説明

車両の動力伝達制御装置

【課題】動力源として内燃機関と電動機とを備えた車両に適用される車両の動力伝達制御装置において、EV走行状態において回転中の変速機の入力軸の動力を利用して内燃機関を始動する場合においてドライバビリティの悪化を抑制できるものを提供すること。
【解決手段】電動機出力軸の接続状態を、動力伝達系統が変速機入力軸と電動機出力軸との間で形成される「IN接続状態」、変速機出力軸と電動機出力軸との間で形成される「OUT接続状態」、並びに、いずれにも動力伝達系統が形成されない「ニュートラル状態」の何れかに選択可能な切替機構が備えられる。電動機駆動トルクTmのみで走行するEV走行状態にて内燃機関を始動する場合、クラッチを遮断状態から半接合状態に移行して変速機入力軸の動力により内燃機関の回転速度Neをゼロから増大させる。変速機出力軸が受ける車両減速方向の反トルク(−Te)を考慮して電動機駆動トルクTmを大きくする。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、車両の動力伝達制御装置に関し、特に、動力源として内燃機関と電動機とを備えた車両に適用されるものに係わる。
【背景技術】
【0002】
近年、動力源として内燃機関と電動機(電動モータ、電動発電機)とを備えた所謂ハイブリッド車両が開発されてきている(例えば、特許文献1を参照)。ハイブリッド車両では、電動機が、内燃機関と協働又は単独で、車両を駆動する駆動トルクを発生する動力源として、或いは、内燃機関を始動するための動力源として使用される。加えて、電動機が、車両を制動する回生トルクを発生する発電機として、或いは、車両のバッテリに供給・貯留される電気エネルギを発生する発電機として使用される。このように電動機を使用することで、車両全体としての総合的なエネルギ効率(燃費)を良くすることができる。
【先行技術文献】
【特許文献】
【0003】
【特許文献1】特開2000−224710号公報
【発明の概要】
【0004】
ところで、ハイブリッド車両では、電動機の出力軸と変速機の入力軸との間で動力伝達系統が形成される接続状態(以下、「IN接続状態」と称呼する。)が採用される場合と、電動機の出力軸と変速機の出力軸(従って、駆動輪)との間で変速機を介することなく動力伝達系統が形成される接続状態(以下、「OUT接続状態」と称呼する。)が採用される場合と、がある。
【0005】
IN接続状態では、変速機の変速段を変更することで、車両速度に対する電動機の出力軸の回転速度を変更することができる。従って、変速機の変速段を調整することで、電動機の出力軸の回転速度をエネルギ変換効率(より具体的には、駆動トルク、回生トルク等の発生効率)が良好となる範囲内に維持し易いというメリットがある。
【0006】
一方、OUT接続状態では、動力伝達系統が複雑な機構を有する変速機を介さないことから、動力の伝達損失を小さくできるというメリットがある。また、変速機(特に、トルクコンバータを備えない形式の変速機)では、通常、変速作動中(変速段を切り替える作動中)において、変速機の入力軸から出力軸への動力の伝達が一時的に遮断される場合が多い。この結果、車両前後方向の加速度の急激な変化(所謂変速ショック)が発生し易い。このような変速作動中においても、OUT接続状態では、電動機の駆動トルクを変速機の出力軸(従って、駆動輪)へ連続して出力し続けることができ、変速ショックを低減できるというメリットもある。以下、電動機の出力軸のトルクに基づいて変速機の出力軸に伝達されるトルクを「電動機側駆動トルク」と呼び、内燃機関の出力軸のトルクに基づいて変速機の出力軸に伝達されるトルクを「内燃機関側駆動トルク」と呼ぶ。
【0007】
以上のことに鑑み、本出願人は、特願2007−271556号において、電動機の出力軸の接続状態(以下、単に「電動機接続状態」とも称呼する。)をIN接続状態とOUT接続状態とに切り替え可能な切替機構について既に提案している。この切替機構では、電動機の出力軸と変速機の入力軸との間も電動機の出力軸と変速機の出力軸との間も動力伝達系統が形成されない接続状態(以下、「非接続状態」と称呼する。)も選択され得る。
【0008】
ところで、ハイブリッド車両では、内燃機関側駆動トルクを利用することなく電動機側駆動トルクのみを利用して車両が走行し得る。以下、この走行状態を「電動機走行状態」と呼ぶ。電動機走行状態は、IN接続状態でもOUT接続状態でも達成し得る。電動機走行状態では、通常、内燃機関の出力軸と変速機の入力軸との間に介装されたクラッチ機構が遮断状態とされ、内燃機関が停止(具体的には、内燃機関の出力軸の回転が停止)している。この状態にて、電動機側駆動トルクが運転者による加速操作部材の操作に基づく駆動トルク(要求トルク)と一致するように調整されながら、車両が電動機側駆動トルクを利用して走行する。
【0009】
以下、電動機走行状態にて、駆動トルクの不足やその他の要因により内燃機関を始動する条件が成立した場合を想定する。以下、本明細書では、内燃機関の「始動」とは、燃焼室内での混合気の着火の開始を意味するものとする。
【0010】
内燃機関を始動するためには、内燃機関の出力軸を回転駆動するための動力源が必要となる。電動機走行状態(従って、車両走行状態)では、回転している変速機の入力軸の動力がこの動力源として使用され得る。即ち、クラッチ機構を接合状態(半接合状態又は完全接合状態)に調整することで、回転中の変速機の入力軸の動力が内燃機関の出力軸へ伝達されて、内燃機関の出力軸が回転駆動される。内燃機関の出力軸の回転速度が内燃機関の着火に必要な範囲の下限値以上に達した状態で、燃料を噴射する(及び、ガソリン内燃機関の場合は点火プラグにより点火する)等の内燃機関始動用の処理を行うことで、内燃機関を始動することができる。このように、回転している変速機の入力軸の動力が内燃機関始動用の動力源として使用されることで、内燃機関始動用の所謂スタータモータを省略できるというメリットがある。
【0011】
しかしながら、内燃機関の始動前において、回転している変速機の入力軸の動力を利用して内燃機関の出力軸が回転駆動されている間、変速機の入力軸(従って、変速機の出力軸)は、内燃機関の出力軸の回転駆動に要するトルクに対する反トルクを受ける。この反トルクは、車両を減速する方向に作用する。以下、変速機の出力軸が受けるこの反トルクを「内燃機関側減速トルク」と呼ぶ。
【0012】
電動機走行状態において、変速機の出力軸(従って、駆動輪)がこの内燃機関側減速トルクを受けると、車両において減速方向のショックが発生し、ドライバビリティが悪化するという問題が発生し得る。
【0013】
本発明の目的は、動力源として内燃機関と電動機とを備えた車両に適用される車両の動力伝達制御装置であって、電動機走行状態において回転している変速機の入力軸の動力を利用して内燃機関を始動する場合においてドライバビリティの悪化を抑制できるものを提供することにある。
【0014】
本発明による車両の動力伝達制御装置は、変速機と、クラッチ機構と、制御手段と、を備える。以下、順に説明していく。この装置は、IN接続状態でもOUT接続状態でも構成され得る。先ず、IN接続状態の場合について説明する。
【0015】
前記変速機は、前記内燃機関の出力軸との間で動力伝達系統が形成される入力軸と、前記車両の駆動輪との間で動力伝達系統が形成される出力軸とを備えている。変速機は、変速機の出力軸の回転速度に対する変速機の入力軸の回転速度の割合(変速機減速比)を調整可能に構成されている。前記変速機は、前記変速機減速比として予め定められた異なる複数の減速比を設定可能な多段変速機であっても、前記変速機減速比として減速比を連続的に(無段階に)調整可能な無段変速機であってもよい。
【0016】
また、前記変速機は、トルクコンバータを備えるとともに車両の走行状態に応じて変速作動が自動的に実行される多段変速機又は無段変速機(所謂オートマチックトランスミッション(AT))であっても、トルクコンバータを備えない多段変速機(所謂マニュアルトランスミッション(MT))であってもよい。MTの場合、運転者によるシフトレバーの操作力により直接的に変速作動が実行される形式であっても、運転者により操作されるシフトレバーの位置を示す信号に基づいてアクチュエータの駆動力により変速作動が実行される形式であっても、運転者によるシフトレバー操作によらず車両の走行状態に応じてアクチュエータの駆動力により変速作動が自動的に実行され得る形式(所謂、オートメイティッド・マニュアル・トランスミッション)であってもよい。
【0017】
また、前記変速機の入力軸と前記電動機の出力軸との間で動力伝達系統が形成されて、IN接続状態が達成されている。この動力伝達系統は、(上述した切替機構なしで)常時形成されていてもよいし、上述した切替機構が備えられている場合ではIN接続状態が選択されることで形成され得る。この場合、切替機構として、IN接続状態、OUT接続状態、及び非接続状態のうちで少なくともIN接続状態を含む2以上の状態に切り替え可能なものが使用される。具体的には、前記切替機構として、IN接続状態及びOUT接続状態のみに切り替え可能なもの、IN接続状態及び非接続状態のみに切り替え可能なもの、並びに、IN接続状態、OUT接続状態、及び非接続状態の何れにも切り替え可能なものが挙げられる。
【0018】
以下、IN接続状態における変速機の入力軸の回転速度に対する電動機の出力軸の回転速度の割合(第1減速比)と変速機減速比との積を「IN接続減速比」と定義し、OUT接続状態における変速機の出力軸の回転速度に対する電動機の出力軸の回転速度の割合を「OUT接続減速比」と定義する。「IN接続減速比」は、変速機減速比の変化に伴って変化し得る。一方、「OUT接続減速比」は、変速機減速比によらず一定に維持され得る。また、IN接続状態では、通常、前記「第1減速比」(=変速機の入力軸の回転速度に対する電動機の出力軸の回転速度の割合)が一定(例えば、1)に固定される。また、通常、変速機の入力軸の回転速度に対する内燃機関の出力軸の回転速度の割合(以下、「第2減速比」と呼ぶ。)も一定(例えば、1)とされる。
【0019】
前記クラッチ機構は、前記内燃機関の出力軸と前記変速機の入力軸との間に介装され、前記内燃機関の出力軸と前記変速機の入力軸との間で動力の少なくとも一部を伝達する接合状態と、前記動力を伝達しない遮断状態とに調整可能に構成される。前記クラッチ機構は、前記接合状態において前記クラッチ機構が伝達し得るトルクの最大値(クラッチトルク)を制御可能に構成され得る。以下、接合状態において、変速機の入力軸と出力軸との回転が一致している状態を「完全接合状態」と呼び、変速機の入力軸と出力軸との回転が一致していない状態を「半接合状態」と呼ぶこともある。
【0020】
前記制御手段は、前記車両の走行状態に基づいて、前記内燃機関、前記電動機、(前記変速機)、及び前記クラッチ機構を制御する。また、この制御手段は、IN接続状態において前記電動機走行状態を達成する。IN接続状態での電動機走行状態では、電動機の出力軸のトルクを駆動輪に伝達するため、変速機の変速段が走行用の変速段(具体的には、1速、2速等)、即ち、変速機の入力軸と出力軸との間で動力伝達系統が形成される変速段が選択される必要がある。
【0021】
前記制御手段は、電動機走行状態において、前記内燃機関を始動する条件が成立した場合、前記クラッチ機構を前記接合状態(半接合状態又は完全接合状態)に調整することで前記変速機の入力軸から前記内燃機関の出力軸への動力の伝達により前記内燃機関の出力軸を回転させながら前記内燃機関を始動するように構成される。即ち、内燃機関の始動前において、上述したように、回転している変速機の入力軸の動力を利用して内燃機関の出力軸が回転駆動される。従って、内燃機関の出力軸が回転駆動されている間、変速機の出力軸は、車両を減速する方向の前記内燃機関側減速トルク(>0)を受ける。
【0022】
本発明の特徴は、前記制御手段が、前記クラッチ機構が前記接合状態に移行した後前記内燃機関の始動前(即ち、回転している変速機の入力軸の動力を利用して内燃機関の出力軸が回転駆動されている間)において、前記内燃機関側減速トルク(>0)を考慮して、前記電動機側駆動トルクを大きくするように構成されたことにある。
【0023】
これによれば、内燃機関側減速トルク(>0)を考慮して電動機側駆動トルクが(要求トルクと等しい値から)大きくされることで、内燃機関側減速トルクが相殺され得る。この結果、内燃機関側減速トルクに起因する減速方向のショックの発生が抑制されて、ドライバビリティの悪化が抑制され得る。
【0024】
この場合、前記制御手段は、前記クラッチ機構が前記接合状態に移行した後前記内燃機関の始動前(即ち、回転している変速機の入力軸の動力を利用して内燃機関の出力軸が回転駆動されている間)において、前記接合状態にて前記クラッチトルク(>0)を制御することで前記内燃機関の出力軸の回転速度を調整するとともに、前記内燃機関側減速トルク(>0)を前記クラッチトルクに前記変速機減速比を乗じたトルクと等しい値に推定し、前記電動機側駆動トルクを、前記要求トルクに前記内燃機関側減速トルク(>0)を加えた値に調整するように構成されることが好適である。
【0025】
クラッチ機構の接合状態(特に、半接合状態)において、回転している変速機の入力軸の動力を利用して内燃機関の出力軸が回転駆動されている間、クラッチトルク(>0)は、変速機の入力軸の駆動トルクよりも小さい範囲内で調整される。この場合、変速機の入力軸の駆動トルクに基づいてクラッチ機構を介して内燃機関の出力軸に伝達されるトルクは、クラッチトルクと等しい値に調整される。この結果、変速機の入力軸が受ける反トルクはクラッチトルクと等しい値となる。従って、変速機の出力軸が受ける反トルク(=内燃機関側減速トルク(>0))は、クラッチトルク(>0)に変速機減速比を乗じたトルクとなる。
【0026】
上記構成は係る知見に基づく。これによれば、変速機の入力軸の動力を利用して内燃機関の出力軸が回転駆動されている間に亘って、クラッチトルクに基づいて内燃機関側減速トルクが正確に推定され得る。そして、この間に亘って電動機側駆動トルクが、要求トルクに、正確に推定された内燃機関側減速トルク(>0)を加えた値に調整される。この結果、内燃機関側減速トルクがより一層確実に相殺され得る。この結果、内燃機関側減速トルクに起因する減速方向のショックの発生がより一層確実に抑制されて、ドライバビリティの悪化がより一層確実に抑制され得る。
【0027】
以上、IN接続状態の場合について説明した。次に、OUT接続状態の場合について説明する。以下、IN接続状態の場合に対する相違点のみについて説明する。その他の点についてはIN接続状態の場合と同じであるからそれらの説明を省略する。OUT接続状態の場合も、IN接続状態の場合と同様の作用・効果が奏される。
【0028】
OUT接続状態の場合、前記変速機の出力軸と前記電動機の出力軸との間で前記変速機を介することなく動力伝達系統が形成されている。この動力伝達系統は、(上述した切替機構なしで)常時形成されていてもよいし、上述した切替機構が備えられている場合ではOUT接続状態が選択されることで形成され得る。この場合、切替機構として、IN接続状態、OUT接続状態、及び非接続状態のうちで少なくともOUT接続状態を含む2以上の状態に切り替え可能なものが使用される。具体的には、前記切替機構として、OUT接続状態及びIN接続状態のみに切り替え可能なもの、OUT接続状態及び非接続状態のみに切り替え可能なもの、並びに、IN接続状態、OUT接続状態、及び非接続状態の何れにも切り替え可能なものが挙げられる。
【0029】
OUT接続状態では、IN接続状態と異なり、変速機の変速段の選択にかかわらず、電動機の出力軸のトルクが駆動輪に常時伝達され得る。従って、OUT接続状態での電動機走行状態では、変速機の変速段が非走行用の変速段(具体的には、ニュートラル)、即ち、変速機の入力軸と出力軸との間で動力伝達系統が形成されない変速段が選択されていてもよい。ただし、内燃機関の始動前において変速機の入力軸の動力を利用して内燃機関の出力軸が回転駆動される際には、変速機の変速段が走行用の変速段(具体的には、1速、2速等)、即ち、変速機の入力軸と出力軸との間で動力伝達系統が形成される変速段が選択されている必要がある。換言すれば、変速機の変速段を非走行用の変速段から走行用の変速段に移行した後に、前記クラッチ機構を前記接合状態に移行する必要がある。
【0030】
このように、変速機の変速段が非走行用の変速段から走行用の変速段に移行される場合、前記制御手段は、前記変速機減速比を、前記車両の速度に対して前記内燃機関の出力軸の回転速度を前記内燃機関の着火に必要な範囲の下限値以上に調整し得る減速比のうちで最も小さい値に調整するように構成されることが好適である。
【0031】
OUT接続状態では、変速機の入力軸と出力軸との間で動力伝達系統が形成される変速段である限りにおいて、非走行用の変速段から移行される走行用の変速段として何れの変速段が選択されてもよい。ここで、減速方向のショック発生の原因である内燃機関側減速トルク(=クラッチトルクに変速機減速比を乗じたトルク)は、変速機減速比が小さいほど小さくなる。従って、この観点からは、変速機減速比が出来るだけ小さい変速段が選択されることが好適である。
【0032】
しかしながら、変速機減速比が小さ過ぎると、車速に対して内燃機関の出力軸の回転速度が内燃機関の着火に必要な範囲の下限値以上に達し得ず、内燃機関が始動し得ない事態が発生し得る。上記構成は係る知見に基づく。これによれば、減速方向のショック発生の原因である内燃機関側減速トルクを極力小さく抑制した状態で内燃機関を始動させることができる。以上、OUT接続状態の場合について説明した。
【0033】
上記本発明に係る動力伝達制御装置においては、前記制御手段は、前記内燃機関の始動後、前記クラッチ機構を前記遮断状態に切り替えるとともに、前記電動機側駆動トルクを前記要求トルクに基づいて(要求トルクと一致するように)調整するように構成されることが好適である。或いは、前記制御手段は、前記内燃機関の始動後、前記内燃機関の出力軸のトルクに基づく前記変速機の出力軸に伝達されるトルクである内燃機関側駆動トルクと前記電動機側駆動トルクとの和が前記要求トルクに基づいて(要求トルクと一致するように)調整されるように前記内燃機関側駆動トルク及び前記電動機側駆動トルクを調整するよう構成されることが好適である。
【0034】
内燃機関の始動直後において、内燃機関の出力軸のトルクに基づいて変速機の出力軸に伝達されるトルクは、減速方向の内燃機関側減速トルクから加速方向の内燃機関側駆動トルクに切り替わる。この切り替わりに起因して車両においてショックが発生することが懸念される。これに対し、上記構成によれば、内燃機関の始動の前後に亘って、変速機の出力軸の駆動トルクが要求トルクに一致し続けるように推移し得る。この結果、内燃機関側減速トルクから内燃機関側駆動トルクへの切り替わりに起因するショックの発生が極力抑制され得る。
【図面の簡単な説明】
【0035】
【図1】本発明の実施形態に係る車両の動力伝達制御装置を搭載した車両の概略構成図である。
【図2】図1に示した切替機構において切り替え可能な3状態を示した図である。
【図3】図1に示したC/Tのストロークとクラッチトルクとの関係を示したグラフである。
【図4】図1に示した装置が適用される場合において、IN接続状態でのEV走行状態にてE/G始動条件が成立した場合の一例を示したタイムチャートである。
【図5】E/G水温等の温度と、E/Gの着火に必要なE/G回転速度範囲の下限値との関係を示したグラフである。
【図6】クラッチトルクの増加勾配をE/G回転速度に応じて変化させた場合における、図4に対応するタイムチャートである。
【図7】図6に示したE/G回転速度とクラッチトルクの増加勾配との関係を示したグラフである。
【図8】クラッチトルクを調整してE/G回転速度のゼロからの増加の推移をフィードバック制御する場合の一例を示したタイムチャートである。
【図9】E/G回転速度が着火に必要な範囲の下限値に達した後において、クラッチトルクを調整してE/G回転速度をフィードバック制御する場合の一例を示したタイムチャートである。
【図10】E/G回転速度が着火に必要な範囲の下限値に達した後において、クラッチトルクを調整してE/G回転速度をフィードバック制御する場合の他の例を示したタイムチャートである。
【図11】E/G回転速度が着火に必要な範囲の下限値に達した後において、クラッチトルクを調整してE/G回転速度を制御する場合の他の例を示したタイムチャートである。
【図12】E/G始動後におけるM/G側駆動トルク及びE/G側駆動トルクの変化の他の例を示したタイムチャートである。
【図13】OUT接続状態でのEV走行状態にてE/G始動条件が成立した場合の一例を示した図4に対応するタイムチャートである。
【図14】OUT接続状態でのEV走行状態にてE/G始動条件が成立した場合において選択すべきT/Mの変速段を示した図である。
【図15】バッテリ残量と、E/G始動条件との関係を示したグラフである。
【図16】バッテリ温度と、E/G始動条件との関係を示したグラフである。
【図17】M/G回転速度と、E/G始動条件との関係を示したグラフである。
【図18】M/G温度と、E/G始動条件との関係を示したグラフである。
【図19】バッテリ残量と、E/G始動が許可される変速段との関係を示したグラフである。
【図20】E/G回転速度と、内燃機関側減速トルクとの関係を示したグラフである。
【発明を実施するための形態】
【0036】
以下、本発明による車両の動力伝達制御装置の実施形態について図面を参照しつつ説明する。
【0037】
(構成)
図1は、本発明の実施形態に係る動力伝達制御装置(以下、「本装置」と称呼する。)を搭載した車両の概略構成を示している。この車両は、動力源として内燃機関とモータジェネレータとを備え、且つ、トルクコンバータを備えない多段変速機を使用した所謂オートメイティッド・マニュアル・トランスミッションを備えた車両に適用されている。
【0038】
この車両は、エンジン(E/G)10と、変速機(T/M)20と、クラッチ(C/T)30と、モータジェネレータ(M/G)40と、切替機構50とを備えている。E/G10は、周知の内燃機関の1つであり、例えば、ガソリンを燃料として使用するガソリンエンジン、軽油を燃料として使用するディーゼルエンジンである。E/G10の出力軸A1は、C/T30を介してT/M20の入力軸A2と接続されている。
【0039】
T/M20は、前進用の複数(例えば、5つ)の変速段、後進用の1つの変速段、及びニュートラル段を有するトルクコンバータを備えない周知の多段変速機の1つである。以下、前進用の変速段及び後進用の変速段を「走行用変速段」と称呼する。走行用変速段では、T/M20の入出力軸A2,A3の間で動力伝達系統が形成される。ニュートラル段では、T/M20の入出力軸A2,A3の間で動力伝達系統が形成されない。走行用変速段において、T/M20は、出力軸A3の回転速度に対する入力軸A2の回転速度の割合である変速機減速比Gtmを複数の段階の何れかに任意に設定可能となっている。T/M20では、変速段の切り替えは、T/Mアクチュエータ21を制御することでのみ実行される。
【0040】
C/T30は、周知の構成の1つを備えていて、E/G10の出力軸A1とT/M20の入力軸A2との間で動力が伝達されない遮断状態、及び動力が伝達される接合状態に調整可能となっている。以下、説明の便宜上、接合状態において、T/M20の入力軸A2と出力軸A3との回転が一致している状態を「完全接合状態」と呼び、一致していない状態を「半接合状態」と呼ぶ。完全接合状態では、上述の「第2減速比」は「1」である。この車両では、クラッチペダルは設けられていない。C/T30の状態は、C/Tアクチュエータ31によりクラッチストロークを調整することで制御されるようになっている。
【0041】
M/G40は、周知の構成(例えば、交流同期モータ)の1つを有していて、例えば、ロータ(図示せず)が出力軸A4と一体回転するようになっている。M/G40は、動力源としても発電機としても機能する。
【0042】
切替機構50は、M/G40の出力軸A4の接続状態を切り替える機構である。切替機構50は、M/G40の出力軸A4と一体回転する連結ピース51と、ギヤg1と一体回転する連結ピース52と、ギヤg3と一体回転する連結ピース53と、スリーブ54と、切替アクチュエータ55とを備える。ギヤg1は、T/M20の入力軸A2と一体回転するギヤg2と常時歯合し、ギヤg3は、T/M20の出力軸A3と一体回転するギヤg4と常時歯合している。
【0043】
スリーブ54は、M/G40の出力軸A4の軸線方向に同軸的に移動可能に配設されていて、切替アクチュエータ55によりその軸線方向の位置が制御されるようになっている。スリーブ54は、連結ピース51,52,53とスプライン嵌合可能となっている。
【0044】
スリーブ54が図2(a)に示すIN接続位置に制御される場合、スリーブ54は、連結ピース51,52とスプライン嵌合する。これにより、ギヤg1,g2を介してT/M20の入力軸A2とM/G40の出力軸A4との間で動力伝達系統が形成される。この状態を「IN接続状態」と呼ぶ。
【0045】
IN接続状態において、T/M20の入力軸A2の回転速度に対するM/G40の出力軸A4の回転速度の割合を「第1減速比G1」と呼び、第1減速比G1と変速機減速比Gtmとの積(G1・Gtm)を「IN接続減速比Gin」と呼ぶ。本例では、G1=(g2の歯数)/(g1の歯数)であるから、Gin=(g2の歯数)/(g1の歯数)・Gtmとなる。即ち、Ginは、T/M20の変速段の変化に応じて変化する。
【0046】
また、スリーブ54が図2(b)に示すOUT接続位置に制御される場合、スリーブ54は、連結ピース51,53とスプライン嵌合する。これにより、ギヤg3、g4を介してT/M20の出力軸A3とM/G40の出力軸A4との間でT/M20を介することなく動力伝達系統が形成される。この状態を「OUT接続状態」と呼ぶ。
【0047】
OUT接続状態において、T/M20の出力軸A3の回転速度に対するM/G40の出力軸A4の回転速度の割合を「OUT接続減速比Gout」と呼ぶ。本例では、Goutは、(g4の歯数)/(g3の歯数)で一定となる。即ち、Goutは、T/M20の変速段の変化に応じて変化しない。
【0048】
また、スリーブ54が図2(c)に示す非接続位置に制御される場合、スリーブ54は、連結ピース51のみとスプライン嵌合する。これにより、T/M20の出力軸A3とM/G40の出力軸A4との間でもT/M20の入力軸A2とM/G40の出力軸A4との間でも動力伝達系統が形成されない。この状態を「ニュートラル状態」と呼ぶ。
【0049】
以上、切替機構50では、切替アクチュエータ55を制御する(従って、スリーブ54の位置を制御する)ことで、M/G40の出力軸A4の接続状態(以下、「M/G接続状態」とも称呼する。)を、「IN接続状態」、「OUT接続状態」、「ニュートラル状態」の何れかに選択的に切り替え可能となっている。
【0050】
T/M20の出力軸A3は、作動機構D/Fと連結されていて、作動機構D/Fは、左右一対の駆動輪と連結されている。なお、T/M20の出力軸A3と作動機構D/Fとの間に、所謂最終減速機構が介装されていてもよい。
【0051】
また、本装置は、駆動輪の車輪速度を検出する車輪速度センサ61と、アクセルペダルAPの操作量を検出するアクセル開度センサ62と、シフトレバーSFの位置を検出するシフト位置センサ63と、ブレーキペダルBPの操作の有無を検出するブレーキセンサ64と、を備えている。
【0052】
更に、本装置は、電子制御ユニットECU70を備えている。ECU70は、上述のセンサ61〜64、並びにその他のセンサ等からの情報等に基づいて、上述のアクチュエータ21,31,55を制御することで、T/M20の変速段、C/T30の状態、及び切替機構50の状態を制御する。加えて、ECU70は、E/G10、及びM/G40のそれぞれの出力(駆動トルク)を制御するようになっている。
【0053】
T/M20の変速段は、車輪速度センサ61から得られる車速Vと、アクセル開度センサ62から得られる運転者によるアクセルペダルAPの操作量に基づいて算出される要求トルクTr(T/M20の出力軸A3についてのトルク)と、シフト位置センサ63から得られるシフトレバーSFの位置に基づいて制御される。シフトレバーSFの位置が「手動モード」に対応する位置にある場合、T/M20の変速段が、シフトレバーSFの操作により運転者により選択された変速段に原則的に設定される。一方、シフトレバーSFの位置が「自動モード」に対応する位置にある場合、T/M20の変速段が、車速Vと要求トルクTrとの組み合わせ等に基づいて、シフトレバーSFが操作されることなく自動的に制御される。以下、T/M20の変速段が変更される際の作動を「変速作動」と称呼する。変速作動の開始は、変速段の変更に関連して移動する部材の移動の開始に対応し、変速作動の終了は、その部材の移動の終了に対応する。
【0054】
C/T30は、通常、接合状態(特に、完全接合状態)に維持され、T/M20の変速作動中、シフトレバーSFの位置が「ニュートラル」位置にある場合、後述するEV走行状態等において、遮断状態に維持される。また、図3に示すように、C/T30は、接合状態(特に、半接合状態)において、C/Tアクチュエータ31により調整されるクラッチストロークSに応じて、伝達し得るトルクの最大値(以下、「クラッチトルクTc」と称呼する。)を調整可能となっている(S>S1)。
【0055】
E/G10の出力軸A1のトルクそのものよりもクラッチトルクTcの方がより緻密に調整され得る。従って、E/G10の出力軸A1の駆動トルクがクラッチトルクTcよりも大きい状態を維持しつつクラッチトルクTcを制御することで、E/G10の出力軸A1のトルクに基づくT/M20の入力軸A2に伝達されるトルクをクラッチトルクTcと一致するように緻密に調整できる。
【0056】
M/G40は、E/G10と協働又は単独で、車両を駆動する駆動トルクを発生する動力源として、或いは、E/G10を始動するための動力源として使用される。また、M/G40は、車両を制動する回生トルクを発生する発電機として、或いは、車両のバッテリ(図示せず)に供給・貯留される電気エネルギを発生する発電機としても使用される。
【0057】
以下、E/G10の出力軸A1のトルクを「E/Gトルク」と、M/G40の出力軸A4のトルクを「M/Gトルク」と称呼する。E/G10の出力軸A1の回転速度を「E/G回転速度」と、M/G40の出力軸A4の回転速度を「M/G回転速度」と称呼する。また、E/Gトルクに基づくT/M20の出力軸A3に伝達される車両加速方向のトルクを「E/G側駆動トルクTe」と称呼し、M/Gトルクに基づくT/M20の出力軸A3に伝達される車両加速方向のトルクを「M/G側駆動トルクTm」と称呼する。E/G側駆動トルクTeは、(C/T30が完全接合状態にある場合において)E/Gトルクに、変速機減速比Gtm(及び、第2減速比(=1))を乗じた値である。M/G側駆動トルクTmは、IN接続状態では、M/GトルクにIN接続減速比Ginを乗じた値であり、OUT接続状態では、M/GトルクにOUT接続減速比Goutを乗じた値である。M/G側駆動トルクTmは、M/Gトルクの調整により調整され得、E/G側駆動トルクTeは、E/Gトルク、或いはクラッチトルクの調整により調整され得る。また、TmとTeとの和を「合計トルクTs」と呼ぶ。
【0058】
本装置では、通常、周知の手法の1つに従って、E/G側駆動トルクTeとM/G側駆動トルクTmの和が要求トルクTrと一致するように、E/GトルクとM/Gトルクとの配分が調整される。E/GトルクとM/Gトルクとの配分は、車両の走行状態(例えば、車速Vと要求トルクTr)に基づいて調整される。
【0059】
切替機構50では、スリーブ54が移動することで、M/G接続状態が切り替えられる。以下、このスリーブ54の移動を「切り替え作動」と称呼する。切り替え作動の開始は、スリーブ54の移動の開始に対応し、切り替え作動の終了は、スリーブ54の移動の終了に対応する。M/G接続状態の切り替えは、例えば、車速Vと要求トルクTrとの組み合わせに基づいてなされ得る。
【0060】
(EV走行状態)
本装置では、E/G側駆動トルクTeを利用することなくM/G側駆動トルクTmのみを利用して車両が走行する状態(以下、「EV走行状態」と呼ぶ。)が達成され得る。EV走行状態は、IN接続状態でもOUT接続状態でも達成され得る。EV走行状態では、C/T30が遮断状態とされ、E/G10が停止(出力軸A1の回転が停止)している。この状態にて、M/G側駆動トルクTmが要求トルクTrと一致するように調整されながら、車両がM/G側駆動トルクTmを利用して走行する。
【0061】
EV走行状態において、E/G10を始動する条件(E/G始動条件)が成立した場合、本装置では、E/G10の出力軸A1を回転駆動するための動力源として、回転しているT/M20の入力軸A2の動力が利用される。E/G始動条件については後述する。以下、この場合の作動について、図4に示すタイムチャートを参照しながら説明する。なお、E/G10の「始動」とは、E/G10の燃焼室内での混合気の着火の開始を意味する。
【0062】
(IN接続状態におけるE/Gの始動)
図4は、時刻t1以前において、車両が、IN接続状態、且つT/M20の変速段が「1速」に設定された状態にてEV走行状態にある場合において、時刻t1にて、E/G始動条件が成立した場合の作動の一例を示す。上述のように、EV走行状態(時刻t1以前)では、C/T30が遮断状態(クラッチストロークS=0、クラッチトルクTc=0、図3を参照)となっていて、且つ、E/G回転速度Neがゼロに維持されている。そして、要求トルクTrと一致するように調整されているM/G側駆動トルクTmのみを利用して車両が走行(加速)している。即ち、T/M20の出力軸A3に作用する車両加速方向のトルクの合計を「合計トルクTs」と定義すると、合計トルクTs(=M/G側駆動トルクTm)は、要求トルクTrと一致している。なお、IN接続状態でのEV走行状態では、M/Gトルクを駆動輪に伝達するため、T/M20の変速段が前記走行用変速段(即ち、T/M20の入力軸A2と出力軸A3との間で動力伝達系統が形成される変速段)に設定されている必要がある。
【0063】
E/G始動条件が成立すると(時刻t1)、本例では、C/T30のクラッチストロークSがゼロから増大されて、C/T30を遮断状態から半接合状態に移行するための作動が開始される。クラッチストロークSがS1に達すると(時刻t2)、C/T30が遮断状態から半接合状態に移行する(図3を参照)。以降、クラッチトルクTcがゼロから増大していく。この例では、Tcの増加勾配は一定とされている。なお、本例では、クラッチトルクTcが、出力軸A1の駆動に要求されるトルク未満の範囲内で調整される。即ち、時刻t2以降、C/T30が半接合状態に維持される(完全接続状態とはならない)。
【0064】
C/T30が遮断状態から半接合状態に移行した後(時刻t2以降)、回転中のT/M20の入力軸A2の動力がE/G10の出力軸A1に伝達されて、出力軸A1が回転駆動される。この結果、時刻t2以降(正確には、時刻t2後であって出力軸A1に伝達されるトルクが出力軸A1の回転開始に要求されるトルクに達した時点以降)、E/G回転速度Neがゼロから増大する。
【0065】
このように、C/T30の半接合状態において回転中の入力軸A2の動力を利用して出力軸A1が回転駆動されている間、クラッチトルクTc(>0)が、入力軸A2の駆動トルクよりも小さい範囲内で推移する。この場合、入力軸A2の駆動トルクに基づいてC/T30を介して出力軸A1に伝達されるトルクは、クラッチトルクTcと等しい値に調整される。この結果、入力軸A2は車両減速方向の反トルクを受けるとともに、その反トルクはクラッチトルクTcと等しい値となる。従って、T/M20の出力軸A3が受ける車両減速方向の反トルクは、クラッチトルクTcに変速機減速比Gtm(本例では、「1速」に対応する値)を乗じたトルクとなる。
【0066】
以下、出力軸A3が受ける車両減速方向の反トルクを「E/G側減速トルク(−Te)」(>0)と呼ぶ。本装置では、上記の観点に基づき、C/T30が半接合状態に移行した後(時刻t2以降)、E/G側減速トルク(−Te)が下記(1)式に基づいて推定される。時刻t2以降、クラッチトルクTcのゼロからの増大に応じて、E/G側減速トルク(−Te)もゼロから増大していく(図4における微細なドットで示した領域を参照)。
【0067】
−Te=Tc・Gtm …(1)
【0068】
EV走行状態において、T/M20の出力軸A3(従って、駆動輪)がこのE/G側減速トルク(−Te)(>0)を受けると、車両において減速方向のショックが発生し、ドライバビリティが悪化する。このとき、車両加速方向のトルクであるM/G側駆動トルクTmをE/G側減速トルク(−Te)の分だけ大きくすれば、E/G側減速トルク(−Te)が相殺されて、(−Te)に起因する減速方向のショックの発生が抑制され得る。
【0069】
係る知見に基づき、本装置では、C/T30が半接合状態に移行した後(時刻t2以降)、M/G側駆動トルクTmが下記(2)式に基づいて決定される値に調整されていく。これにより、時刻t2以降、クラッチトルクTc(従って、E/G側減速トルク(−Te))のゼロからの増大に応じて、M/G側駆動トルクTmも要求トルクTrから増大方向に離れていく(図4における斜線で示した領域を参照)。このように、E/G側減速トルク(−Te)を考慮して、M/G側駆動トルクTmを要求トルクからTrから大きくすることで、C/T30が半接合状態に移行した後も(時刻t2以降)、合計トルクTsが要求トルクTrと等しい値に維持され得る。
【0070】
Tm=Tr+(−Te) …(2)
【0071】
このように、C/T30の半接合状態にて回転中の入力軸A2の動力を利用してE/G回転速度Neが増大される状態は、時刻t2から、E/G回転速度NeがE/G10の着火に必要なE/G回転速度範囲の下限値(以下、「着火下限回転速度Ne1」と呼ぶ。)に達する時点(時刻t3)まで継続される。以下、この期間(時刻t2〜t3)を「A期間」と呼ぶ。着火下限回転速度Ne1は、例えば、図5に示すマップに従って、「温度」が高いほどより小さい値に設定される。ここで、「温度」とは、例えば、E/G10の冷却水温、吸気温度である。
【0072】
なお、図4に示した例では、A期間に亘って、上述したようにクラッチトルクTcの増加勾配dTcが一定とされているが、図6に実線で示すように、増加勾配dTcをE/G回転速度Neの増大に応じて変化させてもよい(図6において破線は、図4に示した例に対応する)。図6に実線(破線)で示すTcの増加勾配dTcは、図7に実線(破線)で示すマップに従って決定されている。
【0073】
Tcがゼロから増大する直後の段階においてTcの増加勾配dTcが大きい場合、E/G回転速度Neがゼロから増大する直後の段階においてNeの増加勾配が大きくなる。この場合、Neの増加勾配に乱れが生じ易い傾向がある。この乱れの発生により、E/G側減速トルク(−Te)がクラッチトルクTcと一致し得ない期間(即ち、上記(1)式が成立しない期間)が発生する。このことは、E/G側減速トルク(−Te)が正確に推定され得ない期間、即ち、E/G側減速トルク(−Te)を相殺するための適切なM/G側駆動トルクTmが算出され得ない期間が発生し得ることを意味する。
【0074】
これに対し、図6、図7に実線で示すように、Tcがゼロから増大する直後の段階においてTcの増加勾配dTcが(図4に示す例に比して)小さくされることで、Neがゼロから増大する直後の段階におけるNeの増加勾配が小さくなる。この結果、上述したNeの増加勾配の乱れが生じ難くなる。これにより、E/G側減速トルク(−Te)を相殺するための適切なM/G側駆動トルクTmが算出され得ない期間が発生することが抑制され得る。
【0075】
また、図8に示すように、A期間に亘って、E/G回転速度Neの時間に対するゼロからの増大パターンが予め定められた目標パターンに一致するように、クラッチトルクTcを調整してE/G回転速度Neが積極的にフィードバック制御されてもよい。この場合、目標パターンとして、例えば、図6に実線で示したパターンが採用され得る。これにより、上述したNeの増加勾配の乱れが生じ難くなる。
【0076】
再び、図4を参照する。A期間が終了すると(即ち、E/G回転速度Neが着火下限回転速度Ne1に達すると)(時刻t3)、E/G10を始動するための処理が開始・実行される。具体的には、燃料の噴射が開始・実行される(及び、E/G10がガソリン内燃機関の場合は点火プラグにより点火が開始・実行される)。この結果、図4では、時刻t4にてE/G10が始動している。以下、E/G10を始動するための処理の開始からE/G10の始動までの期間(時刻t3〜t4)を「B期間」と呼ぶ。時刻t3にてE/G10が直ちに始動した場合、B期間は存在しない。
【0077】
このB期間でも、A期間と同様、M/G側駆動トルクTmが上記(2)式に基づいて決定される値に調整されていく。これにより、B期間中もなお、合計トルクTsが要求トルクTrと等しい値に維持され得る。
【0078】
図9に示すように、B期間では、E/G回転速度Neが着火下限回転速度Ne1に維持されるように、クラッチトルクTcを調整してE/G回転速度Neが積極的にフィードバック制御されてもよい。
【0079】
また、図10に示すように、B期間では、E/G回転速度Neが着火下限回転速度Ne1から一定の増加勾配で増加していくように、クラッチトルクTcを調整してE/G回転速度Neが積極的にフィードバック制御されてもよい。
【0080】
また、図11に示すように、B期間では、E/G回転速度Neが着火下限回転速度Ne1から時間経過とともに増加勾配が増大しながら増加していくように、クラッチトルクTcが一定の増加勾配で増加するように制御されてもよい。
【0081】
図10及び図11に示す場合では、図5に示すマップに従って決定された着火下限回転速度Ne1が、E/G10の着火に必要なE/G回転速度範囲の下限値の実際値よりも小さかった場合等において、図9に示す場合に比して、E/G10の始動時期(時刻t4)を早めることができる(即ち、B期間が短くされ得る)。
【0082】
再び、図4を参照する。B期間が終了すると(即ち、E/G10が始動すると)(時刻t4)、クラッチトルクTcが直ちにゼロに向けて減少される。これに伴い、上記(1)式にて推定されるE/G側減速トルク(−Te)もゼロに向けて減少され、この結果、上記(2)式に基づいて調整されるM/G側駆動トルクTmも要求トルクTrに一致するように近づいていく。図4では、時刻t5にて、Tc=(−Te)=0、Tm=Trとなっている。以下、時刻t4〜t5の期間を「C期間」と呼ぶ。
【0083】
E/G10の始動直後では、E/G10の出力軸A1のトルクに基づいてT/M20の入力軸A2(従って、出力軸A3)に伝達されるトルクは、減速方向のE/G側減速トルク(−Te)から加速方向のE/G側駆動トルクTeに切り替わる。この切り替わりに起因して車両においてショックが発生することが懸念される。これに対し、図4に示すように、C期間にて、半接合状態に維持されていたC/T30が直ちに遮断状態に移行され、且つ、M/G側駆動トルクTmが要求駆動トルクTrに一致するように調整される。これにより、E/G側駆動トルクTe=0に維持されることで、B期間から継続してC期間(及びその後の期間)に亘って、合計トルクTs(=Tm)が要求トルクTrと等しい値に維持され続ける。この結果、上述したトルクの切り替わりに起因するショックの発生が極力抑制され得る。
【0084】
また、図12に示すように、C期間において、C/T30が半接合状態(或いは、完全接合状態)に維持されて、E/G側駆動トルクTeがゼロよりも大きい所定値に調整されてもよい。この場合、合計トルクTs(=Tm+Te)が要求トルクTrに一致するように、M/G側駆動トルクTmが調整される。これによっても、B期間から継続してC期間(及びその後の期間)に亘って、合計トルクTs(=Tm)が要求トルクTrと等しい値に維持され続ける。この結果、上述したトルクの切り替わりに起因するショックの発生が極力抑制され得る。
【0085】
以上、図4に示す例では、A期間〜C期間に亘って合計トルクTsが要求トルクTrと等しい値に維持され続ける。この結果、A,B期間におけるE/G側減速トルク(−Te)に起因する減速方向のショックの発生、並びに、C期間におけるE/G側減速トルク(−Te)からE/G側駆動トルクTeへの切り替わるに起因するショックの発生が抑制され得る。即ち、EV走行状態において、スタータモータを使用することなく且つドライバビリティの悪化を抑制しつつE/G10を始動することができる。従って、スタータモータを省略することができる。
【0086】
なお、A期間〜C期間に亘る処理を行った後(即ち、E/G10の始動が完了した後)に何らかの原因でE/G10が再び停止した場合、A期間〜C期間に亘る処理が所定回数を限度として繰り返し実行されて、E/G10の始動が再び試みられる。以上、IN接続状態におけるE/G10の始動について説明した。
【0087】
(OUT接続状態におけるE/Gの始動)
次に、図13を参照しながら、OUT接続状態におけるE/G10の始動について説明する。図13は、時刻t0以前において、車両が、OUT接続状態、且つT/M20の変速段が「ニュートラル」に設定された状態にてEV走行状態にある場合において、時刻t0にて、E/G始動条件が成立した場合の作動の一例を示す。
【0088】
図13における時刻t1〜t5は、図4における時刻t1〜t5にそれぞれ対応している。図13における時刻t1〜t5における作動は、図4における時刻t1〜t5における作動と同じであるから、これらについての詳細な説明を省略する。図13では、時刻t0〜t1においてT/M20の変速段の「ニュートラル」から「4速」への変速作動が行われている。以下、この点について説明する。
【0089】
OUT接続状態では、IN接続状態と異なり、T/M20の変速段にかかわらず、M/Gトルクが駆動輪に常時伝達され得る。従って、図13に示すように、OUT接続状態でのEV走行状態(時刻t0以前)では、T/M20の変速段がニュートラル(即ち、T/M20の入力軸A2と出力軸A3との間で動力伝達系統が形成されない変速段)に選択されていてもよい。
【0090】
一方、E/G10の始動のため、T/M20の入力軸A2の動力を利用してE/G10の出力軸A1が回転駆動される際には、T/M20の変速段が前記走行用変速段(即ち、T/M20の入力軸A2と出力軸A3との間で動力伝達系統が形成される変速段)に選択されている必要がある。従って、図13に示すように、A期間の開始以前(時刻t2以前)においてニュートラルから走行用変速段への変速作動がなされている(時刻t0〜t1)。
【0091】
以下、本装置による走行用変速段の選択について説明する。A,B期間における減速方向のショック発生の原因であるE/G側減速トルク(−Te)(=クラッチトルクTc×変速機減速比Gtm)は、変速機減速比Gtmが小さいほど小さくなる。従って、この観点からは、変速機減速比Gtmが出来るだけ小さい変速段(より高速側の変速段)が選択されることが好ましいと考えられる。一方、変速機減速比Gtmが小さ過ぎると、車速に対してE/G回転速度Neが前記着火下限回転速度Ne1以上に達し得ず、E/G10が始動し得ない事態が発生し得る。
【0092】
以上のことを考慮して、本装置では、図14に示すように、変速機減速比Gtmが、車速Vに対してE/G回転速度Neを着火下限回転速度Ne1以上に調整し得る減速比のうちで最も小さい値に選択される(図14において、太い点線を参照)。例えば、車速Vが値V1の場合、変速段が「3速」に選択される。これにより、A,B期間における減速方向のショック発生の原因であるE/G側減速トルク(−Te)を極力小さく抑制した状態でE/G10を始動させることができる。
【0093】
図13に示す例では、走行用変速段として「4速」が選択された場合が示されている。従って、A期間の開始以前(時刻t2以前)においてニュートラルから「4速」への変速作動がなされている(時刻t0〜t1)。なお、図13に示す例では、時刻t5〜t6においてT/M20の変速段の「4速」から「2速」への変速作動がなされている。これは、C期間終了後(時刻t5以降)において、T/M20の変速段が通常の選択モード(例えば、車速Vと要求トルクTrとの組み合わせ)に基づいて決定された変速段(図13では、「2速」)に選択されていくことに基づく。以上、図13を参照しながら、OUT接続状態におけるE/G10の始動について説明した。このOUT接続状態におけるE/G10の始動の場合も、図4に示したIN接続状態におけるE/G10の始動の場合と同じ作用・効果が奏される。
【0094】
以下、E/G始動条件について付言する。E/G始動条件は、例えば、M/G40のトルク特性から決定されるM/Gトルクの最大値に基づくM/G側駆動トルクTmの調整可能範囲の最大値が要求トルクTrに達し得ない場合、要求トルクTrに対するその最大値の割合が所定値を超えた場合に成立する。また、E/G始動条件は、M/G側駆動トルクTmに加えてE/G側駆動トルクTeをも利用すること、或いは、M/G側駆動トルクTmに代えてE/G側駆動トルクTeを利用することで、車両全体としての総合的なエネルギ効率(燃費)が向上すると判定される場合等にも成立し得る。
【0095】
また、図15に示すように、E/G始動条件は、M/G40に電気エネルギを供給するバッテリの残量(蓄積されている(化学)エネルギの量)が所定値を下回った場合に成立する。これにより、バッテリ残量が小さい場合にE/G10が始動される。この結果、E/GトルクによりM/G40の出力軸A4を回転駆動することで、バッテリを充電することができる。
【0096】
また、図16に示すように、E/G始動条件は、バッテリの温度が所定値を超えた場合に成立する。これにより、バッテリが高温になった場合にE/G10が始動される。この結果、E/Gトルクのみにより車両を駆動することで、M/G40及びバッテリの作動を中断してM/G40及びバッテリの温度を下げることができる。
【0097】
また、図17に示すように、E/G始動条件は、M/G回転速度が所定値を超えた場合に成立する。これにより、M/G回転速度が許容範囲を超えた場合にE/G10が始動される。この結果、E/Gトルクのみにより車両を駆動することで、車両の走行を継続することができる。
【0098】
また、図18に示すように、E/G始動条件は、M/G40の温度が所定値を超えた場合に成立する。これにより、M/G40が高温になった場合にE/G10が始動される。この結果、E/Gトルクのみにより車両を駆動することで、M/G40及びバッテリの作動を中断してM/G40及びバッテリの温度を下げることができる。
【0099】
また、図19に示すように、バッテリ残量が大きいほど、E/G始動が許可されるT/M20の変速機減速比Gtmの上限値がより小さい値に設定されてもよい。例えば、バッテリ残量が値aの場合、T/M20の変速段が「2速」又は「2速」よりも高速側(「3速」等)に設定されている場合にE/G始動が許可され、T/M20の変速段が「1速」に設定されている場合にはE/G始動が禁止される。E/G始動が禁止される場合、上述のE/G始動条件が成立してもE/G10が始動されない。また、一般に、T/M20の変速段が高速側に設定されるほど車速が大きくなる関係が成立する観点から、バッテリ残量が大きいほど、E/G始動が許可される車速Vの下限値がより大きい値に設定されてもよい。
【0100】
本発明は上記実施形態に限定されることはなく、本発明の範囲内において種々の変形例を採用することができる。例えば、上記実施形態では、図4又は図13におけるA,B期間(時刻t2〜t4)にて、C/T30が半接合状態に維持されているが、A,B期間の途中でC/T30が完全接合状態に移行してもよい。C/T30が完全接合状態になると、上記(1)式が成立しなくなることで、上記(1)式を用いてE/G側減速トルク(−Te)を推定できなくなる。この場合、図20に示すマップを用いて、E/G回転速度Neに基づいてE/G側減速トルク(−Te)を推定することができる。図20に示す関係は、始動前のE/G10の出力軸A1をE/G回転速度を変更しながら回転駆動する実験・シミュレーションを通して予め取得することができる。
【0101】
また、上記実施形態では、切替機構50として、IN接続状態、OUT接続状態、及びニュートラル状態の何れにも切り替え可能なものが使用されているが、図4に示すIN接続状態でのEV走行状態にてE/G10が始動される場合、切替機構50として、IN接続状態、及びニュートラル状態のみに切り替え可能なものが使用されてもよい。また、切替機構50そのものが省略されて、IN接続状態(即ち、T/M20の入力軸A2とM/G40の出力軸A4との間で動力伝達系統が形成された状態)が常時達成されていてもよい。
【0102】
同様に、図13に示すOUT接続状態でのEV走行状態にてE/G10が始動される場合、切替機構50として、OUT接続状態、及びニュートラル状態のみに切り替え可能なものが使用されてもよい。また、切替機構50そのものが省略されて、OUT接続状態(即ち、T/M20の出力軸A3とM/G40の出力軸A4との間で動力伝達系統が形成された状態)が常時達成されていてもよい。
【0103】
加えて、上記実施形態では、変速機としてトルクコンバータを備えない多段変速機を使用した所謂オートメイティッド・マニュアル・トランスミッションが使用されているが、変速機として、トルクコンバータを備えるとともに車両の走行状態に応じて変速作動が自動的に実行される多段変速機又は無段変速機(所謂オートマチックトランスミッション(AT))が使用されてもよい。
【符号の説明】
【0104】
10…エンジン、20…変速機、30…クラッチ、40…モータジェネレータ、50…切替機構、61…車輪速度センサ、62…アクセル開度センサ、63…シフト位置センサ、64…ブレーキセンサ、70…ECU、AP…アクセルペダル、BP…アクセルペダル、SF…シフトレバー

【特許請求の範囲】
【請求項1】
動力源として内燃機関と電動機とを備えた車両に適用される車両の動力伝達制御装置であって、
前記内燃機関の出力軸との間で動力伝達系統が形成される入力軸と、前記車両の駆動輪との間で動力伝達系統が形成される出力軸とを備え、前記出力軸の回転速度に対する前記入力軸の回転速度の割合である変速機減速比を調整可能な変速機であって、前記変速機の入力軸と前記電動機の出力軸との間で動力伝達系統が形成された変速機と、
前記内燃機関の出力軸と前記変速機の入力軸との間に介装され、前記内燃機関の出力軸と前記変速機の入力軸との間で動力の少なくとも一部を伝達する接合状態と、前記動力を伝達しない遮断状態とに調整可能なクラッチ機構と、
前記車両の走行状態に基づいて、前記内燃機関、前記電動機、及び前記クラッチ機構を制御する制御手段と、
を備え、
前記制御手段は、
前記クラッチ機構が前記遮断状態にあり、前記内燃機関が停止し、前記電動機の出力軸のトルクに基づく前記変速機の出力軸に伝達されるトルクである電動機側駆動トルクが前記車両の運転者による加速操作部材の操作に基づいて得られる前記運転者が要求する駆動トルクである要求トルクに基づいて調整されながら前記車両が前記電動機側駆動トルクを利用して走行する電動機走行状態において、前記内燃機関を始動する条件が成立した場合、前記クラッチ機構を前記接合状態に調整することで前記変速機の入力軸から前記内燃機関の出力軸への動力の伝達により前記内燃機関の出力軸を回転させながら前記内燃機関を始動するように構成されていて、
前記制御手段は、
前記クラッチ機構が前記接合状態に移行した後前記内燃機関の始動前において、前記変速機の入力軸から前記内燃機関の出力軸への動力の伝達に起因して前記変速機の出力軸が受ける前記車両を減速する方向の反トルクである内燃機関側減速トルクを考慮して、前記電動機側駆動トルクを大きくするように構成された車両の動力伝達制御装置。
【請求項2】
請求項1に記載の車両の動力伝達制御装置であって、
前記電動機の出力軸の接続状態を、前記電動機の出力軸と前記変速機の入力軸との間で動力伝達系統が形成される入力側接続状態と、前記電動機の出力軸と前記変速機の出力軸との間で前記変速機を介することなく動力伝達系統が形成される出力側接続状態と、前記電動機の出力軸と前記変速機の入力軸との間も前記電動機の出力軸と前記変速機の出力軸との間も動力伝達系統が形成されない非接続状態と、のうちで少なくとも前記入力側接続状態を含む2以上の状態に切り替え可能な切替機構を備え、
前記制御手段は、
前記切替機構により前記入力側接続状態が選択された状態にて、前記クラッチ機構を前記接合状態に移行するように構成された車両の動力伝達制御装置。
【請求項3】
動力源として内燃機関と電動機とを備えた車両に適用される車両の動力伝達制御装置であって、
前記内燃機関の出力軸との間で動力伝達系統が形成される入力軸と、前記車両の駆動輪との間で動力伝達系統が形成される出力軸とを備え、前記出力軸の回転速度に対する前記入力軸の回転速度の割合である変速機減速比を調整可能な変速機であって、前記変速機の出力軸と前記電動機の出力軸との間で前記変速機を介することなく動力伝達系統が形成された変速機と、
前記内燃機関の出力軸と前記変速機の入力軸との間に介装され、前記内燃機関の出力軸と前記変速機の入力軸との間で動力の少なくとも一部を伝達する接合状態と、前記動力を伝達しない遮断状態とに調整可能なクラッチ機構と、
前記車両の走行状態に基づいて、前記内燃機関、前記電動機、及び前記クラッチ機構を制御する制御手段と、
を備え、
前記制御手段は、
前記クラッチ機構が前記遮断状態にあり、前記内燃機関が停止し、前記電動機の出力軸のトルクに基づく前記変速機の出力軸に伝達されるトルクである電動機側駆動トルクが前記車両の運転者による加速操作部材の操作に基づいて得られる前記運転者が要求する駆動トルクである要求トルクに基づいて調整されながら前記車両が前記電動機側駆動トルクを利用して走行する電動機走行状態において、前記内燃機関を始動する条件が成立した場合、前記クラッチ機構を前記接合状態に調整することで前記変速機の入力軸から前記内燃機関の出力軸への動力の伝達により前記内燃機関の出力軸を回転させながら前記内燃機関を始動するように構成されていて、
前記制御手段は、
前記クラッチ機構が前記接合状態に移行した後前記内燃機関の始動前において、前記変速機の入力軸から前記内燃機関の出力軸への動力の伝達に起因して前記変速機の出力軸が受ける前記車両を減速する方向の反トルクである内燃機関側減速トルクを考慮して、前記電動機側駆動トルクを大きくするように構成された車両の動力伝達制御装置。
【請求項4】
請求項3に記載の車両の動力伝達制御装置であって、
前記電動機の出力軸の接続状態を、前記電動機の出力軸と前記変速機の入力軸との間で動力伝達系統が形成される入力側接続状態と、前記電動機の出力軸と前記変速機の出力軸との間で前記変速機を介することなく動力伝達系統が形成される出力側接続状態と、前記電動機の出力軸と前記変速機の入力軸との間も前記電動機の出力軸と前記変速機の出力軸との間も動力伝達系統が形成されない非接続状態と、のうちで少なくとも前記出力側接続状態を含む2以上の状態に切り替え可能な切替機構を備え、
前記制御手段は、
前記切替機構により前記出力側接続状態が選択された状態にて、前記クラッチ機構を前記接合状態に移行するように構成された車両の動力伝達制御装置。
【請求項5】
請求項3又は請求項4に記載の車両の動力伝達制御装置において、
前記制御手段は、
前記変速機減速比を、前記車両の速度に対して前記内燃機関の出力軸の回転速度を前記内燃機関の着火に必要な範囲の下限値以上に調整し得る減速比のうちで最も小さい値に調整した後に、前記クラッチ機構を前記接合状態に移行するように構成された車両の動力伝達制御装置。
【請求項6】
請求項1乃至請求項5の何れか一項に記載の車両の動力伝達制御装置において、
前記クラッチ機構は、
前記接合状態において前記クラッチ機構が伝達し得るトルクの最大値であるクラッチトルクを制御可能に構成されていて、
前記制御手段は、
前記クラッチ機構が前記接合状態に移行した後前記内燃機関の始動前において、前記接合状態にて前記クラッチトルクを制御することで前記内燃機関の出力軸の回転速度を調整するとともに、前記内燃機関側減速トルクを前記クラッチトルクに前記変速機減速比を乗じたトルクと等しい値に推定し、前記電動機側駆動トルクを、前記要求トルクに前記内燃機関側減速トルクを加えた値に調整するように構成された車両の動力伝達制御装置。
【請求項7】
請求項1乃至請求項6の何れか一項に記載の車両の動力伝達制御装置において、
前記制御手段は、
前記内燃機関の始動後、前記クラッチ機構を前記遮断状態に切り替えるとともに、前記電動機側駆動トルクを前記要求トルクに基づいて調整するように構成された車両の動力伝達制御装置。
【請求項8】
請求項1乃至請求項6の何れか一項に記載の車両の動力伝達制御装置において、
前記制御手段は、
前記内燃機関の始動後、前記内燃機関の出力軸のトルクに基づく前記変速機の出力軸に伝達されるトルクである内燃機関側駆動トルクと前記電動機側駆動トルクとの和が前記要求トルクに基づいて調整されるように前記内燃機関側駆動トルク及び前記電動機側駆動トルクを調整するよう構成された車両の動力伝達制御装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate

【図14】
image rotate

【図15】
image rotate

【図16】
image rotate

【図17】
image rotate

【図18】
image rotate

【図19】
image rotate

【図20】
image rotate


【公開番号】特開2010−241330(P2010−241330A)
【公開日】平成22年10月28日(2010.10.28)
【国際特許分類】
【出願番号】特願2009−93865(P2009−93865)
【出願日】平成21年4月8日(2009.4.8)
【出願人】(592058315)アイシン・エーアイ株式会社 (490)
【Fターム(参考)】