説明

測距方法及び車載測距装置

【課題】床面に近い位置に置かれた障害物を精度良く検知できる測距方法を提供する。
【解決手段】発光部から出力された測定光を所定周期で繰り返し走査して対象物からの反射光を受光部に導き、測定光と反射光の検出時間差に基づいて対象物までの距離を算出する測距装置を車両に取り付けて、走査面が測定対象平面と交差するように測定光を走査して、測定対象平面または対象物までの距離を算出し、所定の走査角度で算出された距離に基づいて測定対象平面に平行な仮想平面を生成し、各距離を仮想平面からの鉛直距離に換算し、換算した鉛直距離と当該鉛直距離に対応する測定対象平面上の測定光の走査位置との相関を表す近似線を算出し、換算した鉛直距離が当該近似線から求まる鉛直距離より所定の閾値以上短い値を示す走査位置に対象物が存在すると検知する各ステップを所定の走査周期毎に繰り返す。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、測距方法及び車載測距装置に関し、自動倉庫等で用いられる自動搬送車両(Automated Guided Vehicle;AGV)等に取り付けられ、走行経路上に存在する障害物を検知するための測距方法及び車載測距装置に関する。
【背景技術】
【0002】
発光部と、受光部と、発光部から出力され、パルス変調または正弦波変調された測定光を所定周期で繰り返し二次元平面領域に走査して、測定対象空間に存在する対象物からの反射光を受光部に導く走査機構と、測定光の出力タイミングと反射光の受光タイミングの時間差または位相差に基づいて対象物までの距離を算出する演算部を備えた測距装置が、障害物検知装置として自動搬送車両に取り付けられている。
【0003】
特許文献1には、図9(a)に示すように、測距装置を自動搬送車両の前面に取り付けて、走行経路の幅や走行速度に合わせて測距装置による障害物の検知エリアを設定し、検知エリア内に障害物が検知されると、自動搬送車両を停止または障害物から回避する技術が開示されている。
【0004】
このような測距装置を床面近くに設置すると、自動搬送車両の走行時の振動により走査面が傾き、床を障害物と誤検知するため、通常、床面から所定高さ、例えば150mm以上の位置に設置される必要がある。
【0005】
特許文献2には、図9(b)に示すように、自動搬送車両の走行方向に沿った下面及び側面二面を検知するため、測距装置の周部に測定光を偏向する三面の偏向ミラーが配置された被測定物検出装置が提案されている。
【0006】
当該被測定物検出装置によれば、自動搬送車両の走行方向の水平面及び左右の垂直面の三面の障害物を検知できるため、より精度の高い障害物検知が可能となるが、自動搬送車両の走行時の振動により走査面が傾き、床を障害物と誤検知する問題が内在しているため、床面から所定高さ以上の位置に設置される必要がある。
【0007】
つまり、図10に示すように、現状、自動搬送車両の走行方向前方を走行する他の自動搬送車両を検知するために、測距装置が床面より所定高さ以上の位置で、走査面が床面と略平行となるように自動搬送車両に取り付けられている。
【先行技術文献】
【特許文献】
【0008】
【特許文献1】米国特許第5455669号明細書
【特許文献2】特開2007−139648号公報
【発明の概要】
【発明が解決しようとする課題】
【0009】
上述した従来の測距装置を倉庫等で使用されるフォークリフトに取り付けて、走行経路上の他のフォークリフトを検知する場合、図11(a),(b)に示すように、他のフォークリフト本体が走行経路前方に位置すると、測距装置で検知された他のフォークリフトの位置よりも手前側で十分な車間距離を確保した状態で停止または回避走行する必要がある。フォークリフト本体から突出した物品を載置するための爪部の長さを考慮する必要があるためである。
【0010】
しかし、そのためには、検出距離が長い高精度勝つ高価な測距装置を用いる必要があり、また、十分に十分広い作業空間を確保しなければならず、走行経路が狭い領域では測距装置を用いた障害物検知の有用性が制限されるという問題があった。
【0011】
さらに、図11(c),(d)に示すように、他のフォークリフト本体が走行経路上に位置せず、その爪部が走行経路上に突出している場合には、適切に検知できず爪部に衝突して重大な事故を招く虞もあった。
【0012】
通常、このようなフォークリフトの爪部は、物品を載置していないときに床面近くに降下しているため、爪部を検知するために測距装置の取付高さを低くすると床面を誤検知することになる。また、床面より高い位置から斜め下方に測定光を走査するようにフォークリフト本体に測距装置を取り付け、爪部までの距離と床面までの距離を識別することにより爪部を検知することも考えられるが、車体の走行により生じる振動や、ロール方向、ピッチ方向の傾き等の影響を受けて、床面から僅かな高さに位置する爪部を適正に検知するのは非常に困難である。
【0013】
このような問題は、自動搬送車両や自動走行するフォークリフトのみならず、運転者が走行操作するフォークリフトであっても同様である。通常、運転者は爪部が視界に入るように前方を向いて搭乗し、爪部に物品を搭載した後、後方に走行するため、常に後方を目視確認できないためである。
【0014】
本発明の目的は、床面に近い位置に置かれた障害物を精度良く検知できる測距方法及び車載測距装置を提供する点にある。
【課題を解決するための手段】
【0015】
上述の目的を達成するため、本発明による測距方法の第一の特徴構成は、特許請求の範囲の書類の請求項1に記載した通り、発光部と、受光部と、発光部から出力された測定光を所定周期で繰り返し走査して対象物からの反射光を受光部に導く走査機構と、測定光の出力タイミングと反射光の受光タイミングの時間差または位相差に基づいて対象物までの距離を算出する演算部を備えた測距装置を車両に取り付けて、走査面が測定対象平面と交差するように測定光を走査して、測定対象平面上に位置する対象物を検知する測距方法であって、演算部により、基準走査位置からの走査角度に応じて測定対象平面または対象物までの距離を算出するステップと、所定の走査角度で算出された距離に基づいて測定対象平面に平行で所定距離離隔した仮想平面を生成し、各走査角度で算出した距離を仮想平面からの鉛直距離に換算するステップと、換算した鉛直距離と当該鉛直距離に対応する測定対象平面上の測定光の走査位置との相関を表す近似線を算出するステップと、換算した鉛直距離が当該近似線から求まる鉛直距離より所定の閾値以上短い値を示す走査位置に対象物が存在すると検知するステップとを、所定の走査周期毎に繰り返す点にある。
【0016】
車両の走行に伴ない発生するピッチングやローリングにより測距装置の測定対象平面に対する姿勢が変動する場合であっても、極めて僅かな時間であれば静止状態であるとみなせる。
【0017】
そこで、車両に取り付けられた測距装置に組み込まれた演算部により、そのような僅かな時間内に走査された測定光に基づいて、先ず、基準走査位置からの走査角度に応じて測定対象平面または対象物までの距離が算出される。
【0018】
次に、所定の走査角度で算出された距離に基づいて、測定対象平面に平行で所定距離離隔した仮想平面が生成され、各走査角度で算出された距離が仮想平面からの鉛直距離に換算される。この仮想平面は、測距装置の姿勢変動に対応したものとなる。
【0019】
さらに、換算された鉛直距離と当該鉛直距離に対応する測定対象平面上の測定光の走査位置との相関を表す近似線が算出される。近似線により、鉛直距離と走査位置を示す複数のデータの平均特性が得られるのである。そして、換算された鉛直距離が当該近似線から求まる鉛直距離より所定の閾値以上短い値を示す走査位置に対象物が存在すると検知される。このような処理が、測距装置の測定対象平面に対する姿勢が静止状態であるとみなせる所定の走査周期毎に繰り返される。
【0020】
従って、車両の走行に伴ないピッチングやローリングにより測距装置の測定対象平面に対する姿勢が変動する場合であっても、対象平面に存在する僅かの高さの対象物を適切に検知することができるようになる。
【0021】
同第二の特徴構成は、同請求項2に記載した通り、上述の第一特徴構成に加えて、閾値が、換算した鉛直距離と当該近似線から求まる鉛直距離の偏差の平均値を基準に所定の走査周期毎に設定される点にある。
【0022】
上述の構成によれば、測距装置の測定対象平面に対する姿勢が静止状態であるとみなせる所定の走査周期毎に閾値が設定されるので、測距装置の測定対象平面に対する姿勢の変動が激しい場合であっても、適切に対象物を検知できるようになる。そのような閾値は、換算した鉛直距離と当該近似線から求まる鉛直距離の偏差の平均値に基づいて設定されるため、測定環境による影響を加味した適切な値になる。
【0023】
本発明による車載測距装置の第一の特徴構成は、同請求項3に記載した通り、上述の第一または第二特徴構成に加えて、発光部と、受光部と、発光部から出力された測定光を所定周期で繰り返し走査して対象物からの反射光を受光部に導く走査機構と、測定光の出力タイミングと反射光の受光タイミングの時間差または位相差に基づいて対象物までの距離を算出する演算部を備えた測距装置が車両に取り付けられ、走査面が測定対象平面と交差するように測定光を走査して、測定対象平面上に位置する対象物を検知する車載測距装置であって、演算部は、基準走査位置からの走査角度に応じて測定対象平面または対象物までの距離を算出する処理と、所定の走査角度で算出された距離に基づいて測定対象平面に平行で所定距離離隔した仮想平面を生成し、各走査角度で算出した距離を仮想平面からの鉛直距離に換算する処理と、換算した鉛直距離と当該鉛直距離に対応する測定対象平面上の測定光の走査位置との相関を表す近似線を算出する処理と、換算した鉛直距離が当該近似線から求まる鉛直距離より所定の閾値以上短い値を示す走査位置に対象物が存在すると検知する処理を、所定の走査周期毎に繰り返すように構成されている点にある。
【0024】
同第二の特徴構成は、同請求項4に記載した通り、上述の第一の特徴構成に加えて、閾値が、換算した鉛直距離と当該近似線から求まる鉛直距離の偏差の平均値を基準に所定の走査周期毎に設定される点にある。
【0025】
同第三の特徴構成は、同請求項5に記載した通り、上述の第一または第二特徴構成に加えて、測距装置から出力された測定光の走査面が測定対象平面と交差するように偏向する偏向ミラーを備えている点にある。
【0026】
走査面が測定対象平面と交差するように測定光を走査するために、車両に対する測距装置の取付姿勢が制限されることになるが、偏向ミラーを介して測定光を偏向走査することができるため、測距装置の取付姿勢の自由度を確保して、測定光を任意の方向に偏向走査することができるようになる。
【0027】
同第四の特徴構成は、同請求項6に記載した通り、上述の第一から第三の何れかの特徴構成に加えて、測距装置の周囲に互いに90°の角度で三枚の偏向ミラーが配置され、各偏向ミラーにより測距装置から出力された測定光を所定の角度に偏向する点にある。
【0028】
上述の構成によれば、三枚の偏向ミラーにより測定対象面を三方向に走査でき、車両の走行方向に対する前方の正面及び左右側面に存在する障害物等の対象物を適正に検知できる。
【発明の効果】
【0029】
以上説明した通り、本発明によれば、床面に近い位置に置かれた障害物を精度良く検知できる測距方法及び車載測距装置を提供することができるようになった。
【図面の簡単な説明】
【0030】
【図1】本発明による車載測距装置に用いられる走査式測距装置の構成図
【図2】本発明による車載測距装置の説明図であり、(a)は正面図、(b)は右側面図、(c)は底面図
【図3】(a)は車載測距装置の自動搬送車両への取付姿勢の説明図、(b)は車載測距装置から出射される測定光の測定対象面上の軌跡を示す説明図
【図4】(a)は水平偏向ミラーで偏向走査される測定光の軌跡を示す説明図、(b)は垂直偏向ミラーで偏向走査される測定光の軌跡を示す説明図
【図5】(a)は水平偏向ミラーで偏向走査される測定光で検知された距離を、仮想平面からの垂直距離に換算処理する原理の説明図、(b)は垂直偏向ミラーで偏向走査される測定光で検知された距離を、仮想平面からの垂直距離に換算処理する原理の説明図
【図6】車両に作用するピッチングやローリングにより車載測距装置の姿勢が変動することを示す説明図
【図7】(a)は車両の走行に伴ない発生する車載測距装置による所定の走査角度での計測距離の変動を示す特性図、(b)は本発明の演算処理により求まる仮想平面からの垂直距離の特性図
【図8】車載測距装置に組み込まれた制御回路のブロック構成図
【図9】従来技術の説明図
【図10】従来技術の説明図
【図11】従来技術の説明図
【発明を実施するための形態】
【0031】
以下、本発明による測距方法及び車載測距装置の実施形態を図面に基づいて説明する。
【0032】
図1に示すように、走査式測距装置100は、内壁面が吸光部材で被覆された円筒状のケーシング1の内部に、発光部3と、受光部4と、発光部3から出力された測定光を所定周期で繰り返し走査して対象物Xからの反射光を受光部4に導く走査機構5が組み込まれている。
【0033】
ケーシング1を支持する基台2には、測定光の出力タイミングと反射光の受光タイミングの時間差または位相差に基づいて対象物までの距離を算出する演算部10として機能する信号処理基板9が収容されている。
【0034】
走査機構5は、ケーシング1の軸心となる回転軸心P周りに回転する回転体6と、回転体6と一体回転する偏向ミラー7と、回転体6を回転駆動するモータ11で構成されている。
【0035】
回転体6は、下端部が縮径された円筒状の周壁部6aと天板部6bとからなり、その内周面に備えた軸受12を介して中空軸13によって回転可能に支承されている。
【0036】
周壁部6aの下端部外周面に取り付けられたマグネット11bでなる回転子と、ケーシング側に配置されたコイル11aでなる固定子とでモータ11が構成され、コイル11aとマグネット11bとの相互作用により、回転体6が回転軸心P周りで回転駆動される。
【0037】
偏向ミラー7は、回転体6の天板部6b上面に配置された第一偏向ミラー7aと、天板部6b下面に配置された第二偏向ミラー7bで構成され、夫々が回転軸心Pに対して約45度の傾斜角度となるように回転軸心P上に配置されている。
【0038】
発光部3は、半導体レーザでなる光源3aと、光源3aからの出力光を一定のビーム径に形成する光学レンズ3cを備え、出力光の光軸L1と回転軸心Pが一致するようにケーシング1の天面に固定配置されている。
【0039】
受光部4は、アバランシェフォトダイオード等を用いた受光素子4aと、受光素子4aで光電変換された信号を増幅する増幅回路4bを備え、回転軸心P上で偏向ミラー7を挟んで投光部3と対向するように回転体6の内部に固定配置されている。
【0040】
ケーシング1の周壁部には、上下方向に一定幅を有し、ケーシング1に沿って湾曲形成された帯状の透光窓1aが設けられ、回転体6の周壁部6a上部に反射光を受光部4に合焦させる集光レンズ8が設けられている。
【0041】
発光部3から出力された測定光が光軸L1に沿って第一偏向ミラー7aに入射し、第一偏向ミラー7aで90°偏向反射された光軸L2に沿って透光窓1aを介して測定対象空間に出射される。測定対象空間に存在する対象物Xから反射した反射光が光軸L2に沿って透光窓1a及び集光レンズ8を介して第二偏向ミラー7bに入射し、第二偏向ミラー7bで受光部4に向けて90°偏向反射される。
【0042】
回転体6の外周面に円環状のスリット板15aが取り付けられるとともに、スリット板15aに形成されたスリットを検知するフォトインタラプタ15bがケーシング1の内面に取り付けられ、フォトインタラプタ15bから出力されるパルス信号により回転体8の回転位相、つまり測定光の走査角度を検知する走査角度検出部15が構成されている。
【0043】
透光窓1aは、回転軸心Pを中心に270度の角度範囲で測定光が出射可能に設けられ、軸心Pを挟んで透光窓1aの中心位置と対向するケーシング1の内壁部に、対象物Xまでの距離を補正するための基準光を導くプリズム14が配置されている。
【0044】
走査機構5により測定光が一走査される度に、受光部4でプリズム14を介した基準光(図1中、プリズム14を通過する一点差線の光路を通過する)が検出され、このときに装置内での投光部3から受光部4までの基準距離が算出される。
【0045】
尚、走査角度検出部15のスリット板15aには、回転軸心Pを中心とする放射状のスリットが一定間隔で形成されている。そして、測定光がプリズム14に照射される基準走査位置以外の領域で、回転方向に沿ったスリット幅が一定に形成され、基準走査位置で他の領域のスリット幅より狭いスリット幅に形成されている。
【0046】
従って、演算部10では、フォトインタラプタ15bから出力されるパルス信号のパルス幅に基づいて基準走査位置が検知され、検知された基準走査位置からのパルス数に基づいて走査角度が検知される。
【0047】
信号処理基板9には、マイクロコンピュータやメモリを備えた制御回路が搭載され、制御回路により、モータ11を駆動して走査機構5を作動させるモータ駆動部、光源3aからの出力光を変調する変調部、受光部4で検出された基準信号に基づいて基準距離を算出し、基準距離と受光部4で検出された反射信号に基づいて対象物Xまでの距離を算出するとともに、走査角度検出部15から入力されるパルス信号に基づいて対象物Xが位置する方位を特定する演算部等の機能ブロックが構成されている。
【0048】
尚、図面には示していないが、発光部3、受光部4、モータ11、走査角度検出部15と信号処理基板9との間には、それぞれ信号線が接続されている。
【0049】
走査式測距装置100は、光源3aからの出力光に変調を加えて対象物Xに照射し、対象物Xからの反射光を受光素子4aで検出して距離を測定する装置で、測定光の変調方式としてAM(amplitude modulation)方式とTOF(Time of Flight)方式の何れかが採用される。
【0050】
AM方式では、光源3aからの出力光が正弦波でAM変調され、変調された測定光と対象物Xからの反射光が光電変換される。そして光電変換された信号間の位相差Δφから〔数1〕に基づいて対象物Xまでの距離が算出される。ここに、Lは対象物Xまでの距離、Cは光速、fは変調周波数である。
〔数1〕
L=Δφ・C/(4π・f)
【0051】
TOF方式では、光源3aからの出力光がパルス状に変調され、変調された測定光と対象物Xからの反射光が光電変換される。そして光電変換された信号間の遅延時間Δtから〔数2〕に基づいて距離が算出される。
〔数2〕
L=Δt・C/2
【0052】
上述の演算部は、例えば、変調信号に基づいて測定光の出射タイミングまたは位相を検知し、受光部4で検出された反射信号の検知タイミングまたは位相を検知することにより、〔数1〕または〔数2〕に基づいて、対象物Xまでの距離を算出し、算出した距離から基準距離を減算補正することにより、最終の距離を算出する。
【0053】
図2(a),(b),(c)に示すように、本発明による車載測距装置Aは、フォークリフトを含む自動搬送車両AGVに取り付けられ、上述した走査式測距装置100と、走査式測距装置100から出力される測定光を偏向反射する三枚の偏向ミラー101,102,103を備えている。
【0054】
図2(a)に示すように、測定光がプリズム14に向けて照射される基準走査位置bから180°の走査角度となる方向に水平偏向ミラー101が配置され、基準走査位置bから90°及び270°の走査角度となる方向に垂直偏向ミラー102,103が配置されている。
【0055】
図2(b)に示すように、水平偏向ミラー101の偏向面が測定光の走査面に対して45°傾斜するように配置され、図2(c)に示すように、垂直偏向ミラー102,103の偏向面が測定光の走査面に対して40°傾斜するように配置されている。
【0056】
図3(a)に示すように、走査式測距装置100は、回転軸心Pが床面と所定の角度θ(例えば、45度)の傾斜角度となるように、床面(地面)から高さHの位置に、取付ステイを介して走査式測距装置100と偏向ミラー101,102,103が上述の位置関係を保つように取り付けられている。
【0057】
図2(a)に示すように、走査機構4により回転軸心P周りに走査され、透光窓1aから出射した測定光は、垂直偏向ミラー102、水平偏向ミラー101、垂直偏向ミラー103の順に入射し、各偏向ミラーで偏向反射されて、床面に向けて走査される。
【0058】
図3(b)に示すように、測定光の床面上での走査軌跡は略H字形になり、水平偏向ミラー101により偏向された測定光は、自動搬送車両AGVの走行方向前方に走行方向と垂直な直線状の軌跡に沿って走査され、垂直偏向ミラー102により偏向された測定光は、自動搬送車両AGVの走行方向右側前方に、走行方向より所定角度外側に広がる直線状の軌跡に沿って走査され、垂直偏向ミラー103により偏向された測定光は、自動搬送車両AGVの走行方向左側前方に、走行方向より所定角度外側に広がる直線状の軌跡に沿って走査される。
【0059】
詳述すると、図4(a)に示すように、自動搬送車両AGVの走行方向をX軸、床面から車載測距装置Aを通る垂直軸をY軸、X軸及びZ軸に直交する軸をY軸とすると、水平偏向ミラー101により偏向反射された測定光Lhは、X軸方向へ距離X0離れた床面上にY軸と平行な軌跡Thで矢印方向に走査される。
【0060】
また、図4(b)に示すように、垂直偏向ミラー102により偏向反射された測定光Lrは、自動搬送車両AGVの走行方向手前から遠さかる方向にX軸に対して所定の角度を持つ直線の軌跡Trで矢印方向に走査され、垂直偏向ミラー103により偏向反射された測定光Llは、自動搬送車両AGVの走行方向前方から近づく方向にX軸に対して角度を持つ直線の軌跡Tlで矢印方向に走査される。
【0061】
車載測距装置Aは、走査面が測定対象平面である床面と交差するように測定光を走査して、床面に近い位置に置かれた障害物を検知するものである。例えば、自動搬送車両AGVの走行方向前方に突出しているフォークリフトの爪部等を検知するものである。
【0062】
図6に示すように、自動搬送車両AGVが停止状態から走行状態に移行し、或いは加速すると車体が走行方向に対してピッチアップし、走行状態から減速すると車体がピッチダウンし、旋回すると車体にロールが発生する。このように、車体のピッチ角やロール角が変動すると、車載測距装置Aにより検知された床面または床面上の障害物までの距離が変動して、障害物を適正に検知できない虞がある。
【0063】
図7(a)には、このような自動搬送車両AGVの一例であるフォークリフトに設置された車載測距装置Aにより検知された測定光Lhに基づく距離特性がプロットされ、横軸を検知時間、縦軸を検知距離とするグラフが示されている。
【0064】
車載測距装置Aを約2400mmの高さ、斜め下方に45°傾斜させて取り付け、フォークリフトを走らせた時に、水平偏向ミラー101に垂直方向に入射、つまり基準走査位置bから180°回転した走査角度で入射した測定光Lhに対する床面距離の変動が示されている。
【0065】
幾何学的には、車載測距装置Aにより検知される床面までの距離が約3400mm(=2400×21/2)となる。
【0066】
フォークリフトの停止時に車載測距装置Aにより検知された距離は約3400mmと安定しているが、フォークリフトを走行させて蛇行運転すると、車載測距装置Aにより検知された距離がピーク値間で200mm変動する。車両に発生するピッチやロールの影響により、車載測距装置Aが±2°以上傾斜振動したためである。
【0067】
また、安定走行時には、停止時に検知された約3400mmよりも約100mm程度短い約3300mmで安定した値となる。図7(a)に示す特性は、爪部に荷物を搭載していないときの特性で、爪部に重量物を搭載しているときには、図9とは異なる特性となる。車両の重量や、重心位置が変動し、車両に発生するピッチやロールの影響が変化するためである。
【0068】
このような自動搬送車両AGVに搭載される車載測距装置Aで床面状の障害物を検知するのは非常に困難である。例えば、通常、下降位置で床面から約50mm程度の高さとなるフォークリフトの爪部の上面を床面と識別する必要があるのである。
【0069】
そこで、本発明による車載測距装置Aの演算部10は、基準走査位置からの走査角度に応じて測定対象平面または対象物までの距離を算出する処理と、所定の走査角度で算出された距離に基づいて測定対象平面に平行で所定距離離隔した仮想平面を生成し、各走査角度で算出した距離を仮想平面からの鉛直距離に換算する処理と、換算した鉛直距離と当該鉛直距離に対応する測定対象平面上の測定光の走査位置との相関を表す近似線を算出する処理と、換算した鉛直距離が当該近似線から求まる鉛直距離より所定の閾値以上短い値を示す走査位置に対象物が存在すると検知する処理を、所定の走査周期毎に繰り返すように構成されている。
【0070】
以下、詳述する。図5(a)に示すように、水平偏向ミラー101で偏向された測定光Lhのうち、基準走査位置から180°の走査角度で走査され、水平偏向ミラー101に垂直方向に入射した測定光Lh0により算出される距離L0と、車載測距装置Aの床面からの既知の高さHに基づいて、車載測距装置Aから出射される測定光Lh0の床面に対する角度θ(車載測距装置Aの取付角度θに相当する)を、〔数3〕に基づいて算出する。これにより、車両の姿勢変動による車載測距装置Aの姿勢変動を角度θに反映させる。測定光Lhが一走査周期に一度このような走査角度となり、次に角度θが算出されるまでの間は、少なくともこのタイミングで算出された角度θに基づいて以下の処理がなされる。
〔数3〕
θ=Sin−1(H/L0)
【0071】
次に、測定光Lh0から走査角度φn(基準走査位置から(180°±φn)の走査角度)振られた測定光Lhnにより算出される距離LnをXZ平面へ射影した射影距離Ln0を〔数4〕に基づいて算出する。
〔数4〕
Ln0=Ln・Cosφn
【0072】
次に、〔数5〕に基づいて、射影距離Ln0を、測定光Lhの床面上の軌跡Th(Y´)に平行で、高さ方向に所定距離、例えば距離Hだけシフトした仮想軸Y´´からの鉛直方向の距離Hn0に換算する。仮想軸Y´´とは、仮想平面上の軸である。
〔数5〕
Hn0=Ln0・Sinθ=Ln・Cosφn・Sinθ
【0073】
このようにして、水平偏向ミラー101で偏向された複数の走査角度φnに応じた測定光Lhnに対応する各距離Lnを、仮想軸Y´´からの鉛直方向の距離Hn0、つまり仮想平面からの鉛直距離に換算して、床面または障害物の座標(Xc,Yn,Zn)を算出する。ここに、Xcは一定値、Yn=Ln・Sinφnであり、Zn=Hn0である。
【0074】
図5(b)に示すように、垂直偏向ミラー102で偏向された測定光Lrnのうち、基準走査位置からφnの走査角度で走査され、YZ平面から角度ηnで出射した測定光Lrnにより算出される距離Lnを、〔数6〕に基づいて、床面上の軌跡Trに平行で、高さ方向に所定距離、例えば距離HだけシフトしたZ軸を通る仮想軸Tr´迄の距離Hn´に換算する。
〔数6〕
Hn´=Ln・Cosηn
【0075】
次に、〔数7〕に基づいて、距離Hn´をXZ平面に投影した距離Hn0、つまり、仮想軸Tr´が含まれる仮想平面からの鉛直距離を算出する。
〔数7〕
Hn0=Hn´・Cosξ=Ln・Cosηn・Cosξ
【0076】
垂直偏向ミラー102の偏向面が測定光の走査面に対して40°傾斜するように配置されているため、軌跡Trと仮想軸Tr´で形成される面とXZ平面が角度ξ(本実施形態ではξ=10°である)傾斜している。そこで、距離Hn´をXZ平面に垂直な面に投影するのである。尚、ξが小さい場合には、〔数7〕による演算処理を省略してもよい。
【0077】
尚、走査角度φnに対応する測定光のYZ平面からの角度ηnは幾何学演算により予め算出されることはいうまでもない。
【0078】
垂直偏向ミラー103で偏向された測定光Llnのうち、基準走査位置からφnの走査角度で走査され、YZ平面から角度ηnで出射した測定光Llnにより算出される距離Lnに対しても、上述と同様に距離Hn0を算出する。
【0079】
このようにして、垂直偏向ミラー102,103で偏向された複数の走査角度φnに応じた測定光Lhn,Llnに対応する各距離Lnを、高さ方向に所定距離、例えば距離Hだけシフトした仮想軸Tr´からの鉛直方向の距離Hn0に換算して、床面または障害物の座標(Xn,Yn,Zn)を算出する。
【0080】
以上により、基準走査位置からの走査角度に応じて測定対象平面または対象物までの距離を算出する処理と、各走査角度で算出した距離を測定対象平面に平行で所定距離離隔した仮想平面からの鉛直距離に換算する処理が終了する。
【0081】
次に、換算した鉛直距離と当該鉛直距離に対応する測定対象平面上の測定光の走査位置との相関を表す近似線を算出する。具体的に、水平偏向ミラー101で偏向された測定光Lhから得られた床面または障害物の座標(Xc,Yn,Zn)に対応して、〔数8〕に基づいて二次曲線近似する。
〔数8〕
Zn=C1・Yn+C2・Yn+C3
ここに、C1,C2,C3は定数である。
【0082】
同様に、垂直偏向ミラー102,103で偏向された測定光Lr,Llから得られた床面または障害物の座標(Xn,Yn,Zn)に対応して、〔数9〕に基づいて二次曲線近似する。
〔数9〕
Zn=C4・Xn+C5・Xn+C6
ここに、C4,C5,C6は定数である。
【0083】
〔数9〕は、測定光の床面上での軌跡Tr,TlがX軸に略平行な場合、つまり座標Ynが略一定とみなせる場合に適用可能な式であり、座標Ynが大きく変動する場合には、以下の〔数10〕を採用することができる。
〔数10〕
Zn=C4・(Yn+Xn)+C5・(Yn+Xn1/2+C6
【0084】
図7(b)には、水平偏向ミラー101により偏向反射された測定光Lhを走査したときの、床面または障害物に対するY軸方向の座標Ynと、二次近似曲線と、二次近似曲線に対するZ軸方向の座標Zn(=垂直方向の距離H0)の距離偏差をプロットしたグラフの一例が示されている。
【0085】
この例では、自動搬送車両AGVの走行時にピッチングやローリングが発生する影響で二次近似曲線がY軸に対して傾斜している。二次近似曲線に沿って分布する垂直方向の床面に対する距離偏差は最大でも30mm以内に収束しており、床面に対して50mmの高さになるフォークリフトの爪部に対する距離偏差と十分に識別できる特性が得られている。
【0086】
従って、例えば、閾値を40mmに設定すると、二次近似曲線で示される垂直方向の距離偏差より40mm以上の偏差となるY座標にフォークリフトの爪部が存在すると検知できるようになる。つまり、床面または障害物までの距離から換算した鉛直距離が、当該近似曲線から求まる鉛直距離より所定の閾値以上短い値を示す走査位置に障害物が存在すると検知することができるのである。
【0087】
このような閾値は、換算した鉛直距離と当該近似曲線から求まる鉛直距離の偏差の平均値を基準に所定の走査周期毎に動的に変更設定することにより、より柔軟且つ適正に障害物を検知できるようになる。例えば、換算した鉛直距離と当該近似曲線から求まる鉛直距離の偏差の平均値に所定の安全係数α(α>1)を乗算した値を新たな閾値に設定し、或いは、換算した鉛直距離と当該近似曲線から求まる鉛直距離の偏差の平均値に所定の安全係数β(例えば、当該平均値と障害物の床面高さの差の1/2の値)を加算した値を新たな閾値に設定する等である。
【0088】
図7(b)に示すグラフは、測定光の一走査周期、つまり走査機構5により回転体6が一回転したときの特性を示すものである。例えば、走査機構5による回転体6の回転数が1200rpmであれば、一走査周期が50msec.となる。走行中の自動搬送車両AGVにピッチングやローリングが発生する場合であっても、このような短い時間内では、その影響を受けることなく障害物を的確に検知することができる。
【0089】
そこで、演算部10では、所定の走査周期毎に上述の一連の処理を繰り返すように構成されている。所定の走査周期とは、ピッチングやローリングの影響を受けない走査周期をいい、最短で一走査周期となるが、走査機構5による回転体6の回転数に基づいて適宜設定すればよい。
【0090】
また、上述の説明では、近似線として二次近似曲線を採用する場合を説明したが、本発明による近似線は、二次近似曲線に限るものではなく、三次以上の近似曲線を採用してもよく、一次近似線、つまり近似直線を採用してもよい。
【0091】
図8には、信号処理基板9を構成する演算部10を含む制御回路の一例が示されている。信号処理基板9には、モータ11を駆動して走査機構5を作動させるモータ駆動部91と、光源3aをパルス変調する変調部3bと、反射光が受光素子4aで光電変換された反射信号を増幅する増幅部4bと、反射信号からノイズ成分を除去するローパスフィルタ92と、反射信号をデジタル変換するA/D変換部93と、A/D変換部93された反射信号に基づいて測距演算を行なう演算部10等を備えている。
【0092】
演算部10は、デジタル信号プロセッサやマイクロコンピュータが組み込まれ、車載測距装置Aのシステム制御を実行する。装置に電源が投入されると、演算部10は、モータ駆動部91を介してモータ11を駆動する。モータ11の駆動に伴って走査機構5の回転体6が回転され、走査角度検出部15からパルス信号が入力される。
【0093】
演算部10は、当該パルス信号に基づいて基準走査位置を把握し、基準走査位置からのパルス数をカウントすることにより測定光の走査角度を把握する。
【0094】
演算部10は、当該パルス信号に基づいてモータ11が一定速度に立ち上がったことを検出すると、変調部3bに所定周期で所定デューティ比のクロック信号を出力して光源2aをバースト発光させる。当該クロック信号は、同時にA/D変換部93及び演算部10にも入力され、A/D変換処理及び信号処理の基準クロックとして利用される。
【0095】
A/D変換部93及び演算部10では、当該クロック信号を逓倍したクロック信号に同期してA/D変換処理及び信号処理が実行され、当該クロック信号の立ち上がりエッジが発光素子2aの発光時点として把握される。
【0096】
演算部10は、A/D変換部93から入力される反射信号の立ち上がり時点を検出するとともに、測定光の遅延時間である発光時点と反射信号の立ち上がり時点の時間差を算出して測距演算を実行する。
【0097】
基準走査位置で検知された反射信号に基づいて行なわれた測距演算により基準距離が算出され、基準走査位置からの任意の走査角度で検知された反射信号に基づいて行なわれた測距演算により対象物までの距離が算出され、その値から基準距離を減算することにより、最終の対象物までの距離が算出される。
【0098】
演算部10は、走査角度検出部15からのパルス信号に基づいて、基準走査位置からの走査角度を判別し、水平偏向ミラー101を介して検知された対象物までの距離と、垂直偏向ミラー102,103のそれぞれを介して検知された対象物までの距離を、一走査周期毎にメモリに格納する。
【0099】
演算部10は、水平偏向ミラー101を介して検知された対象物までの距離のうち、走査角度が180°となるときの距離に基づいて、測定対象平面に平行で所定距離離隔した仮想平面を生成し、各走査角度で算出した一走査周期内の距離を仮想平面からの鉛直距離に換算する。
【0100】
演算部10は、換算した鉛直距離と当該鉛直距離に対応する測定対象平面上の測定光の走査位置との相関を表す近似線を算出し、換算した鉛直距離と当該近似線との偏差を求める。これらの処理は、各偏向ミラー101,102,103に対するデータ群単位で処理される。
【0101】
演算部10は、求めた偏差から所定の閾値を逸脱する偏差を示す対象平面上の座標を特定し、障害物の位置情報を自動搬送車両AGVの走行制御部に出力する。
【0102】
自動搬送車両AGVが、棚等に囲まれた狭い空間を走行するときや、カーブや回転動作する場合に、周囲の状況に合わせて、検出ポイントを変更する機能や、走行速度に合わせて応答時間を変更する等の機能を追加すれば、より安定な運用が可能となる。
【0103】
例えば、水平偏向ミラー101、垂直偏向ミラー102,103の傾斜角度を変更調整するモータ等のアクチュエータを備え、狭い空間を走行するときに、水平偏向ミラー101の傾斜角度を45°よりも大きくなるように変更して、より自動搬送車両AGVから近距離の障害物を検知するように構成することができる。
【0104】
また、測定光の走査により検知された距離情報に基づいて、距離の計測後に上述の各処理を実行することにより障害物が検知され、車載測距装置Aが障害物の検知情報を自動搬送車両AGVに出力することにより、自動搬送装置AGVが回避走行制御し、或いは停止制御するのであるが、車載測距装置Aから自動搬送車両AGVに障害物の検知情報を出力するタイミングを、自動搬送車両AGVから入力される速度情報に基づいて可変設定する出力制御部を車載測距装置Aに備えてもよい。
【0105】
さらに、検出精度つまり分解能を可変設定すべく、走査機構5による回転体6の回転速度を切り替えるように構成してもよい。例えば、自動搬送車両AGVから入力される速度情報に基づいて、高速走行時には回転体6の回転速度を高速に設定して分解能を低くしながら高速に測距し、低速走行時には回転体6の回転速度を低速に設定して低速で測距しながら分解能を高く調整することができる。
【0106】
上述した説明では、測距装置100の周囲に互いに90°の角度で三枚の偏向ミラー101,102,103が配置され、各偏向ミラーにより測距装置100から出力された測定光を所定の角度に偏向して、測定光の対象面上の軌跡が略Hの字型となる三面型の車載測距装置Aを説明したが、測距装置100に対する偏向ミラー101,102,103の取付角度は、上述の値に制限されるものではなく適宜設定されるものである。また、本発明による車載測距装置Aは、測距装置100から出力された測定光の走査面が測定対象平面と交差するように偏向する偏向ミラーを備えていればよく、例えば、水平偏向ミラー101のみを備えた一面型の車載測距装置Aであってもよい。
【0107】
更に、水平偏向ミラー101を備えずに、測距装置100から出射される測定光の走査面が測定対象平面と交差するように、回転軸心Pを測定対象平面に対して鋭角の傾斜姿勢で自動搬送車両AGVに取り付けることにより車載測距装置Aを構成することも可能である。
【0108】
上述した実施形態では、車載測距装置Aが自動搬送車両AGVに取り付けられる例を説明したが、車載測距装置Aの取付対象は自動搬送車両AGVに限るものではなく、任意の車両に取り付けることができることはいうまでもない。
【符号の説明】
【0109】
1:ケーシング
3:発光部
4:受光部
5:走査機構
100:測距装置(走査式測距装置
101:水平偏向ミラー
102,103:垂直偏向ミラー
AGV:車両(自動搬送車両)

【特許請求の範囲】
【請求項1】
発光部と、受光部と、発光部から出力された測定光を所定周期で繰り返し走査して対象物からの反射光を受光部に導く走査機構と、測定光の出力タイミングと反射光の受光タイミングの時間差または位相差に基づいて対象物までの距離を算出する演算部を備えた測距装置を車両に取り付けて、走査面が測定対象平面と交差するように測定光を走査して、測定対象平面上に位置する対象物を検知する測距方法であって、
演算部により、基準走査位置からの走査角度に応じて測定対象平面または対象物までの距離を算出するステップと、所定の走査角度で算出された距離に基づいて測定対象平面に平行で所定距離離隔した仮想平面を生成し、各走査角度で算出した距離を仮想平面からの鉛直距離に換算するステップと、換算した鉛直距離と当該鉛直距離に対応する測定対象平面上の測定光の走査位置との相関を表す近似線を算出するステップと、換算した鉛直距離が当該近似線から求まる鉛直距離より所定の閾値以上短い値を示す走査位置に対象物が存在すると検知するステップとを、所定の走査周期毎に繰り返す測距方法。
【請求項2】
閾値が、換算した鉛直距離と当該近似線から求まる鉛直距離の偏差の平均値を基準に所定の走査周期毎に設定される請求項1記載の測距方法。
【請求項3】
発光部と、受光部と、発光部から出力された測定光を所定周期で繰り返し走査して対象物からの反射光を受光部に導く走査機構と、測定光の出力タイミングと反射光の受光タイミングの時間差または位相差に基づいて対象物までの距離を算出する演算部を備えた測距装置が車両に取り付けられ、走査面が測定対象平面と交差するように測定光を走査して、測定対象平面上に位置する対象物を検知する車載測距装置であって、
演算部は、基準走査位置からの走査角度に応じて測定対象平面または対象物までの距離を算出する処理と、所定の走査角度で算出された距離に基づいて測定対象平面に平行で所定距離離隔した仮想平面を生成し、各走査角度で算出した距離を仮想平面からの鉛直距離に換算する処理と、換算した鉛直距離と当該鉛直距離に対応する測定対象平面上の測定光の走査位置との相関を表す近似線を算出する処理と、換算した鉛直距離が当該近似線から求まる鉛直距離より所定の閾値以上短い値を示す走査位置に対象物が存在すると検知する処理を、所定の走査周期毎に繰り返すように構成されている車載測距装置。
【請求項4】
閾値が、換算した鉛直距離と当該近似線から求まる鉛直距離の偏差の平均値を基準に所定の走査周期毎に設定される請求項3記載の車載測距装置。
【請求項5】
測距装置から出力された測定光の走査面が測定対象平面と交差するように偏向する偏向ミラーを備えている請求項3または4記載の車載測距装置。
【請求項6】
測距装置の周囲に互いに90°の角度で三枚の偏向ミラーが配置され、各偏向ミラーにより測距装置から出力された測定光を所定の角度に偏向する請求項3から5の何れかに記載の車載測距装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate


【公開番号】特開2010−256179(P2010−256179A)
【公開日】平成22年11月11日(2010.11.11)
【国際特許分類】
【出願番号】特願2009−106974(P2009−106974)
【出願日】平成21年4月24日(2009.4.24)
【出願人】(000242600)北陽電機株式会社 (37)
【Fターム(参考)】