を取得し、この取得した画像を処理して該画像の特徴量を抽出し、この抽出した画像の特徴量を予め設定した基準値と比較して試料上の欠陥を検出する欠陥検査方法において、予め設定した基準値をパターンが形成された試料を別の検査装置で検査して得た試料の検査結果を用いて作成するようにした。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、試料表面に存在する欠陥を適切な感度で検査するために検査装置の感度を設定して欠陥を検査する欠陥検査方法および欠陥検査装置に関するものである。
【背景技術】
【0002】
半導体ウェハ、液晶ディスプレイ、ハードディスク磁気ヘッドなどの薄膜デバイスは多数の加工工程を経て製造される。完成したデバイスに対し、電気的検査が実施され、正常・異常の判定がされる。
【0003】
このような薄膜デバイスの製造においては、歩留まり向上および安定化を目的として、いくつかの一連の工程毎に外観検査が実施される。外観検査では本来同一形状となるように形成された2つのパターンの対応する領域を、ランプ光、レーザ光または電子線などを用いて得られた参照画像と検査画像を元に、パターン欠陥あるいは異物などの欠陥を検出するすなわち、参照画像と検査画像の位置合せを行った上で差を算出し、別途定めたしきい値と比較して差が大きくなる部分を欠陥あるいは異物として検出する。
【0004】
しきい値の算出方法として、特許文献1(特許3566589号公報)に、長手方向にはほぼ平行光のスリット状ビームを、回路パターンが形成された被検査対象基板に対して、該基板の法線方向から所定の傾きを有し、前記回路パターンの主要な直線群に対して平面状所定の傾きを有し、長手方向が前記被検査対象基板を載置して走行させるステージの走行方向に対してほぼ直角になるように照明する照明過程と、該照明過程で照明された被検査対象基板上に存在する異物等の欠陥から得られる反射散乱光(反射光)をイメージセンサで受光して信号に変換して検出する検出過程と、該検出過程で検出された信号に基づいて異物等の欠陥を示す信号を抽出する欠陥判定過程とを有することを特徴とする欠陥検査方法」が開示されている。このような検査において、微小な欠陥を検出するためには、しきい値を低く設定して判定を行う必要がある。しかし、しきい値を低くするとサンプリング誤差やラフネス、グレインといったパターンの微小な相違、あるいは膜厚ムラによる明るさムラなどに起因する虚報が多く発生してしまう。ウェハ全体の虚報の比率が充分小さくなるようにしきい値を高く設定すると、感度が犠牲となり、微細な欠陥の検出が困難となる。
【0005】
ここで、感度を向上させるための方法として、特許文献2(特開2004−79593号公報)に「予備検査を行って、発生した虚報の位置を確認し、検査領域を予備検査で発生した虚報の密度に応じて複数の分割し、分割された複数の領域ごとに異なるしきい値を用いて、検出された反射散乱光(反射光)の強度から被検査物の表面に異物があるか否かの判定を行うことを特徴とする異物検査方法」が開示されている。また、特許文献3(特開2009−2743号公報)には、「検出した欠陥候補から、画像特徴量と座標特徴量を抽出し、いずれかの特徴量に対して、決定木に従うしきい値処理により虚報判定を実施する方法」が開示されている。特許文献4(特開2006−98155号公報)では「大多数のNuisanceの中に少数のDOIが含まれる状況で、DOIを効率よく抽出し、教示する事により、最適な検査条件出しが可能となる検査方法」が開示されている。
【0006】
一方、特許文献6(US7715997)では「プローブテストの結果、異常と判定された配線部を、外観検査装置におけるケアエリアと設定することで、検査の効率を向上させる方法」が開示されている。
【先行技術文献】
【特許文献】
【0007】
【特許文献1】特許3566589号公報
【特許文献2】特開2004−79593号公報
【特許文献3】特開2009−2743号公報
【特許文献4】特開2006−98155号公報
【特許文献5】米国特許第7715997号明細書
【非特許文献】
【0008】
【非特許文献1】変調照明シフトによる超精密加工表面の超解像光学式欠陥計測に関する研究(第2報)精密工学会誌VOL.74,NO.6.
【発明の概要】
【発明が解決しようとする課題】
【0009】
上述の検査装置により半導体の検査を実施する場合、検査装置の検査感度を設定する必要がある。検査感度決定のためには、検査感度を変えながら欠陥検査を実施し、検出された欠陥候補をユーザが確認し、検査感度が適正かどうかの判定を繰り返すことが必要となる。そのため、感度設定にかかる処理時間とユーザ負担の増加が課題となる。さらに、高度な欠陥判定のために、検査画像から得られる複数の特徴量を利用する場合、前記感度設定にかかる時間は増大する。
【0010】
一方、車載向け半導体などは、高い信頼性が必要とされており、LSIテスタによる電気的特性検査の重要性が増している。しかし、半導体パターンが高密化・複雑化するに従い、電気的特性検査にかかるコストが増加、または、電気特性検査が困難な領域が発生することが問題となっている。
【課題を解決するための手段】
【0011】
本願では、上記の欠陥検査方法の問題を解決するため、複数の工程を経て完成した素子に対して、LSIテスタにより実施した電気的特性検査の結果である、良否判定結果を利用し、外観検査装置の検査感度を自動的に調整する方法を特徴とする検査方法を開示する。さらに、前記外観検査装置と前記LSIテスタに対し、異なる検査領域に対し検査を実施することを特徴とする検査方法とした。
【0012】
即ち、本発明は、パターンが形成された試料に光源から発射された光を照射し、この光が照射された試料からの反射光を検出器で検出して画像を取得し、この取得した画像を処理して該画像の特徴量を抽出し、この抽出した画像の特徴量を予め設定した基準値と比較して試料上の欠陥を検出する欠陥検査方法において、予め設定した基準値をパターンが形成された試料を別の検査装置で検査して得た試料の検査結果を用いて作成するようにした。
【0013】
また、本発明では、欠陥検査装置を、パターンが形成された試料に光を照射する光照射手段と、この光照射手段により光が照射された試料からの反射光を検出する検出手段と、この検出手段で検出した信号を処理して反射光による画像を形成するする画像形成手段と、この画像形成手段で形成した画像を処理して欠陥候補を抽出する画像処理手段と、この画像処理手段で欠陥候補を抽出するための条件を設定する欠陥候補抽出条件設定手段とを備えて構成し、欠陥候補抽出条件設定手段は、欠陥候補を抽出するための条件を、パターンが形成された試料を別の検査装置で検査して得た試料の検査結果を用いて作成するようにした。
【発明の効果】
【0014】
本願において開示される発明によれば、自動的に感度調整を実施することで、外観検査装置における感度設定の簡易化が実現できる。また、製造装置や検査装置の状態が経時変化した場合でも、LSIテスタの結果をフィードバックすることで、最適な検査感度を維持できる。さらに、LSIテスタの結果を学習することにより、外観検査装置により電気的な良否判定と相関のある検査結果を得ることができる。これにより、LSIテスタと外観検査装置で、検査領域を分担することが可能となり、低コストで広い検査カバー率を実現できる。
【図面の簡単な説明】
【0015】
【図1A】本発明の第1の実施例における検査装置とLSIテスタの構成の一例として各処理工程ごとに欠陥検査装置を配置させた構成を示すブロック図である。
【図1B】本発明の第1の実施例における検査装置とLSIテスタの構成の一例として複数の処理工程に対応させて1台の欠陥検査装置を配置させた構成を示すブロック図である。
【図2】本発明の第1の実施例の構成の一例を示す図である。
【図3】本発明の第1の実施例におけるチップの構成の一例を示す半導体ウェハ及び半導体ウェハ上に形成されたチップを拡大した平面図である。
【図4】本発明の第1の実施例における欠陥検査装置の感度調整部の構成の一例を示すブロック図である。
【図5A】本発明の第1の実施例における欠陥候補データと欠陥に対応付けされた欠陥特徴量のデータの一例を示す図である。
【図5B】本発明の第1の実施例における欠陥候補データと欠陥に対応付けされた良否判定データの一例を示す図である。
【図5C】本発明の第1の実施における欠陥に対応付けされた欠陥特徴量と良否判定データの一例を示す図である。
【図6】本発明の第1の実施例における判定基準算出部の構成の一例を示すブロック図である。
【図7】本発明の第1の実施例における特徴空間と決定境界の一例を示す図グラフである。
【図8】本発明の第1の実施例における特徴空間と決定境界の一例を示す図グラフである。
【図9】本発明の第1の実施例における判定基準算出の流れの一例を示すフロー図である。
【図10】本発明の第1の実施例における欠陥検査の流れの一例を示すフロー図である。
【図11】本発明の第1の実施例における欠陥判定基準算出のGUIの一例を示す表示画面の正面図である。
【図12】本発明の第2の実施例における検査装置とLSIテスタの構成の一例を示すブロック図である。
【図13】本発明の第2の実施例における設計データと検査領域情報の一例を示す半導体ウェハ及び半導体ウェハ上に形成されたチップの拡大図である。
【図14】本発明の第2の実施例における外観検査の流れの一例を示すフロー図である。
【図15】本発明の第2の実施例におけるLSIテスタによる検査の流れの一例を示すフロー図である。
【図16】本発明の第2の実施例における判定基準算出の流れの一例を示すフロー図である。
【図17】本発明の第3の実施例の検査装置とLSIテスタの構成の一例を示すブロック図である。
【図18】本発明の第3の実施例におけるSEM式検査装置の構成の一例を示すブロック図である。
【図19】本発明の第3の実施例における光学式検査装置とSEM式検査装置の役割分担一例を示す回路パターンの平面図である。
【発明を実施するための形態】
【0016】
以下、本発明の実施の形態を図面に基づいて詳細に説明する。なお、実施の形態を説明するための全図において、同一の部材には原則として同一の符号を付し、その繰り返しの説明は省略する。
【実施例1】
【0017】
以下において、本発明の欠陥検査技術(欠陥検査方法および欠陥検査装置)の第1の実施例を図1Aから図11により、詳細に説明する。
【0018】
本発明のパターン検査技術の実施の形態1として、半導体ウェハを対象とし、LSIテスタの情報を利用した欠陥検査装置および、欠陥検査方法を例にとって説明する。
【0019】
図1AはLSIテスタから得た良否判定情報を入力し、自動的に欠陥検出感度を調整する機能を備えた、実施の形態1における欠陥検査装置の構成の一例を示す図である。欠陥検査装置100−1〜3は、それぞれ欠陥検出部120−1〜3と検出感度調整部110−1〜3を有して構成される。また、LSIテスタ140は欠陥検査装置100−1〜3とそれぞれ接続しており、LSIテスト結果などのデータをやりとりすることができる。複数の製造工程のうち、所定の処理工程130−1〜3で処理が行われた後、欠陥検査装置100−1〜3にて検査が実施され、各処理工程を経てパターンが形成された半導体ウェハに対し、LSIテスタ140によりテストが実施される。ここで、LSIテスタ140とはウェハ上に形成された各チップの電気的特性を検査し、形成されたパターンの良否判定をするための装置である。また、欠陥検査装置100は、一台で複数の工程に対する検査を実施しても良い。
【0020】
欠陥検出部120−1〜3は、処理工程130−1〜3からウェハを受け取り、欠陥検査を実施する。感度調整部110−1〜3は、欠陥検出部120−1〜3にて欠陥検査時に算出された特徴量と、LSIテスタ140は良否判定結果を基に、欠陥検出部120−1〜3の検査感度を調整し、最適な感度に再設定することができる。LSIテスタ140より算出される前記良否判定結果は、正常・異常の両方を含んでいても良いし、いずれか一方のみであっても良い。
【0021】
図1Aの例では、には、処理工程130−1〜3のそれぞれに対応して欠陥検査装置100−1〜3を配置させた構成を示したが、図1Bに示すように、1台の欠陥検査装置100’で複数の処理工程130−1〜3に対応させるように構成しても良い。
【0022】
図2は本実施例における暗視野照明による欠陥検査装置の構成の一例を示す図である。本実施例に係る欠陥検査装置100は、欠陥検出部120と、検査感度調整部110を有して構成される。
欠陥検出部120は、ステージ102、メカニカルコントローラ103、照明光学系(照明部)104、検出光学系(上方検出系)105、空間周波数フィルタ105−1、検光子105−2、イメージセンサ106、画像比較処理部107(前処理部107−1、画像メモリ107−2、欠陥候補検出部107−3、パラメータ設定部107−4、切り出し画像作成部107−5)を有して構成される。
試料101は例えば半導体ウェハなどの被検査物である。ステージ102は試料101を搭載してXY平面内の移動および回転(θ)とZ方向への移動が可能である。メカニカルコントローラ103はステージ102を駆動するコントローラである。照明部104の光を試料101に照射し、試料101からの反射散乱光(以下、反射光と記す)を検出光学系(上方検出系)105で結像させ、結像された光学像をイメージセンサ106で受光して、画像信号に変換する。このとき、試料101をX‐Y‐Z‐θ駆動のステージ102に搭載し、前記ステージ102を水平方向に移動させながら異物からの反射光を検出することで、検出結果を2次元画像として得る。
【0023】
照明部104の照明光源は、レーザを用いても、ランプを用いてもよい。また、各照明光源の波長の光は短波長であってもよく、また、広帯域の波長の光(白色光)であってもよい。短波長の光を用いる場合、検出する画像の分解能を上げる(微細な欠陥を検出する)ために、紫外領域の波長の光(Ultra Violet Light:UV光)を用いることもできる。レーザを光源として用いる場合、それが単波長のレーザである場合には、可干渉性を低減する手段(図示せず)を照明部104の各々に備えることも可能である。
【0024】
また、イメージセンサ106に複数の1次元イメージセンサを2次元に配列して構成した時間遅延積分型のイメージセンサ(Time Delay Integration Image Sensor:TDIイメージセンサ)を採用しステージ102の移動と同期して各1次元イメージセンサが検出した信号を次段の1次元イメージセンサに転送して加算することにより、比較的高速で高感度に2次元画像を得ることが可能になる。このTDIイメージセンサとして複数の出力タップを備えた並列出力タイプのセンサを用いることにより、センサからの出力を並列に処理することができ、より高速な検出が可能になる。また、イメージセンサ106に、裏面照射型のセンサを用いると表面照射型のセンサを用いた場合と比べて検出効率を高くすることができる。
試料101であるウェハ内の欠陥候補を抽出する画像比較処理部107は、検出された画像信号に対してシェーディング補正、暗レベル補正等の画像補正を行う前処理部107−1、補正された画像のデジタル信号を格納しておく画像メモリ107−2、画像メモリ107−2に記憶された対応する領域の画像を比較し、欠陥候補を抽出する欠陥候補検出部107−3、処理のパラメータをセットするパラメータ設定部107−4、検出した欠陥候補を含む小領域に切り出した画像を作成する切り出し画像作成部107−5を備えてなる。
【0025】
まず、前処理部107−1では画像信号に対してシェーディング補正、暗レベル補正等の画像補正を行い、一定単位の大きさの画像に分割し、画像メモリ107−2へ格納する。画像メモリ107−2に格納された被検査領域の画像(以下、検出画像と記載)と対応する領域の画像(以下、参照画像と記載)のデジタル信号を読み出し、欠陥候補検出部107−3において両画像間の位置を合わせるための補正量を算出し、算出された位置の補正量を用いて、検出画像と参照画像の位置合せを行い、対応する画素の特徴量を用いて特徴空間上ではずれ値となる画素を欠陥候補として出力する。パラメータ設定部107−4は、外部から入力される、欠陥候補を抽出する際の特徴量の種類や欠陥判定基準などの検査パラメータを設定し、欠陥候補検出部107−3に与える。欠陥候補検出部107−3では、(1)明るさ、(2)コントラスト、(3)濃淡差、(4)近傍画素の明るさ分散値、(5)相関係数、(6)近傍画素との明るさの増減、(7)2次微分値などの特徴量を算出する。対応する画素の特徴量と、パラメータ設定部107−4を介して入力された、欠陥判定基準との関係に基づき欠陥判定を実施する。
【0026】
全体制御部108は、各種制御を行うCPU(全体制御部108に内蔵)を備え、ユーザからの検査パラメータ(特徴量の種類、しきい値など)の変更を受け付けたり、検出された欠陥情報を表示したりする表示手段と入力手段を持つユーザインターフェース部108−1、検出された欠陥候補の特徴量や画像などを記憶する記憶装置108−2と接続されている。メカニカルコントローラ103は、全体制御部108からの制御指令に基づいてステージ102を駆動する。尚、画像比較処理部107、照明部104、検出光学系105等も全体制御部108からの指令により駆動される。
【0027】
図3は、実施の形態1におけるチップの構成の一例を示す図であり、欠陥検出部100での欠陥の検出方法について説明する。検査対象となる試料(半導体ウェハ、ウェハとも記す)101はメモリマット部300−1と周辺回路部300−2とを備えてなる同一パターンのチップ300が多数、規則的に並んでいる。全体制御部108では試料である半導体ウェハ101をステージ102により連続的に移動させ、これに同期して、順次、チップの像をイメージセンサ106より取り込み、検出画像に対し、規則的に配列されたチップの同じ位置、例えば図3の検出画像の領域303に対し、隣接するチップの領域301、302、304、305のデジタル画像信号を参照画像とし、参照画像の対応する画素や検出画像内の他の画素と比較し、差異の大きな画素を欠陥候補として検出する。
【0028】
図10は本実施例における、検査装置により欠陥検査を実施する際の動作の流れを示す図である。所定の工程130を経て、欠陥検査装置100に試料が搬入される(1001)。次に、画像比較部107にて画像の取り込みを実施し(1002)、特徴量を算出する(1003)。欠陥候補検出部107−3は、記憶装置114に格納されている判定基準704を、パラメータ設定部107−4を介して読み込み(1004)、前記特徴量と前記欠陥判定基準に基づき欠陥判定を実施する(1005)。判定基準算出部112にて算出された判定基準を使うことで、正常部を欠陥として検出することなく、異常部のみを欠陥として検出する事が可能となる。欠陥判定の結果をユーザインターフェース部108−2に出力する(1006)。
【0029】
図4は、本実施例における欠陥検査装置100の、感度調整部110の構成の一例を示す図である。感度調整部110は制御部113と、記憶装置114と、検査感度決定部115を備えている。前記欠陥検出部120は検出した欠陥候補データを制御部113に入力する。入出力部は欠陥候補データを記憶装置114に記憶する。LSIテスタ140は制御部113に所定のプロセスを経て完成した回路パターンに対して電気テストを行って判定した良否判定データを入力する。制御部113は、欠陥検査装置100で検査して得た欠陥候補データとLSIテスタ140で検査して得られた良否判定データを検査感度決定部115に入力する。検査感度決定部115は、欠陥対応付け算出部111と判定基準算出部112とを備え、欠陥対応付け算出部111では、制御部113を介して入力された欠陥検査装置100で検査して得た欠陥候補データとLSIテスタ140で検査して得られた良否判定データの対応付けを実施し、判定基準算出部112では、対応づけられた欠陥候補データと良否判定データから、欠陥検査装置100における欠陥判定基準を算出し、制御部113へ出力する。欠陥検出部120は、制御部113を介して入力された欠陥判定基準を用い欠陥判定を実施する。
【0030】
図5A〜図5Cは、欠陥検出部120から出力される前記欠陥候補データと、LSIテスタ140から出力される前記良否判定データの一例と、欠陥対応付け算出部111にて対応付けされたデータの一例を示す図である。図5Aに示した欠陥候補データ501は、欠陥検出部120にて検出された各欠陥候補に対し、欠陥ID511、ウェハID512、レイヤNo513、チップNo514、検出座標515、特徴量516などのデータが付与されている。図5Bに示した良否判定データ502は、欠陥ID511、ウェハID512、レイヤNo513、チップNo514、検出座標515と、LSIテスタ140にて電気的特性検査の良否判定結果517である、正常もしくは異常というラベルが付与されている。欠陥対応付け算出部111は、ウェハID512、レイヤNo513、チップNo514、検出座標515などのデータに基づき、LSIテスタにて検査した箇所と、欠陥検出部120にて検出した欠陥候補との対応付けを行う。図5Cに示した対応付け後データ503には、新たに欠陥ID521を付与する。また、対応付け後データ503には、欠陥検出部とLSIテスタのいずれか一方からしか検出されず、対応付けができなかったデータを含めることもできる。この場合、前記特徴量と前記良否判定結果のいずれか一方のみを持つデータとなる。
【0031】
図6は判定基準算出部112の構成の一例を示す図である。判定基準算出部112は、対応付け後データ入力部601、特徴空間作成部602、決定境界算出部603、判定基準出力部604を備えている。特徴空間作成部602では、欠陥対応付け算出部111から出力された、対応付け後のデータを、対応付け後データ入力部601を介して受け取り、前記した特徴量からなる特徴空間を作成する。特徴空間は、複数の特徴量からなる多次元特徴空間としても良いし、単一の特徴量または、複数の特徴量を統合した特徴量からなる一次元特徴空間としても良い。特徴量の統合方法は、ユーザが任意に決定した重みに基づき統合しても良いし、一般的な主成分分析法や判別分析法などの方法を利用しても良い。決定境界算出部603は、前記特徴空間内の各欠陥候補が持つ、前記良否判定の結果である正常・異常の情報に基づき、欠陥判定基準となる決定境界を算出し、判定基準出力部604を介して制御部113に判定基準を出力する。決定境界の算出方法は、一般的な分類法を適用することもできる。例えば、決定木による分類、サポートベクターマシンによる分類、最近傍則に基づく分類などである。
【0032】
図7は本実施例における、前記特徴空間と前記決定境界の一例を示す図である。二次元の特徴量からなる特徴空間700内に、前記良否判定結果が正常であった欠陥候補701と、前記良否判定結果が異常であった欠陥候補702がプロットされている。また、LSIテスタからの良否判定結果を持たないデータ703も合わせてプロットされている。図中の直線704は、前記正常であった欠陥候補701と前記異常であった欠陥候補702とを分離する決定境界である。ここでは、線形識別器により算出した決定境界704の例を示したが、非線形の識別器により、曲線にて正常と異常を分離する決定境界を算出しても良い。さらに、二次元の特徴空間の例を示したが、一次元または、二次元以上の特徴空間により決定境界を算出することもできる。
【0033】
図8は特徴空間と正常ラベルを持つ欠陥候補のみに基づき算出した前記決定境界の一例を示す図で、正常と異常を分離する決定境界を曲線にて表した場合を示す。ここで、対応付け後のデータ503が、前記良否判定結果に異常を含まない場合、正常の欠陥候補のみで決定境界を算出する。前記特徴空間内で、正常ラベルを持つ欠陥候補からはずれた欠陥候補を異常とするような決定境界を算出する。ここでの決定境界算出方法は、一般的な、マハラノビス距離に基づく方法やワンクラスサポートベクターマシンなどのワンクラス識別器を用いて算出することができる。
【0034】
図9は本実施例における、欠陥判定基準を算出する際の動作の流れを図4に示した構成に対応させて示す図である。感度調整部110の制御部113は、LSIテスタ140から出力された良否判定結果を読み込み(S901)、欠陥検出部120から出力された欠陥候補データを読み込む(S902)。次に、制御部113からの出力を受けて対応付け算出部111にて欠陥候補データと良否判定結果との対応付けを実施し(S903)、欠陥判定基準算出部112にて、対応付け後のデータに基づき、欠陥判定基準を算出する(S904)。最後に算出された欠陥判定基準を記憶装置114に格納する(S905)。
図11は本実施例における、欠陥判定基準算出時のユーザインターフェースを示す図である。本実施例におけるユーザインターフェースの表示画面1100は、検出した欠陥のウェハ上の分布を示すウェハマップ表示領域1101、このウェハマップ表示領域1101に表示された欠陥のうちポインタで指示された欠陥の情報を表示する領域1102、欠陥候補の画像を正常パターンの画像と対応付けて表示する領域1103、ウェハマップ表示領域1101に表示された欠陥について特徴量空間での分布を表示する領域1104で構成されている。特徴量空間分布表示領域1104では、LSIテスタ140からの良否判定情報を用いる前の欠陥判定しきい値を点線1105で、また、LSIテスタ140からの良否判定情報を用いて作成した欠陥判定しきい値を実線1106で表示する。上記データは、ウェハ毎、レイヤ毎に確認する事ができる。
【実施例2】
【0035】
以下において、本発明の欠陥検査技術(欠陥検査方法および欠陥検査装置)の第2の実施例を図12から図16を用いて、詳細に説明する。
【0036】
本発明のパターン検査技術の第2の実施例として、半導体ウェハの設計情報に基づき、外観検査装置により検査を実施する領域と、LSIテスタにより検査を実施する領域とを分割することで、半導体ウェハにおける検査カバー率向上と、検査時間の短縮を実現する欠陥検査技術(欠陥検査方法および欠陥検査装置)について説明する。
【0037】
図12は第2の実施例における、検査領域を外観検査装置とLSIテスタで分担することを特徴とする、半導体検査システムの構成の一例を示す図である。検査領域設定部190は、記憶装置191から半導体ウェハの設計情報を受け取り、外観検査装置100−1〜3にて検査する領域と、LSIテスタ140にて検査する領域を決定し、外観検査装置100−1〜3とLSIテスタ140に検査領域情報を出力する。外観検査装置100−1〜3は、前記検査領域情報に基づき、検査対象領域に対し、検査を実施する。なお、外観検査装置100−1〜3は実施例1で説明したものと同様の動作のため、説明は割愛する。
【0038】
図13は、実施例2における、検査領域設定部190において、設定される前記検査領域情報の一例を示す図である。半導体ウェハ101の設計情報1301には、配線1302が存在する領域とそれ以外の領域があり、LSIテスタ140は、配線領域1302に対して検査を実施する。しかし、LSIテスタにより全ての配線領域を検査すると、検査コストが増大する場合、もしくは、検査そのものが不可能である場合がある。そこで、検査領域情報1311として、LSIテスタ140では検査できないパターンが存在する領域を外観検査装置による検査領域1312と、LSIテスタによる検査領域1313に領域を分け、欠陥検査を実施する。即ち、実施例2においては、LSIテスタ140では検査できないパターンが存在する領域を外観検査装置100−1〜3でカバーするように外観検査装置100−1〜3の検査領域を設定する。多層の半導体ウェハを対象とする場合、設計情報1301は複数のレイヤから構成されているため、この検査領域はレイヤ毎に設定する。また、検査領域の設定は、検査実施前に設定する必要があり、形成される回路パターンに基づき自動的に設定することもできるし、ユーザにより任意に設定する事もできる。
【0039】
図14は、実施例2における、外観検査装置100にて欠陥検査を実施する際の動作の流れを示す図である。所定の工程130を経て、欠陥検査装置100に試料が搬入される(S1401)。次に、欠陥検査装置100は検査領域設定部190から入力した検査対象領域を読み込む(S1402)。画像比較部107は検査対象領域の画像の取り込みを実施し(S1403)、特徴量を算出する(S1404)。欠陥候補検出部107−3は、記憶装置114に格納されている判定基準704を、パラメータ設定部107−4を介して読み込み(S1405)、前記特徴量と前記欠陥判定基準に基づき欠陥判定を実施する(S1406)。欠陥判定の結果をユーザインターフェース部108−2に出力する(S1407)。
【0040】
図15は、実施例2における、LSIテスタ140にて欠陥検査を実施する際の動作の流れを示す図である。まず、LSIテスタ140に試料が搬入される(S1501)。次に、検査領域設定部190から入力した検査対象領域を読み込み(S1502)、テストパターンの設定を実施する(S1503)。設定したテストパターンに沿って、テストを実施し(S1504)、得られた良否判定結果を外観検査装置100とユーザインターフェース部に出力する(S1505)。
【0041】
図16は、実施例2における、検査に先立って行う欠陥判定基準を算出する際の動作の流れを示す図である。実施例1では、LSIテスタの良否判定結果と、外観検査装置の出力である欠陥候補データを対応付けし、欠陥判定基準を算出したが、実施例2では、外観検査装置とLSIテスタは互いに異なる領域に対して検査を実施しているため、対応付けができない。実施例2では、LSIテスタによる検査を実施した領域の画像を別途、外観検査装置100(図12に示した複数の外観検査装置100−1〜3を纏めて外観検査装置100と記す)にて取り込み、得られた特徴量を利用し判定基準の算出を実施する。まず、外観検査装置100は、検査領域設定部190が出力した検査対象領域を読み込み(S1601)、試料を搬入し(S1602)、LSIテスタ140が検査を実施した領域の画像を取得(S1603)、特徴量を算出する(S1604)。次に、LSIテスタの良否判定結果を読込み(S1605)、対応付け算出部111にて欠陥候補データと良否判定結果との対応付けを実施(S1606)し、欠陥判定基準算出部112にて、対応付け後のデータに基づき、欠陥判定基準を算出する(S1607)。最後に算出された欠陥判定基準を記憶装置114に格納する(S1608)。
【実施例3】
【0042】
以下において、本発明の欠陥検査技術(欠陥検査方法および欠陥検査装置)の第3の実施例を図17により、詳細に説明する。
【0043】
本発明のパターン検査技術の実施例3として、実施例2で説明した欠陥検査技術において、外観検査装置の検査画像取得部と欠陥判定部を分けて、欠陥検査を実施する形態について説明する。
【0044】
図17は、実施例3における、検査領域を外観検査装置とLSIテスタで分担することを特徴とする半導体検査システムの構成の一例を示す図である。
【0045】
各工程130間では画像取得部160−1〜3による画像取得のみを実施し、取得した画像は画像バッファ170に格納する。欠陥検出部121と感度調整部110から構成される欠陥判定画像処理部150は、画像バッファ170より画像を受け取り、欠陥検出を行う。欠陥判定部121は、実施例1及び2で説明した欠陥検出部120から、画像取得に係わる部分を除いた、欠陥判定部のみを有する。感度調整部110は、実施例1及び2と同様であるため、説明は割愛する。
【0046】
本実施例の構成によれば、欠陥判定画像処理部150は共通化が可能であるため、低コスト化が実現でき、設置面積も縮小可能である。
【0047】
前記画像取得と、それに対する前記欠陥判定画像処理は、検査領域設定部190から入力した検査対象領域に対して実施される。実施の形態1で示した欠陥検出部120では、水平方向に連続的に移動する走査型のステージ102による構成の一例を示したが、検査の効率化を実現するため、外観検査装置の1視野分ずつ間欠的にステップ移動するステップアンドリピート型のステージを採用しても良い。
【0048】
各工程間では画像取得のみを実施するため、前記試料を装置に留める時間を短縮することができる。さらに、欠陥判定画像処理は、LSIテスタによる良否判定処理が実施されるまでに、処理が終了していれば良いため、通常の工程間での処理と比較し、高精度な処理を実施することができる。高精度な欠陥判定処理の一例として、非特許文献1では、変調照明を用いた超解像顕微法において、多数の照明シフトと共に複数像を取得し、逐次的解像アルゴリズムにより解像計算を行う方法が提案されている。提案された手法は、解像計算に時間がかかるが、解像度の高い画像を得ることが可能である。このとき、前記イメージセンサ106は二次元カメラとしてもよい。
上記に説明した実施例1〜3では、外観検査装置として暗視野検査装置による実施例を示したが、明視野検査装置、SEM(Scanning Electron Microscope: 走査電子顕微鏡)式検査装置など、全ての方式の検査装置に適用することができる。
【0049】
図18は、SEM式検査装置の構成の一例を示す図である。実施例1で図2を用いて説明した暗視野式検査装置と同じ、または同等の動作をする部分は同一の番号を付けた。1800はSEMを示す、SEM1800は、電子線源1801から照射された電子ビームはコンデンサーレンズ1802、1803を通過した後、電子線軸調整器1804により非点収差やアライメントずれを補正される。走査ユニット1805、1806により電子ビームを偏向し、電子ビームを照射する位置を制御された後。電子ビームは対物レンズ1807により収束されてウェハ101の撮像対象箇所1850に対して照射される。撮像対象箇所1850からはこの結果、2次電子と反射電子が放出され、2次電子および反射電子は1810の一次電子線通過穴を有した反射板に衝突し,そこで発生した二次電子が1811の電子検出器により検出する。1811で検出された2次電子および反射電子はA/Dコンバータ1812でデジタル信号に変換され、画像比較処理部107送られる。実施の形態3で示した、ステップアンドリピート方式の検査は、SEM式検査装置においても検査効率を向上させることが可能である。
【0050】
さらに、異なる方式の外観検査装置を組み合わせることも可能である。図19は光学式検査装置とSEM式検査装置における役割分担の一例を示すチップ1903上に形成された配線パターンの拡大図である。開口部1901に対してはSEM式検査装置による検査を実施し、配線部1902は光学式検査装置による検査を実施する。
【0051】
また、上記実施例1〜3では、本発明の対象として、半導体デバイスの検査をする場合について説明したが、本発明はこれに限定されるものではなく、例えばTFTパネルの製造工程およびその評価、ハードディスクのGMRヘッド製造工程における欠陥の検査およびその評価、プリント基板における欠陥の検査およびその評価などいずれの対象に対しても適用することができる。
【0052】
さらに、LSIテスタにて、正常と異常の2つに判定する例を示したが、配線の抵抗値などの判定にも応用する事ができる。
【符号の説明】
【0053】
100・・・外観検査装置 101・・・試料 102・・ステージ 103・・・メカニカルコントローラ 104・・・照明光学系 105・・・上方検出系(検出光学系) 106・・・イメージセンサ 107・・・画像比較処理部 107−1・・・前処理部 107−2・・・画像メモリ 107−3・・・欠陥候補検出部 107−4・・・パラメータ設定部 107−5・・・切り出し画像作成部 108・・・全体制御部 108−1・・・ユーザインターフェース部 108−2・・・記憶装置 110・・・感度調整部 111・・・対応付け算出部 112・・・判定基準算出部 113・・・制御部 114・・・記憶装置 120・・・欠陥検出部 140・・LSIテスタ 190・・・検査領域設定部 170・・・画像バッファ

【特許請求の範囲】
【請求項1】
パターンが形成された試料に光源から発射された光を照射し、
該光が照射された前記試料からの反射光を検出器で検出して画像を取得し、
該取得した画像を処理して該画像の特徴量を抽出し、
該抽出した画像の特徴量を予め設定した基準値と比較して前記試料上の欠陥を検出する
欠陥検査方法であって、
前記予め設定した基準値を前記パターンが形成された試料を別の検査装置で検査して得た該試料の検査結果を用いて作成することを特徴とする欠陥検査方法。
【請求項2】
前記別の検査装置がLSIテスタであって、前記試料の検査結果が前記LSIテスタによる前記試料の電気的特性の良否判定の結果であることを特徴とする請求項1記載の欠陥検査方法。
【請求項3】
前記予め設定した基準値は、前記試料の画像を用いて作成した基準値を、前記LSIテスタで検査して得た良否判定結果の情報を用いて修正した基準値であることを特徴とする請求項2記載の欠陥検査方法。
【請求項4】
前記試料上の欠陥を検出する領域が、前記LSIテスタにより電気的特性の良否判定を行う領域と同じ領域であることを特徴とする請求項2又は3に記載の欠陥検査方法。
【請求項5】
前記試料上の欠陥を検出する領域が前記LSIテスタにより電気的特性の良否判定を行う領域とは異なる領域であり、該LSIテスタにより電気的特性の良否判定を行う領域とは異なる領域からの反射光を検出器で検出して取得した画像を処理して画像の特徴量を抽出し、該抽出した画像の特徴量を前記予め設定した基準値と比較して前記LSIテスタにより電気的特性の良否判定を行う領域とは異なる領域の欠陥を検出することを特徴とする請求項2又は3に記載の欠陥検査方法。
【請求項6】
前記LSIテスタにより電気的特性の良否判定を行う領域とは異なる領域は、前記LSIテスタでは検査できない領域であることを特徴とする請求項5記載の欠陥検査方法。
【請求項7】
パターンが形成された試料に光を照射する光照射手段と、
該光照射手段により光が照射された前記試料からの反射光を検出する検出手段と、
該検出手段で検出した信号を処理して前記反射光による画像を形成するする画像形成手段と、
該画像形成手段で形成した画像を処理して欠陥候補を抽出する画像処理手段と、
該画像処理手段で前記欠陥候補を抽出するための条件を設定する欠陥候補抽出条件設定手段とを備え、
前記欠陥候補抽出条件設定手段は、前記欠陥候補を抽出するための条件を、前記パターンが形成された試料を別の検査装置で検査して得た該試料の検査結果を用いて作成することを特徴とする欠陥検査装置。
【請求項8】
前記別の検査装置がLSIテスタであって、前記試料の検査結果が前記LSIテスタによる前記試料の電気的特性の良否判定の結果であることを特徴とする請求項7記載の欠陥検査装置。
【請求項9】
前記欠陥候補を抽出するための条件は、前記画像形成手段で形成した試料の画像を用いて作成した欠陥候補を抽出するための条件を、前記LSIテスタで検査して得た良否判定結果の情報を用いて修正した条件であることを特徴とする請求項8記載の欠陥検査装置。
【請求項10】
前記画像処理手段で前記試料上の欠陥を検出する領域が、前記LSIテスタにより電気的特性の良否判定を行う領域と同じ領域であることを特徴とする請求項8又は9に記載の欠陥検査装置。
【請求項11】
前記画像処理手段で欠陥候補を抽出する前記試料上の欠陥を検出する領域が前記LSIテスタにより電気的特性の良否判定を行う領域とは異なる領域であり、該LSIテスタにより電気的特性の良否判定を行う領域とは異なる領域の画像を前記画像処理手段で処理して前記LSIテスタにより電気的特性の良否判定を行う領域とは異なる領域の欠陥を検出することを特徴とする請求項8又は9に記載の欠陥検査装置。
【請求項12】
前記LSIテスタにより電気的特性の良否判定を行う領域とは異なる領域は、前記LSIテスタでは検査できない領域であることを特徴とする請求項11記載の欠陥検査装置。

【図1A】
image rotate

【図1B】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5A】
image rotate

【図5B】
image rotate

【図5C】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate

【図14】
image rotate

【図15】
image rotate

【図16】
image rotate

【図17】
image rotate

【図18】
image rotate

【図19】
image rotate


【公開番号】特開2012−154895(P2012−154895A)
【公開日】平成24年8月16日(2012.8.16)
【国際特許分類】
【出願番号】特願2011−16646(P2011−16646)
【出願日】平成23年1月28日(2011.1.28)
【出願人】(501387839)株式会社日立ハイテクノロジーズ (4,325)
【Fターム(参考)】