説明

コンデンサ及びその製造方法

【課題】耐湿性等の信頼性を向上させたコンデンサを提供する。
【解決手段】コンデンサは、半導体基板100の貫通孔123を覆うように形成された第1の膜102と、第1の膜102の上方に第1の膜102と対向するように形成された第2の膜115とを備えている。第2の膜115は、半導体基板100の貫通孔123上に位置する複数の第1の孔124と、複数の第1の孔124よりも開口面積が大きい少なくとも1つの第2の孔126とを有している。第2の孔126は、第1の膜102のうち貫通孔123に露出した部分よりも外側の部分と対向する領域のみに存在している。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、振動電極を有するエレクトレットコンデンサに関し、特に、MEMS(Micro Electro Mechanical System )技術を用いて形成するエレクトレットコンデンサに関する。
【背景技術】
【0002】
従来、コンデンサーマイクロホンなどの素子に応用される、永久的電気分極を有する誘導体であるエレクトレット素子として、FEP(フッ化エチレンプロピレン共重合体)樹脂材などの有機系の高分子重合体が使用されていた。しかし、これらの材料は耐熱性に欠けるため、基板実装する際のリフロー用素子としての応用が困難である。そこで、近年、エレクトレットの薄膜化、小型化及び高性能化を達成するために、微細加工技術を利用した、シリコン酸化膜を用いたエレクトレット型シリコンマイクロホンが提案されている(特許文献1参照)。
【先行技術文献】
【特許文献】
【0003】
【特許文献1】特開2002−186075号公報
【発明の概要】
【発明が解決しようとする課題】
【0004】
しかしながら、上記エレクトレット型シリコンマイクロホンは、数μmレベルの厚さのエアギャップ構造を有するため、当該エアギャップ内に取り込まれた水分が十分に放出されず、耐湿性や耐結露性などの信頼性面に問題がある。
【0005】
前記に鑑み、本発明は、耐湿性や耐結露性等の信頼性を向上させたエレクトレットコンデンサを提供することを目的とする。
【課題を解決するための手段】
【0006】
前記の目的を達成するために、本願発明者らは、エアギャップの上側の電極(上部電極)に設けられている音孔とは別に、上部電極にエアギャップと接続する貫通孔を設けることにより、上部電極の開口面積を増大させ、エアギャップ内に取り込まれた水分を滞留させずに放出しやすくするという発明を想到した。尚、貫通孔によりエレクトレットコンデンサの容量値が減少することを防止するため、貫通孔は上部電極の非容量生成部(上部電極における下部電極(振動電極)と対向していない部分)に形成することが望ましい。
【0007】
具体的には、本発明に係るエレクトレットコンデンサは、第1電極と、前記第1電極とエアギャップを挟んで対向する振動可能な第2電極と、前記第2電極における前記エアギャップ側の面上に設けられたエレクトレット膜とを備え、前記第2電極の面積は前記第1電極の面積よりも小さく、前記第1電極における前記第2電極と対向する容量生成部には複数の音孔が前記エアギャップと接続するように設けられており、前記第1電極における前記第2電極と対向していない非容量生成部には少なくとも1つの貫通孔が前記エアギャップと接続するように設けられている。
【0008】
本発明のエレクトレットコンデンサによると、第1電極つまり上部電極に音孔とは別に、エアギャップと接続する貫通孔が設けられているため、上部電極の開口面積が増大してエアギャップの通気性が向上する。このため、エアギャップ内に取り込まれた水分の滞留を回避できるので、耐湿性や耐結露性等の信頼性を向上させることができる。また、上部電極の非容量生成部に貫通孔を設けるため、貫通孔に起因するエレクトレットコンデンサの容量値の減少を防止することができる。
【0009】
上記効果をより確実に得るために、本発明のエレクトレットコンデンサにおいて、前記貫通孔の開口面積は前記各音孔の開口面積よりも大きいこと、具体的には、前記貫通孔の開口径は前記各音孔の開口径の1.5倍以上であること(つまり貫通孔の開口面積が各音孔の開口面積の2倍以上であること)が好ましい。
【0010】
また、上記効果をより確実に得るためには、本発明のエレクトレットコンデンサにおいて、前記非容量生成部の単位面積当たりの開口面積は前記容量生成部の単位面積当たりの開口面積よりも大きいことが好ましい。この場合、前記貫通孔の開口面積は前記各音孔の開口面積と同じであってもよい。また、前記貫通孔の形成位置が前記容量生成部から離れるに従って当該貫通孔の開口面積は大きくなってもよい。例えば前記貫通孔と前記容量生成部の中心つまり前記第2電極(振動電極)の中心との間の距離に比例して当該貫通孔の開口径が大きくなってもよい。また、前記貫通孔の開口形状は特に限定されるものではないが、例えば前記貫通孔の開口形状は方形(正方形又は長方形)であり、前記各音孔の開口形状は円形であってもよい。
【0011】
また、上記効果をより確実に得るためには、本発明のエレクトレットコンデンサにおいて、前記エアギャップの内部に対して撥水処理が行われていることが好ましい。
【0012】
さらに、上記効果をより確実に得るためには、本発明のエレクトレットコンデンサにおいて、前記エレクトレット膜の上面及び下面は絶縁膜、具体的にはシリコン窒化膜によって覆われていることが好ましい。
【0013】
尚、本発明のエレクトレットコンデンサにおいて、前記エレクトレット膜がシリコン酸化膜であると、当該エレクトレット膜を薄膜化、小型化及び高性能化することができる。
【発明の効果】
【0014】
以上に説明したように、本発明によると、第1電極つまり上部電極の非容量生成部に、音孔とは別に、エアギャップと接続する貫通孔が設けられているため、エレクトレットコンデンサの容量値を減らすことなく、上部電極の開口面積を増大させることによりエアギャップの通気性を向上させ、それによって、従来品と比較して耐湿性や耐結露性等の信頼性を向上させたエレクトレットコンデンサを得ることができる。すなわち、高信頼性を有する本発明のエレクトレットコンデンサを搭載した各種応用装置を広く社会に供給することが可能となる。
【図面の簡単な説明】
【0015】
【図1】図1(a)は本発明の第1の実施形態に係るエレクトレットコンデンサの平面図であり、図1(b)は図1(a)のI−I線の断面図である。
【図2】図2(a)は本発明の第2の実施形態に係るエレクトレットコンデンサの平面図であり、図2(b)は図2(a)のII−II線の断面図である。
【図3】図3(a)は本発明の第3の実施形態に係るエレクトレットコンデンサの平面図であり、図3(b)は図3(a)の III− III線の断面図である。
【図4】図4(a)は本発明の第4の実施形態に係るエレクトレットコンデンサの平面図であり、図4(b)は図4(a)のIV−IV線の断面図である。
【図5】図5(a)及び(b)は、本発明の第5の実施形態に係るエレクトレットコンデンサの製造方法の各工程を示す断面図である。
【図6】図6(a)及び(b)は、本発明の第5の実施形態に係るエレクトレットコンデンサの製造方法の各工程を示す断面図である。
【図7】図7(a)及び(b)は、本発明の第5の実施形態に係るエレクトレットコンデンサの製造方法の各工程を示す断面図である。
【図8】図8(a)及び(b)は、本発明の第5の実施形態に係るエレクトレットコンデンサの製造方法の各工程を示す断面図である。
【図9】図9(a)及び(b)は、本発明の第5の実施形態に係るエレクトレットコンデンサの製造方法の各工程を示す断面図である。
【図10】図10(a)及び(b)は、本発明の第5の実施形態に係るエレクトレットコンデンサの製造方法の各工程を示す断面図である。
【発明を実施するための形態】
【0016】
(第1の実施形態)
以下、本発明の第1の実施形態に係るエレクトレットコンデンサについて図面を参照しながら説明する。
【0017】
図1(a)は本発明の第1の実施形態に係るエレクトレットコンデンサの平面図であり、図1(b)は図1(a)のI−I線の断面図である。尚、図1(a)において、説明を分かりやすくするために、主要な部材以外の図示を省略している。
【0018】
図1(a)及び(b)に示すように、中央部に除去領域(以下、メンブレン領域と称する)123を有する半導体基板100上に第1のシリコン酸化膜101を介して、振動膜(下層の第1の導電性ポリシリコン膜102と上層の第2のシリコン酸化膜105との積層体)がメンブレン領域123を覆うように設けられている。第1の導電性ポリシリコン膜102は下部電極(振動電極)となり、第2のシリコン酸化膜105はエレクトレット膜となる。第2のシリコン酸化膜105の下面及び上面はそれぞれ第1のシリコン窒化膜104及び第2のシリコン窒化膜107によって覆われている。上記振動膜の上には、エアギャップ125を挟んで固定膜(第2の導電性ポリシリコン膜115)が設けられている。第2の導電性ポリシリコン膜115は上部電極(固定電極)となり、その下面及び上面はそれぞれ第3のシリコン窒化膜114及び第4のシリコン窒化膜117によって覆われている。尚、上記固定膜は、半導体基板100上において第3のシリコン酸化膜109によって保持されており、エアギャップ125は第3のシリコン酸化膜109の除去領域である。
【0019】
また、図1(a)及び(b)に示すように、振動電極となる第1の導電性ポリシリコン膜102の面積は、固定電極となる第2の導電性ポリシリコン膜115の面積よりも小さい。また、固定電極となる第2の導電性ポリシリコン膜115における振動電極となる第1の導電性ポリシリコン膜102と対向する容量生成部には複数の音孔124がエアギャップ125と接続するように設けられている。さらに、固定電極となる第2の導電性ポリシリコン膜115における振動電極となる第1の導電性ポリシリコン膜102と対向していない非容量生成部には複数の貫通孔126がエアギャップ125と接続するように設けられている。
【0020】
尚、本実施形態において、各貫通孔126の開口面積は各音孔124の開口面積よりも大きい。また、固定電極となる第2の導電性ポリシリコン膜115の端部には電極パッド127が設けられている。
【0021】
本実施形態によると、固定電極となる第2の導電性ポリシリコン膜115に音孔124とは別に、エアギャップ125と接続する貫通孔126が設けられているため、上記固定電極の開口面積が増大してエアギャップ125の通気性が向上する。このため、エアギャップ125内に取り込まれた水分の滞留を回避できるので、耐湿性や耐結露性等の信頼性を向上させることができる。また、上記固定電極の非容量生成部に貫通孔126を設けるため、貫通孔126に起因するエレクトレットコンデンサの容量値の減少を防止することができる。
【0022】
また、本実施形態によると、各貫通孔126の開口面積が各音孔124の開口面積よりも大きいため、上記効果をより確実に得ることができる。ここで、各貫通孔126の開口径は各音孔124の開口径の1.5倍以上であること(つまり各貫通孔126の開口面積が各音孔124の開口面積の2倍以上であること)が好ましい。
【0023】
また、本実施形態によると、エレクトレット膜となる第2のシリコン酸化膜105の下面及び上面はそれぞれ第1のシリコン窒化膜104及び第2のシリコン窒化膜107によって覆われているため、上記効果をより確実に得ることができる。また、エレクトレット膜としてシリコン酸化膜を用いているため、当該エレクトレット膜を薄膜化、小型化及び高性能化することができる。
【0024】
尚、本実施形態において、エアギャップ125の内部に対して例えばHMDS(hexamethyle disilazane)等により撥水処理が行われていることが好ましい。このようにすると、上記効果をより確実に得ることができる。
【0025】
(第2の実施形態)
以下、本発明の第2の実施形態に係るエレクトレットコンデンサについて図面を参照しながら説明する。
【0026】
図2(a)は本発明の第2の実施形態に係るエレクトレットコンデンサの平面図であり、図2(b)は図2(a)のII−II線の断面図である。尚、図2(a)において、説明を分かりやすくするために、主要な部材以外の図示を省略している。また、図2(a)及び(b)において、図1(a)及び(b)に示す第1の実施形態と同一の構成要素には同一の符号を付すことにより、重複する説明を省略する。
【0027】
本実施形態が第1の実施形態と異なっている点は、図2(a)及び(b)に示すように、固定電極となる第2の導電性ポリシリコン膜115の非容量生成部に設けられる貫通孔126の数及び大きさである。具体的には、本実施形態では、第1の実施形態と比較して小さい貫通孔126が第1の実施形態と比較して多数設けられている。これにより、固定電極となる第2の導電性ポリシリコン膜115の非容量生成部における単位面積当たりの開口面積は容量生成部と比較して大きくなる。
【0028】
本実施形態によると、第1の実施形態と同様に、固定電極となる第2の導電性ポリシリコン膜115に音孔124とは別に、エアギャップ125と接続する貫通孔126が設けられているため、上記固定電極の開口面積が増大してエアギャップ125の通気性が向上する。このため、エアギャップ125内に取り込まれた水分の滞留を回避できるので、耐湿性や耐結露性等の信頼性を向上させることができる。また、上記固定電極の非容量生成部に貫通孔126を設けるため、貫通孔126に起因するエレクトレットコンデンサの容量値の減少を防止することができる。
【0029】
また、本実施形態によると、固定電極となる第2の導電性ポリシリコン膜115の非容量生成部における単位面積当たりの開口面積が容量生成部と比較して大きいため、上記効果をより確実に得ることができる。ここで、各貫通孔126の開口面積(開口径)と各音孔124の開口面積(開口径)とを同じに設定しても良い。
【0030】
また、本実施形態によると、第1の実施形態と同様に、エレクトレット膜となる第2のシリコン酸化膜105の下面及び上面はそれぞれ第1のシリコン窒化膜104及び第2のシリコン窒化膜107によって覆われているため、上記効果をより確実に得ることができる。また、エレクトレット膜としてシリコン酸化膜を用いているため、当該エレクトレット膜を薄膜化、小型化及び高性能化することができる。
【0031】
尚、本実施形態において、第1の実施形態と同様に、エアギャップ125の内部に対して例えばHMDS等により撥水処理が行われていることが好ましい。このようにすると、上記効果をより確実に得ることができる。
【0032】
(第3の実施形態)
以下、本発明の第3の実施形態に係るエレクトレットコンデンサについて図面を参照しながら説明する。
【0033】
図3(a)は本発明の第3の実施形態に係るエレクトレットコンデンサの平面図であり、図3(b)は図3(a)の III− III線の断面図である。尚、図3(a)において、説明を分かりやすくするために、主要な部材以外の図示を省略している。また、図3(a)及び(b)において、図1(a)及び(b)に示す第1の実施形態と同一の構成要素には同一の符号を付すことにより、重複する説明を省略する。
【0034】
本実施形態が第1の実施形態と異なっている点は、図3(a)及び(b)に示すように、固定電極となる第2の導電性ポリシリコン膜115の非容量生成部に設けられる貫通孔126の数及び大きさである。具体的には、本実施形態では、固定電極となる第2の導電性ポリシリコン膜115の容量生成部から貫通孔126の形成位置が離れるに従って当該貫通孔126の開口面積が大きくなる。これにより、固定電極となる第2の導電性ポリシリコン膜115の非容量生成部における単位面積当たりの開口面積は容量生成部と比較して大きくなる。
【0035】
本実施形態によると、第1の実施形態と同様に、固定電極となる第2の導電性ポリシリコン膜115に音孔124とは別に、エアギャップ125と接続する貫通孔126が設けられているため、上記固定電極の開口面積が増大してエアギャップ125の通気性が向上する。このため、エアギャップ125内に取り込まれた水分の滞留を回避できるので、耐湿性や耐結露性等の信頼性を向上させることができる。また、上記固定電極の非容量生成部に貫通孔126を設けるため、貫通孔126に起因するエレクトレットコンデンサの容量値の減少を防止することができる。
【0036】
また、本実施形態によると、固定電極となる第2の導電性ポリシリコン膜115の非容量生成部における単位面積当たりの開口面積が容量生成部と比較して大きいため、上記効果をより確実に得ることができる。ここで、貫通孔126と容量生成部の中心(つまり振動電極となる第1の導電性ポリシリコン膜102の中心)との間の距離に比例して当該貫通孔126の開口径を大きくしてもよい。
【0037】
また、本実施形態によると、第1の実施形態と同様に、エレクトレット膜となる第2のシリコン酸化膜105の下面及び上面はそれぞれ第1のシリコン窒化膜104及び第2のシリコン窒化膜107によって覆われているため、上記効果をより確実に得ることができる。また、エレクトレット膜としてシリコン酸化膜を用いているため、当該エレクトレット膜を薄膜化、小型化及び高性能化することができる。
【0038】
尚、本実施形態において、第1の実施形態と同様に、エアギャップ125の内部に対して例えばHMDS等により撥水処理が行われていることが好ましい。このようにすると、上記効果をより確実に得ることができる。
【0039】
(第4の実施形態)
以下、本発明の第4の実施形態に係るエレクトレットコンデンサについて図面を参照しながら説明する。
【0040】
図4(a)は本発明の第4の実施形態に係るエレクトレットコンデンサの平面図であり、図4(b)は図4(a)のIV−IV線の断面図である。尚、図4(a)において、説明を分かりやすくするために、主要な部材以外の図示を省略している。また、図4(a)及び(b)において、図1(a)及び(b)に示す第1の実施形態と同一の構成要素には同一の符号を付すことにより、重複する説明を省略する。
【0041】
本実施形態が第1の実施形態と異なっている点は、図3(a)及び(b)に示すように、固定電極となる第2の導電性ポリシリコン膜115の非容量生成部に設けられる貫通孔126の数、形状及び大きさである。具体的には、本実施形態では、第1の実施形態と比較して小さい貫通孔126が第1の実施形態と比較して多数設けられている。これにより、固定電極となる第2の導電性ポリシリコン膜115の非容量生成部における単位面積当たりの開口面積は容量生成部と比較して大きくなる。
【0042】
本実施形態によると、第1の実施形態と同様に、固定電極となる第2の導電性ポリシリコン膜115に音孔124とは別に、エアギャップ125と接続する貫通孔126が設けられているため、上記固定電極の開口面積が増大してエアギャップ125の通気性が向上する。このため、エアギャップ125内に取り込まれた水分の滞留を回避できるので、耐湿性や耐結露性等の信頼性を向上させることができる。また、上記固定電極の非容量生成部に貫通孔126を設けるため、貫通孔126に起因するエレクトレットコンデンサの容量値の減少を防止することができる。
【0043】
また、本実施形態によると、固定電極となる第2の導電性ポリシリコン膜115の非容量生成部における単位面積当たりの開口面積が容量生成部と比較して大きいため、上記効果をより確実に得ることができる。ここで、貫通孔126の開口形状は特に限定されるものではないが、例えば各貫通孔126の開口形状を方形(正方形又は長方形)に設定し、各音孔124の開口形状を円形に設定しても良い。
【0044】
また、本実施形態によると、第1の実施形態と同様に、エレクトレット膜となる第2のシリコン酸化膜105の下面及び上面はそれぞれ第1のシリコン窒化膜104及び第2のシリコン窒化膜107によって覆われているため、上記効果をより確実に得ることができる。また、エレクトレット膜としてシリコン酸化膜を用いているため、当該エレクトレット膜を薄膜化、小型化及び高性能化することができる。
【0045】
尚、本実施形態において、第1の実施形態と同様に、エアギャップ125の内部に対して例えばHMDS等により撥水処理が行われていることが好ましい。このようにすると、上記効果をより確実に得ることができる。
【0046】
(第5の実施形態)
以下、本発明の第5の実施形態に係るエレクトレットコンデンサの製造方法について図面を参照しながら説明する。尚、本実施形態は、貫通孔形成用マスクレイアウトのみの調整により上記第1〜第4の実施形態のエレクトレットコンデンサのいずれの製造方法としても用いることができる。
【0047】
図5(a)、(b)、図6(a)、(b)、図7(a)、(b)、図8(a)、(b)、図9(a)、(b)及び図10(a)、(b)は、本実施形態のエレクトレットコンデンサの製造方法の各工程を示す断面図である。尚、上記各図面において、レジスト膜の図示を省略していると共に、図1(a)及び(b)に示す第1の実施形態と同一の構成要素には同一の符号を付すことにより、重複する説明を省略する。
【0048】
まず、図5(a)に示すように。例えば比抵抗が10〜15Ω・cm程度で(100)面を主面とするシリコン単結晶からなるP型の半導体基板100上に例えば厚さ1000nm程度の保護酸化膜(第1のシリコン酸化膜)101を形成する。次に、保護酸化膜101の上に、振動電極となる例えばリン濃度2×1020 〜3×1020 atoms/cm3 程度のP型の多結晶ポリシリコン膜(第1の導電性ポリシリコン膜)102を減圧CVD(chemical vapor deposition )を用いて例えば厚さ300nm程度成長させる。次に、第1のフォトリソグラフィ用マスク103により形成したレジストパターンを用いて、多結晶ポリシリコン膜102をドライエッチングにより振動電極形状に加工した後、上記レジストパターンを剥離する。続いて、絶縁膜として例えばシリコン窒化膜(第1のシリコン窒化膜)104を基板全面亘って厚さ100nm程度成長させる。
【0049】
尚、図5(a)に示す工程で、保護酸化膜101、多結晶ポリシリコン膜102及びシリコン窒化膜104は基板裏面側にも形成される。
【0050】
次に、図5(b)に示すように、例えば減圧CVDを用いて基板全面に例えばTEOS(tetraethylorthosilicate )からなる第2のシリコン酸化膜105を例えば厚さ1000nm程度成長させる。続いて、第2のフォトリソグラフィ用マスク106により形成したレジストパターンを用いて、第2のシリコン酸化膜105を例えばドライエッチングによりエレクトレット形状に加工した後、上記レジストパターンを剥離する。
【0051】
尚、図5(b)に示す工程で、第2のシリコン酸化膜105は基板裏面側にも形成される。
【0052】
続いて、図6(a)に示すように、基板全面に絶縁膜として例えばシリコン窒化膜(第2のシリコン窒化膜)107を厚さ100nm程度成長させる。次に、第3のフォトリソグラフィ用マスク108により形成したレジストパターンを用いて、シリコン窒化膜107をドライエッチングにより所定形状に加工した後、上記レジストパターンを剥離する。
【0053】
尚、図6(a)に示す工程で、シリコン窒化膜107は基板裏面側にも形成される。
【0054】
次に、図6(b)に示すように、基板全面に、犠牲層となる第3のシリコン酸化膜109として、常圧CVD酸化膜であるBPSG(boron-doped phospho-silicate glass)膜を例えば厚さ3000nm程度成長させる。尚、第3のシリコン酸化膜109は基板裏面側には形成されない。次に、第4のフォトリソグラフィ用マスク110により形成したレジストパターンを用いて、第3のシリコン酸化膜109の所定箇所に例えば深さ1500nm程度の窪み111を形成した後、上記レジストパターンを剥離する。
【0055】
次に、図7(a)に示すように、第5のフォトリソグラフィ用マスク112により形成したレジストパターンを用いて、第3のシリコン酸化膜109等に対してエッチングを行い、振動電極となる多結晶ポリシリコン膜102に達する電極パッド開口部113を形成する。
【0056】
次に、図7(b)に示すように、基板全面に、例えば絶縁膜としてシリコン窒化膜(第3のシリコン窒化膜)114を例えば厚さ100nm程度形成する。続いて、シリコン窒化膜114の上に、容量形成時の上部電極(固定電極)となる例えばリン濃度1×1020 〜2×1020 atoms/cm3 のP型の多結晶ポリシリコン膜(第2の導電性ポリシリコン膜)115を減圧CVDを用いて例えば厚さ1000nm程度成長させる。次に、第6のフォトリソグラフィ用マスク116により形成したレジストパターン(電極パッド形成領域、音孔形成領域及び貫通孔形成領域が開口されている)を用いて、シリコン窒化膜114及び多結晶ポリシリコン膜115をドライエッチングにより所定形状に加工した後、上記レジストパターンを剥離する。
【0057】
尚、図7(b)に示す工程で、シリコン窒化膜114及び多結晶ポリシリコン膜115は基板裏面側にも形成される。
【0058】
次に、図8(a)に示すように、基板全面にシリコン窒化膜(第4のシリコン窒化膜)117を例えば厚さ150nm程度形成する。次に、第7のフォトリソグラフィ用マスク118により形成したレジストパターン(電極パッド形成領域、音孔形成領域及び貫通孔形成領域が開口されている)を用いて、シリコン窒化膜117をドライエッチングにより所定形状に加工した後、上記レジストパターンを剥離する。
【0059】
尚、図8(a)に示す工程で、シリコン窒化膜117は基板裏面側にも形成される。以下、この時点で基板裏面側に形成されている積層膜を積層膜120と称する。
【0060】
次に、図8(b)に示すように、基板全面に、保護膜としてFSG(fluorine-doped silicate glass )からなる第4のシリコン酸化膜119を例えば厚さ500nm程度を成長させる。
【0061】
次に、図9(a)に示すように、例えばバックグラインド設備を使用して、半導体基板100の裏面に形成されている積層膜120を剥離して基板裏面を露出させる。次に、図9(b)に示すように、基板裏面側に保護膜として第5のシリコン酸化膜121を例えば厚さ500nm程度成長させた後、第8のフォトリソグラフィ用マスク122により形成したレジストパターン(基板裏面中央領域が開口されている)を用いて、シリコン酸化膜121をドライエッチングにより所定形状に加工し、その後、上記レジストパターンを剥離する。
【0062】
次に、図10(a)に示すように、シリコン酸化膜121を保護膜として、半導体基板100に対して例えばTMAH(tetramethyl ammonium hydroxide)等の薬液を用いて異方性エッチングを行う。これにより、半導体基板100の中央部に除去領域(メンブレン領域)123が形成される。
【0063】
次に、図10(b)に示すように、半導体基板100を例えばHF原液に浸すことによって、基板表面側の保護膜であるシリコン酸化膜119及び基板裏面側の保護膜であるシリコン酸化膜121をウェットエッチングにより除去すると共に犠牲層となる第3のシリコン酸化膜109の所定部分を除去する。これにより、振動電極となる第1の導電性ポリシリコン膜102(より正確にはその上に形成されたエレクトレット膜となるシリコン酸化膜105(シリコン窒化膜104及び107によって覆われている))と、固定電極となる第2の導電性ポリシリコン膜115との間にエアギャップ125が形成される。また、固定電極となる第2の導電性ポリシリコン膜115における振動電極となる第1の導電性ポリシリコン膜102と対向する容量生成部に複数の音孔124がエアギャップ125と接続するように形成される。さらに、固定電極となる第2の導電性ポリシリコン膜115における振動電極となる第1の導電性ポリシリコン膜102と対向していない非容量生成部に複数の貫通孔126がエアギャップ125と接続するように形成される。
【0064】
その後、シリコン窒化膜104及び107によって覆われたシリコン酸化膜105に電荷を付与して着電させることによって、エレクトレット膜を有するエレクトレットコンデンサが完成する。
【0065】
以上に説明した本実施形態によると、貫通孔形成用マスク(フォトリソグラフィ用マスク116及び118)のレイアウトを調整するだけで、第1〜第4の実施形態のエレクトレットコンデンサのいずれであっても確実に形成することができる。
【0066】
尚、上記各実施形態においては、非容量形成部の貫通孔126の数を増やしたり、その開口面積を増大することによって、固定電極となる第2の導電性ポリシリコン膜115並びにそれを覆うシリコン窒化膜114及び117からなる固定膜の引っ張り強度に影響が生じる可能性がある。この場合には、例えば図7(b)で形成されるシリコン窒化膜114の膜厚や図8(a)で形成されるシリコン窒化膜117の膜厚を上記設計値と比べて大きくすることによって、固定膜として必要な強度を保持することが可能となる。
【0067】
また、上記各実施形態においては、電極形成材料としてP型の多結晶ポリシリコン膜を形成したが、これに代えて、ノンドープの多結晶ポリシリコン膜を形成した後に当該ポリシリコン膜に対してイオン注入を行っても良い。また、P型の多結晶ポリシリコンに代えて、N型のポリシリコン膜を形成しても良い。
【0068】
また、上記各実施形態においては、プロセスを限定して説明したが、例えばシリコン酸化膜を形成する際のプロセスとして、互換性がある熱酸化及びCVDのいずれを用いても良いし、例えばエッチングプロセスとして、互換性があるドライエッチング及びウェットエッチングのいずれを用いても良い。
【産業上の利用可能性】
【0069】
以上に説明したように、本発明のエレクトレットコンデンサは耐熱性、耐湿性及び耐結露性等を有しており、信頼性に優れた高性能で小型なMEMSの実現に有用である。
【符号の説明】
【0070】
100 半導体基板
101 第1のシリコン酸化膜
102 第1の導電性ポリシリコン膜
103 第1のフォトリソグラフィ用マスク
104 第1のシリコン窒化膜
105 第2のシリコン酸化膜
106 第2のフォトリソグラフィ用マスク
107 第2のシリコン窒化膜
108 第3のフォトリソグラフィ用マスク
109 第3のシリコン酸化膜
110 第4のフォトリソグラフィ用マスク
111 第3のシリコン酸化膜の窪み
112 第5のフォトリソグラフィ用マスク
113 電極パッド開口部
114 第3のシリコン窒化膜
115 第2の導電性ポリシリコン膜
116 第6のフォトリソグラフィ用マスク
117 第4のシリコン窒化膜
118 第7のフォトリソグラフィ用マスク
119 第4のシリコン酸化膜
120 半導体基板裏面側積層膜
121 第5のシリコン酸化膜
122 第8のフォトリソグラフィ用マスク
123 メンブレン領域
124 音孔
125 エアギャップ
126 貫通孔
127 電極パッド

【特許請求の範囲】
【請求項1】
中央部に貫通孔を有する半導体基板と、
前記半導体基板の前記貫通孔を覆うように形成された第1の膜と、
前記第1の膜の上方に前記第1の膜と対向するように形成された第2の膜とを備え、
前記第2の膜は、前記半導体基板の前記貫通孔上に位置する複数の第1の孔と、前記複数の第1の孔よりも開口面積が大きい少なくとも1つの第2の孔とを有し、
前記第2の孔は、前記第1の膜のうち前記貫通孔に露出した部分よりも外側の部分と対向する領域のみに存在することを特徴とするコンデンサ。
【請求項2】
請求項1に記載のコンデンサにおいて、
前記第2の孔は、非容量生成部に形成されていることを特徴とするコンデンサ。
【請求項3】
請求項2に記載のコンデンサにおいて、
前記非容量生成部における前記第2の膜の単位面積当たりの開口面積は、容量生成部における前記第2の膜の単位面積当たりの開口面積よりも大きいことを特徴とするコンデンサ。
【請求項4】
請求項1〜3のいずれか1項に記載のコンデンサにおいて、
前記第2の膜は、第2の電極及び絶縁膜を含み、
前記第1の膜は、第1の電極を含むことを特徴とするコンデンサ。
【請求項5】
請求項4に記載のコンデンサにおいて、
前記第1の電極はポリシリコン膜であり、
前記絶縁膜はシリコン窒化膜であり、
前記第2の電極はポリシリコン膜であることを特徴とするコンデンサ。
【請求項6】
請求項4又は5に記載のコンデンサにおいて、
前記第2の孔は、前記第1の電極と前記第2の電極とが対向していない領域に形成されていることを特徴とするコンデンサ。
【請求項7】
請求項4〜6のいずれか1項に記載のコンデンサにおいて、
前記第2の電極は固定電極であり、
前記第1の電極は振動電極であり、
前記第2の孔は、前記振動電極と前記固定電極とが重なっていない領域の前記第2の膜にのみ存在することを特徴とするコンデンサ。
【請求項8】
請求項4〜7のいずれか1項に記載のコンデンサにおいて、
前記第1の電極と前記第2の電極とが対向していない領域における前記第2の膜の単位面積当たりの開口面積は、前記第1の電極と前記第2の電極とが対向している領域における前記第2の膜の単位面積当たりの開口面積よりも大きいことを特徴とするコンデンサ。
【請求項9】
請求項1〜8のいずれか1項に記載のコンデンサにおいて、
前記第2の膜の面積は、前記第1の膜の面積よりも大きいことを特徴とするコンデンサ。
【請求項10】
請求項1〜9のいずれか1項に記載のコンデンサにおいて、
前記第2の孔の開口径は、前記複数の第1の孔の開口径の1.5倍以上であることを特徴とするコンデンサ。
【請求項11】
請求項1〜10のいずれか1項に記載のコンデンサにおいて、
前記第2の孔の開口面積は、前記複数の第1の孔の開口面積の2倍以上であることを特徴とするコンデンサ。
【請求項12】
請求項1〜11のいずれか1項に記載のコンデンサにおいて、
前記第1の膜はエレクトレット膜を含むことを特徴とするコンデンサ。
【請求項13】
請求項12に記載のコンデンサにおいて、
前記エレクトレット膜はシリコン酸化膜であることを特徴とするコンデンサ。
【請求項14】
請求項1〜13のいずれか1項に記載のコンデンサにおいて、
前記第2の孔は、前記半導体基板の前記貫通孔の外側の領域上に形成されていることを特徴とするコンデンサ。
【請求項15】
請求項1〜14のいずれか1項に記載のコンデンサにおいて、
前記第2の孔の開口面積は、前記第2の孔が前記半導体基板の前記貫通孔の中心から離れるに従って大きくなることを特徴とするコンデンサ。
【請求項16】
半導体基板上に第1の膜を形成する工程と、
前記半導体基板上及び前記第1の膜上に絶縁膜を形成する工程と、
前記絶縁膜上に第2の膜を形成する工程と、
前記第1の膜が露出するように前記半導体基板の中央部に除去領域を形成する工程と、
前記第1の膜と前記第2の膜との間の前記絶縁膜を除去してエアギャップを形成する工程とを備え、
前記第2の膜を形成する工程において、前記半導体基板の前記除去領域上に複数の第1の孔を有すると共に前記除去領域に露出した部分の前記第1の膜よりも外側の領域のみに前記複数の第1の孔よりも開口面積が大きい少なくとも1つの第2の孔を有するように前記第2の膜を形成することを特徴とするコンデンサの製造方法。
【請求項17】
請求項16に記載のコンデンサの製造方法において、
前記第2の孔は、非容量生成部に形成されることを特徴とするコンデンサの製造方法。
【請求項18】
請求項17に記載のコンデンサの製造方法において、
前記非容量生成部における前記第2の膜の単位面積当たりの開口面積が、容量生成部における前記第2の膜の単位面積当たりの開口面積よりも大きくなるように、前記複数の第1の孔及び前記第2の孔は形成されることを特徴とするコンデンサの製造方法。
【請求項19】
請求項16〜18のいずれか1項に記載のコンデンサの製造方法において、
前記第2の膜は、第2の電極を含み、
前記第1の膜は、第1の電極を含むことを特徴とするコンデンサの製造方法。
【請求項20】
請求項19に記載のコンデンサの製造方法において、
前記第1の電極はポリシリコン膜であり、
前記第2の膜はシリコン窒化膜を含み、
前記第2の電極はポリシリコン膜であることを特徴とするコンデンサの製造方法。
【請求項21】
請求項19又は20に記載のコンデンサの製造方法において、
前記第2の孔は、前記第1の電極と前記第2の電極とが対向していない領域に形成されることを特徴とするコンデンサの製造方法。
【請求項22】
請求項19〜21のいずれか1項に記載のコンデンサの製造方法において、
前記第2の電極は固定電極であり、
前記第1の電極は振動電極であり、
前記第2の孔は、前記振動電極と前記固定電極とが重なっていない領域の前記第2の膜にのみ存在することを特徴とするコンデンサの製造方法。
【請求項23】
請求項19〜22のいずれか1項に記載のコンデンサの製造方法において、
前記第1の電極と前記第2の電極とが対向していない領域における前記第2の膜の単位面積当たりの開口面積が、前記第1の電極と前記第2の電極とが対向している領域における前記第2の膜の単位面積当たりの開口面積よりも大きくなるように、前記複数の第1の孔及び前記第2の孔は形成されることを特徴とするコンデンサの製造方法。
【請求項24】
請求項16〜23のいずれか1項に記載のコンデンサの製造方法において、
前記エアギャップは前記絶縁膜をウェットエッチングによって除去することにより形成されることを特徴とするコンデンサの製造方法。
【請求項25】
請求項24に記載のコンデンサの製造方法において、
前記ウェットエッチングは、HFを用いて行われることを特徴とするコンデンサの製造方法。
【請求項26】
請求項16〜25のいずれか1項に記載のコンデンサの製造方法において、
前記第2の膜の面積は、前記第1の膜の面積よりも大きいことを特徴とするコンデンサの製造方法。
【請求項27】
請求項16〜26のいずれか1項に記載のコンデンサの製造方法において、
前記第2の孔の開口径が前記複数の第1の孔の開口径の1.5倍以上となるように、前記複数の第1の孔及び前記第2の孔は形成されることを特徴とするコンデンサの製造方法。
【請求項28】
請求項16〜27のいずれか1項に記載のコンデンサの製造方法において、
前記第2の孔の開口面積が前記複数の第1の孔の開口面積の2倍以上となるように、前記複数の第1の孔及び前記第2の孔は形成されることを特徴とするコンデンサの製造方法。
【請求項29】
請求項16〜28のいずれか1項に記載のコンデンサの製造方法において、
前記第1の膜はエレクトレット膜を含むことを特徴とするコンデンサの製造方法。
【請求項30】
請求項29に記載のコンデンサの製造方法において、
前記エレクトレット膜はシリコン酸化膜であることを特徴とするコンデンサの製造方法。
【請求項31】
請求項16〜30のいずれか1項に記載のコンデンサの製造方法において、
前記第2の孔は、前記半導体基板の前記除去領域の外側の領域上に形成されることを特徴とするコンデンサの製造方法。
【請求項32】
請求項16〜31のいずれか1項に記載のコンデンサの製造方法において、
前記第2の孔が前記半導体基板の前記除去領域の中心から離れるに従って前記第2の孔の開口面積が大きくなるように、前記第2の孔は形成されることを特徴とするコンデンサの製造方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate


【公開番号】特開2010−187384(P2010−187384A)
【公開日】平成22年8月26日(2010.8.26)
【国際特許分類】
【出願番号】特願2010−52876(P2010−52876)
【出願日】平成22年3月10日(2010.3.10)
【分割の表示】特願2006−227386(P2006−227386)の分割
【原出願日】平成18年8月24日(2006.8.24)
【出願人】(000005821)パナソニック株式会社 (73,050)
【Fターム(参考)】