説明

薄膜トランジスタ基板、その製造方法及び画像表示装置

【課題】InMZnO系半導体膜を有する薄膜トランジスタ基板のドレイン電流のON/OFF比を大きくすることができる薄膜トランジスタ基板の製造方法を提供する。
【解決手段】基板10上に、ゲート電極13、ゲート絶縁膜14、InMZnO(MはGa,Al,Feのうち少なくとも1種)系半導体膜15、ソース電極16s及びドレイン電極16dが形成された薄膜トランジスタ基板1の製造方法であって、所定パターンのInMZnO系半導体膜15を形成する工程と、InMZnO系半導体膜15を覆う少なくとも1種の金属元素を含む金属酸化物、金属窒化物、金属炭化物及び金属酸窒化物のいずれかからなる保護膜17を設ける工程と、保護膜17を覆うアルミニウム、チタン及びモリブデンのいずれかからなる金属膜18を設ける工程と、金属膜18を設けた後に熱処理する工程とを有する。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、薄膜トランジスタ基板、その製造方法及び画像表示装置に関する。さらに詳しくは、InMZnO系半導体膜を有する薄膜トランジスタ基板において、基板に熱ダメージを与えない低温熱処理でもドレイン電流のON/OFF比を大きくすることができる薄膜トランジスタ基板の製造方法、及び薄膜トランジスタ基板並びに画像表示装置に関する。
【背景技術】
【0002】
薄膜トランジスタ(TFT:Thin Film Transistor)基板は、液晶ディスプレイ(LCD:Liquid Crystal Display)や有機ELディスプレイなどの駆動素子基板として用いられている。薄膜トランジスタには、逆スタガ型(トップゲート)やスタガ型(ボトムゲート)等の構造形態があり、また、薄膜トランジスタを構成する半導体膜としては、アモルファスシリコン半導体膜やポリシリコン半導体膜が一般的に適用されている。しかし、アモルファスシリコン半導体膜は、特性が安定しているものの移動度が小さく、一方、ポリシリコン半導体膜は、移動度が高いものの高温(例えば600℃以上)の熱処理工程を必要とする。
【0003】
こうした中、有機EL素子や電気泳動素子を利用したフレキシブルな表示装置(有機ELディスプレイ、電気泳動ディスプレイ等)についての研究開発が活発に行われている。フレキシブルな表示装置に使用するTFT基板の構成部材として、耐熱性に乏しいが柔軟性に優れたプラスチック基板や汎用ガラス基板等が検討されている。表示装置を構成する基板には、駆動素子である薄膜トランジスタを直接形成するため、そうしたプラスチック基板には、薄膜トランジスタを製造する際の工程温度が加わる。しかしながら、プラスチック基板は耐熱性が乏しく、薄膜トランジスタの製造工程中に、プラスチック基板にダメージを与える高温の熱処理工程を含ませることはできない。
【0004】
一方で、近年、酸化物薄膜を半導体膜として用いた薄膜トランジスタの研究が活発に行われている。特許文献1では、In、Ga、Znからなる酸化物(「IGZO」と略す。)の多結晶薄膜をTFTの半導体膜に用いた例が提案され、非特許文献1と特許文献2では、IGZOのアモルファス薄膜をTFTの半導体膜に用いた例が提案されている。これらのIGZOを半導体膜に用いたTFTは、室温での成膜が可能であり、プラスチック基板にダメージを与えることなく形成が可能であるとされている。
【0005】
また、特許文献3では、IGZO薄膜を半導体膜として用いたTFTにおいて、雰囲気の変化に起因する不安定動作を起こさず、安定したTFT動作特性を得るためには、IGZO半導体膜を保護膜で覆って安定性を高めることを提案している。また、特許文献4では、IGZO半導体膜に対し、酸化ガス雰囲気中において200℃以上600℃以下、通常400℃の熱処理を行うことにより、長期間駆動での安定性を高めている。
【先行技術文献】
【非特許文献】
【0006】
【非特許文献1】K.Nomura et.al., Nature, vol.432, p.488-492(2004)
【特許文献】
【0007】
【特許文献1】特開2004−103957号公報
【特許文献2】特表2005−88726号公報
【特許文献3】特開2007−73705号公報
【特許文献4】特開2007−311404号公報
【発明の概要】
【発明が解決しようとする課題】
【0008】
IGZO半導体膜を有するTFTの製造工程では、IGZO半導体膜を成膜した後の他の膜(絶縁膜や電極)の成膜やエッチングが、IGZO半導体膜の半導体特性を低下させる原因になる。例えば、特許文献3に記載の保護膜を設けた場合においては、その後の環境変化に対しては効果があると考えられるが、保護膜形成前にIGZO半導体膜に加わったダメージを解消できておらず、例えば大きなON/OFF比を得ることができない。また、特許文献4では、200℃以上600℃以下(通常400℃)の熱処理を適用してIGZO半導体膜の安定性を高めているが、基板として耐熱性の乏しいプラスチック基板を用いた場合には、基板への熱ダメージが大きく、そうした手段は適用できない。例えば、フレキシブル基板として好ましく用いるポリエチレンナフタレート基板は、ガラス転移温度が150℃以下であり、概ね200℃を超えた温度での熱処理は避けるべきである。
【0009】
本発明は、上記の現況に鑑みてなされたものであって、その目的は、InMZnO系半導体膜を有する薄膜トランジスタ基板のドレイン電流のON/OFF比を大きくすることができる薄膜トランジスタ基板の製造方法を提供することにある。
【0010】
本発明の他の目的は、InMZnO系半導体膜の形成基板として高温熱処理を適用できないプラスチック基板を用いた場合に、プラスチック基板に熱ダメージを与えない低温熱処理でもドレイン電流のON/OFF比が大きい薄膜トランジスタ基板を提供すること、及びその薄膜トランジスタ基板を有する画像表示装置を提供することにある。
【課題を解決するための手段】
【0011】
本発明者は、InMZnO系半導体膜を有する薄膜トランジスタ基板の高品質化についての研究過程で、成膜したInMZnO系半導体膜上又は上方に特定の化合物膜を形成し、さらにその化合物膜上に特定の金属膜を形成した後に熱処理を施すことによって、薄膜トランジスタのドレイン電流のON/OFF比を大きくすることができることを発見し、本発明を完成させた。
【0012】
すなわち、本発明に係る薄膜トランジスタ基板の製造方法は、基板上に、ゲート電極、ゲート絶縁膜、InMZnO(MはGa,Al,Feのうち少なくとも1種)系半導体膜、ソース電極及びドレイン電極が形成された薄膜トランジスタ基板の製造方法であって、所定パターンの前記InMZnO系半導体膜を形成する工程と、前記InMZnO系半導体膜を覆う少なくとも1種の金属元素を含む金属酸化物、金属窒化物、金属炭化物及び金属酸窒化物のいずれかからなる保護膜を設ける工程と、前記保護膜を覆うアルミニウム、チタン及びモリブデンのいずれかからなる金属膜を設ける工程と、前記金属膜を設けた後に熱処理する工程と、を有することを特徴とする。
【0013】
InMZnO系半導体膜は、そのパターニングやその上に他の膜(例えばゲート絶縁膜、ソース電極・ドレイン電極、保護膜)を形成した際に欠陥等が生じて半導体特性が低下(例えば導体化)する。この発明によれば、所定パターンのInMZnO系半導体膜を覆う保護膜(少なくとも1種の金属元素を含む金属酸化物、金属窒化物、金属炭化物及び金属酸窒化物のいずれかからなる膜)を設け、さらに金属膜(アルミニウム、チタン及びモリブデンのいずれかからなる膜)を設けた後に熱処理を施すことによって、薄膜トランジスタのドレイン電流のON/OFF比を大きくすることができる。こうした特定種の膜をInMZnO系半導体膜上に積層して熱処理を施すことにより、その熱処理時に保護膜と金属膜との界面で生じた原子状水素が、InMZnO系半導体膜中で半導体特性を低下させる欠陥を終端したためと考えられる。こうして得られた薄膜トランジスタ基板は、安定で高品質な駆動素子基板として利用でき、特に大面積の表示装置のTFT基板として好ましい。
【0014】
本発明に係る薄膜トランジスタ基板の製造方法は、その構造形態により、以下の(1)〜(4)に示すように特定できる。
【0015】
(1)ボトムゲートトップコンタクト構造に係る薄膜トランジスタ基板の製造方法は、基板上に所定パターンのゲート電極を形成する工程と、前記ゲート電極を覆うゲート絶縁膜を形成する工程と、前記ゲート絶縁膜上に所定パターンのInMZnO系半導体膜を形成する工程と、前記InMZnO系半導体膜上に所定パターンのソース電極及びドレイン電極を形成する工程と、前記ソース電極及びドレイン電極を覆う保護膜を形成する工程と、前記保護膜上に金属膜を形成する工程と、前記金属膜を設けた後に熱処理する工程と、前記金属膜を除去する工程と、を有する。
【0016】
(2)ボトムゲートボトムコンタクト構造に係る薄膜トランジスタ基板の製造方法は、基板上に所定パターンのゲート電極を形成する工程と、前記ゲート電極を覆うゲート絶縁膜を形成する工程と、前記ゲート絶縁膜上に所定パターンのソース電極及びドレイン電極を形成する工程と、前記ソース電極及びドレイン電極を渡る所定パターンのInMZnO系半導体膜を形成する工程と、前記InMZnO系半導体膜を覆う保護膜を形成する工程と、前記保護膜上に金属膜を形成する工程と、前記金属膜を設けた後に熱処理する工程と、前記金属膜を除去する工程と、を有する。
【0017】
(3)トップゲートトップコンタクト構造に係る薄膜トランジスタ基板の製造方法は、基板上に所定パターンのInMZnO系半導体膜を形成する工程と、前記InMZnO系半導体膜上に所定パターンのソース電極及びドレイン電極を形成する工程と、前記ソース電極及びドレイン電極を覆う保護膜でもあるゲート絶縁膜を形成する工程と、前記ゲート絶縁膜上に金属膜を形成する工程と、前記金属膜を設けた後に熱処理する工程と、前記金属膜をエッチングして所定パターンのゲート電極を形成する工程と、を有する。
【0018】
(4)トップゲートボトムコンタクト構造に係る薄膜トランジスタ基板の製造方法は、基板上に所定パターンのソース電極及びドレイン電極を形成する工程と、前記ソース電極及びドレイン電極を渡る所定パターンのInMZnO系半導体膜を形成する工程と、前記InMZnO系半導体膜を覆う保護膜でもあるゲート絶縁膜を形成する工程と、前記ゲート絶縁膜上に金属膜を形成する工程と、前記金属膜を設けた後に熱処理する工程と、前記金属膜をエッチングして所定パターンのゲート電極を形成する工程と、を有する。
【0019】
これら(1)〜(4)の発明によれば、各構造の薄膜トランジスタ基板において、所定パターンのInMZnO系半導体膜を覆う特定種の保護膜(又は保護膜でもあるゲート絶縁膜)を設け、さらに特定種の金属膜を設けた後に熱処理を施すことによって、薄膜トランジスタのドレイン電流のON/OFF比を大きくすることができる。
【0020】
本発明に係る薄膜トランジスタ基板の製造方法において、前記熱処理を、窒素ガス雰囲気、酸化性ガス雰囲気又は水蒸気雰囲気で行うことが好ましい。
【0021】
この発明によれば、これらの雰囲気で熱処理することにより、上記効果を実現できる。
【0022】
本発明に係る薄膜トランジスタ基板の製造方法において、前記熱処理が、前記基板に熱ダメージを与えない200℃以下の温度での熱処理である。
【0023】
この発明によれば、200℃以下の低温熱処理でもドレイン電流のON/OFFを高めることができる。
【0024】
本発明に係る薄膜トランジスタ基板の製造方法において、前記基板がプラスチック基板である。
【0025】
この発明によれば、非耐熱基板であるプラスチック基板を用いた場合、そのプラスチック基板に悪影響が生じない低温熱処理でもドレイン電流のON/OFFを高めることができる。また、プラスチック基板で構成した薄膜トランジスタ基板はフレキシブル性と軽量化を実現できるので、得られる薄膜トランジスタ基板は、大面積のフレキシブルディスプレイの薄膜トランジスタ基板として好ましく適用できる。
【0026】
上記課題を解決する本発明に係る薄膜トランジスタ基板は、プラスチック基板と、ゲート電極と、ゲート絶縁膜と、InMZnO(MはGa,Al,Feのうち少なくとも1種)系半導体膜と、ソース電極と、ドレイン電極とを少なくとも有する薄膜トランジスタ基板において、薄膜トランジスタのドレイン電流のON/OFF比が少なくとも10以上であることを特徴とする。
【0027】
この発明によれば、基板として非耐熱性のプラスチック基板を有し、半導体膜としてInMZnO系半導体膜を有し、薄膜トランジスタのON/OFF比が少なくとも10以上となる従来では得ることができなかった薄膜トランジスタ基板を提供できる。
【0028】
本発明に係る薄膜トランジスタ基板において、前記薄膜トランジスタが、ボトムゲートトップコンタクト構造、ボトムゲートボトムコンタクト構造、トップゲートトップコンタクト構造又はトップゲートボトムコンタクト構造である。
【0029】
この発明によれば、各構造の薄膜トランジスタにおいて、ドレイン電流のON/OFF比の大きな薄膜トランジスタ基板を提供することができる。
【0030】
上記課題を解決するための本発明に係る画像表示装置は、上記本発明に係る薄膜トランジスタ基板をアクティブマトリックス型スイッチング素子基板として用いることを特徴とする。
【0031】
この発明によれば、ON/OFF比の大きい薄膜トランジスタ基板を用いるので、高品質なアクティブマトリックス型スイッチング素子基板を有する画像表示装置となる。また、基板としてプラスチック基板を適用した場合には、大面積のフレキシブルディスプレイのスイッチング素子基板として好ましく適用できる。
【発明の効果】
【0032】
本発明に係る薄膜トランジスタ基板の製造方法によれば、所定パターンのInMZnO系半導体膜を覆う保護膜を設け、さらに金属膜を設けた後に熱処理を施すので、薄膜トランジスタのドレイン電流のON/OFF比を大きくすることができる。得られた薄膜トランジスタ基板は、安定で高品質な駆動素子基板として利用でき、特に大面積の表示装置のTFT基板として好ましい。
【0033】
本発明に係る薄膜トランジスタ基板は、基板として非耐熱性のプラスチック基板を有し、半導体膜としてInMZnO系半導体膜を有し、薄膜トランジスタのON/OFF比が少なくとも10以上となる従来では得ることができなかった薄膜トランジスタ基板であり、例えば有機EL素子を利用したフレキシブル有機ELディスプレイや、電気泳動素子を利用したフレキシブル電気泳動ディスプレイ(電子ペーパ)等の表示装置に好ましく用いることができる。
【0034】
本発明に係る画像表示装置は、高品質なアクティブマトリックス型スイッチング素子基板を有する画像表示装置であるので、特に基板としてプラスチック基板を適用した場合には、大面積のフレキシブルディスプレイのスイッチング素子基板として好ましく適用できる。
【図面の簡単な説明】
【0035】
【図1】本発明の第1形態に係る薄膜トランジスタ素子基板とその製造方法の例を示す説明図である。
【図2】本発明の第2形態に係る薄膜トランジスタ素子基板とその製造方法の例を示す説明図である。
【図3】本発明の第3形態に係る薄膜トランジスタ素子基板とその製造方法の例を示す説明図である。
【図4】本発明の第4形態に係る薄膜トランジスタ素子基板とその製造方法の例を示す説明図である。
【図5】実施例と比較例で得られた薄膜トランジスタ基板において、ゲート電圧に対するドレイン電流の変化を示すグラフである。
【発明を実施するための形態】
【0036】
以下、本発明に係る薄膜トランジスタ素子基板及びその製造方法、並びに画像表示装置について詳細に説明する。なお、本発明は図面の形態や以下の実施形態に限定されるものではない。
【0037】
[基本構成]
本発明に係る薄膜トランジスタ基板(以下「TFT基板」と略す。)1の製造方法は、基板10上に、ゲート電極13、ゲート絶縁膜14、InMZnO系半導体膜(以下「IMZO半導体膜」と略す。)15、ソース電極16s及びドレイン電極16dが形成されたTFT基板の製造方法である。そして、その特徴は、所定パターンのIMZO半導体膜15を形成する工程と、そのIMZO半導体膜15を覆う少なくとも1種の金属元素を含む金属酸化物、金属窒化物、金属炭化物及び金属酸窒化物のいずれかからなる保護膜17を設ける工程と、その保護膜17を覆うアルミニウム、チタン及びモリブデンのいずれかからなる金属膜18を設ける工程と、その金属膜18を設けた後に熱処理する工程と、を有することにある。
【0038】
本発明者は、IMZO半導体膜15を有するTFT基板1の高品質化についての研究過程で、IMZO半導体膜15が、そのパターニングやその上に他の膜(例えばゲート絶縁膜14、ソース電極16s・ドレイン電極16d、保護膜17)を形成した際に欠陥等が生じて半導体特性が低下(例えば導体化)するという課題を得た。この課題に対し、本発明者は、IMZO半導体膜15上又はその上方にIMZO半導体膜15を覆う保護膜17(少なくとも1種の金属元素を含む金属酸化物、金属窒化物、金属炭化物及び金属酸窒化物のいずれかからなる膜)を設け、さらに金属膜18(アルミニウム、チタン及びモリブデンのいずれかからなる膜)を設けた後に熱処理を施すことによって、ドレイン電流のON/OFF比を大きくできることを発見した。
【0039】
こうした製造方法で得られたTFT基板1(1A〜1D)は、図1(B)、図2(B)、図3(B)及び図4(B)に示すように、基板10と、ゲート電極13と、ゲート絶縁膜14と、IMZO半導体膜15と、ソース電極16sと、ドレイン電極16dとを少なくとも有するものであって、そのドレイン電流のON/OFF比が少なくとも10以上という大きな値となっている。特に基板10が高温で熱処理できない非耐熱性のプラスチック基板である場合においては、ドレイン電流のON/OFF比が少なくとも10以上となり、従来では得ることができなかった高品質のTFT基板1を提供できる。こうしたTFT基板1は、例えば有機EL素子を利用したフレキシブル有機ELディスプレイや、電気泳動素子を利用したフレキシブル電気泳動ディスプレイ(電子ペーパ)等の表示装置に好ましく用いることができる。
【0040】
TFT基板1の構造形態は特に限定されず、図1(B)に示す形態(第1形態)のボトムゲートボトムコンタクト構造であってもよいし、図2(B)に示す形態(第2形態)のボトムゲートトップコンタクト構造であってもよいし、図3(B)に示す形態(第3形態)のトップゲートトップコンタクト構造であってもよいし、図4(B)に示す(第4形態)のトップゲートボトムコンタクト構造であってもよく、いずれの構造形態であっても高いTFT特性を有するので、安定で高品質な駆動素子基板として利用でき、特に大面積の表示装置のTFT基板として好ましく適用できる。
【0041】
次に、本発明に係るTFT基板1の製造方法について、その構造形態により以下の第1実施形態〜第4実施形態に分けて詳しく説明する。なお、「上に」とは、そのものの上に設けられていることを意味し、「覆う」とは、そのものの上に設けられるとともに、そのものの周りにも設けられていることを意味する。
【0042】
[第1実施形態]
ボトムゲートトップコンタクト構造に係るTFT基板1Aの製造方法は、図1に示すように、基板10上に所定パターンのゲート電極3を形成する工程と、ゲート電極13を覆うゲート絶縁膜14を形成する工程と、ゲート絶縁膜14上に所定パターンのIMZO半導体膜15を形成する工程と、IMZO半導体膜15上に所定パターンのソース電極16s及びドレイン電極16dを形成する工程と、ソース電極16s及びドレイン電極16dを覆う保護膜17を形成する工程と、保護膜17上に金属膜18を形成する工程と、金属膜18を設けた後に熱処理する工程と、金属膜18を除去する工程と、を有する。なお、図1(A)は金属膜18を除去する前のTFT基板1A’であり、図1(B)は金属膜18を除去した後のTFT基板1Aである。また、図1では、基板10上には、必要に応じて設けられる第1下地膜11と、その第1下地膜11上に必要に応じて形成される第2下地膜12とを示しているが、その第1下地膜11の形成工程と第2下地膜12の形成工程は任意である。
【0043】
(ゲート電極形成工程)
先ず、基板10上に所定パターンのゲート電極3を形成する。基板10の種類や構造は特に限定されるものではなく、用途に応じてフレキシブルな材質や剛性を有する材質等が選択される。具体的に用いることができる材料としては、例えば、ガラス、石英、ポリエチレン、ポリプロピレン、ポリエチレンテレフタレート、ポリメタクリレート、ポリメチルメタクリレート、ポリメチルアクリレート、ポリエステル、ポリカーボネート、ポリサルホン、ポリアリレート、ポリエーテルサルホン、ポリアミド、ポリエーテルイミド等を挙げることができる。通常は、透明電極であるITO付きガラス基板やITO付きプラスチック基板等が好ましく用いられる。
【0044】
基板10の厚さは、得られるTFT基板にフレキシブル性を持たせるか否かによっても異なり特に限定されないが、厚さ5〜300μmのフレキシブルなプラスチック基板が好ましく用いられる。また、ガラス基板の場合には、厚さ50μm〜3mm程度のものが用いられる。基板10の形状は特に限定されないが、パネル状、チップ状、カード状、ディスク状等を挙げることができる。なお、枚葉状又は連続状の基板10上にTFT基板を形成した後に個々のパネル状、チップ状、カード状、ディスク状に分断加工してもよい。
【0045】
本発明に係る製造方法では、後述するように、熱処理を約200℃以下の低温で行うことができるので、耐熱性に乏しい非耐熱性基板であるプラスチック基板や、耐熱性の点ではやや劣るが安価な無アルカリガラス基板を基板10として用いることができる点で顕著な効果がある。
【0046】
基板10上には、必要に応じて第1下地膜11や第2下地膜12を形成する。第1下地膜11や第2下地膜12は、その機能や目的に応じて必要な領域のみに形成してもよいし全面に形成してもよい。第1下地膜11と第2下地膜12は、クロム、チタン、アルミニウム、ケイ素、酸化クロム、酸化チタン、酸化アルミニウム、酸化ケイ素、窒化ケイ素、及び酸窒化ケイ素の群から選択されるいずれかの材料で形成される。例えば密着膜として用いる場合には、クロム、チタン、アルミニウム、又はケイ素等からなる金属系の無機膜が好ましく用いられ、応力緩和膜やバッファ膜(熱緩衝膜)として用いる場合には、酸化クロム、酸化チタン、酸化アルミニウム、酸化ケイ素、窒化ケイ素、又は酸窒化ケイ素等からなる化合物膜が好ましく用いられ、バリア膜として用いる場合には、酸化ケイ素又は酸窒化ケイ素等からなる化合物膜が好ましく用いられる。これらの膜は、その機能や目的に応じて、単層で設けてもよいし、2層以上を積層してもよい。
【0047】
好ましい例としては、第1下地膜11を密着膜として、クロム、チタン、アルミニウム、又はケイ素等からなる金属系の無機膜を形成し、第2下地膜12をバッファ膜として、酸化クロム、酸化チタン、酸化アルミニウム、酸化ケイ素、窒化ケイ素、又は酸窒化ケイ素等からなる化合物膜を積層することが好ましい。
【0048】
第1下地膜11を密着膜として形成する場合の厚さは、膜を構成する材質によってその範囲は若干異なるが、通常1nm以上200nm以下程度の範囲内であることが好ましく、3nm以上50nm以下程度の範囲内であることがより好ましい。一方、第2下地膜12をバッファ膜として形成する場合の厚さも実際に形成する膜の材質によってその範囲は若干異なるが、その厚さとしては、通常、100nm以上1000nm以下程度の範囲内であることが好ましく、成膜時間の点からは100nm以上500nm以下程度の範囲内であることがより好ましい。
【0049】
こうした第1下地膜11と第2下地膜12は、各種の蒸着法、DCスパッタリング法、RFマグネトロンスパッタリング法、プラズマCVD法等の各種の方法で形成することができるが、実際には、膜を構成する材質に応じた好ましい方法が採用される。通常は、DCスパッタリング法やRFマグネトロンスパッタリング法等が好ましく用いられる。
【0050】
ゲート電極13を、基板10上又は第1下地膜11乃至第2下地膜12が設けられている場合にはその上に所定パターンで形成する。ゲート電極材料としては、例えば、ITO(インジウム錫オキサイド)、酸化インジウム、IZO(インジウム亜鉛オキサイド)、SnO、ZnO等の透明導電材料、Al、W、Ta、Mo、Cr、Ti、Cu、Au、AlMg、MoW、MoNb等の金属材料を好ましく挙げることができる。なお、所望の導電性を有するものであれば、ポリアニリン、ポリアセチレン、ポリアルキルチオフェン誘導体、ポリシラン誘導体のような透明な導電性高分子等であってもよい。
【0051】
ゲート電極13の形成は、ゲート電極材料の種類や基板10の耐熱性に応じた成膜手段とパターニング手段が適用される。例えば、透明導電材料又は金属材料でゲート電極13を形成する場合には、成膜手段としてスパッタリング法や各種CVD法等を適用でき、パターニング手段としてフォトリソグラフィを適用できるが、低温成膜が要求される場合には、成膜手段として低温成膜可能なスパッタリング法やプラズマCVD法を好ましく適用できる。また、導電性高分子でゲート電極13を形成する場合には、成膜手段として真空蒸着法やパターン印刷法等を適用でき、パターニング手段としてフォトリソグラフィを適用できる。ゲート電極13の厚さは、通常、0.05〜0.1μm程度である。
【0052】
(ゲート絶縁膜形成工程)
次に、ゲート電極13を覆うゲート絶縁膜14を形成する。ゲート絶縁膜14は、絶縁性が高く、誘電率が比較的高く、TFTのゲート絶縁膜として適しているものであれば各種の材料を用いることができる。例えば、酸化ケイ素、窒化ケイ素、酸窒化ケイ素等のケイ素の酸化物、窒化物、酸窒化物等を好ましく挙げることができる。また、酸化イットリウム、酸化アルミニウム、酸化ハフニウム、酸化ジルコニウム、酸化チタン、酸化タンタル、酸化ニオブ、酸化スカンジウム、チタン酸バリウムストロンチウムのうち少なくとも1種又は2種以上を挙げることができる。
【0053】
ゲート絶縁膜14の形成は、ゲート絶縁膜材料の種類や基板10の耐熱性に応じた成膜手段とパターニング手段が適用される。例えば、ケイ素の酸化物、窒化物、酸窒化物等でゲート絶縁膜14を形成する場合には、成膜手段としてDCスパッタリング法、RFマグネトロンスパッタリング法、プラズマCVD法等を適用でき、パターニング手段としてフォトリソグラフィを適用できる。ゲート絶縁膜14の厚さは、通常、0.1〜0.3μm程度である。また、公知の塗布型ゲート絶縁膜形成材料を用いてゲート絶縁膜14を塗布形成してもよく、この場合の厚さは、通常、0.2〜1.0μm程度である。
【0054】
(IMZO半導体膜形成工程)
次に、ゲート絶縁膜14上に所定パターンのIMZO半導体膜15を形成する。IMZO半導体膜15を構成する酸化物は、InMZnO(MはGa,Al,Feのうち少なくとも1種)を主たる構成元素とするアモルファス酸化物である。
【0055】
特に、MがGaであるInGaZnO系のアモルファス酸化物が好ましく、この場合、In:Ga:Znの比が1:1:m(m<6)であることが好ましい。また、Mgをさらに含む場合においては、In:Ga:Zn1-xMgxの比が1:1:m(m<6)で0<x≦1であることが好ましい。なお、組成割合は、蛍光X線(XRF)装置によって測定したものである。InGaZnO系のアモルファス酸化物については、InとGaとZnの広い組成範囲でアモルファス相を示す。この三元系でアモルファス相を安定して示す組成範囲としては、InGaZn(3x/2+3y/2+z)で比率x/yが0.4〜1.4の範囲であり、比率z/yが0.2〜12の範囲にあるように表すことができる。なお、ZnOに近い組成とInに近い組成で結晶質を示す。また、アモルファス酸化物が、InxGa1-x酸化物(0≦x≦1)、InxZn1-x酸化物(0.2≦x≦1)、InxSn1-x酸化物(0.8≦x≦1)、Inx(Zn,Sn)1-x酸化物(0.15≦x≦1)から選ばれるいずれかのアモルファス酸化物であってもよい。
【0056】
本発明では、後述の実施例で用いたInGaZnO系半導体膜(IGZO半導体膜)を好ましく挙げることができる。また、このIGZO半導体膜には、必要に応じて、Al、Fe、Sn等を構成元素として加えたものであってもよい。このIGZO半導体膜15は、可視光を透過して透明膜又は半透明膜となるので、液晶や有機ELを駆動するTFTの半導体膜として用いれば、その半導体膜を開口部領域にも設けることができ、光開口部を拡大することができる。その結果、液晶表示装置、有機EL表示装置、電子ペーパ等の駆動用TFT基板を構成する半導体膜に利用可能である。このIGZO半導体膜は、室温から150℃程度の低温での成膜が可能であることから、耐熱性に乏しいプラスチック基板やガラス基板に対して好ましく適用できる。
【0057】
IMZO半導体膜15がアモルファスであるか否かは、測定対象となるIMZO半導体膜に入射角度0.5°程度の低入射角によるX線回折を行った場合に、結晶質の存在を示す明瞭な回折ピークが検出されないこと、すなわち所謂ハローパターンが見られることで確認できる。そうしたハローパターンは、微結晶状態のIMZO半導体膜でも見られるので、このIMZO半導体膜15には、そのような微結晶状態のIMZO半導体膜も含まれるものとする。
【0058】
IMZO半導体膜15の形成は、半導体材料の種類や基板10の耐熱性に応じた成膜手段とパターニング手段が適用される。例えば、成膜手段としてDCスパッタリング法、RFマグネトロンスパッタリング法、プラズマCVD法等を適用でき、パターニング手段としてフォトリソグラフィを適用できる。なお、スパッタリングで成膜する場合におけるスパッタリングターゲットしては、所定のスパッタリング条件下で目的の成膜組成が得られるように調整されたスパッタリングターゲットを用いることが好ましい。通常、目的とする成膜組成と同じ組成のスパッタリングターゲットが好ましく用いられる。IMZO半導体膜15の厚さは、成膜条件によって任意に設計されるために一概には言えないが、通常10〜150nmの範囲内であることが好ましく、30〜100nmの範囲内であることがより好ましい。
【0059】
なお、所定パターンのIMZO半導体膜15の形成工程では、(i)ゲート絶縁膜14を覆う全面にIMZO半導体膜15を形成し、次いで、全面に形成されたIMZO半導体膜15をフォトレジストを用いたパターニング(露光、現像、エッチング)し、図1に示すパターンに加工する方法、又は、(ii)ゲート絶縁膜14を覆う全面にIMZO半導体膜15を形成し、さらにそのIMZO半導体膜15を覆う全面にパッシベーション膜を形成し、次いで、パッシベーション膜をフォトレジスト法にて所定パターンにパターニング(露光、現像、エッチング)し、パターニングされたパッシベーション膜をマスクにしてIMZO半導体膜15をパターニング(エッチング)し、図1に示すパターンに加工する方法、のいずれかを適用できる。
【0060】
ここで用いるパッシベーション膜は、液状にしたシリカ(SiOの水和物)やポリイミド樹脂等のパッシベーション膜用材料を塗布法で成膜し、その後にレジストを用いてパターニングすることができる。また、感光性を有するパッシベーション膜用材料を塗布法で成膜し、その後に露光現像して所定パターンのパッシベーション膜を形成してもよい。こうしたパッシベーション膜の厚さは、通常、0.1〜3μm程度である。
【0061】
(ソース電極・ドレイン電極形成工程)
次に、IMZO半導体膜15上に所定パターンのソース電極16s及びドレイン電極16dを形成する。ソース電極材料及びドレイン電極材料は、IGZO半導体膜15とのオーミック接触が考慮されて選択され、例えば、Ti、Ag、Mo、MoW等の金属膜や、ITO(インジウム錫オキサイド)、酸化インジウム、IZO(インジウム亜鉛オキサイド)、SnO、ZnO等の透明導電膜を好ましく挙げることができる。また、所望の導電性を有するものであれば、ポリアニリン、ポリアセチレン、ポリアルキルチオフェン誘導体、ポリシラン誘導体のような導電性高分子等であってもよい。
【0062】
ソース電極16s及びドレイン電極16dの形成は、電極材料の種類や基板10の耐熱性に応じた成膜手段とパターニング手段が適用される。例えば、金属膜や透明導電膜でソース電極16s及びドレイン電極16dを形成する場合には、成膜手段としてDCスパッタリング法、RFマグネトロンスパッタリング法、プラズマCVD法等を適用でき、パターニング手段としてフォトリソグラフィを適用できる。ソース電極16s及びドレイン電極16dの厚さは、通常、0.1〜0.3μm程度である。
【0063】
なお、IMZO半導体膜15上にパッシベーション膜を形成した場合(図示していない)には、ソース電極16s及びドレイン電極16dの形成に先立って、IMZO半導体膜15のチャネル領域以外のパッシベーション膜にコンタクトホールを形成してもよい。こうしたパッシベーション膜は、IMZO半導体膜15のチャネル領域を保護しつつ、コンタクトホール部にソース電極接続部とドレイン電極接続部とを形成するために設けられる。
【0064】
ところで、コンタクトホールを有するパッシベーション膜を設けた後には、通常、活性化処理が行われる。この活性化処理により、コンタクトホール部で露出したIMZO半導体膜15の導電性を高めてソース電極接続部及びドレイン電極接続部とすることができる。導電性を高めたソース電極接続部及びドレイン電極接続部にソース電極16s及びドレイン電極16dをパターン成膜すると、ソース電極接続部及びドレイン電極接続部それぞれに対するソース電極16s及びドレイン電極16dのオーミック抵抗を低減することができる。なお、活性化処理として代表的なプラズマ処理は、IMZO半導体膜15に酸素欠損を生じさせる。
【0065】
(保護膜形成工程)
次に、ソース電極16s及びドレイン電極16dを覆う保護膜17を形成する。保護膜17は、図1に示すように、TFT基板1を構成するTFTを保護するように作用する膜である。保護膜17を設けることにより、TFTの動作が雰囲気(例えば、水分、真空、温度)による影響を受けず、雰囲気の変化による不安定動作が生じずに、安定に動作させることができるという効果が得られる。したがって、保護膜17は、TFTの基本構造が形成された後にその全体を覆うように設けられている。
【0066】
保護膜17の形成材料としては、少なくとも1種の金属元素を含む金属酸化物、金属窒化物、金属炭化物、金属酸窒化物等を挙げることができる。金属としては、ケイ素、アルミニウム等が好ましく、具体的には、金属酸化物としては、SiO、Al等を挙げることができ、金属窒化物としては、Si、AlN等を挙げることができ、金属炭化物としては、SiC、TiC等を挙げることができ、金属酸窒化物としては、SiON、SiAlON等を挙げることができる。中でも、SiOからなる保護膜が好ましい。
【0067】
保護膜17の形成方法としては、スパッタリング法、抵抗加熱蒸着法、レーザー蒸着法、電子ビーム蒸着法、化学気相成長法(CVD法)等を挙げることができる。保護膜17の厚さは、成膜条件によって任意に設計されるために一概には言えないが、通常10nm以上200nm以下の範囲内であることが好ましく、50nm以上150nm以下の範囲内であることがより好ましい。
【0068】
(金属膜形成工程)
次に、保護膜17上に金属膜18を形成する。図1(A)は、金属膜18を形成した後のTFT基板1A’である。金属膜18としては、Al,Ti,Mo等の金属からなる膜を好ましく挙げることができ、特にAlからなる膜が好ましい。金属膜18の形成方法としては、スパッタリング法、抵抗加熱蒸着法、レーザー蒸着法、電子ビーム蒸着法、化学気相成長法(CVD法)等を挙げることができる。金属膜18の厚さは成膜条件によって任意に設計されるために一概には言えないが、通常20nm以上250nm以下の範囲内であることが好ましく、20nm以上200nm以下の範囲内であることがより好ましい。
【0069】
(熱処理工程)
次に、金属膜18を設けた後に熱処理する。ここでの熱処理は、IMZO半導体膜15上に保護膜17と金属層18が積層された態様で施すが、パッシベーション膜がIMZO半導体膜15上に設けられていた態様で施してもよい。熱処理は、IMZO半導体膜15の半導体特性を高めるように作用する。具体的には、TFTのドレイン電流のON/OFF比を少なくとも10以上に大きくすることができる。
【0070】
ところで、IMZO半導体膜15は、IMZO半導体膜15上に形成するソース電極16sとドレイン電極16dの形成工程でのスパッタリング時又はプラズマCVD時のプラズマ、保護膜17の形成工程でのスパッタリング時又はプラズマCVD時のプラズマ等で大きなダメージを受ける。具体的には、特にプラズマによって、IMZO半導体膜15の酸化物に欠陥が生じて導体化(電気導電性が高くなる)し、半導体特性が低下する。本発明では、IMZO半導体膜15上に保護膜17(少なくとも1種の金属元素を含む金属酸化物、金属窒化物、金属炭化物及び金属酸窒化物のいずれかからなる膜)と金属層18(アルミニウム、チタン及びモリブデンのいずれかからなる膜)を積層した態様で熱処理することによって、導体化して半導体特性が著しく低下したIMZO半導体膜15の特性を上記のように顕著に向上させることができる。
【0071】
このような効果が生じる理由としては、おそらく、上記した特定種の膜(保護膜17と金属膜18)をIMZO半導体膜15上に積層して熱処理を施すことにより、その熱処理時に保護膜17と金属膜18との界面で生じた原子状水素が、IMZO半導体膜15中に生じた欠陥を終端したためと考えられる。詳しくは、金属膜18中の金属(例えばAl)と保護膜17中の水又は水酸基が界面で反応して該金属(例えばAl)が酸化し、その結果として発生する原子状水素が、IMZO半導体膜15にまで拡散し、IMZO半導体膜15中の欠陥部分を終端し、その結果、プラズマダメージによって導体化したIMZO半導体膜15の半導体特性を回復させたものと推察される。
【0072】
従来、半導体特性を安定化させる熱処理温度は数百℃(約400℃前後)という高温であったが、本発明では、熱処理温度が200℃以下という低温であっても、上記作用効果を生じさせることができる点に意義があり、その結果、IMZO半導体膜15の半導体特性を高めることができる。こうした低温での熱処理で半導体特性を高めることができるので、プラズマを発生させるスパッタリング法やプラズマCVD法、特に低温で効率的に成膜できるスパッタリング法でソース電極16sとドレイン電極16dの形成、保護膜17の形成、パッシベーション膜の形成等も問題なく適用でき、製造工程上の自由度が増し且つ製造の効率化が図れる。また、非耐熱性基板であるプラスチック基板や耐熱性にやや乏しい無アルカリガラス等を基板10として用いた場合であっても、熱処理時での歩留まり低下を生じさせないという利点がある。プラスチック基板で構成することができれば、TFT基板1のフレキシブル性と軽量化を実現できるので、大面積のフレキシブルディスプレイのTFT基板1を安価に製造でき、安定で高品質な駆動素子基板として特に大面積の表示装置のTFT基板として好ましく適用できる。
【0073】
IMZO半導体膜15の半導体特性を向上させるための熱処理温度としては、100℃〜400℃の範囲を挙げることができ、特に非耐熱性基板を用いた場合には100℃〜200℃の範囲を挙げることができる。
【0074】
熱処理は、窒素ガス雰囲気、酸化性ガス雰囲気及び水蒸気雰囲気のいずれかの雰囲気中で行うことが好ましい。例えば、酸素ガスを含む酸化性ガス雰囲気中で熱処理を行うことにより、上記のIMZO半導体膜15の半導体特性を高めることができるとともに、その半導体特性の向上はAlの酸化により、より促進されるという効果がある。また、水蒸気雰囲気中で熱処理を行うことにより、上記のIMZO半導体膜15の半導体特性を高めることができるとともに、水蒸気中の水素が半導体膜、絶縁膜の未結合部分を終端し、よりTFT特性が向上するという効果がある。
【0075】
酸化性ガス雰囲気中での熱処理では、雰囲気ガス圧が0.01気圧〜1気圧の範囲であることが前記した金属(例えばAl)の酸化を促進させる点で好ましい。また、水蒸気雰囲気中での熱処理では、水蒸気圧が1気圧〜20気圧の範囲であることが前記したTFT特性の向上効果を促進させる点で好ましく、5気圧〜15気圧の高圧水蒸気雰囲気であることが特に好ましい。高圧水蒸気雰囲気中での熱処理は、上記のIMZO半導体膜15の半導体特性を高めることができるとともに、ゲート絶縁膜14の界面準位や絶縁特性を向上させることができるので好ましい。
【0076】
(金属膜除去工程)
最後に、金属膜18をエッチングにより除去する。図1(B)は金属膜18を除去した後のTFT基板1Aである。
【0077】
以上のような製造方法により、ボトムゲートトップコンタクト構造に係るTFT基板1Aが得られた。すなわち、その構造形態は、図1(B)に示すように、基板10と、基板10上に必要に応じて設けられた第1下地膜11と、第1下地膜11上に必要に応じて設けられた第2下地膜12と、第2下地膜12(又は基板10若しくは第1下地膜11)上に設けられた所定パターンのゲート電極13と、ゲート電極13を覆うゲート絶縁膜14と、ゲート絶縁膜14上であってゲート電極13の直上に設けられた所定パターンのIMZO半導体膜15と、IMZO半導体膜15上の中央部(チャネル領域)を開けて離間して設けられたソース電極16s及びドレイン電極16dと、それら全体を覆う保護膜17とを有している。こうした構造形態からなるTFT基板1Aは、本発明の趣旨の範囲内であれば、その他の膜を含んでいてもよい。
【0078】
得られたTFT基板1Aの構造形態において、半導体膜としてIMZO半導体膜15を有する場合、従来は高温熱処理で半導体特性を高めたり安定化させたりする以外に手段がなかったが、本発明では、低温での熱処理でも半導体特性を向上させることができた。したがって、基板10として非耐熱性のプラスチック基板を有するTFT基板1Aが良好な半導体特性を示す例は存在し得なかったが、TFTのON/OFF比が少なくとも10以上の良好な半導体特性を持つ従来にないボトムゲートトップコンタクト構造に係るTFT基板1Aが初めて提供される。
【0079】
[第2実施形態]
ボトムゲートボトムコンタクト構造に係るTFT基板1Bの製造方法は、図2に示すように、基板10上に所定パターンのゲート電極13を形成する工程と、ゲート電極13を覆うゲート絶縁膜14を形成する工程と、ゲート絶縁膜14上に所定パターンのソース電極16s及びドレイン電極16dを形成する工程と、ソース電極16s及びドレイン電極16dを渡る所定パターンのIMZO半導体膜15を形成する工程と、IMZO半導体膜15を覆う保護膜17を形成する工程と、保護膜17上に金属膜18を形成する工程と、金属膜18を設けた後に熱処理する工程と、金属膜18を除去する工程と、を有する。この第2実施形態においては、第1実施形態と同じ工程の説明は省略し、異なる点を中心に説明する。なお、図2(A)は金属膜18を除去する前のTFT基板1B’であり、図2(B)は金属膜18を除去した後のTFT基板1Bである。
【0080】
第2実施形態のTFT基板1Bの製造方法において、基板10上に所定パターンのゲート電極13を形成するゲート電極形成工程と、ゲート電極13を覆うゲート絶縁膜14を形成するゲート絶縁膜形成工程は、第1実施形態の場合と同様であり、また、基板10上に第1下地膜11と第2下地膜12を任意に形成する工程についても第1実施形態の場合と同様であるので、それらの説明はここでは省略する。
【0081】
第2実施形態では、ゲート絶縁膜14上に所定パターンのソース電極16s及びドレイン電極16dを形成する。この工程におけるソース電極16sとドレイン電極16dの成膜手段及びパターニング手段は第1実施形態の場合と同様であるので、その説明は省略する。
【0082】
次に、所定パターンで形成されたース電極16s及びドレイン電極16dを渡る所定パターンのIMZO半導体膜15を形成する。この工程では、(i)所定パターンで形成されたソース電極16sとドレイン電極16dを覆う全面にIMZO半導体膜15を形成し、次いで、全面に形成されたIMZO半導体膜15をフォトレジストを用いたパターニング(露光、現像、エッチング)し、図2に示すパターンに加工する方法、又は、(ii)所定パターンで形成されたソース電極16sとドレイン電極16dを覆う全面にIMZO半導体膜15を形成し、さらにそのIMZO半導体膜15を覆う全面にパッシベーション膜を形成し、次いで、パッシベーション膜をフォトレジスト法にて所定パターンにパターニング(露光、現像、エッチング)し、パターニングされたパッシベーション膜をマスクにしてIMZO半導体膜15をパターニング(エッチング)し、図2に示すパターンに加工する方法、のいずれかを適用できる。パッシベーション膜は、第1実施形態の場合と同様であるのでここでは省略する。
【0083】
なお、図2では、IMZO半導体膜15上にパッシベーション膜が残らない上記(i)の方法でIMZO半導体膜15をパターニングしているが、IMZO半導体膜15上にパッシベーション膜が残る上記(ii)の方法でIMZO半導体膜15をパターニングする方法が好ましい。
【0084】
次に、所定パターンのIMZO半導体膜15を覆う全面に保護膜17を形成した後、さらにその保護膜17を覆う全面に金属膜18を形成する。そして、金属膜18を設けた後に熱処理し、熱処理後に金属膜18を除去する。ここでの保護膜形成工程、金属膜形成工程、熱処理工程、金属膜除去工程、及び熱処理工程での半導体特性向上効果についての推察も第1実施形態の場合と同様であるので、その説明は省略する。
【0085】
以上のような製造方法により、ボトムゲートボトムコンタクト構造に係るTFT基板1Bが得られた。すなわち、その構造形態は、図2(B)に示すように、基板10と、基板10上に必要に応じて設けられた第1下地膜11と、第1下地膜11上に必要に応じて設けられた第2下地膜12と、第2下地膜12(又は基板10若しくは第1下地膜11)上に設けられた所定パターンのゲート電極13と、ゲート電極13を覆うゲート絶縁膜14と、ゲート絶縁膜14上であってゲート電極13の中央部直上以外に離間して設けられた所定パターンのソース電極16s及びドレイン電極16dと、ゲート絶縁膜14上であってソース電極16s及びドレイン電極16dに両側で接触するとともに該ソース電極16s及びドレイン電極16dを跨ぐ(渡る)ように形成されたIMZO半導体膜15と、それら全体を覆う保護膜17とを有している。こうした構造形態からなるTFT基板1Bは、本発明の趣旨の範囲内であれば、その他の膜を含んでいてもよい。
【0086】
得られたTFT基板1Bの構造形態においても、第1実施形態の場合と同様、基板10として非耐熱性のプラスチック基板を有するTFT基板1Bが良好な半導体特性を示す例は存在し得なかったが、TFTのON/OFF比が少なくとも10以上の良好な半導体特性を持つ従来にないボトムゲートボトムコンタクト構造に係るTFT基板1Bが初めて提供される。
【0087】
[第3実施形態]
トップゲートトップコンタクト構造に係るTFT基板1Cの製造方法は、図3に示すように、基板10上に所定パターンのInMZnO系半導体膜15を形成する工程と、InMZnO系半導体膜15上に所定パターンのソース電極16s及びドレイン電極16dを形成する工程と、ソース電極16s及びドレイン電極16dを覆う保護膜17でもあるゲート絶縁膜14を形成する工程と、ゲート絶縁膜14上に金属膜18(13’)を形成する工程と、金属膜18(13’)を設けた後に熱処理する工程と、金属膜18(13’)をエッチングして所定パターンのゲート電極13を形成する工程とを有する。この第3実施形態においては、第1,2実施形態と同じ工程の説明は省略し、異なる点を中心に説明する。なお、図3(A)は金属膜18(13’)をエッチングする前のTFT基板1C’であり、図3(B)は金属膜18(13’)をエッチングしてゲート電極13を形成した後のTFT基板1Cである。
【0088】
第3実施形態のTFT基板1Cの製造方法において、基板10と、必要に応じて設けられる第1下地膜11及び第2下地膜12の技術事項については、第1実施形態の場合と同様であるのでここでの説明は省略する。
【0089】
既述した第1実施形態では、図1に示すように、ゲート絶縁膜14上に、IMZO半導体膜形成工程、ソース電極・ドレイン電極形成工程、保護膜形成工程をその順で行っているのに対し、この第3実施形態は、図3に示すように、基板10(又は第1下地膜11若しくは第2下地膜12)上に、IMZO半導体膜形成工程、ソース電極・ドレイン電極形成工程、保護膜形成工程でもあるゲート絶縁膜形成工程をその順で行っている点で、両者の実質的な工程順は同じである。したがって、IMZO半導体膜形成工程、ソース電極・ドレイン電極形成工程、保護膜形成工程(ゲート絶縁膜形成工程)については第1実施形態の場合と同様であるので、その説明は省略する。
【0090】
この第3実施形態において、ゲート絶縁膜形成工程で用いる絶縁材料は、保護膜17としての機能も兼ね備える必要がある。そのため、ゲート絶縁膜14としての作用効果を満たすと共に保護膜17としての作用効果をも満たす、酸化ケイ素、窒化ケイ素、酸窒化ケイ素等のケイ素の酸化物、窒化物、酸窒化物等を好ましく挙げることができる。こうしたゲート絶縁膜14の形成は、第1実施形態で説明したのと同様、ゲート絶縁膜材料の種類や基板10の耐熱性に応じた成膜手段とパターニング手段が適用される。ゲート絶縁膜14の厚さは、通常、0.1〜0.3μm程度である。
【0091】
また、この第3実施形態において、金属膜形成工程で用いる材料は、熱処理工程で保護膜17上に積層する金属膜18となり、上記記載の熱処理効果によりIMZO半導体膜15の半導体特性を向上させる。そのため、ここで用いる金属膜18の材料は、ゲート電極13としても利用可能な材料であって、且つ金属膜18の作用効果を奏する材料であるものが用いられる。そうした材料としては、Al、Ti、Mo等を好ましく用いることができ、特にAlからなる膜が好ましい。金属膜18の形成方法としては、スパッタリング法、抵抗加熱蒸着法、レーザー蒸着法、電子ビーム蒸着法、化学気相成長法(CVD法)等を挙げることができる。金属膜18の厚さは成膜条件によって任意に設計されるために一概には言えないが、通常20nm以上250nm以下の範囲内であることが好ましく、20nm以上200nm以下の範囲内であることがより好ましい。なお、上記金属層18はその後にエッチングされて所定パターンのゲート電極13となる。
【0092】
この第3実施形態でも、第1実施形態の場合と同様、IMZO半導体膜15上にパッシベーション膜を形成してもよい。
【0093】
以上のような製造方法により、トップゲートトップコンタクト構造に係るTFT基板1Cが得られた。すなわち、その構造形態は、図3(B)に示すように、基板10と、基板10上に必要に応じて設けられた第1下地膜11と、第1下地膜11上に必要に応じて設けられた第2下地膜12と、第2下地膜12(又は基板10若しくは第1下地膜11)上に設けられた所定パターンのIMZO半導体膜15と、IMZO半導体膜15上であってIMZO半導体膜15の中央部(チャネル領域)以外に離間して設けられた所定パターンのソース電極16s及びドレイン電極16dと、ソース電極16s、ドレイン電極16d及びIMZO半導体膜15を覆うように設けられたゲート絶縁膜14と、ゲート絶縁膜14上に設けられたゲート電極13とを有している。こうした構造形態からなるTFT基板1Cは、本発明の趣旨の範囲内であれば、その他の膜を含んでいてもよい。
【0094】
得られたTFT基板1Cの構造形態においても、第1,2実施形態の場合と同様、基板10として非耐熱性のプラスチック基板を有するTFT基板1Cが良好な半導体特性を示す例は存在し得なかったが、TFTのON/OFF比が少なくとも10以上の良好な半導体特性を持つ従来にないトップゲートトップコンタクト構造に係るTFT基板1Cが初めて提供される。
【0095】
[第4実施形態]
トップゲートボトムコンタクト構造に係るTFT基板1Dの製造方法は、図4に示すように、基板10上に所定パターンのソース電極16s及びドレイン電極16dを形成する工程と、ソース電極16s及びドレイン電極16dを渡る所定パターンのInMZnO系半導体膜15を形成する工程と、InMZnO系半導体膜15を覆う保護膜17でもあるゲート絶縁膜14を形成する工程と、ゲート絶縁膜14上に金属膜18(13’)を形成する工程と、金属膜18(13’)を設けた後に熱処理する工程と、金属膜18(13’)をエッチングして所定パターンのゲート電極13を形成する工程とを有する。この第4実施形態においては、第1〜3実施形態と同じ工程の説明は省略し、異なる点を中心に説明する。なお、図4(A)は金属膜18(13’)をエッチングする前のTFT基板1D’であり、図4(B)は金属膜18(13’)をエッチングしてゲート電極13を形成した後のTFT基板1Dである。
【0096】
第4実施形態のTFT基板1Cの製造方法において、基板10と、必要に応じて設けられる第1下地膜11及び第2下地膜12の技術事項については、第1実施形態の場合と同様であるのでここでの説明は省略する。
【0097】
既述した第2実施形態では、図2に示すように、ゲート絶縁膜14上に、ソース電極・ドレイン電極形成工程、IMZO半導体膜形成工程、保護膜形成工程をその順で行っているのに対し、この第4実施形態は、図4に示すように、基板10(又は第1下地膜11若しくは第2下地膜12)上に、ソース電極・ドレイン電極形成工程、IMZO半導体膜形成工程、保護膜形成工程でもあるゲート絶縁膜形成工程をその順で行っている点で、両者の実質的な工程順は同じである。したがって、ソース電極・ドレイン電極形成工程、IMZO半導体膜形成工程、保護膜形成工程(ゲート絶縁膜形成工程)については第2実施形態の場合と同様であるので、その説明は省略する。
【0098】
この第4実施形態において、ゲート絶縁膜形成工程で用いる絶縁材料は、上記第3実施形態の場合と同様、保護膜17としての機能も兼ね備える必要がある。そのため、ゲート絶縁膜14としての作用効果を満たすと共に保護膜17としての作用効果をも満たす、酸化ケイ素、窒化ケイ素、酸窒化ケイ素等のケイ素の酸化物、窒化物、酸窒化物等を好ましく挙げることができる。こうしたゲート絶縁膜14の形成は、第3実施形態で説明したのと同様であるので、その説明は省略する。
【0099】
また、この第4実施形態において、金属膜形成工程で用いる材料についても第3実施形態で説明したのと同様であるので、その説明は省略する。また、この第4実施形態でも、第2実施形態の場合と同様、IMZO半導体膜15上にパッシベーション膜を形成してもよい。
【0100】
以上のような製造方法により、トップゲートボトムコンタクト構造に係るTFT基板1Dが得られた。すなわち、その構造形態は、図4(B)に示すように、基板10と、基板10上に必要に応じて設けられた第1下地膜11と、第1下地膜11上に必要に応じて設けられた第2下地膜12と、第2下地膜12(又は基板10若しくは第1下地膜11)上に所定領域(チャネル領域となる領域)を開けて離間して設けられた所定パターンのソース電極16s及びドレイン電極16dと、ソース電極16s及びドレイン電極16dの間の前記所定領域を埋めるとともにソース電極16s及びドレイン電極16dを渡るように設けられた所定パターンのInMZnO系半導体膜15と、それら(ソース電極16s−IMZO半導体膜15−ドレイン電極16d)の上に設けられたゲート絶縁膜14と、ゲート絶縁膜14上であってIMZO半導体膜15の直上に設けられたゲート電極13とを有している。こうした構造形態からなるTFT基板1Dは、本発明の趣旨の範囲内であれば、その他の膜を含んでいてもよい。
【0101】
得られたTFT基板1Dの構造形態においても、第1〜3実施形態の場合と同様、基板10として非耐熱性のプラスチック基板を有するTFT基板1Dが良好な半導体特性を示す例は存在し得なかったが、TFTのON/OFF比が少なくとも10以上の良好な半導体特性を持つ従来にないトップゲートボトムコンタクト構造に係るTFT基板1Dが初めて提供される。
【0102】
[画像表示装置]
本発明に係る画像表示装置は、上述した本発明に係るTFT基板を、液晶表示装置、有機EL発光表示装置、電子ペーパ等のアクティブマトリックス型スイッチング素子基板として用いる。本発明に係る画像表示装置として有機EL発光表示装置で説明すれば、マトリクス状に配置された本発明に係る多数のTFT基板1を有し、例えば、ゲート電極13のゲートバスラインとソース電極16sのソースバスラインが縦横に延び、各TFTのドレイン電極16dには出力素子が接続される。この出力素子は有機EL素子であり、抵抗とコンデンサからなる等価回路で構成される。出力素子毎の領域は、有機EL発光表示装置の画素を構成する。
【実施例】
【0103】
以下に実施例と比較例を挙げて本発明をさらに詳しく説明する。
【0104】
[実施例1]
(TFT基板の作製)
一例として、図1に示すボトムゲートトップコンタクト構造のTFTをプラスチック基板上に複数(72個)のTFTを形成したTFT基板を製造した。先ず、厚さ100μmでポリエーテルサルホン(PES)を基板10として準備し、その基板10上の全面に厚さ5nmのクロム膜(密着膜)を第1下地膜11としてスパッタ法で形成し、さらにその第1下地膜11上の全面に厚さ300nmの酸化ケイ素膜(バッファ膜)を第2下地膜12としてスパッタ法で形成した。次に、その第2下地膜12上の全面に厚さ200nmのアルミニウム膜をゲート電極膜として蒸着した後、レジストパターンをフォトリソグラフィで形成した後に燐酸溶液でウェットエッチングし、アルミニウム膜を所定パターンにパターニングしてゲート電極13を形成した。次に、そのゲート電極13を覆うように厚さ100nmの酸化ケイ素をゲート絶縁膜14として全面に形成した。このゲート絶縁膜14は、RFマグネトロンスパッタリング装置を用い、8インチのSiOターゲットに投入電力:1.0kW(=3W/cm)、圧力:1.0Pa、ガス:アルゴン+O(50%)の成膜条件で形成した。この後、ドライエッチングによりコンタクトホールを形成した。
【0105】
次に、ゲート絶縁膜14を覆うように、全面に、In:Ga:Znが1:1:1のInGaZnO系IGZO半導体膜15(InGaZnO)を厚さ100nmとなるように形成した。IGZO半導体膜15は、RFマグネトロンスパッタリング装置を用い、室温(25℃)、Ar:Oを30:50とした条件下で、8インチのInGaZnO(In:Ga:Zn=1:1:1)ターゲットを用いて形成した。次に、このIGZO半導体膜15上にレジストパターンをフォトリソグラフィで形成した後、シュウ酸溶液でウェットエッチングし、そのIGZO半導体膜15をパターニングし、所定パターンからなるIGZO半導体膜15を形成した。
【0106】
次に、IGZO半導体膜15上の全面に厚さ200nmのチタニウム膜をソース電極16s及びドレイン電極16dとするために蒸着した後、レジストパターンをフォトリソグラフィで形成した後に燐酸溶液でウェットエッチングし、チタニウム膜を所定パターンにパターニングしてソース電極16s及びドレイン電極16dを形成した。このとき、ソース電極16s及びドレイン電極16dは、IGZO半導体膜15上であってIGZO半導体膜15の中央部直上以外に離間したパターンとなるように形成した(図1を参照)。
【0107】
次に、ソース電極16s、ドレイン電極16d及びIGZO半導体膜15の全てを覆うように、厚さ100nmの酸化ケイ素を保護膜17としてRFマグネトロンスパッタリング法で形成し、さらにその保護膜17上の全面に厚さ100nmのアルミニウム膜を金属膜18としてスパッタリング法で成膜した。その後、190℃・60分間の熱処理を大気雰囲気下で行った。金属膜18を燐酸によってエッチング除去した後、ドライエッチングによりコンタクトホールを形成した。こうして実施例1に係るTFT基板1Aを作製した。
【0108】
[実施例2]
実施例1において、熱処理条件を210℃・60分間、酸素ガス雰囲気下とした他は、実施例1と同様にして、実施例2のTFT基板を作製した。
【0109】
[比較例1]
実施例1において、金属膜18を設けない態様で210℃・60分間の熱処理を行った他は、実施例1と同様にして、比較例1のTFT基板を作製した。
【0110】
[比較例2]
実施例1において、金属膜18を設けない態様で300℃・60分間の熱処理を行った他は、実施例1と同様にして、比較例2のTFT基板を作製した。
【0111】
[特性評価]
得られたTFT基板について、ドレイン電流のON/OFF特性を評価した。測定は、半導体パラメータアナライザ装置(アジレント・テクノロジー株式会社製、4156C型)を用い、TFTのトランスファー特性を評価し、ドレイン電流のON/OFF特性をグラフ化した。また、基板の変化については、TFT基板を構成する基板の外観や撓み等を観察した。
【0112】
図5は、実施例1と比較例1で得られたTFT基板において、ゲート電圧に対するドレイン電流の変化を示すグラフである。図5中、符号aは実施例1のTFTにドレイン電圧10V印加したときのドレイン電流のON/OFF特性であり、符号bは実施例1のTFTにドレイン電圧1V印加したときのドレイン電流のON/OFF特性であり、符号cは比較例1のTFTにドレイン電圧10V印加したときのドレイン電流のON/OFF特性である。
【0113】
【表1】

【0114】
表1の実施例の結果からも分かるように、実施例1では、TFTのON/OFF比を7桁(10)程度とすることができた。また、熱処理温度が190℃の低温であったので、ガラス転移温度がそれ以上のPESフィルムを基板として用いた場合であっても、基板の撓みや変形を起こすことなく、TFT特性を向上させることができた。この結果は、各実施例で行った熱処理により、TFTの製造工程中に生じたIGZO半導体膜15中の欠陥が回復したためと考えられる。
【0115】
一方、比較例1では、TFTのON/OFF比が2桁(10)程度と極めて低かった。また、比較例2では、TFTのON/OFF比が7桁(10)程度となったものの、TFT基板に変形が生じていた。
【符号の説明】
【0116】
1,1A,1B,1C,1D TFT基板
10 プラスチック基板
11 第1下地膜
12 第2下地膜
13 ゲート電極
14 ゲート絶縁膜
15 IMZO半導体膜
16s ソース電極
16d ドレイン電極
17 保護膜
18 金属膜

【特許請求の範囲】
【請求項1】
基板上に、ゲート電極、ゲート絶縁膜、InMZnO(MはGa,Al,Feのうち少なくとも1種)系半導体膜、ソース電極及びドレイン電極が形成された薄膜トランジスタ基板の製造方法であって、
所定パターンの前記InMZnO系半導体膜を形成する工程と、前記InMZnO系半導体膜を覆う少なくとも1種の金属元素を含む金属酸化物、金属窒化物、金属炭化物及び金属酸窒化物のいずれかからなる保護膜を設ける工程と、前記保護膜を覆うアルミニウム、チタン及びモリブデンのいずれかからなる金属膜を設ける工程と、前記金属膜を設けた後に熱処理する工程と、を有することを特徴とする薄膜トランジスタ基板の製造方法。
【請求項2】
基板上に所定パターンのゲート電極を形成する工程と、前記ゲート電極を覆うゲート絶縁膜を形成する工程と、前記ゲート絶縁膜上に所定パターンのInMZnO系半導体膜を形成する工程と、前記InMZnO系半導体膜上に所定パターンのソース電極及びドレイン電極を形成する工程と、前記ソース電極及びドレイン電極を覆う保護膜を形成する工程と、前記保護膜上に金属膜を形成する工程と、前記金属膜を設けた後に熱処理する工程と、前記金属膜を除去する工程と、を有する、請求項1に記載の薄膜トランジスタ基板の製造方法。
【請求項3】
基板上に所定パターンのゲート電極を形成する工程と、前記ゲート電極を覆うゲート絶縁膜を形成する工程と、前記ゲート絶縁膜上に所定パターンのソース電極及びドレイン電極を形成する工程と、前記ソース電極及びドレイン電極を渡る所定パターンのInMZnO系半導体膜を形成する工程と、前記InMZnO系半導体膜を覆う保護膜を形成する工程と、前記保護膜上に金属膜を形成する工程と、前記金属膜を設けた後に熱処理する工程と、前記金属膜を除去する工程と、を有する、請求項1に記載の薄膜トランジスタ基板の製造方法。
【請求項4】
基板上に所定パターンのInMZnO系半導体膜を形成する工程と、前記InMZnO系半導体膜上に所定パターンのソース電極及びドレイン電極を形成する工程と、前記ソース電極及びドレイン電極を覆う保護膜でもあるゲート絶縁膜を形成する工程と、前記ゲート絶縁膜上に金属膜を形成する工程と、前記金属膜を設けた後に熱処理する工程と、前記金属膜をエッチングして所定パターンのゲート電極を形成する工程と、を有する、請求項1に記載の薄膜トランジスタ基板の製造方法。
【請求項5】
基板上に所定パターンのソース電極及びドレイン電極を形成する工程と、前記ソース電極及びドレイン電極を渡る所定パターンのInMZnO系半導体膜を形成する工程と、前記InMZnO系半導体膜を覆う保護膜でもあるゲート絶縁膜を形成する工程と、前記ゲート絶縁膜上に金属膜を形成する工程と、前記金属膜を設けた後に熱処理する工程と、前記金属膜をエッチングして所定パターンのゲート電極を形成する工程と、を有する、請求項1に記載の薄膜トランジスタ基板の製造方法。
【請求項6】
前記熱処理を、窒素ガス雰囲気、酸化性ガス雰囲気又は水蒸気雰囲気で行う、請求項1〜5のいずれか1項に記載の薄膜トランジスタ基板の製造方法。
【請求項7】
前記熱処理が、200℃以下の温度での熱処理である、請求項1〜6のいずれか1項に記載の薄膜トランジスタ基板の製造方法。
【請求項8】
前記基板がプラスチック基板である、請求項1〜7のいずれか1項に記載の薄膜トランジスタ基板の製造方法。
【請求項9】
プラスチック基板と、ゲート電極と、ゲート絶縁膜と、InMZnO(MはGa,Al,Feのうち少なくとも1種)系半導体膜と、ソース電極と、ドレイン電極とを少なくとも有する薄膜トランジスタ基板において、薄膜トランジスタのドレイン電流のON/OFF比が少なくとも10以上であることを特徴とする薄膜トランジスタ基板。
【請求項10】
前記薄膜トランジスタが、ボトムゲートトップコンタクト構造、ボトムゲートボトムコンタクト構造、トップゲートトップコンタクト構造又はトップゲートボトムコンタクト構造である、請求項9に記載の薄膜トランジスタ基板。
【請求項11】
請求項9又は10に記載の薄膜トランジスタ基板をアクティブマトリックス型スイッチング素子基板として用いることを特徴とする画像表示装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate


【公開番号】特開2011−108739(P2011−108739A)
【公開日】平成23年6月2日(2011.6.2)
【国際特許分類】
【出願番号】特願2009−259982(P2009−259982)
【出願日】平成21年11月13日(2009.11.13)
【出願人】(000002897)大日本印刷株式会社 (14,506)
【Fターム(参考)】