説明

バンク構造、配線パターン形成方法、デバイス、電気光学装置、及び電子機器

【課題】 配線幅の異なる配線パターンにおける膜厚さを無くした、バンク構造体、膜パターン形成方法、デバイス、電気光学装置、及び電子機器を提供する。
【解決手段】 機能液Lが配置されるパターン形成領域Pを区画するバンク構造1である。パターン形成領域Pは、第1パターン形成領域55と、第1パターン形成領域55に接続され、かつ第1パターン形成領域55よりも幅の狭い第2パターン形成領域56とを備えてなる。第2パターン形成領域56を区画するバンク34bの内側面部56bにおける高さは、第1パターン形成領域55を区画するバンク34aの内側面部55aにおける高さよりも低くなっている。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、バンク構造、パターン形成方法、デバイス、電気光学装置、及び電子機器に関する。
【背景技術】
【0002】
電子回路又は集積回路等に使用される所定パターンからなる配線等を形成する方法としては、例えば、フォトリソグラフィー法が広く利用されている。このフォトリソグラフィー法は、真空装置、露光装置等の大規模な設備が必要となる。そして、上記装置では所定パターンからなる配線等を形成するために、複雑な工程を必要とし、また材料使用効率も数%程度でそのほとんどを廃棄せざるを得ず、製造コストが高いという課題がある。
これに対して、液体吐出ヘッドから液体材料を液滴状に吐出する液滴吐出法、いわゆるインクジェット法を用いて基板上に所定パターンからなる配線等を形成する方法が提案されている(例えば、特許文献1、特許文献2参照)。このインクジェット法では、パターン用の液体材料(機能液)を基板に直接パターン配置し、その後熱処理やレーザー照射を行って所望のパターンを形成する。従って、この方法によれば、フォトリソグラフィー工程が不要となり、プロセスが大幅に簡略化されるとともに、パターン位置に原材料を直接配置することができるので、使用量も削減できるというメリットがある。
【0003】
ところで、近年、デバイスを構成する回路の高密度化が進み、例えば配線についてもさらなる微細化、細線化が要求されている。しかしながら、上述した液滴吐出法を用いたパターン形成方法では、吐出した液滴が着弾後に基板上で広がるため、微細なパターンを安定的に形成するのが困難であった。特に、パターンを導電膜とする場合には、上述した液滴の広がりによって、液だまり(バルジ)が生じ、それが断線や短絡等の不具合の発生原因となるおそれがあった。そこで、幅の広い配線形成領域(パターン形成領域)と、この配線形成領域に連続して形成される、吐出される機能液の飛翔径よりも幅の狭い微細な配線形成領域(パターン形成領域)とをバンクによって区画するバンク構造を用いる。このバンク構造は、その表面が撥液化されていて、前記の幅の広い配線形成領域に吐出された機能液を毛細管現象によって、幅が狭い微細な配線形成領域に流し込ませることで、微細な配線パターン(膜パターン)を形成する技術も提案されている(例えば、特許文献3参照)。
【0004】
微細な配線形成領域の幅と機能液が吐出される配線形成領域の幅とが所定の比より大きくなると、機能液は幅の広い配線形成領域内を流れるため、毛細管現象による微細な配線形成領域への流れ込み量が不足してしまう。すると、形成された微細な配線パターンの膜厚は、他の配線パターンに比べて薄くなってしまう問題がある。
そこで、例えば幅の広い配線形成領域の一部分の幅を狭めることで、この配線形成領域から微細な配線形成領域への機能液の流入量を増加させ、微細な配線パターンの厚膜化を図る方法が考えられる。
【特許文献1】特開平11−274671号公報
【特許文献2】特開2000−216330号公報
【特許文献3】特開2005−12181号公報
【発明の開示】
【発明が解決しようとする課題】
【0005】
しかしながら、上述したように配線形成領域の一部の幅を狭めて、微細配線パターン部分に流れ込む機能液の量を増加させる場合、機能液の流れ込み量を適切に調節することが難しく、例えば微細な配線形成領域に機能液が多く流れ込みすぎると、微細な配線パターンは、他の配線パターンに比べて膜厚が厚くなり、微細な配線部分とその他の配線部分との間で膜厚の差が生じてしまう。
すると、例えばこの技術をゲート配線とこれに連続するゲート電極との形成に応用しようとした場合に、これらゲート配線とゲート電極との間で膜厚が異なってしまうことにより、安定したトランジスタ特性が得られにくくなってしまう。
【0006】
本発明は、上記課題に鑑みてなされたものであり、その目的とするところは、配線幅の異なる配線パターンにおける膜厚さを無くした、バンク構造体、膜パターン形成方法、デバイス、電気光学装置、及び電子機器を提供することにある。
【課題を解決するための手段】
【0007】
本発明のバンク構造は、機能液が配置されるパターン形成領域を区画するバンク構造において、前記パターン形成領域は、第1パターン形成領域と、該第1パターン形成領域に接続され、かつ前記第1パターン形成領域よりも幅の狭い第2パターン形成領域とを備えてなり、前記第2パターン形成領域を区画するバンクの内側面部における高さは、前記第1パターン形成領域を区画するバンクの内側面部における高さよりも低くなっていることを特徴とする。
【0008】
液滴吐出法により機能液を吐出して、第1パターン形成領域に配置すると、機能液は毛細管現象によって前記第1パターン形成領域から幅の狭い第2パターン形成領域に流れ込むようになる。ここで、例えば前記第1パターン形成領域に機能液の流れを調節する干渉部を設けることで、機能液を第2パターン形成領域により多く流し込むと、機能液はバンクの内壁面に沿って第2パターン形成領域に流れ込む。このとき、従来の構成は、幅の狭いパターンと幅の広いパターンとを区画するバンクの高さが同じ構成となっているため、同じ量の機能液が流れ込んでも、幅の狭いパターン内に形成される膜パターンの厚みの方が、幅の広いパターン内に形成される膜パターンより厚くなっていた。
そこで、本発明のバンク構造を採用すれば、幅の狭い第2パターン形成領域を区画するバンクの内側面部の高さを、幅の広い第1パターン形成領域を区画するバンクの内側面部の高さよりも低くしたバンク構造を有しているので、前記第2パターン形成領域に流れ込む機能液とバンクとの接触面積を少なくすることにより、機能液の流れ込み量を調節することができる。
よって、幅の狭い第2パターン形成領域に形成される膜パターンの厚みと、幅の広い第1パターン形成領域に形成される膜パターンの厚みとを略等しくすることができる。
【0009】
前記バンク構造においては、前記第1パターン形成領域には、該第1パターン形成領域に配置された機能液の前記第2パターン形成領域への流れ込み量を調節する干渉部が設けられ、該干渉部は、前記第1パターン形成領域の前記干渉部が設けられていない部分に比べて幅が狭く形成され、かつ前記干渉部を区画するバンクにおける内面部の高さは、前記第1パターン形成領域の前記干渉部が設けられていない部分を区画するバンクにおける内面部の高さよりも低くなっていることが好ましい。
第1パターン形成領域に第2パターン形成領域への機能液の流れを調節する干渉部を設けた場合にも、上述したように本発明を採用することで、前記第1パターン形成領域に形成する膜パターンの膜厚と前記第2パターン形成領域に形成する膜パターンの膜厚とを略等しくすることができる。
また、前記第1パターン形成領域の前記干渉部が設けられていない部分を区画するバンクにおける内面部の高さよりも低くなっているので、該干渉部に流れ込む機能液とバンクとの接触面積を少なくして、機能液の流れ込み量を調節できる。よって、前記干渉部に形成される膜パターンの厚みと、前記干渉部が設けられていない第1パターン形成領域内に形成される膜パターンの厚みとを略等しくすることができる。
【0010】
本発明の膜パターンの形成方法は、機能液を基板上に配置して膜パターンを形成する方法であって、前記基板上に、バンク形成材料を設ける工程と、該バンク形成材料から、バンクによって区画された溝形状の第1パターン形成領域と、該第1パターン形成領域に連続するとともに、前記第1パターン形成領域幅が小さく、前記第1パターン形成領域を区画するバンクの内側面部における高さよりも低いバンクによって区画される溝形状の第2パターン形成領域と、を含むバンク構造を形成する工程と、前記第1パターン形成領域に機能液を配置することで、毛細管現象によって、前記機能液を前記第1パターン形成領域から前記第2パターン形成領域へと配置させる工程と、前記第1パターン形成領域及び前記第2パターン形成領域に配置された機能液を硬化処理して膜パターンとする工程と、を備えたことを特徴とする。
【0011】
本発明の膜パターンの形成方法では、基板上に、第1パターン形成領域と、この第1パターン形成領域より幅の広い第2パターン形成領域を形成している。ここで、前記第2パターン形成領域を区画するバンクの内側面における高さは、前記第1パターン形成領域を区画するバンクの内側面の高さよりも低くなっている。よって、前記第1パターン形成領域に配置された機能液は、毛細管現象によって前記第2パターン形成領域に流れ込む。すると、機能液は前記第2パターン形成領域を区画するバンクの内側面に沿って、前記第2パターン形成領域に流れ込む。この第2パターン形成領域を区画するバンクの内側面の高さは低いので、前記第2パターン形成領域に流れ込む、機能液量を抑えることができる。
よって、幅の狭い第2パターン形成領域に形成される膜パターンの厚みと、幅の広い第1パターン形成領域に形成される膜パターンの厚みとを略等しくすることができる。
【0012】
前記膜パターンの形成方法においては、フォトリソグラフィ法により前記バンクを形成する場合、前記第2パターン形成領域を区画するバンクの内側面部にハーフトーンマスクを用いて露光した後、現像処理を行うことが好ましい。
このようにすれば、露光工程においてハーフトーンマスクを用いているので、第2パターン形成領域の内面部の露光量を選択的に調節することで、上述したように前記第2パターン形成領域を区画するバンクの内側面部における高さを、前記第1パターン形成領域を区画するバンクの内側面部における高さより低く形成することができる。
また、ハーフトーンマスクは、第1パターン形成領域に対応したマスク部と第2パターン形成領域に対応したマスク部とを同じマスク上に備えているので、一度の露光工程で前記第1パターン形成領域と前記第2パターン形成領域とが形成され、フォトリソグラフィ法による工程の簡略化を図ることができる。
【0013】
本発明のデバイスは、前記バンク構造体と、該バンク構造体における前記第1パターン形成領域及び前記第2パターン形成領域に形成された膜パターンと、を備えることを特徴とする。
本発明のデバイスによれば、上述したようなバンク構造体によって区画された領域に膜パターンが形成されているため、第1パターン形成領域及び第2パターン形成領域に配置された機能液からなる膜パターンにおける膜厚差を略無くすことができる。よって、この膜パターン上に、例えば他の薄膜パターンを積層した場合の断線、短絡を防止した電気的特性に優れたものとなる。
【0014】
前記デバイスにおいては、前記第1パターン形成領域に形成された膜パターンをゲート配線として、前記第2パターン形成領域に形成された膜パターンをゲート電極とすることが好ましい。
このようにすれば、上述したバンク構造を用いることにより、ゲート配線とゲート電極との膜厚を略等しくすることができる。これにより、トランジスタ特性を安定させることができ、このトランジスタを備えたデバイスは信頼性が高いものとなる。
【0015】
前記デバイスにおいては、前記第1パターン形成領域に形成された膜パターンをソース配線として、前記第2パターン形成領域に形成された膜パターンをソース電極とすることが好ましい。
このようにすれば、上述したバンク構造を用いることにより、ソース配線とソース電極との膜厚を略等しくすることができる。これにより、トランジスタ特性を安定させることができ、このトランジスタを備えたデバイスは信頼性が高いものとなる。
【0016】
本発明の電気光学装置は、前記デバイスを備えることを特徴とする。
本発明の電気光学装置によれば、高精度な電気的特性等を有するデバイスを備えることから、品質や性能の向上を図った電気光学装置を実現することができる。
ここで、本発明において、電気光学装置とは、電界により物質の屈折率が変化して光の透過率を変化させる電気光学効果を有するものの他、電気エネルギーを光学エネルギーに変換するもの等も含んで総称している。具体的には、電気光学物質として液晶を用いる液晶表示装置、電気光学物質として有機EL(Electro-Luminescence)を用いる有機EL装置、無機ELを用いる無機EL装置、電気光学物質としてプラズマ用ガスを用いるプラズマディスプレイ装置等がある。さらには、電気泳動ディスプレイ装置(EPD:Electrophoretic Display)、フィールドエミッションディスプレイ装置(FED:電界放出表示装置:Field Emission Display)等がある。
【0017】
本発明の電子機器は、前記電気光学装置を備えることを特徴とする。
本発明の電子機器によれば、品質や性能の向上が図られた電気光学装置を備えることで、信頼性の高いものとなる。
【発明を実施するための最良の形態】
【0018】
(第1実施形態)
以下、本発明の一実施形態について図面を参照して説明する。なお、以下に説明する実施形態は、本発明の一部の態様を示すものであり、本発明を限定するものではない。また、以下の説明に用いる各図面では、各層や各部材を図面上で認識可能な程度の大きさとするため、各層や各部材ごとに縮尺を適宜変更している。
【0019】
(液滴吐出装置)
まず、本実施形態において、膜パターンを形成するための液滴吐出装置について図1を参照して説明する。
図1は、本発明の膜パターン形成方法に用いられる装置の一例として、液滴吐出法によって基板上に液体材料を配置する液滴吐出装置(インクジェット装置)IJの概略構成を示す斜視図である。
【0020】
液滴吐出装置IJは、液滴吐出ヘッド1と、X軸方向駆動軸4と、Y軸方向ガイド軸5と、制御装置CONTと、ステージ7と、クリーニング機構8と、基台9と、ヒータ15とを備えている。
ステージ7は、この液滴吐出装置IJによりインク(液体材料)を設けられる、後述する基板48を支持するものであって、基板48を基準位置に固定する不図示の固定機構を備えている。
【0021】
液滴吐出ヘッド1は、複数の吐出ノズルを備えたマルチノズルタイプの液滴吐出ヘッドであり、長手方向とY軸方向とを一致させている。複数の吐出ノズルは、液滴吐出ヘッド1の下面にY軸方向に並んで一定間隔で設けられている。液滴吐出ヘッド1の吐出ノズルからは、ステージ7に支持されている基板48に対して、上述した導電性微粒子を含むインクが吐出される。
【0022】
X軸方向駆動軸4には、X軸方向駆動モータ2が接続されている。X軸方向駆動モータ2はステッピングモータ等であり、制御装置CONTからX軸方向の駆動信号が供給されると、X軸方向駆動軸4を回転させる。X軸方向駆動軸4が回転すると、液滴吐出ヘッド1はX軸方向に移動する。
Y軸方向ガイド軸5は、基台9に対して動かないように固定されている。ステージ7は、Y軸方向駆動モータ3を備えている。Y軸方向駆動モータ3はステッピングモータ等であり、制御装置CONTからY軸方向の駆動信号が供給されると、ステージ7をY軸方向に移動する。
【0023】
制御装置CONTは、液滴吐出ヘッド1に液滴の吐出制御用の電圧を供給する。また、X軸方向駆動モータ2に液滴吐出ヘッド1のX軸方向の移動を制御する駆動パルス信号を、Y軸方向駆動モータ3にステージ7のY軸方向の移動を制御する駆動パルス信号を供給する。
クリーニング機構8は、液滴吐出ヘッド1をクリーニングするものである。クリーニング機構8には、図示しないY軸方向の駆動モータが備えられている。このY軸方向の駆動モータの駆動により、クリーニング機構8は、Y軸方向ガイド軸5に沿って移動する。クリーニング機構8の移動も制御装置CONTにより制御される。
ヒータ15は、ここではランプアニールにより基板48を熱処理する手段であり、基板48上に塗布された液体材料に含まれる溶媒の蒸発及び乾燥を行う。このヒータ15の電源の投入及び遮断も制御装置CONTにより制御される。
【0024】
液滴吐出装置IJは、液滴吐出ヘッド1と基板48を支持するステージ7とを相対的に走査しつつ基板48に対して液滴を吐出する。ここで、以下の説明において、X軸方向を走査
方向、X軸方向と直交するY軸方向を非走査方向とする。従って、液滴吐出ヘッド1の吐出ノズルは、非走査方向であるY軸方向に一定間隔で並んで設けられている。なお、図1では、液滴吐出ヘッド1は、基板48の進行方向に対し直角に配置されているが、液滴吐出ヘッド1の角度を調整し、基板48の進行方向に対して交差させるようにしてもよい。このようにすれば、液滴吐出ヘッド1の角度を調整することで、ノズル間のピッチを調節することができる。また、基板48とノズル面との距離を任意に調節することが出来るようにしてもよい。
【0025】
図2は、ピエゾ方式による液体材料の吐出原理を説明するための図である。
図2において、液体材料(配線パターン用インク、機能液)を収容する液体室21に隣接してピエゾ素子22が設置されている。液体室21には、液体材料を収容する材料タンクを含む液体材料供給系23を介して液体材料が供給される。
ピエゾ素子22は駆動回路24に接続されており、この駆動回路24を介してピエゾ素子22に電圧を印加し、ピエゾ素子22を変形させることにより、液体室21が変形し、ノズル25から液体材料が吐出される。この場合、印加電圧の値を変化させることにより、ピエゾ素子22の歪み量が制御される。また、印加電圧の周波数を変化させることにより、ピエゾ素子22の歪み速度が制御される。
なお、液体材料の吐出原理としては、上述した圧電体素子であるピエゾ素子を用いてインクを吐出させるピエゾ方式の他にも、液体材料を加熱し発生した泡(バブル)により液体材料を吐出させるバブル方式等、公知の様々な技術を適用することができる。このうち、上述したピエゾ方式では、液体材料に熱を加えないため、材料の組成等に影響を与えないという利点を有する。
【0026】
ここで、機能液Lは、導電性微粒子を分散媒に分散させた分散液や有機銀化合物や酸化銀ナノ粒子を溶媒(分散媒)に分散した溶液からなるものである。
導電性微粒子としては、例えば、金、銀、銅、パラジウム、及びニッケルのうちのいずれかを含有する金属微粒子の他、これらの酸化物、並びに導電性ポリマーや超電導体の微粒子などが用いられる。
これらの導電性微粒子は、分散性を向上させるために表面に有機物などをコーティングして使うこともできる。導電性微粒子の表面にコーティングするコーティング材としては、例えばキシレン、トルエン等の有機溶剤やクエン酸等が挙げられる。
導電性微粒子の粒径は1nm以上0.1μm以下であることが好ましい。0.1μmより大きいと、後述する液体吐出ヘッドのノズルに目詰まりが生じるおそれがある。また、1nmより小さいと、導電性微粒子に対するコーティング剤の体積比が大きくなり、得られる膜中の有機物の割合が過多となる。
【0027】
分散媒としては、上記の導電性微粒子を分散できるもので、凝集を起こさないものであれば特に限定されない。例えば、水の他に、メタノール、エタノール、プロパノール、ブタノールなどのアルコール類、n−ヘプタン、n−オクタン、デカン、ドデカン、テトラデカン、トルエン、キシレン、シメン、デュレン、インデン、ジペンテン、テトラヒドロナフタレン、デカヒドロナフタレン、シクロヘキシルベンゼンなどの炭化水素系化合物、またエチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、エチレングリコールメチルエチルエーテル、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールメチルエチルエーテル、1,2−ジメトキシエタン、ビス(2−メトキシエチル)エーテル、p−ジオキサンなどのエーテル系化合物、さらにプロピレンカーボネート、γ−ブチロラクトン、N−メチル−2−ピロリドン、ジメチルホルムアミド、ジメチルスルホキシド、シクロヘキサノンなどの極性化合物を例示できる。これらのうち、微粒子の分散性と分散液の安定性、また液滴吐出法(インクジェット法)への適用の容易さの点で、水、アルコール類、炭化水素系化合物、エーテル系化合物が好ましく、より好ましい分散媒としては、水、炭化水素系化合物を
挙げることができる。
【0028】
上記導電性微粒子の分散液の表面張力は0.02N/m以上0.07N/m以下の範囲内であることが好ましい。液滴吐出法にて液体を吐出する際、表面張力が0.02N/m未満であると、インク組成物のノズル面に対する濡れ性が増大するため飛行曲りが生じやすくなり、0.07N/mを超えるとノズル先端でのメニスカスの形状が安定しないため吐出量や、吐出タイミングの制御が困難になる。表面張力を調整するため、上記分散液には、基板との接触角を大きく低下させない範囲で、フッ素系、シリコーン系、ノニオン系などの表面張力調節剤を微量添加するとよい。ノニオン系表面張力調節剤は、液体の基板への濡れ性を向上させ、膜のレベリング性を改良し、膜の微細な凹凸の発生などの防止に役立つものである。上記表面張力調節剤は、必要に応じて、アルコール、エーテル、エステル、ケトン等の有機化合物を含んでもよい。
【0029】
上記分散液の粘度は1mPa・s以上50mPa・s以下であることが好ましい。液滴吐出法を用いて液体材料を液滴として吐出する際、粘度が1mPa・sより小さい場合にはノズル周辺部がインクの流出により汚染されやすく、また粘度が50mPa・sより大きい場合は、ノズル孔での目詰まり頻度が高くなり円滑な液滴の吐出が困難となる。
【0030】
(バンク構造体)
次に、本実施形態における機能液(インク)を配置するバンク構造体について図3(a)、(b)、(c)を参照して説明する。
図3(a)は、バンク構造体の概略構成を示す平面図である。また、図3(b)は、図3(a)に示すA−A´線矢視における前記バンク構造体の側断面図である。また、図3(c)は、図3(a)に示すB−B´線矢視における前記バンク構造体の側断面図である。
本実施形態のバンク構造体1は、図3(a),(b),(c)に示すように、基板48上にはバンク34が形成されていて、このバンク34は機能液が配置される領域となるパターン形成領域Pを区画するものである。なお、本実施形態のパターン形成領域は、後述するTFTを構成するゲート配線を形成するバンク構造によって区画された基板48上の領域である。
【0031】
前記パターン形成領域Pは、ゲート配線(膜パターン)に対応して形成される溝状の第1パターン形成領域55と、この第1パターン形成領域55に接続し、ゲート電極(膜パターン)に対応して形成される第2パターン形成領域56とから構成されている。また、前記第2パターン形成領域56の幅は、前記第1パターン形成領域55の幅よりも狭くなっている。ここで、各パターン形成領域55,56における幅とは、各パターン55,56が延在する方向に対して直交する方向のパターンの端部間の長さを表している。
【0032】
具体的には、図3(a)に示すように、第1パターン形成領域55は、図1中、X軸方向に延在して形成され、この第1パターン形成領域55は幅H1を有している。ここで、第1パターン形成領域55の幅H1は、上述した液滴吐出装置IJから吐出される機能液の飛翔径(図3(a)中2点鎖線)と等しいか、あるいは、大きくなるように形成されている。
また、第2パターン形成領域56は、第1パターン形成領域55に対して略垂直に接続され、図1中、Y軸方向に延在して形成されている。この第2パターン形成領域56は幅H2を有し、第1パターン形成領域55の幅H1よりも狭く形成されている。このようなバンク構造1を採用することにより、前記第1パターン形成領域55に吐出された機能液Lを毛細管現象を利用して、微細パターンである第2パターン形成領域56に流入させることができるようになっている。なお、本実施形態では、前記第1パターン形成領域55は、ゲート配線に対応し、前記第2パターン形成領域56は、ゲート配線と比べて幅の狭いゲート電極に対応するものとなっている。
【0033】
ここで、以下に説明するバンク34における内側面部の高さとは、基板48の上面から各パターン形成領域55,56を区画するバンク34の内側面55a,56bにおける高さを意味している。よって、前記第2パターン形成領域56を区画するバンク34bの内側面部56bにおける高さには、前記第1パターン形成領域55を区画するバンク34aの厚みは含まれないものとする。
図3(c)に示したように、前記第2パターン形成領域56を区画するバンク34bの内側面部56bにおける高さは、前記第1パターン形成領域55を区画するバンク34aの内側面部55aにおける高さよりも低くなっている。
【0034】
ここで、機能液は、前記各パターン形成領域を区画するバンク34の内側面部に接触した状態で前記各領域55,56内に流れ込むようになっている。したがって、第2パターン形成領域56を区画するバンク34bの内側面部56bにおける高さを抑えることで、前記第2パターン形成領域56に流れ込む機能液の量を減少させることができる。
【0035】
また、図3(b)に示したように、前記第1パターン形成領域55には、該第1パターン形成領域55に配置された機能液の前記第2パターン形成領域56への流れ込み量を調節するために、他の第1パターン形成領域55に比べてその幅が狭く形成された絞り部(干渉部)57が設けられている。なお、本実施形態では、前記絞り部57の幅は、前記第2パターン形成領域56の幅と同じものとする。
【0036】
この絞り部57は、ゲート配線に対してソース配線が交差する部分(交差部分)に対応するもので、同様にして、交差部分のソース配線側にも絞り部が設けられている。このように、ゲート配線とソース配線との交差部分において、それぞれの配線幅を狭くすることで、交差部分において容量が蓄積されるのを防止するようになっている。
【0037】
また、前記絞り部57を区画するバンク34cにおける内側面部57cの高さは、前記第1パターン形成領域55を区画する他のバンク34aにおける内側面部55aの高さよりも低くなっている。このように、前記絞り部57を区画するバンク34cにおける内側面部57cにおける高さが、他の第1パターン形成領域55に比べて低いので、機能液Lとバンク34cとの接触面積を少なくして、前記絞り部57に流れ込む機能液の量を調節している。よって、前記絞り部57に形成される膜パターンの厚みと、他の第1パターン形成領域55に形成される膜パターンの厚みとを略等しくすることができる。
【0038】
このように、第1パターン形成領域55に第2パターン形成領域56への機能液の流れ込み量を調節する絞り部57を設けた場合、従来のバンク構造では、機能液Lが幅の広いパターン形成領域よりも幅の狭いパターン形成領域に多く流れ込み、これらパターン形成領域間で、その膜厚に差が生じてしまうおそれがあった。
そこで、本発明を採用すれば、幅の狭い第2パターン形成領域56を区画するバンク34bの内側面部56bの高さを、幅の広い第1パターン形成領域55を区画するバンク34aの内側面部55aの高さよりも低くしたバンク構造1を有しているので、前記第2パターン形成領域56に流れ込む機能液Lとバンク34との接触面積を少なくすることにより、機能液Lの流れ込み量を調節することができる。
よって、幅の狭い第2パターン形成領域56に形成される膜パターンの厚みと、幅の広い第1パターン形成領域55に形成される膜パターンの厚みとを略等しくすることができる。
【0039】
(バンク構造体、及び膜パターンの形成方法)
次に、本実施形態におけるバンク構造体1の形成方法、及びこのバンク構造体1によって区画されたパターン形成領域Pに、膜パターンとしてゲート配線を形成する方法について説明する。
図4(a)〜(d)は、バンク構造体1の形成工程を順に示した側部断面図である。図4(a)〜(d)は、図3(c)のB−B´矢視における側断面に沿って第1パターン形成領域55、及び第2パターン形成領域からなるパターン形成領域Pを形成する工程を示した図である。また、図5の(a)、(b)は、図4(a)〜(d)に示した工程において形成されたバンク構造1に膜パターン(ゲート配線)の形成する工程を示した断面図である。
【0040】
(バンク材塗布工程)
まず、図4(a)に示すように、スピンコート法により、基板48の全面にバンク形成材料を塗布してバンク層35を形成する。前記バンク形成材料の塗布方法として、スプレーコート、ロールコート、ダイコート、ディップコート等の各種方法を適用することが可能である。
また、基板48としては、ガラス、石英ガラス、Siウエハ、プラスチックフィルム、金属板等の各種材料を使用することができる。また、バンク形成材料は、感光性のアクリル樹脂やポリイミド等からなる絶縁材料及び親液性の材料を含有している。これにより、バンク形成材料がレジストの機能を兼ね備えるため、フォトレジスト塗布工程を省略することができる。また、バンク形成材料に後述する工程によって溝形状のパターン形成領域Pを形成した場合、このパターン形成領域Pを区画するバンクの内側面表面を予め親液性とすることができる。
なお、前記基板48の基板表面に半導体膜、金属膜、誘電体膜、有機膜等の下地層を形成してもよい。
【0041】
(撥液化処理工程)
次に、基板48の全面に塗布したバンク層35の表面を、CF、SF、CHF等のフッ素含有ガスを処理ガスとしたプラズマ処理する。このプラズマ処理によりバンク層35の表面を撥液性にする。撥液化処理法としては、例えば大気雰囲気中でテトラフルオロメタンを処理ガスとするプラズマ処理法(CF4プラズマ処理法)を採用することができる。CF4プラズマ処理の条件は、例えばプラズマパワーが50〜1000W、4フッ化メタンガス流量が50〜100ml/min、プラズマ放電電極に対する基体搬送速度が0.5〜1020mm/sec、基体温度が70〜90℃とされる。
【0042】
なお、上記処理ガスとしては、テトラフルオロメタン(4フッ化炭素)に限らず、他のフルオロカーボン系のガスを用いることもできる。また、なお、上記撥液化処理は、後述するバンク材に所定パターンの溝部を形成した後に行うことも好ましい。この場合、マイクロコンタクトプリンティング法も採用できる。また、このような処理の代わりに、バンクの素材自体に予め撥液成分(フッ素基等)を充填しておくことも好ましい。この場合には、CFプラズマ処理等を省略することができる。
なお、例えばフルオロアルキルシラン(FAS)を用いることにより、膜の表面にフルオロアルキル基が位置するように各化合物が配向される自己組織化膜を形成してもよい。この場合もバンク材の表面に均一な撥液性が付与される。
自己組織化膜を形成する化合物としては、ヘプタデカフルオロ−1,1,2,2テトラヒドロデシルトリエトキシシラン、ヘプタデカフルオロ−1,1,2,2テトラヒドロデシルトリメトキシシラン、ヘプタデカフルオロ−1,1,2,2テトラヒドロデシルトリクロロシラン、トリデカフルオロ−1,1,2,2テトラヒドロオクチルトリエトキシシラン、トリデカフルオロ−1,1,2,2テトラヒドロオクチルトリメトキシシラン、トリデカフルオロ−1,1,2,2テトラヒドロオクチルトリクロロシラン、トリフルオロプロピルトリメトキシシラン等のフルオロアルキルシラン(以下「FAS」という)を例示できる。これらの化合物は、単独で使用してもよく、2種以上を組み合わせて使用してもよい。有機分子膜などからなる自己組織化膜は、上記の原料化合物と基板とを同一の密閉容器中に入れておき、室温で2〜3日程度の間放置することにより基板上に形成される。これらは気相からの形成法であるが、液相からも自己組織化膜を形成できる。例えば、原料化合物を含む溶液中に基板を浸積し、洗浄、乾燥することで基板上に自己組織化膜が形成される。
【0043】
(露光工程)
次に、図4(b)に示すように、フォトリソグラフィ法により、露光装置からの光をハーフトーンマスクMを介し前記バンク層35に照射させることで、第1パターン形成領域55、第2パターン形成領域56、及び絞り部57を形成する。なお、以下のフォトリソグラフィによる現像処理に用いられている光化学反応としては、ポジ型のレジストを前提にしている。よって、露光されたバンク層35は、後述する現像工程によって除去されて、前述したパターン形成領域Pを有したバンク構造1となる。
前記パターン形成領域Pにおける第2パターン形成領域56を露光するに際して、ハーフトーンマスクMを用いている。ハーフトーンマスクMとは、露光装置から照射される露光光を完全に遮断するマスク部M3と、露光光を完全に透過させるマスク部M2と、露光光を部分的に透過させるマスク部M1とを有するマスクである。そして、部分的に露光光を透過させるマスク部M1には、スリットからなる回折格子等のパターンが設けられ、露光光の透過する光強度を制御することができるようになっている。よって、前記各マスク部M1,M2,M3を透過した光によって、露光量に応じて現像処理によるバンク層35の溶解度を変化させることができる。そして、基板48上に設けられたバンク層35に形成する溝形状のパターン形成領域の深さ(バンク高さ)を調節可能となっている。
【0044】
上記の露光光を完全に透過させるマスク部M2を介してバンク層35上に照射される光は、図4(b)に示すように、基板48上まで到達する。よって、前記マスク部M2を介して露光される領域は、第2パターン形成領域56となる。また、露光光を部分的に透過させる前記マスク部M1を介してバンク層35上に照射される光は、前記マスク部M2に比べ光量が少ないことから、図4(b)に示すように、バンク層35の途中まで到達し、基板48上面に達することがない。このようにして露光された第2パターン形成領域56は、後述する現像工程(図4(c),(d)参照)で、前記第2パターン形成領域56を区画する領域におけるバンク34bの内側面の高さを、前記マスク部M2の分だけ低くすることができる。
【0045】
一方、第1パターン形成領域55を形成する際に用いるマスクは、露光光を完全に透過させるマスク部M2のみから構成されている。
よって、露光光を完全に透過させる前記マスク部M2を介した光は、前述したように、基板48上まで到達する。
すると、図4(b)における2点鎖線で示したように、前記第2パターン形成領域56を区画するバンク34の内側面部における高さを、前記第1パターン形成領域55を区画するバンク34の内側面部における高さより選択的に低くするように、前記バンク層35を露光することができる。
ハーフトーンマスクMは、前記第2パターン形成領域を形成するマスク部M1,M2と、前記第1パターン形成領域を形成するマスク部M2とを同じマスク上に備えているので、一度の露光工程で前記第1パターン形成領域55と前記第2パターン形成領域56とを形成し、露光工程の簡略化が可能となっている。
【0046】
(現像工程)
次いで、前述した露光工程の後、図4(c)に示すように、露光されたバンク層35を、例えばTMAH(テトラメチルアンモニウムヒドロキシド)現像液で現像処理し、被露光部を選択的に除去する。
よって、図4(d)に示すように、前記第2パターン形成領域56を区画するバンク34bの内側面部56bにおける高さが、前記第1パターン形成領域55を区画するバンク34aの内側面部55aにおける高さよりも低くなるパターン形成領域Pを形成できる。
また、第1パターン形成領域55の幅はH1となり、第2パターン形成領域56の幅はH2となっていて、図3に示したように、前記第1パターン形成領域55は、前記第2パターン形成領域56に比べて幅が広くなっている(H1>H2)。なお、バンク34aの内側面55aは、上述したように、バンク形成材料に親液性の材料を使用しているため新液性を有している。ここで、機能液が流れ込む前記第2パターン形成領域56を区画するバンク34bの上面を選択的に撥液処理しておくことが望ましい。また、前記第1パターン形成領域55を区画するバンク34aの上面は、上述したように、撥液処理が施されているため撥液性を有している。
【0047】
また、本実施形態では、図3に示したように、前記第1パターン形成領域55には、該第1パターン形成領域55に配置された機能液の前記第2パターン形成領域56への流れ込み量を調節するために、他の第1パターン形成領域55に比べてその幅が狭く形成された絞り部(干渉部)57が設けられている。そして、前記絞り部57の幅は、前記第2パターン形成領域56の幅と同じとする。また、前記絞り部57を区画するバンク34cにおける内側面部57cの高さは、前記第1パターン形成領域55を区画する他のバンク55aにおける内側面部55aの高さよりも低くなっている(図3参照)。
よって、前述した第2パターン形成領域56と同様にして、ハーフトーンマスクMを用いて露光、現像処理を行うことで、前記絞り部57を形成でき、形成工程における図示、及び説明については省略するものとする。
このようにして形成された絞り部57は、ソース配線とゲート配線との交差部分において容量が蓄積されるのを防止することができる。
【0048】
(機能液配置工程)
次に、上述した工程により得られたバンク構造1によって形成されるパターン形成領域Pに、前記液滴吐出装置IJを使用して機能液を吐出して、ゲート配線(膜パターン)を形成する工程について説明する。ここで、本実施形態において、第2パターン形成領域56は、微細配線パターンであるため、機能液Lを直接配置することが難しい。従って、第2パターン形成領域56への機能液Lの配置は、上述したように、第1パターン形成領域55に配置した機能液Lを毛細管現象によって第2パターン形成領域56に流入させる方法により行うこととする。
まず、図5(a)に示すように、液滴吐出装置IJにより、第1パターン形成領域55に配線パターン形成材料としての機能液Lを吐出する。
【0049】
液滴吐出装置IJによって第1パターン形成領域55に配置された機能液Lは、図5(a)に示すように、第1パターン形成領域55内部において濡れ広がる。ここで、本実施形態では、前記第1パターン形成領域55に設けられた絞り部57によって、前記第2パターン形成領域56に流し込む機能液Lの量を増加させるようにしている。
また、図5(b)は、前記第1パターン形成領域55に吐出された機能液Lが、各パターン形成領域55,56内に濡れ拡がった状態を示す、図3(c)と同様の側断面図である。
【0050】
具体的には、第1パターン形成領域55の底面に配置された機能液Lは、前記絞り部57の障壁(干渉部)により、一時的に堰き止められる。そして、堰き止められた機能液Lは、障壁が設けられていない第2パターン形成領域56方向に流動する。このような工程により、第2パターン形成領域56への毛細管現象を促進させ、第1パターン形成領域55にはゲート配線となる第1配線パターン40が形成され、第2パターン形成領域56にはゲート電極となる第2配線パターン41を形成するようにしている。
【0051】
このように、第1パターン形成領域55に第2パターン形成領域56への機能液の流れ込み量を調節する絞り部57を設けた場合、従来のバンク構造では、機能液Lが幅の広いパターン形成領域よりも幅の狭いパターン形成領域に多く流れ込み、これらパターン形成領域間で、その膜厚に差が生じてしまう場合があった。
そこで、本実施形態では、幅の狭い第2パターン形成領域56を区画するバンク34bの内側面部56bの高さを、幅の広い第1パターン形成領域55を区画するバンク34aの内側面部55aの高さよりも低くしたバンク構造1を形成している。
【0052】
また、前述したように、前記絞り部57を区画するバンク34cにおける内側面部57cの高さは、前記第1パターン形成領域55の前記絞り部57が設けられていない部分を区画するバンク55aにおける内側面部55aの高さよりも低くなっている。このように、前記絞り部57を区画するバンク34cにおける内側面部57cにおける高さが、他の第1パターン形成領域55に比べて低いので、機能液Lとバンク34cとの接触面積を少なくし、前記絞り部57への機能液の流れ込み量を抑えている。
【0053】
(中間乾燥工程)
第1パターン形成領域55及び第2パターン形成領域56に機能液Lを配置して第1、第2配線パターン40,41を形成した後、必要に応じて乾燥処理を行う。これにより、機能液Lの分散媒の除去及びパターンの膜厚を確保することができる。乾燥処理は、例えば、基板48を加熱する通常のホットプレート、電気炉、ランプアニールその他の各種方法により行うことが可能である。ここで、ランプアニールに使用する光の光源としては、特に限定されないが、赤外線ランプ、キセノンランプ、YAGレーザー、アルゴンレーザー、炭酸ガスレーザー、XeF、XeCl、XeBr、KrF、KrCl、ArF、ArCl等のエキシマレーザー等を光源として使用することができる。これらの光源は一般には、出力10W以上5000W以下の範囲のものが用いられるが、本実施形態では100W以上1000W以下の範囲で十分である。また、所望の膜厚にするために、中間乾燥工程後に必要に応じて機能液配置工程を繰り返しても良い。
【0054】
(焼成工程)
機能液Lを配置した後、機能液Lの導電性材料が例えば有機銀化合物の場合、導電性を得るために、熱処理を行い、有機銀化合物の有機分を除去し銀粒子を残留させる必要がある。そのため、機能液Lを配置した後の基板には熱処理や光処理を施すことが好ましい。熱処理や光処理は通常大気中で行なわれるが、必要に応じて、水素、窒素、アルゴン、ヘリウムなどの不活性ガス雰囲気中で行うこともできる。熱処理や光処理の処理温度は、分散媒の沸点(蒸気圧)、雰囲気ガスの種類や圧力、微粒子や有機銀化合物の分散性や酸化性等の熱的挙動、コーティング剤の有無や量、基材の耐熱温度などを考慮して適宜決定される。例えば、有機銀化合物の有機分を除去するためには、約200℃で焼成することが必要である。また、プラスチックなどの基板を使用する場合には、室温以上100℃以下で行なうことが好ましい。
以上の工程により機能液Lの導電性材料(有機銀化合物)である銀粒子が残留し、導電性膜に変換されることで、図5(c)に示すように、互いの膜厚差がほとんど無い、連続する導電膜パターン、すなわちゲート配線として機能する第1配線パターン40、及びゲート電極として機能する第2配線パターン41を得ることができる。
このように、ゲート配線とゲート電極間での膜厚差を略無くなることで、トランジスタ特性を安定させることができる。
【0055】
(デバイス)
次に、本発明のバンク構造を利用して形成された膜パターンを備えるデバイスについて説明する。本実施形態においては、ゲート配線を備える画素(デバイス)及びその画素の形成方法について図6〜図8を参照して説明する。
本実施形態においては、本発明のバンク構造体及び膜パターンの形成方法を利用して、ボトムゲート型のTFT30のゲート電極、ソース電極、ドレイン電極等を有する画素を形成する。なお、以下の説明においては、上述した図3〜図5に示すパターン形成工程と同様の工程についての説明は省略する。また、上記実施形態に示す構成要素と共通の構成要素については同一の符号を付す。
【0056】
(画素の構造)
まず始めに、本実施形態によって形成された膜パターンを備える画素構造(デバイス)250について説明する。
図6は、本実施形態の画素の構造を示した図である。
図6に示すように、画素構造250は、基板48上に、ゲート配線40(第1配線パターン)と、このゲート配線40から延出して形成されるゲート電極41(第2配線パターン)と、ソース配線42と、このソース配線42から延出して形成されるソース電極43と、ドレイン電極44と、ドレイン電極44に電気的に接続される画素電極45とを備えている。ゲート配線40はX軸方向に延在して形成され、ソース配線42はゲート配線40と交差してY軸方向に延在して形成されている。そして、ゲート配線40とソース配線42との交差点の近傍にはスイッチング素子であるTFTが形成されている。このTFTがオン状態となることにより、TFTに接続される画素電極45に駆動電流が供給されるようになっている。
【0057】
ここで、図6に示すように、ゲート電極41の幅H2は、ゲート配線40の幅H1よりも狭く形成されている。例えば、ゲート電極41の幅H2は10μmであり、ゲート配線40の幅H1は20μmである。このゲート配線40、及びゲート電極40は、前述した実施形態により形成されたものである。
【0058】
また、ソース電極43の幅H5は、ソース配線42の幅H6よりも狭く形成されている。例えば、ソース電極43の幅H5は10μmであり、ソース配線42の幅H6は20μmである。本実施形態では、膜パターン形成方法を適用することで、微細パターンであるソース電極43に毛細管現象によって機能液を流入させて形成している。
【0059】
また、図6に示すように、ゲート配線40の一部には、配線幅が他の領域に比べて狭くなった絞り部57が設けられている。そして、この絞り部57上で、ゲート配線40と交差するソース配線42側にも同様な絞り部が設けられている。このように、ゲート配線とソース配線との交差部分において、それぞれの配線幅を狭く形成することで、この交差部分において容量が蓄積されるのを防止するようになっている。
【0060】
(画素構造の形成方法)
図7(a)〜(e)は、図6に示すC−C´線に沿った画素構造250の形成工程を示した断面図である。
図7(a)に示すように、前記第1の実施形態によって形成されたゲート配線40を含むバンク34面上に、プラズマCVD法等により、ゲート絶縁膜39を成膜する。ここで、ゲート絶縁膜39は窒化シリコンからなる。次に、ゲート絶縁膜39上に活性層を成膜する。続けて、フォトリソグラフィー処理及びエッチング処理により、図7(a)に示すように所定形状にパターニングしてアモルファスシリコン膜46を形成する。
次に、アモルファスシリコン膜46上にコンタクト層47を成膜する。続けて、フォトリソグラフィ処理及びエッチング処理により、図7(a)に示すように所定形状にパターニングする。なお、コンタクト層47はn+型シリコン膜を原料ガスやプラズマ条件を変化させることにより形成する。
【0061】
次に、図7(b)に示すように、スピンコート法等により、コンタクト層47上を含む全面にバンク材を塗布する。ここで、バンク材を構成する材料としては、形成後に光透過性と撥液性を備える必要があるため、アクリル樹脂、ポリイミド樹脂、オレフィン樹脂、メラミン樹脂などの高分子材料が好適に用いられる。より好ましくは、無機骨格を有するポリシラザンが焼成工程における耐熱性、透過率という点で用いられる。そして、このバンク材に撥液性を持たせるためにCF4プラズマ処理等(フッ素成分を有するガスを用いたプラズマ処理)を施す。また、このような処理の代わりに、バンクの素材自体に予め撥液成分(フッ素基等)を充填しておくことも好ましい。この場合には、CF4プラズマ処理等を省略することができる。以上のようにして撥液化されたバンク材の機能液Lに対する接触角としては、40°以上を確保することが好ましい。
【0062】
次に、1画素ピッチの1/20〜1/10となるソース・ドレイン電極用バンク34dを形成する。具体的には、まず、フォトリソグラフィ処理により、ゲート絶縁膜39の上面に塗布したバンク材34のソース電極43に対応する位置にソース電極用形成領域43aを形成し、同様にドレイン電極44に対応する位置にドレイン電極用形成領域44aを形成する。このとき、ソース電極用形成領域43aを区画するバンクにおける内側面部の高さは、前記第1実施形態と同様に、ソース配線42に対応するソース配線用形成領域を区画するバンクの内側面の高さよりも低くなっている(図示省略)。
よって、前記ソース配線42、及びソース電極43との間での膜厚差を防止するようになっている。
【0063】
次に、ソース/ドレイン電極用バンク34dに形成したソース電極用形成領域43a及びドレイン電極用形成領域44aに機能液Lを配置して、ソース電極43及びドレイン電極44を形成する。具体的には、まず、液滴吐出装置IJによって、ソース配線用形成領域に機能液Lを配置する(図示省略)。ソース電極用形成領域43aの幅H5は、図6に示すように、ソース配線用溝部の幅H6よりも狭く形成されている。そのため、ソース配線用溝部に配置した機能液Lは、ソース配線に設けられた絞り部によって一次的に堰き止められ、毛細管現象によりソース電極用形成領域43aに流入する。このとき、本発明の膜パターン形成方法を採用することで、ソース電極43とソース配線42との間での膜厚差を略無くすことができる。これにより、図7(c)に示すように、ソース電極43が形成される。また、ドレイン電極用形成領域に機能液を吐出してドレイン電極44を形成する(図示せず)。
【0064】
次に、図7(c)に示すように、ソース電極43及びドレイン電極44を形成した後、ソース・ドレイン電極用バンク34dを除去する。そして、コンタクト層47上に残ったソース電極43及びドレイン電極44の各々をマスクとして、ソース電極43及びドレイン電極44間に形成されているコンタクト層47のn型シリコン膜をエッチングする。このエッチング処理により、ソース電極43及びドレイン電極44間に形成されているコンタクト層47のn型のシリコン膜が除去され、nシリコン膜の下層に形成されるアモルファスシリコン膜46の一部が露出する。このようにして、ソース電極43の下層には、nシリコンからなるソース領域32が形成され、ドレイン電極44の下層には、nシリコンからなるドレイン領域33が形成される。そして、これらのソース領域32及びドレイン領域33の下層には、アモルファスシリコンからなるチャネル領域(アモルファスシリコン膜46)が形成される。
以上説明した工程により、ボトムゲート型のTFT30を形成する。
【0065】
本実施形態のパターン形成方法を利用することにより、ゲート配線40とゲート電極41との膜厚が同じになるとともに、ソース配線42とソース電極43とを同じ膜厚で形成することができる。この結果、トランジスタ特性を安定させることができ、このトランジスタを備える画素は信頼性が高いものとすることができる。
【0066】
次に、図7(d)に示すように、ソース電極43、ドレイン電極44、ソース領域32、ドレイン領域33、及び露出したシリコン層上に、蒸着法、スパッタ法等によりパッシベーション膜38(保護膜)を成膜する。続けて、フォトリソグラフィ処理及びエッチング処理により、後述する画素電極45が形成されるゲート絶縁膜39上のパッシベーション膜38を除去する。同時に、画素電極45とソース電極43とを電気的に接続するために、ドレイン電極44上のパッシベーション膜38にコンタクトホール49を形成する。
【0067】
次に、図7(e)に示すように、画素電極45が形成されるゲート絶縁膜39を含む領域に、バンク材を塗布する。ここで、バンク材は、上述したように、アクリル樹脂、ポリイミド樹脂、ポリシラザン等の材料を含有している。続けて、このバンク材(画素電極用バンク34e)上面にプラズマ処理等により撥液処理を施す。次に、フォトリソグラフィ処理により、画素電極45が形成される領域を区画する画素電極用バンク34eを形成する。
【0068】
次に、インクジェット法、蒸着法等により、上記画素電極用バンク34eに区画された領域にITO(Indium Tin Oxide)からなる画素電極45を形成する。また、画素電極4
5を上述したコンタクトホール49に充填させることによって、画素電極45とドレイン電極44との電気的接続が確保される。なお、本実施形態においては、画素電極用バンク34eの上面に撥液処理を施し、かつ、上記画素電極用溝部に親液処理を施す。そのため、画素電極45を画素電極用溝部からはみ出すことなく形成することができる。
以上説明したように、図6に示した、本実施形態の画素構造250を形成することができる。
【0069】
(電気光学装置)
次に、上記バンク構造を有する膜パターン形成方法により形成した画素構造(デバイス)250を備える本発明の電気光学装置の一例である液晶表示装置について説明する。
図8は、本発明にかかる液晶表示装置について、各構成要素とともに示す対向基板側から見た平面図である。図9は図8のH−H’線に沿う断面図である。図10は、液晶表示装置の画像表示領域においてマトリクス状に形成された複数の画素における各種素子、配線等の等価回路図で、なお、以下の説明に用いた各図においては、各層や各部材を図面上で認識可能な程度の大きさとするため、各層や各部材ごとに縮尺を異ならせてある。
【0070】
図8及び図9において、本実施の形態の液晶表示装置(電気光学装置)100は、対をなすTFTアレイ基板10と対向基板20とが光硬化性の封止材であるシール材52によって貼り合わされ、このシール材52によって区画された領域内に液晶50が封入、保持されている。
【0071】
シール材52の形成領域の内側の領域には、遮光性材料からなる周辺見切り53が形成されている。シール材52の外側の領域には、データ線駆動回路201及び実装端子202がTFTアレイ基板10の一辺に沿って形成されており、この一辺に隣接する2辺に沿って走査線駆動回路204が形成されている。TFTアレイ基板10の残る一辺には、画像表示領域の両側に設けられた走査線駆動回路204の間を接続するための複数の配線205が設けられている。また、対向基板20のコーナー部の少なくとも1箇所においては、TFTアレイ基板10と対向基板20との間で電気的導通をとるための基板間導通材206が配設されている。
なお、データ線駆動回路201及び走査線駆動回路204をTFTアレイ基板10の上に形成する代わりに、例えば、駆動用LSIが実装されたTAB(Tape Automated Bonding)基板とTFTアレイ基板10の周辺部に形成された端子群とを異方性導電膜を介して電気的及び機械的に接続するようにしてもよい。なお、液晶表示装置100においては、使用する液晶50の種類、すなわち、TN(Twisted Nematic)モード、C−TN法、VA方式、IPS方式モード等の動作モードや、ノーマリホワイトモード/ノーマリブラックモードの別に応じて、位相差板、偏光板等が所定の向きに配置されるが、ここでは図示を省略する。
また、液晶表示装置100をカラー表示用として構成する場合には、対向基板20において、TFTアレイ基板10の後述する各画素電極に対向する領域に、例えば、赤(R)、緑(G)、青(B)のカラーフィルタをその保護膜とともに形成する。
【0072】
このような構造を有する液晶表示装置100の画像表示領域においては、複数の画素100aがマトリクス状に構成されているとともに、これらの画素100aの各々には、画素スイッチング用のTFT(スイッチング素子)30が形成されており、画素信号S1、S2、…、Snを供給するデータ線6aがTFT30のソースに電気的に接続されている。データ線6aに書き込む画素信号S1、S2、…、Snは、この順に線順次で供給してもよく、相隣接する複数のデータ線6a同士に対して、グループごとに供給するようにしてもよい。また、TFT30のゲートには走査線3aが電気的に接続されており、所定のタイミングで、走査線3aにパルス的に走査信号G1、G2、…、Gmをこの順に線順次で印加するように構成されている。
【0073】
画素電極19は、TFT30のドレインに電気的に接続されており、スイッチング素子であるTFT30を一定期間だけオン状態とすることにより、データ線6aから供給される画素信号S1、S2、…、Snを各画素に所定のタイミングで書き込む。このようにして画素電極19を介して液晶に書き込まれた所定レベルの画素信号S1、S2、…、Snは、図9に示す対向基板20の対向電極121との間で一定期間保持される。なお、保持された画素信号S1、S2、…、Snがリークするのを防ぐために、画素電極19と対向電極121との間に形成される液晶容量と並列に蓄積容量60が付加されている。例えば、画素電極19の電圧は、ソース電圧が印加された時間よりも3桁も長い時間だけ蓄積容量60により保持される。これにより、電荷の保持特性は改善され、コントラスト比の高い液晶表示装置100を実現することができる。
【0074】
図11は、上記バンク構造及びパターン形成方法により形成した画素を備える有機EL装置の側断面図である。以下、図11を参照しながら、有機EL装置の概略構成を説明する。
図11において、有機EL装置401は、基板411、回路素子部421、画素電極4
31、バンク部441、発光素子451、陰極461(対向電極)、及び封止基板471から構成された有機EL素子402に、フレキシブル基板(図示略)の配線及び駆動IC(図示略)を接続したものである。回路素子部421は、アクティブ素子であるTFT60が基板411上に形成され、複数の画素電極431が回路素子部421上に整列して構成されたものである。そして、TFT60を構成するゲート配線61が、上述した実施形態の配線パターンの形成方法により形成されている。
【0075】
各画素電極431間にはバンク部441が格子状に形成されており、バンク部441により生じた凹部開口444に、発光素子451が形成されている。なお、発光素子451は、赤色の発光をなす素子と緑色の発光をなす素子と青色の発光をなす素子とからなっており、これによって有機EL装置401は、フルカラー表示を実現するものとなっている。陰極461は、バンク部441及び発光素子451の上部全面に形成され、陰極461の上には封止用基板471が積層されている。
【0076】
有機EL素子を含む有機EL装置401の製造プロセスは、バンク部441を形成するバンク部形成工程と、発光素子451を適切に形成するためのプラズマ処理工程と、発光素子451を形成する発光素子形成工程と、陰極461を形成する対向電極形成工程と、封止用基板471を陰極461上に積層して封止する封止工程とを備えている。
【0077】
発光素子形成工程は、凹部開口444、すなわち画素電極431上に正孔注入層452及び発光層453を形成することにより発光素子451を形成するもので、正孔注入層形成工程と発光層形成工程とを具備している。そして、正孔注入層形成工程は、正孔注入層452を形成するための液状体材料を各画素電極431上に吐出する第1吐出工程と、吐出された液状体材料を乾燥させて正孔注入層452を形成する第1乾燥工程とを有している。また、発光層形成工程は、発光層453を形成するための液状体材料を正孔注入層452の上に吐出する第2吐出工程と、吐出された液状体材料を乾燥させて発光層453を形成する第2乾燥工程とを有している。なお、発光層453は、前述したように赤、緑、青の3色に対応する材料によって3種類のものが形成されるようになっており、したがって前記の第2吐出工程は、3種類の材料をそれぞれに吐出するために3つの工程からなっている。
【0078】
この発光素子形成工程において、正孔注入層形成工程における第1吐出工程と、発光層形成工程における第2吐出工程とで前記の液滴吐出装置IJを用いることができる。よって、微細な膜パターンを有する場合であっても、均一な膜パターンを得ることができる。
本発明の電気光学装置によれば、高精度な電気的特性等を有するデバイスを備えることから、品質や性能の向上を図った電気光学装置を実現することができる。
【0079】
また、本発明にかかる電気光学装置としては、上記の他に、PDP(プラズマディスプレイパネル)や、基板上に形成された小面積の薄膜に膜面に平行に電流を流すことにより、電子放出が生ずる現象を利用する表面伝導型電子放出素子等にも適用可能である。
【0080】
(電子機器)
次に、本発明の電子機器の具体例について説明する。
図12は、携帯電話の一例を示した斜視図である。図12において、600は携帯電話本体を示し、601は上記実施形態の液晶表示装置を備えた液晶表示部を示している。
図12に示す電子機器は、上記実施形態のバンク構造を有するパターン形成方法により形成された液晶表示装置を備えたものであるので、高い品質や性能が得られる。
なお、本実施形態の電子機器は液晶装置を備えるものとしたが、有機エレクトロルミネッセンス表示装置、プラズマ型表示装置等、他の電気光学装置を備えた電子機器とすることもできる。
【0081】
なお、上述した電子機器以外にも種々の電子機器に適用することができる。例えば、液晶プロジェクタ、マルチメディア対応のパーソナルコンピュータ(PC)及びエンジニアリング・ワークステーション(EWS)、ページャ、ワードプロセッサ、テレビ、ビューファインダ型又はモニタ直視型のビデオテープレコーダ、電子手帳、電子卓上計算機、カーナビゲーション装置、POS端末、タッチパネルを備えた装置などの電子機器に適用することが可能である。
【0082】
以上、添付図面を参照しながら本発明に係る好適な実施の形態例について説明したが、本発明はかかる例に限定されないことは言うまでもない。上述した例において示した各構成部材の諸形状や組み合わせ等は一例であって、本発明の主旨から逸脱しない範囲において設計要求等に基づき種々変更可能である。
例えば、上記実施形態においては、フォトリソグラフィ処理及びエッチング処理により、所望のバンク構造(例えば、第1パターン形成領域等)を形成していた。これに対して、上記形成方法に代えて、レーザーを用いてバンクにパターニングすることにより、所望の溝部を形成するようにしてもよい。
【図面の簡単な説明】
【0083】
【図1】本発明の液滴吐出装置の概略構成を示す斜視図である。
【図2】ピエゾ方式による液状体の吐出原理を説明するための図である。
【図3】(a)はバンク構造の平面図、(b),(c)は(a)の側断面図である。
【図4】(a)〜(d)はバンク構造を形成する工程を示す側断面図である。
【図5】(a)〜(c)は配線パターンの形成工程を説明するための側断面図である。
【図6】表示領域である1画素を模式的に示す平面図である。
【図7】(a)〜(e)は1画素の形成工程を示す断面図である。
【図8】液晶表示装置を対向基板の側から見た平面図である。
【図9】図8のH−H’線に沿う液晶表示装置の断面図である。
【図10】液晶表示装置の等価回路図である。
【図11】有機EL装置の部分拡大断面図である。
【図12】本発明の電子機器の具体例を示す図である。
【符号の説明】
【0084】
L…機能液、M…ハーフトーンマスク、H1,H2,H5,H6…幅、1…バンク構造、34…バンク、34a,b,c,d,e…バンク、35…バンク層(バンク形成材料)、40…ゲート配線(膜パターン)、41…ゲート電極(膜パターン)、42…ソース配線(膜パターン)、43…ソース電極(膜パターン)、55…第1パターン形成領域、55a…内側面部、56…第2パターン形成領域、56b…内側面部、57…絞り部(干渉部)、57c…内側面部、250…画素構造(デバイス)、600…携帯電話(電子機器)

【特許請求の範囲】
【請求項1】
機能液が配置されるパターン形成領域を区画するバンク構造において、
前記パターン形成領域は、第1パターン形成領域と、該第1パターン形成領域に接続され、かつ前記第1パターン形成領域よりも幅の狭い第2パターン形成領域とを備えてなり、
前記第2パターン形成領域を区画するバンクの内側面部における高さは、前記第1パターン形成領域を区画するバンクの内側面部における高さよりも低くなっていることを特徴とするバンク構造。
【請求項2】
前記第1パターン形成領域には、該第1パターン形成領域に配置された機能液の前記第2パターン形成領域への流れ込み量を調節する干渉部が設けられ、
該干渉部は、前記第1パターン形成領域の前記干渉部が設けられていない部分に比べて幅が狭く形成され、かつ前記干渉部を区画するバンクにおける内面部の高さは、前記第1パターン形成領域の前記干渉部が設けられていない部分を区画するバンクにおける内面部の高さよりも低くなっていることを特徴とする請求項1に記載のバンク構造。
【請求項3】
機能液を基板上に配置して膜パターンを形成する方法であって、
前記基板上に、バンク形成材料を設ける工程と、
該バンク形成材料から、バンクによって区画された溝形状の第1パターン形成領域と、該第1パターン形成領域に連続するとともに、前記第1パターン形成領域幅が小さく、前記第1パターン形成領域を区画するバンクの内側面部における高さよりも低いバンクによって区画される溝形状の第2パターン形成領域と、を含むバンク構造を形成する工程と、
前記第1パターン形成領域に機能液を配置することで、毛細管現象によって、前記機能液を前記第1パターン形成領域から前記第2パターン形成領域へと配置させる工程と、
前記第1パターン形成領域及び前記第2パターン形成領域に配置された機能液を硬化処理して膜パターンとする工程と、
を備えたことを特徴とする膜パターンの形成方法。
【請求項4】
フォトリソグラフィ法により前記バンクを形成する場合、前記第2パターン形成領域を区画するバンクの内側面部にハーフトーンマスクを用いて露光した後、現像処理を行うことを特徴とする請求項3に記載の膜パターンの形成方法。
【請求項5】
請求項1又は2に記載のバンク構造体と、該バンク構造体における前記第1パターン形成領域及び前記第2パターン形成領域に形成された膜パターンと、を備えることを特徴とするデバイス。
【請求項6】
前記第1パターン形成領域に形成された膜パターンをゲート配線として、前記第2パターン形成領域に形成された膜パターンをゲート電極とすることを特徴とする請求項5に記載のデバイス。
【請求項7】
前記第1パターン形成領域に形成された膜パターンをソース配線として、前記第2パターン形成領域に形成された膜パターンをソース電極とすることを特徴とする請求項6に記載のデバイス。
【請求項8】
請求項5〜7のいずれか一項に記載のデバイスを備えることを特徴とする電気光学装置。
【請求項9】
請求項8に記載の電気光学装置を備えることを特徴とする電子機器。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate


【公開番号】特開2006−319229(P2006−319229A)
【公開日】平成18年11月24日(2006.11.24)
【国際特許分類】
【出願番号】特願2005−142191(P2005−142191)
【出願日】平成17年5月16日(2005.5.16)
【出願人】(000002369)セイコーエプソン株式会社 (51,324)
【Fターム(参考)】