説明

半導体装置およびその製造方法

【課題】 補助ゲート電極型のフラッシュメモリを有する半導体装置の信頼性を向上させる。
【解決手段】 フラッシュメモリの補助ゲート配線上に窒化シリコンを主体とする材料で形成されたキャップ絶縁膜3において、ワード線WLの隣接間のキャップ絶縁膜3の厚さを、ワード線WLと補助ゲート配線AGLとの間のキャップ絶縁膜3の厚さよりも薄くする。これにより、斜め方向に隣接するビット間に寄生する容量を低減できるので、メモリセルのしきい値電圧の変動を抑制または防止することができる。したがって、補助ゲート電極型のフラッシュメモリを有する半導体装置の信頼性を向上させることができる。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、半導体装置およびその製造技術に関し、特に、補助ゲート電極構成を持つフラッシュメモリ(以下、補助ゲート電極型のフラッシュメモリという)およびその製造技術に適用して有効な技術に関するものである。
【背景技術】
【0002】
補助ゲート電極型のフラッシュメモリについては、例えば特開2005−85903号公報(特許文献1)に開示がある。このフラッシュメモリのメモリ領域の半導体基板上には、所定方向に延在する複数の補助ゲート電極が互いに隣接した状態で配置されている。各補助ゲート電極上には、例えば窒化シリコンにより形成されたキャップ絶縁膜が形成されている。この複数の補助ゲート電極の上層には、補助ゲート電極の延在方向に対して直交する方向に延在する複数のワード線が互いに隣接した状態で配置されている。そして、上記複数の補助ゲート電極の隣接間であって、上記ワード線の各々と半導体基板との間には、浮遊ゲート電極が他の部材とは電気的に分離された状態で配置されている。浮遊ゲート電極は、その上面の高さが補助ゲート電極の上面の高さよりも高くなるように形成されている。
【特許文献1】特開2005−85903号公報
【発明の開示】
【発明が解決しようとする課題】
【0003】
ところが、上記補助ゲート電極型のフラッシュメモリにおいては、以下の課題があることを本発明者は見出した。
【0004】
すなわち、隣接ビット間に寄生する容量により、メモリセルのしきい値電圧が変動してしまう結果、メモリセルに記憶されている情報(“0”または“1”)が化けてしまう問題がある。特に、0.13μmプロセス世代までは、隣接ビット間が広いため隣接ビット間に寄生する容量が小さく問題が顕在化されていないが、微細化が進んだ90nmプロセス世代では、しきい値電圧の変動が顕在化し、大きな問題となる。
【0005】
そこで、本発明の目的は、補助ゲート電極型のフラッシュメモリを有する半導体装置の信頼性を向上させることのできる技術を提供することにある。
【0006】
本発明の前記ならびにその他の目的と新規な特徴は、本明細書の記述および添付図面から明らかになるであろう。
【課題を解決するための手段】
【0007】
本願において開示される発明のうち、代表的なものの概要を簡単に説明すれば、次のとおりである。
【0008】
すなわち、本発明は、補助ゲート電極上に形成された窒化シリコンを主体とするキャップ絶縁膜において、ワード線の隣接間のキャップ絶縁膜の厚さを、ワード線と補助ゲート電極との間のキャップ絶縁膜の厚さよりも薄くするものである。
【0009】
また、本発明は、ワード線をパターニングする工程において、ワード線の隣接間の補助ゲート電極上の窒化シリコンを主体とするキャップ絶縁膜の一部をエッチングするものである。
【発明の効果】
【0010】
本願において開示される発明のうち、代表的なものによって得られる効果を簡単に説明すれば以下のとおりである。
【0011】
すなわち、補助ゲート電極上に形成された窒化シリコンを主体とするキャップ絶縁膜において、ワード線の隣接間のキャップ絶縁膜の厚さを、ワード線と補助ゲート電極との間のキャップ絶縁膜の厚さよりも薄くすることにより、斜め方向に隣接するビット間に寄生する容量を低減できるので、メモリセルのしきい値電圧の変動を抑制または防止することができる。したがって、補助ゲート電極型のフラッシュメモリを有する半導体装置の信頼性を向上させることができる。
【発明を実施するための最良の形態】
【0012】
以下の実施の形態においては便宜上その必要があるときは、複数のセクションまたは実施の形態に分割して説明するが、特に明示した場合を除き、それらはお互いに無関係なものではなく、一方は他方の一部または全部の変形例、詳細、補足説明等の関係にある。また、以下の実施の形態において、要素の数等(個数、数値、量、範囲等を含む)に言及する場合、特に明示した場合および原理的に明らかに特定の数に限定される場合等を除き、その特定の数に限定されるものではなく、特定の数以上でも以下でも良い。さらに、以下の実施の形態において、その構成要素(要素ステップ等も含む)は、特に明示した場合および原理的に明らかに必須であると考えられる場合等を除き、必ずしも必須のものではないことは言うまでもない。同様に、以下の実施の形態において、構成要素等の形状、位置関係等に言及するときは、特に明示した場合および原理的に明らかにそうでないと考えられる場合等を除き、実質的にその形状等に近似または類似するもの等を含むものとする。このことは、上記数値および範囲についても同様である。また、本実施の形態を説明するための全図において同一機能を有するものは同一の符号を付すようにし、その繰り返しの説明は可能な限り省略するようにしている。以下、本発明の実施の形態を図面に基づいて詳細に説明する。
【0013】
まず、課題について説明する。図22は、本発明者が検討したフラッシュメモリのメモリ領域の要部斜視図を示している。なお、符号のYは第1方向でローカルデータ線の延在方向、符号のXは第1方向に直交する第2方向でワード線WLの延在方向を示している。
【0014】
半導体基板上には、複数の補助ゲート配線AGLが第1方向Yに沿って延在している。この複数の補助ゲート配線AGL上には、例えば窒化シリコンにより形成されたキャップ絶縁膜51が形成されている。複数の補助ゲート配線AGLの隣接間には、浮遊ゲート電極FGEが他の部材から電気的に分離された状態で配置されている。ここでは、4ビット分の浮遊ゲート電極FGEが例示されている。
【0015】
このような構成のフラッシュメモリでは、ビットBt間の容量CA,CB,CCにより選択したビットBtのしきい値電圧が変動する結果、メモリセルに記憶されている情報(“0”または“1”)が化けてしまう問題がある。特に、0.13μmプロセス世代までは、隣接ビット間が広いため隣接ビット間に寄生する容量が小さく問題が顕在化されていないが、微細化が進んだ90nmプロセス世代(例えば容量CCで示すビットBt間の間隔が90nm以下の製品)では、しきい値電圧の変動が顕在化し、大きな問題となる。また、発明者の検討によれば、斜め方向に隣接するビットBt間の容量CBは、誘電率の高いキャップ絶縁膜51の影響が大きい。そこで、本実施の形態では、この斜め方向に隣接するビットBt間の容量CBを低減する技術を提供する。以下、本実施の形態の半導体装置の具体例を説明する。
【0016】
本実施の形態の半導体装置は、例えば4Gb(ギガビット)のAND型のフラッシュメモリである。このフラッシュメモリは、例えば携帯型パーソナルコンピュータ、デジタルスチルカメラ、ポータブル音楽プレーヤ、デジタルビデオカメラ、PDA(Personal Digital Assistants)または携帯電話等のような各種の携帯機器、情報機器または通信機器の記憶媒体として使用される。
【0017】
図1は、本実施の形態のフラッシュメモリのメモリセル領域M1の要部の回路図を模式的に示している。なお、矢印Yは第1方向、この第1方向Yに直交する矢印Xは第2方向を示している。
【0018】
メモリセル領域M1には、第1方向Yに延在する複数の補助ゲート配線(第1ゲート電極)AGLが第2方向Xに沿って並んで配置されている。また、メモリセル領域M1には、第2方向Xに延在する複数のワード線WLが第1方向Yに沿って並んで配置されている。さらに、メモリセル領域M1において、上記複数の補助ゲート配線AGLと上記複数のワード線WLとの各々の交点近傍には不揮発性メモリセル(以下、メモリセルという)MCが配置されている。
【0019】
各メモリセルMCは、互いに隣接するローカルデータ線BL(ドレイン線DLとソース線SL)の間に並列に接続されている。ただし、ドレイン線DLおよびソース線SLは、最初から半導体基板(以下、基板という)に形成されているものではなく、後述のように情報の書き込みや読み出しの際に補助ゲート配線AGLに所望の電圧を印加することで、補助ゲート配線AGLに対向する基板部分に生じる反転層により形成されるようになっている。
【0020】
各メモリセルMCは、情報の記憶に寄与するメモリMIS・FETQmを有している。メモリMIS・FETQmは、浮遊ゲート電極(第2ゲート電極)と制御ゲート電極(第3ゲート電極)とを有している。メモリMIS・FETQmの浮遊ゲート電極は、情報の記憶に寄与する電荷が蓄積される電極である。メモリMIS・FETQmの制御ゲート電極は、ワード線WLの一部で形成されている。各ワード線WLには、第2方向Xに沿って配置された複数のメモリMIS・FETQmの制御ゲート電極が電気的に接続されている。ワード線WLの幅(短方向寸法、第1方向Y寸法)は、例えば90nmである。
【0021】
次に、図2は図1のメモリセル領域M1の要部平面図、図3は図2のX1−X1線の断面図、図4は図2のX2−X2線の断面図、図5は図2のY1−Y1線の断面図、図6は図2のY2−Y2線の断面図である。なお、図2は平面図であるが図面を見易くするために接合素子分離領域(アクティブ領域)に梨地のハッチングを付す。また、図2においては図面を見易くするため一部の部材は省略している。
【0022】
本実施の形態のフラッシュメモリのメモリセル領域M1は、メモリセルMC毎にコンタクトホールを持たない、いわゆるコンタクトレス型アレイとされている。基板1は、例えばp型のシリコン(Si)単結晶からなる。符号のDNWはn型埋込領域、符号のPWLはpウエルを示している。pウエルPWLは、その下層のn型埋込領域DNWに取り囲まれている。この基板1の主面上には、例えば酸化シリコン(SiO等、誘電率は、例えば3.8)からなるゲート絶縁膜(第1ゲート絶縁膜)2aを介して、図2の第1方向Yに延在する帯状の複数の補助ゲート配線AGLが、互いに沿うように第2方向Xに向かって並んで配置されている。各補助ゲート配線AGLは、例えば低抵抗ポリシリコンからなり、その各々の上面には、キャップ絶縁膜3が形成されている。キャップ絶縁膜3は、例えば窒化シリコン(Si等、誘電率は、例えば7〜8)により形成されており、その厚さは、例えば50nm程度である。また、各補助ゲート配線AGLおよびキャップ絶縁膜3の側面には、例えば酸化シリコンからなるサイドウォール(側壁絶縁膜)4が形成されている。
【0023】
基板1にはドレイン線DL用およびソース線SL用のn型の半導体領域は形成されていない。フラッシュメモリの書き込みおよび読み出し動作時に補助ゲート配線AGLに所望の電圧を印加することにより、その補助ゲート配線AGLが対向する基板1の主面部分(pウエルPWL)にn型の反転層を形成し、これにより上記ドレイン線DL(ドレイン領域)およびソース線SL(ソース領域)を形成するようになっている。すなわち、反転層をローカルデータ線BLとして用いるため、メモリアレイ内に拡散層が不要であり、データ線ピッチの縮小を可能にしている。また、メモリアレイにはトレンチアイソレーション部が形成されていないので、メモリアレイの面積を縮小させることができる。さらに、隣接するメモリセルMCのドレイン線DLおよびソース線SLを共有した構成になるので、メモリアレイの占有面積を縮小させることができる。
【0024】
補助ゲート配線AGLの上方には、上記キャップ絶縁膜3および層間用の絶縁膜(層間絶縁膜)5を介して、図2の第2方向Xに延在する帯状の複数のワード線WLが、互いに平行に沿うように図2の第1方向Yに向かって並んで配置されている。絶縁膜5は、例えば酸化シリコン膜、窒化シリコン(Si等)および酸化シリコン膜が下層から順に堆積された積層膜で形成されている。各ワード線WLは、例えば低抵抗ポリシリコンとその上のタングステンシリサイド(WSi)との積層膜で形成されており、ワード線WLの一部が上記制御ゲート電極CGEとなっている。各ワード線WL上には、例えば酸化シリコンからなる絶縁膜6が形成されている。
【0025】
上記補助ゲート配線AGLの隣接間であって、ワード線WLが平面的に重なる位置、すなわち、制御ゲート電極CGEと基板1との対向面間には、上記メモリMIS・FETQmの上記浮遊ゲート電極FGEが他の部分と絶縁された状態で形成されている。浮遊ゲート電極FGEは、例えば低抵抗ポリシリコンからなり、基板1の主面(第3主面部分)上に、例えば酸化シリコン膜からなるゲート絶縁膜(第2ゲート絶縁膜)2bを介して形成されている。浮遊ゲート電極FGEは、上記サイドウォール4により補助ゲート配線AGLとの絶縁分離がなされ、上記絶縁膜5によりワード線WLとの絶縁分離がなされている。浮遊ゲート電極FGEは、基板1の主面から浮遊ゲート電極FGEの上面までの高さが、基板1の主面から補助ゲート配線AGLの上面までの高さよりも高い位置になるように形成されている。すなわち、浮遊ゲート電極FGEは、断面凸状に形成されている。第2方向Xに沿って隣接する浮遊ゲート電極FGEの隣接間隔は、例えば90nm程度である。
【0026】
ここで、補助ゲート配線AGLの隣接間に断面凹状の浮遊ゲート電極を形成する構成の場合には、メモリセルMCが縮小されると補助ゲート配線AGLの隣接間隔も狭くなるので、浮遊ゲート電極FGEを形成するための導体膜の厚さを薄くしなければならず、浮遊ゲート電極の加工が難しくなる。これに対して、浮遊ゲート電極FGEを断面凸状とする場合は、メモリセルMCを縮小しても、浮遊ゲート電極FGEの加工を容易にすることができるため、メモリセルMCの微細化を推進できる。また、浮遊ゲート電極FGEと制御ゲート電極CGEとのキャパシタは、浮遊ゲート電極FGEの凸状側壁面および凸状上面に形成されるので、最小加工寸法がさらに縮小されても、浮遊ゲート電極FGEの高さを増すことで浮遊ゲート電極FGEと制御ゲート電極CGEとの対向面積を増大させることができる。すなわち、メモリセルMCの占有面積を増大させることなくキャパシタの容量を増大させることができるので、浮遊ゲート電極FGEと制御ゲート電極CGEとのカップリング比を向上させることができる。このため、制御ゲート電極CGEによる浮遊ゲート電極FGEの電圧制御の制御性を向上させることができるので、低い電圧でもフラッシュメモリの書き込みおよび消去の速度を向上させることができ、フラッシュメモリの動作電圧を低電圧化することができる。すなわち、フラッシュメモリの小型化と低電圧化との両方を実現できる。
【0027】
このような基板1の主面上には、例えば酸化シリコンからなる絶縁膜7a,7bが下方から順に堆積されている。この絶縁膜7aは、第1方向Yに互いに隣接するワード線WL間および第1方向Yに互いに隣接する浮遊ゲート電極FGE間に埋め込まれており、この絶縁膜7aにより、第1方向Yに互いに隣接するワード線WL間および第1方向Yに互いに隣接する浮遊ゲート電極FGE間が絶縁分離されている。なお、本実施の形態では、浮遊ゲート電極FGEが対向する基板1の主面部分が、後述するエッチングダメージ層の除去プロセスにより若干削られており、その主面部分の高さが、補助ゲート配線AGLが対向する基板1の主面部分の高さよりも若干低くなっている。
【0028】
ここで、本実施の形態においては、図5に示すように、ワード線WLの隣接間のキャップ絶縁膜3の高さが、ワード線WLと補助ゲート配線AGLとの間のキャップ絶縁膜3の高さよりも寸法D1だけ低くなっている。すなわち、ワード線WLの隣接間のキャップ絶縁膜3の厚さが、ワード線WLと補助ゲート配線AGLとの間のキャップ絶縁膜3の厚さよりも薄く形成されている。これにより、斜め方向に隣接するビット(メモリセルMC)間に寄生する容量を低減できるので、メモリセルMC(メモリMIS・FETQm)のしきい値電圧の変動を抑制または防止することができる。したがって、フラッシュメモリの信頼性を向上させることができる。
【0029】
ワード線WLの隣接間のキャップ絶縁膜3の厚さD2は、ワード線WLと補助ゲート配線AGLとの間のキャップ絶縁膜3の厚さDの半分以下程度とされている。もちろん、ワード線WLの隣接間にはキャップ絶縁膜3が無くても良い。むしろ上記寄生容量低減の観点のみを考慮した場合は、ワード線WLの隣接間にキャップ絶縁膜3が無い方が好ましい。しかし、ワード線WLの隣接間のキャップ絶縁膜3部分を完全に無くすためにエッチングすると下層の補助ゲート配線AGLの上部に損傷等を生じさせ、補助ゲート配線AGLの電気的特性(抵抗等)が変動する虞がある。そこで、本実施の形態では、ワード線WLの隣接間にキャップ絶縁膜3を残している。このワード線WLの隣接間に残されているキャップ絶縁膜3の厚さD2は、例えば10nm〜20nm程度とされている。すなわち、ワード線WLの隣接間に残されるキャップ絶縁膜3の厚さは、ワード線WLと補助ゲート配線AGLとの間のキャップ絶縁膜3の厚さの20%〜40%程度とされている。これにより、補助ゲート配線AGLの電気的特性変動を招くことなく、斜め方向に隣接するビット(メモリセルMC)間の寄生容量を低減できる。
【0030】
次に、本実施の形態のフラッシュメモリの動作例を図7〜図10により説明する。
【0031】
図7は読み出し動作時のメモリセル領域M1の要部回路図、図8は読み出し動作時における図2のX1−X1線の断面図を示している。
【0032】
データ読み出し動作では、選択するメモリセルMCのメモリMIS・FETQm0の制御ゲート電極CGEが接続されるワード線WL0に、例えば2〜5V程度を印加して選択メモリMIS・FETQm0のしきい値を判定する。また、それ以外のワード線WLに、例えば0Vまたは−2V程度の負電圧を印加して非選択メモリMIS・FETQmをオフ状態にする。また、選択メモリMIS・FETQm0のソースおよびドレイン形成用の補助ゲート配線AGLs,AGLdに、例えば5V程度を印加することにより、補助ゲート配線AGLs,AGLdに対向する基板1の主面部分にそれぞれソース線SLおよびドレイン線DL用のn型の反転層IL1を形成する。また、それ以外の補助ゲート配線AGLには、例えば0Vを印加することで、これら補助ゲート配線AGLが対向する基板1の主面部分に反転層が形成されないようにして、選択メモリMIS・FETQm0と非選択メモリMIS・FETQmとのアイソレーションを行う。ここで、選択メモリMIS・FETQm0のソース線SL用のn型の反転層IL1が接続されるグローバルデータ線に、例えば1V程度を印加する一方、他のグローバルデータ線に、例えば0Vを印加する。この状態で、共通ドレイン配線に印加された0V程度の電圧をドレイン線DL用のn型の反転層IL1を通じて選択メモリMIS・FETQm0のドレインに供給する。このようにすることで、グローバルデータ線から共通ドレイン配線に向かって読み出しの電流IRを流すようにして選択メモリMIS・FETQm0のデータ読み出しを行う。この時、浮遊ゲート電極FGEの蓄積電荷の状態で、選択メモリMIS・FETQm0のしきい値電圧が変わるので、選択メモリMIS・FETQm0のソースおよびドレイン間に流れる電流の状況で、選択メモリMIS・FETQm0のデータを判断できる。ここで、本実施の形態によれば、ワード線WLの隣接間のキャップ絶縁膜3の厚さを、ワード線WLと補助ゲート配線AGLとの間のキャップ絶縁膜3の厚さよりも薄くすることにより、斜め方向に隣接するビット(メモリセルMC)間に寄生する容量を低減できるので、メモリセルMC(メモリMIS・FETQm)のしきい値電圧の変動を抑制または防止することができる。したがって、フラッシュメモリの信頼性を向上させることができる。
【0033】
次に、図9は書き込み動作時のメモリセル領域M1の要部回路図、図10は書き込み動作時における図2のX1−X1線の断面図を示している。
【0034】
データ書き込みは、ソース側選択および定電荷注入によるソースサイドホットエレクトロン注入方式を前提とする。これにより、高速で、低電流で効率的なデータ書き込みが可能となっている。データ書き込み動作では、選択メモリセルMCのメモリMIS・FETQm0の制御ゲート電極CGEが接続されるワード線WL0に、例えば13V〜15V程度、それ以外のワード線WL等に、例えば0Vを印加する。また、選択メモリMIS・FETQm0のソース形成用の補助ゲート配線AGLsに、例えば2V程度を印加し、選択メモリMIS・FETQm0のドレイン形成用の補助ゲート配線AGLdに、例えば7V程度を印加することにより、補助ゲート配線AGLsに対向する基板1の主面部分にソース形成用のn型の反転層IL1を形成し、補助ゲート配線AGLdに対向する基板1の主面部分にドレイン形成用のn型の反転層IL1を形成する。他の補助ゲート配線AGLには、例えば0Vを印加することで、これら補助ゲート配線AGLに対向する基板1の主面部分に反転層が形成されないようにし、選択メモリMIS・FETQm0と非選択メモリMIS・FETQmとの間のアイソレーションを行う。この状態で、共通ドレイン配線CDに印加された4V程度の電圧をドレイン線DL用のn型の反転層IL1を通じて選択メモリMIS・FETQm0のドレインに供給する。また、選択メモリMIS・FETQm0のソース線SL用のn型の反転層IL1が接続されるグローバルデータ線に、例えば0Vを印加する。また、pウエルPWLを、例えば0Vに保持する。すると、選択メモリMIS・FETQm0にはドレインからソースに向かって書き込みの電流Iwが流れ、この時にソース側のn型の反転層IL1に蓄積した電荷を、ある一定のチャネル電流としてゲート絶縁膜2bを介して浮遊ゲート電極FGEに効率的に注入する(定電荷注入方式)。これにより選択メモリMIS・FETQm0にデータを高速で書き込む。一方、上記非選択メモリMIS・FETQm0のドレインからソースにはドレイン電流が流れないようにしてデータが書き込まれないようにする。なお、図10の矢印e1は、データ用の電荷の注入の様子を模式的に示している。また、個々のメモリセルMC(メモリMIS・FETQm)には多値のデータを記憶することが可能となっている。この多値記憶は、例えばワード線WLの書き込み電圧は一定にし、書き込み時間を変えることで、浮遊ゲート電極FGEへ注入するホットエレクトロンの量を変化させることで行なうため、何種類かのしきい値レベルを有するメモリセルMCを形成することができる。すなわち、“00”/“01”/“10”/“11”等のような4つ以上の値を記憶できる。このため、1つのメモリセルMCで2つのメモリセルMC分の働きを実現できる。したがって、フラッシュメモリの小型化を実現できる。
【0035】
次に、データの消去動作時では、選択対象のワード線WLに負電圧を印加することにより、浮遊ゲート電極FGEから基板1へのF−N(Fowler Nordheim)トンネル放出により行う。すなわち、選択対象のワード線WLに、例えば−16V程度を印加する一方、基板1に正の電圧を印加する。補助ゲート配線AGLには、例えば0Vを印加し、n型の反転層IL1を形成しない。これにより、浮遊ゲート電極FGEに蓄積されたデータ用の電荷を、ゲート絶縁膜2bを介して基板1に放出し、複数のメモリセルMCのデータを一括消去する。
【0036】
次に、本実施の形態のフラッシュメモリの製造方法の一例を図11〜図21により説明する。なお、図11〜図21のX1−X1、X2−X2、Y1−Y1およびY2−Y2は、各製造工程中における図2のX1−X1線、X2−X2線、Y1−Y1線およびY2−Y2線に相当する箇所の断面図を示している。
【0037】
まず、図11に示すように、p型のシリコン(Si)単結晶からなる基板1(この段階では半導体ウエハと称する平面略円形状の半導体板)を用意し、この基板1にn型埋込領域DNWおよびpウエルPWLを順に形成する。続いて、基板1のpウエルPWL上に、例えば酸化シリコン等からなる厚さ10nm程度のゲート絶縁膜2aを、例えばISSG(In-Situ Steam Generation)酸化法のような熱酸化法により形成する。続いて、基板1の主面上に、例えばリン(P)をドープした低抵抗ポリシリコンからなる導体膜(第1導体層)10を堆積し、その上に、例えば窒化シリコンからなるキャップ絶縁膜(第1絶縁膜)3を堆積し、さらにその上に、例えば酸化シリコンからなるダミー絶縁膜(第2絶縁膜)11を堆積する。導体膜10、キャップ絶縁膜3およびダミー絶縁膜11は、例えばCVD(Chemical Vapor Deposition)法により堆積する。その後、図12に示すように、ダミー絶縁膜11、キャップ絶縁膜3および導体膜10を、エッチングマスクを用いたドライエッチング処理によりパターニングすることにより、導体膜10による補助ゲート配線AGLを形成する。この段階のダミー絶縁膜11、キャップ絶縁膜3および補助ゲート配線AGLは、上記第1方向Yに延在する帯状のパターンとされ、ストライプ状に配置されている。
【0038】
次いで、図13に示すように、基板1(半導体ウエハ)に対して、例えばISSG酸化法等のような熱酸化処理を施し、補助ゲート配線AGL等の側面に例えば酸化シリコンからなる良質な絶縁膜を形成した後、基板1の主面上に、例えば酸化シリコンからなる絶縁膜4Aを、例えばTEOS(Tetra Ethyl Ortho Silicate)ガスを用いたCVD法により堆積する。絶縁膜4Aは、上記ダミー絶縁膜11、キャップ絶縁膜3および補助ゲート配線AGLで形成されるストライプパターンの隣接間を完全に埋め込んでしまわないように堆積する。続いて、絶縁膜4Aをエッチバックすることにより、図14に示すように、補助ゲート配線AGL、キャップ絶縁膜3およびダミー絶縁膜11の積層パターンの側面にサイドウォール(側壁絶縁膜)4を形成する。また、この時、上記ダミー絶縁膜11、キャップ絶縁膜3および補助ゲート配線AGLで形成されるストライプパターンの隣接間の底部のゲート絶縁膜2aも除去する。これにより、ゲート絶縁膜2aは補助ゲート配線AGLおよびサイドウォール4の下部だけに残る。このエッチング工程は酸化シリコン膜をエッチングする条件で行なっている為、上記第1方向Y(図2参照)に延在して形成されるストライプ状パターンの間のスペース部分の基板1の主面にエッチングダメージ層が形成されてしまう。このエッチングダメージ層を除去する為に、更にシリコンをエッチングする条件で基板1のエッチングを行なう(エッチングダメージ除去プロセス)。これにより、上記第1方向Yに延在して形成されるストライプ状パターンの間のスペース部分の基板1の主面は、補助ゲート配線AGL下の基板1の主面より10nm程度低くなる。なお、エッチングダメージ層の除去は、基板1の主面を熱酸化した後に、熱酸化膜をウエットエッチングにより除去する方法で行なっても良い。その後、基板1に対して、例えばISSG酸化法等のような熱酸化処理を施すことにより、図15に示すように、基板1の主面上に、例えば酸化シリコンからなる絶縁膜を形成した後、窒素(N)を含むガス雰囲気中で熱処理(酸窒化処理)を施すことにより、その絶縁膜と基板1との界面に窒素を偏析させて酸窒化シリコン(SiON)からなるゲート絶縁膜2bを形成する。このゲート絶縁膜2bは、メモリMIS・FETQmのトンネル絶縁膜として機能する膜で、その厚さは、二酸化シリコン換算膜厚で、例えば9nm程度である。ゲート絶縁膜2bはCVD法で形成しても良い。
【0039】
次いで、図16に示すように、基板1(半導体ウエハ)の主面上に、例えば低抵抗ポリシリコンからなる浮遊ゲート電極形成用の導体膜(第2導体層)12を、上記ダミー絶縁膜11、キャップ絶縁膜3および補助ゲート配線AGLで形成されるストライプパターンの隣接間が完全に埋まるようにCVD法等により堆積する。続いて、基板1の主面上の導体膜12に対して、異方性のドライエッチング法によるエッチバック処理またはCMP(化学機械研磨)処理を施すことにより、図17に示すように、上記ダミー絶縁膜11、キャップ絶縁膜3および補助ゲート配線AGLで形成されるストライプパターンの隣接間に浮遊ゲート電極形成用の導体パターン(第2導体層)12aを形成する。続いて、ダミー絶縁膜11およびサイドウォール4を、図18に示すように、ドライエッチング法またはウエットエッチング法等によりエッチングする。この際、酸化シリコンの方が、シリコンおよび窒化シリコンよりも除去され易くなるように、酸化シリコンと、シリコンおよび窒化シリコンとのエッチング選択比を大きくとる。これにより、窒化シリコンからなるキャップ絶縁膜3をエッチングストッパとして機能させる。また、酸化シリコンからなるダミー絶縁膜11は全て除去されるが、酸化シリコンからなるサイドウォール4はその上部が除去され、補助ゲート配線AGLの側面に残される。
【0040】
次いで、図19に示すように、浮遊ゲート電極と制御ゲート電極とを電気的に絶縁する層間用の絶縁膜(層間絶縁膜)5を基板1(半導体ウエハ)の主面上に形成する。この層間膜用の絶縁膜5には、例えば酸化シリコン膜の単体膜、あるいは酸化シリコン膜/窒化シリコン膜/酸化シリコン膜の積層膜を用いることができる。続いて、基板1(半導体ウエハ)の主面内の絶縁膜5上に、ワード線形成用の導体膜(第3導体層)13を堆積する。導体膜13は、例えば低抵抗ポリシリコン膜およびタングステンシリサイド膜をCVD法等により下層から順に堆積することで形成されている。その後、基板1(半導体ウエハ)の主面内の導体膜13上に、例えば酸化シリコンからなる絶縁膜6を、例えばオゾン(O)ガスとTEOSガスとの混合ガスを用いたCVD法により堆積する。その後、基板1(半導体ウエハ)の主面内の絶縁膜6上に、例えば多結晶シリコンからなるキャップ膜(マスキング層)15をCVD法等によって堆積する。さらに、基板1(半導体ウエハ)の主面内のキャップ膜15上にレジスト膜18をスピン塗布法等により塗布する。
【0041】
次いで、レジスト膜18に対して、露光、現像処理を施してレジストパターンを形成した後、このレジストパターンをエッチングマスクとして、そこから露出するキャップ膜15をドライエッチング法等により選択的にエッチング除去した後、レジストパターンをアッシング法等により除去する。これにより、図20に示すように、キャップパターン15aを形成する。メモリセル領域M1には、ワード線形成用の複数のキャップパターン(第1マスキングパターン)15aが形成されている。キャップパターン15aは図20の紙面に対して垂直な方向に延びる平面帯状のパターンとされている。このキャップパターン15aの隣接間からは絶縁膜6の表面一部が露出されている。
【0042】
次いで、キャップパターン15aをエッチングマスクとして、そこから露出する絶縁膜6および導体膜13をドライエッチング処理によりエッチング除去することにより、図21に示すように、導体膜13からなるワード線WLを形成する。導体膜13をエッチング除去する際にキャップパターン15aも除去される。続いて、残された絶縁膜6のパターンをエッチングマスクとして、そこから露出する絶縁膜5および導体パターン12aをドライエッチング法によって除去する。これにより、メモリ領域(メモリセル領域M1およびメモリセル周辺領域)に、導体パターン12aからなる複数の浮遊ゲート電極FGEを形成する。この際、本実施の形態においては、ワード線WLの隣接間から露出されるキャップ絶縁膜3の上部をもエッチングする。これにより、ワード線WLの隣接間のキャップ絶縁膜3の厚さを、ワード線WLと補助ゲート配線AGLとの間のキャップ絶縁膜3の厚さよりも薄くする。すなわち、本実施の形態においては、ワード線WL間のキャップ絶縁膜3をエッチングするための、レジスト塗布、露光および現像等のような一連のリソグラフィ工程を追加すること無しに、ワード線WL間のキャップ絶縁膜3を薄くすることができる。このため、ワード線WL間のキャップ絶縁膜3を薄くするからといって製造工程、製造時間さらには製造コストが増大することもない。
【0043】
なお、このようにワード線WL間のキャップ絶縁膜3を薄くした後、例えば熱リン酸等を用いたウエットエッチング処理によりワード線WL間のキャップ絶縁膜3を選択的にエッチングしても良い。ここでは、ワード線WL間のキャップ絶縁膜3を、さらに薄くまでエッチングしても良いし、あるいは完全にエッチングしても良い。キャップ絶縁膜3を最初からウエットエッチング処理により除去すると、サイドエッチングによりワード線WL下のキャップ絶縁膜3も除去される虞がある。そこで、本実施の形態では、下層の補助ゲート配線AGL下に損傷等が生じない位置までキャップ絶縁膜3をドライエッチング処理により非選択的にエッチングした後、残りのキャップ絶縁膜3をウエットエッチング処理により選択的にエッチングする。これにより、大きなサイドエッチングを生じることなく、また、下地の補助ゲート配線AGLに大きな損傷等を与えることなく、ワード線WL間のキャップ絶縁膜3をさらに薄くあるいは無くすことができる。
【0044】
次いで、基板1(半導体ウエハ)の主面上に、上記絶縁膜7aをCVD法等により堆積する。これにより、図5および図6に示したように、ワード線WLの隣接間、浮遊ゲート電極FGEの隣接間および補助ゲート配線AGLの隣接間等に絶縁膜7aを埋め込む。続いて、基板1(半導体ウエハ)の主面上に、上記絶縁膜7bをCVD法等により堆積した後、その上面を、例えばCMP法等により平坦にする。その後、図には示してないが、基板1(半導体ウエハ)の主面上に、金属膜を堆積した後、これをパターニングして配線を形成する。このようにして、メモリセルMCを持つフラッシュメモリを製造した。
【0045】
以上、本発明者によってなされた発明を実施の形態に基づき具体的に説明したが、本発
明は上記実施の形態に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可
能であることは言うまでもない。
【0046】
以上の説明では主として本発明者によってなされた発明をその背景となった利用分野であるフラッシュメモリの製造方法に適用した場合について説明したが、それに限定されるものではなく種々適用可能であり、例えば同一基板にフラッシュメモリとマイクロプロセッサ等のようなロジック回路とを持つ半導体装置の製造方法にも適用できる。
【産業上の利用可能性】
【0047】
本発明は、補助ゲート電極型のフラッシュメモリを有する半導体装置の製造業に適用できる。
【図面の簡単な説明】
【0048】
【図1】本発明の一実施の形態である半導体装置のメモリセル領域の模式的な要部回路図である。
【図2】図1のメモリセル領域の要部平面図である。
【図3】図2のX1−X1線の断面図である。
【図4】図2のX2−X2線の断面図である。
【図5】図2のY1−Y1線の断面図である。
【図6】図2のY2−Y2線の断面図である。
【図7】読み出し動作時のメモリセル領域の要部回路図である。
【図8】読み出し動作時における図2のX1−X1線の断面図である。
【図9】書き込み動作時のメモリセル領域の要部回路図である。
【図10】書き込み動作時における図2のX1−X1線の断面図である。
【図11】本発明の一実施の形態である半導体装置の製造工程中のメモリ領域の要部断面図である。
【図12】図11に続く半導体装置の製造工程中のメモリ領域の要部断面図である。
【図13】図12に続く半導体装置の製造工程中のメモリ領域の要部断面図である。
【図14】図13に続く半導体装置の製造工程中のメモリ領域の要部断面図である。
【図15】図14に続く半導体装置の製造工程中のメモリ領域の要部断面図である。
【図16】図15に続く半導体装置の製造工程中のメモリ領域の要部断面図である。
【図17】図16に続く半導体装置の製造工程中のメモリ領域の要部断面図である。
【図18】図17に続く半導体装置の製造工程中のメモリ領域の要部断面図である。
【図19】図18に続く半導体装置の製造工程中のメモリ領域の要部断面図である。
【図20】図19に続く半導体装置の製造工程中のメモリ領域の要部断面図である。
【図21】図20に続く半導体装置の製造工程中のメモリ領域の要部断面図である。
【図22】本発明者が検討したフラッシュメモリのメモリ領域の要部斜視図である。
【符号の説明】
【0049】
1 半導体基板
2a ゲート絶縁膜(第1ゲート絶縁膜)
2b ゲート絶縁膜(第2ゲート絶縁膜)
3 キャップ絶縁膜
4 サイドウォール(側壁絶縁膜)
4A 絶縁膜
5 絶縁膜(層間絶縁膜)
6 絶縁膜
7a,7b 絶縁膜
8 溝型の分離部
10 導体膜(第1導体層)
11 ダミー絶縁膜
12 導体膜(第2導体層)
12a 導体パターン(第2導体層)
13 導体膜(第3導体層)
15 キャップ膜
15a キャップパターン
18 レジスト膜
51 キャップ絶縁膜
M1 メモリセル領域
MC 不揮発性メモリセル
Qm メモリMIS・FET
AGL,AGLs,AGLd 補助ゲート配線(第1ゲート電極)
FGE 浮遊ゲート電極(第2ゲート電極)
CGE 制御ゲート電極(第3ゲート電極)
WL,WL0 ワード線(第3ゲート電極)
BL ローカルデータ線
SL ソース線
DL ドレイン線
IL1 反転層
IR,Iw 電流

【特許請求の範囲】
【請求項1】
(a)半導体基板と、
(b)前記半導体基板の主面上に第1ゲート絶縁膜を介して形成され、前記半導体基板の主面に沿って第1方向に延在した状態で形成された複数の第1ゲート電極、
(c)前記第1ゲート電極上に形成された窒化シリコンを主体とする第1絶縁膜と、
(d)前記第1ゲート電極の側壁に形成された側壁絶縁膜と、
(e)前記複数の第1ゲート電極の隣接間において、前記側壁絶縁膜により前記第1ゲート電極とは電気的に絶縁された状態で形成され、前記半導体基板の主面上に第2ゲート絶縁膜を介して形成された第2ゲート電極と、
(f)前記第1絶縁膜および前記第2ゲート電極を覆うように形成された層間絶縁膜と、
(g)前記層間絶縁膜上に、前記第1方向に対して交差する第2方向に延在した状態で形成された複数の第3ゲート電極とを有し、
前記複数の第3ゲート電極の隣接間の前記第1絶縁膜の厚さは、前記複数の第3ゲート電極の各々と前記複数の第1ゲート電極の各々との間の前記第1絶縁膜の厚さよりも薄いことを特徴とする半導体装置。
【請求項2】
請求項1記載の半導体装置において、前記半導体基板の主面から前記第2ゲート電極の上面までの高さが、前記半導体基板の主面から前記第1ゲート電極の上面までの高さよりも高いことを特徴とする半導体装置。
【請求項3】
請求項1記載の半導体装置において、前記複数の第3ゲート電極の隣接間の前記第1絶縁膜の厚さは、前記複数の第3ゲート電極の各々と前記複数の第1ゲート電極の各々との間の前記第1絶縁膜の厚さの半分以下であることを特徴とする半導体装置。
【請求項4】
以下の工程を有する半導体装置の製造方法:
(a)ウエハを用意する工程と、
(b)前記ウエハの半導体基板の主面上に第1ゲート絶縁膜を形成する工程と、
(c)前記第1ゲート絶縁膜上に、後に第1ゲート電極となる第1導体層を堆積する工程と、
(d)前記第1導体層上に窒化シリコンを主体とする第1絶縁膜を堆積する工程と、
(e)前記第1絶縁膜上に第2絶縁膜を堆積する工程と、
(f)前記第1導体層、前記第1絶縁膜および前記第2絶縁膜をパターニングすることにより、第1方向に延在する複数の前記第1ゲート電極、前記第1絶縁膜および前記第2絶縁膜のパターンを形成する工程と、
(g)前記複数の第1ゲート電極、前記第1絶縁膜および前記第2絶縁膜のパターンの側面に側壁絶縁膜を形成する工程と、
(h)前記(g)工程後、前記半導体基板上に露出した前記第1ゲート絶縁膜部分を除去する工程と、
(i)前記(h)工程後に露出した前記半導体基板の主面上に第2ゲート絶縁膜を形成する工程と、
(j)前記複数の第1ゲート電極、前記第1絶縁膜および前記第2絶縁膜のパターンの隣接間であって前記第2ゲート絶縁膜上に、前記第1方向に延在し、後に第2ゲート電極となる複数の第2導体層を形成する工程と、
(k)前記第2絶縁膜および前記側壁絶縁膜を除去する工程と、
(l)前記第1絶縁膜および前記複数の第2導体層の表面を覆うように層間絶縁膜を堆積する工程と、
(m)前記層間絶縁膜上に、後に第3ゲート電極となる第3導体層を堆積する工程と、
(n)前記第3導体層、前記層間絶縁膜および前記複数の第2導体層をパターニングすることにより、前記第1方向の分離がなされた複数の前記第2ゲート電極と、前記第1方向に対して交差する第2方向に延在する複数の前記第3ゲート電極を形成する工程と、
(o)前記複数の第3ゲート電極の隣接間の前記第1絶縁膜の一部をエッチングする工程とを有することを特徴とする半導体装置の製造方法。
【請求項5】
請求項4記載の半導体装置の製造方法において、前記第3ゲート電極をパターニングする工程において、前記複数の第3ゲート電極の隣接間の前記第1絶縁膜の一部をエッチングすることを特徴とする半導体装置の製造方法。
【請求項6】
請求項4記載の半導体装置の製造方法において、前記半導体基板の主面から前記第2ゲート電極の上面までの高さが、前記半導体基板の主面から前記第1ゲート電極の上面までの高さよりも高いことを特徴とする半導体装置の製造方法。
【請求項7】
請求項4記載の半導体装置の製造方法において、前記複数の第3ゲート電極の隣接間の前記第1絶縁膜の厚さは、前記複数の第3ゲート電極の各々と前記複数の第1ゲート電極の各々との間の前記第1絶縁膜の厚さの半分以下であることを特徴とする半導体装置の製造方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate

【図14】
image rotate

【図15】
image rotate

【図16】
image rotate

【図17】
image rotate

【図18】
image rotate

【図19】
image rotate

【図20】
image rotate

【図21】
image rotate

【図22】
image rotate


【公開番号】特開2006−351893(P2006−351893A)
【公開日】平成18年12月28日(2006.12.28)
【国際特許分類】
【出願番号】特願2005−177178(P2005−177178)
【出願日】平成17年6月17日(2005.6.17)
【出願人】(503121103)株式会社ルネサステクノロジ (4,790)
【Fターム(参考)】