説明

車両用走行制御装置

【課題】クルーズ走行などの自動走行に移行する際に、運転者に与える違和感を抑えることを可能とする。
【解決手段】運転者によるステアリングスイッチ28の操作によって定速走行に移行する際に、エンジン停止の処理中若しくはエンジン停止処理に移行したと判定すると、EVモードに移行することなく、エンジンを運転状態に復帰させる処理を行う。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、エンジン及びモータを駆動源とし、走行の状態に応じてエンジン及びモータの少なくとも一方を使用して走行するハイブリッド車両の車両用走行制御の技術に関する。
【背景技術】
【0002】
ハイブリッド車両の走行制御装置としては、例えば特許文献1に記載の技術がある。この特許文献1の走行制御装置では、運転者によるアクセル操作要求が無い場合には、低燃費化のためにエンジンを停止して、モータの出力によって車速を制御する。
【先行技術文献】
【特許文献】
【0003】
【特許文献1】特開2005−160252号公報
【発明の概要】
【発明が解決しようとする課題】
【0004】
運転者が自動定速走行(定速クルーズ走行)に移行する場合には、所定車速まで加速した後にアクセルペダルを離してアクセル操作をOFFにしてから、クルーズ走行に変更するためのクルーズセット操作を行うシーンが想定される。この場合、アクセル操作をOFFにしたことでエンジンが停止してモータによる走行モード(EVモード)に移行し、続けて、クルーズセット操作が実行されてクルーズ走行に移行するが、続けて、エンジン始動条件を満足することでエンジンが始動状態となる場合がある。
【0005】
このように、クルーズ走行に移行した際には、エンジンを駆動源とする走行状態となる可能性が高いにもかかわらず、一旦エンジンを停止してしまうため、短時間の間にエンジンの始動と停止とが行われ、運転者に対し、エンジン停止・始動による違和感を与えるおそれがある。
本発明は、上記のような点に着目したもので、クルーズ走行などの自動走行に移行する際に、運転者に与える違和感を抑えることを目的としている。
【課題を解決するための手段】
【0006】
上記課題を解決するために、本発明は、運転者による起動操作によって作動して、運転者の設定した走行状態に自動調整するための目標駆動力を算出して、上記駆動源の出力を自動的に調整する手段を備えたハイブリッド車の車両用走行制御装置において、エンジン停止の処理を開始してからエンジンが停止するまでの間に上記起動操作を検出したとき、そのエンジン停止の処理を中止して、エンジンの運転を継続する。
【発明の効果】
【0007】
本発明によれば、クルーズ走行などの自動走行に移行する際に、エンジン停止の処理を開始してからエンジンを停止するまでの間に、自動走行の起動操作を検出したときは、そのエンジン停止の処理を中止して、エンジンの運転を継続するため、エンジンを駆動源とする走行状態となる可能性が高い自動走行への移行時に、エンジン停止への移行が抑えられる。その結果、短時間の間に、エンジン停止と始動が連続して行われることを極力なくすことができる。
【図面の簡単な説明】
【0008】
【図1】本発明に基づく実施形態に係るハイブリッド車両の概要構成図である。
【図2】本発明に基づく実施形態に係るハイブリッドシステムの構成例を示す図である。
【図3】本発明に基づく実施形態に係る統合コントローラにおける基本的な信号の流れを示す図である。
【図4】本発明に基づく実施形態に係る統合コントローラの機能ブロックを示す図である。
【図5】目標駆動トルク演算部の機能ブロックである。
【図6】車両状態モードの遷移関係を示す図である。
【図7】車両状態モード決定部の機能ブロックである。
【図8】エンジン始動判定処理部の処理を説明する図である。
【図9】本実施形態のタイムチャート例を示す図である。
【発明を実施するための形態】
【0009】
次に、本発明の実施形態について図面を参照しつつ説明する。
図1は実施形態に係るハイブリッド車両の概要構成図である。図1に示すハイブリッド車両は後輪駆動の例であるが、前輪駆動であっても本発明は適用可能である。
(駆動系の構成)
まず駆動系(パワートレーン)の構成について説明する。
本実施形態のパワートレーンは、図1に示すように、エンジン1から左右後輪(駆動輪)までのトルク伝達経路の途中に、モータ2及び自動変速機AT(=トランスミッションT/M)を介装する。エンジン1とモータ2との間に、第1クラッチ4を介装する。また、モータ2と駆動輪(後輪)との間のトルク伝達経路に第2クラッチ5を介装する。この例では、第2クラッチ5は、自動変速機AT(=トランスミッションT/M)の一部を構成する。自動変速機ATは、プロペラシャフト、ディファレンシャルDF、及びドライブシャフトを介して駆動輪7(後輪)に接続する。
【0010】
上記エンジン1は、ガソリンエンジンやディーゼルエンジンである。エンジン1は、後述するエンジンコントローラ22からの制御指令に基づき、スロットルバルブのバルブ開度等が制御可能となっている。なお、エンジン1の出力軸に、フライホイールが設けられていても良い。
上記モータ2は、例えばロータに永久磁石を埋設しステータにステータコイルを巻き付けた同期型モータである。モータ2は、後述するモータコントローラ23からの制御指令に基づき、後述のインバータ8で作り出した三相交流を印加することで制御出来る。このモータ2は、後述のバッテリ9からの電力の供給を受けて回転駆動する電動機として動作することもできる(この状態を「力行」と呼ぶ)。また、モータ2は、ロータが外力により回転している場合には、ステータコイルの両端に起電力を生じさせる発電機として機能してバッテリ9を充電することもできる(この動作状態を「回生」と呼ぶ)。このモータ2のロータは、図外のダンパーを介して自動変速機ATの入力軸に連結する。
【0011】
上記第1クラッチ4は、上記エンジン1とモータ2との間に介装された油圧式単板クラッチである。上記第1クラッチ4は、後述するATコントローラ24からの制御指令に基づいて、入力した目標クラッチ伝達トルクとなるように、第1クラッチ油圧ユニット(不図示)が作り出した制御油圧により、締結状態若しくは開放状態となる。なお、締結・開放には、滑り締結と滑り開放を含む。
【0012】
上記第2クラッチ5は、油圧式多板クラッチである。上記第2クラッチ5は、後述するATコントローラ24からの制御指令に基づき、目標クラッチ伝達トルクとなるように、第2クラッチ油圧ユニットで作り出した制御油圧により、締結状態若しくは開放状態となる。なお、締結・開放には、滑り締結と滑り開放を含む。
上記自動変速機ATは、例えば、前進7速後退1速や前進6速後退1速等の有段階の変速比を、車速や後述の統合コントローラ21から入力した変速用アクセル開度等に応じて自動的に切り換える変速機である。ここで、上記第2クラッチ5は、専用クラッチとして新たに追加したものではなく、自動変速機ATの各変速段にて締結される複数の摩擦締結要素のうち、いくつかの摩擦締結要素を流用して構成する。
【0013】
ここで、本実施形態では、第2クラッチ5を自動変速機AT(=トランスミッションT/M)の一部として構成する場合を例示しているが、これに限定されない。第2クラッチ5は、モータ2と自動変速機ATとの間、若しくは自動変速機ATとディファレンシャル・ギヤDFとの間に配置する構成であっても良い。
また、各輪には、それぞれブレーキユニット(不図示)を備える。各ブレーキユニットは、例えばディスクブレーキやドラムブレーキからなる。各ブレーキユニットは、油圧ブレーキ装置であっても、電動ブレーキ装置であっても良い。各ブレーキユニットは、ブレーキコントローラ25からの指令に応じて、対応する車輪に制動力を付与する。なお、ブレーキユニットは、全ての車輪に設ける必要はない。
【0014】
また、図1中、符号14は電動サブオイルポンプを示し、符号15は機械式オイルポンプを示す。これらのオイルポンプ14,15は、各クラッチのための油圧を発生する。また、符号10は、エンジン1の回転数を検出するエンジン回転センサを、符号11は、モータ2の回転を検出するレゾルバ等のモータ回転センサを示す。また、符号12は、変速機の入力軸の回転を検出するAT入力回転センサを、符号13は、変速機の出力軸の回転を検出するAT出力回転センサを示す。また、符号27は、車輪の回転を検出する車輪速センサを示す。車輪速センサ27は、不図示の従動輪(前輪)にも設けてもよい。
【0015】
図2は、図1に示したパワートレーンの制御システムを説明する構成図である。
符号33は運転者によって操作されるアクセルペダル33である。このアクセルペダル33のアクセル開度APOは、アクセルセンサ20によって検出され、アクセルセンサ20は、検出したアクセル開度APO情報を統合コントローラ21に出力する。
また、符号34はペダルアクチュエータ34である。ペダルアクチュエータ34は、車間制御コントローラ31からの指令に応じたペダル反力をアクセルペダル33に付与するアクチュエータである。
【0016】
また符号32は、先行車検出手段を構成するレーダーユニット32である。レーダーユニット32は、車両前方の先行車両を検出し、検出した先行車両情報を車間制御コントローラ31に出力する。
また符号27は車輪速センサである。車輪速センサ27は、検出した車輪速情報をブレーキコントローラ25に出力する。また、車輪速情報から求まる車速情報は、ブレーキコントローラ25から統合コントローラ21及び車間制御コントローラ31に出力される。
【0017】
また符号35は、運転者に走行状態を提示するためのメータである。メータ35は、オートクルーズの情報などを表示する。
また符号29はブレーキスイッチ29である。ブレーキスイッチ29は、ブレーキペダル(不図示)の操作を検出する。
符号28は、ステアリングスイッチである。ステアリングスイッチ28は、自動走行制御であるオートクルーズ走行の起動や走行条件(目標車速等)の変更指示を運転者が行うための操作子である。ここで、本実施形態のオートクルーズ走行には、定速走行制御(定速クルーズ)及び車車間走行制御(車間クルーズ)の両方を含む。
【0018】
符号30は、ブレーキペダルに設けられたクルーズキャンセルスイッチである。クルーズキャンセルスイッチ30は、自動走行制御であるオートクルーズ走行の終了を指示するための操作子である。なお、上記ステアリングスイッチ28にもオートクルーズの終了を指示するスイッチが存在する。以下、このスイッチも含めクルーズキャンセルスイッチ30と呼ぶ。
符号18はバッテリ9の電圧を検出する電圧センサである。符号19はバッテリ9の電流を検出する電流センサである。
【0019】
次に、ハイブリッド車両の制御系の構成について説明する。
上記ハイブリッド車両の制御系は、図2に示すように、エンジンコントローラ22と、モータコントローラ23と、インバータ8と、バッテリコントローラ26と、ATコントローラ24と、ブレーキコントローラ25と、統合コントローラ21と、を有する。また、本実施形態のハイブリッド車両の制御系は、車間制御コントローラ31を有する。
なお、エンジンコントローラ22と、モータコントローラ23と、ATコントローラ24と、ATコントローラ24と、ブレーキコントローラ25と、車間制御コントローラ31と、統合コントローラ21とは、互いに情報交換が可能なCAN通信線(不図示)を介して接続する。
【0020】
上記エンジンコントローラ22は、エンジン回転数センサ10からのエンジン回転数情報を入力する。そして、上記エンジンコントローラ22は、統合コントローラ21からの目標エンジントルク等に応じ、エンジン動作点(Ne、Te)を制御する指令を、例えば、図外のスロットルバルブアクチュエータへ出力する。なお、エンジン回転数Neの情報は、CAN通信線を介して統合コントローラ21から取得する。
【0021】
上記モータコントローラ23は、モータ2のロータ回転位置を検出するモータ回転センサ11からの情報を入力する。そして、上記モータコントローラ23は、統合コントローラ21からの目標モータトルクや回転数指令等に応じ、モータ2のモータ動作点(Nm、Tm)を制御する指令をインバータ8へ出力する。
バッテリコントローラ26は、バッテリ9の充電状態をあらわすバッテリSOCを監視している。バッテリコントローラ26は、バッテリSOC情報を、モータ2の制御情報等として、CAN通信線を介して統合コントローラ21へ供給する。
【0022】
上記ATコントローラ24は、車速情報と第1及び第2クラッチ油圧センサからのセンサ情報を入力する。そして、上記ATコントローラ24は、統合コントローラ21からのアクセル開度APO情報、第1及び第2クラッチ制御指令(目標第1クラッチトルク、目標第2クラッチトルク)に応じ、変速制御における第2クラッチ制御に優先し、第2クラッチ5の締結・開放を制御する指令をAT油圧コントロールバルブ内の第2クラッチ油圧ユニットに出力すると共に、第1クラッチ4の締結・開放を制御する指令を第1クラッチ油圧ユニット(不図示)に出力する。
【0023】
上記ブレーキコントローラ25は、4輪の各車輪速を検出する車輪速センサ27とブレーキストロークセンサからのセンサ情報を入力する。上記ブレーキコントローラ25は、予め設定した制御サイクルで、ブレーキペダルのストローク量や車間制御コントローラ31などからの制動要求量、車速に基づき目標減速度を演算する。そして、ブレーキコントローラ25は、回生協調ブレーキ制御として、目標減速度を回転制動力としての協調回生ブレーキ要求トルク、及び機械制動力(油圧制動力)としての目標油圧制動力に制動力配分を行う。そして、協調回生ブレーキ要求トルクを統合コントローラ21のモータコントローラ23に出力する。目標油圧制動力を、油圧制動力装置に出力する。例えば、上記ブレーキコントローラ25は、ブレーキ踏み込み制動時のブレーキストロークBS等から求められる要求制動力に対し、回生制動力だけでは不足する場合、回生協調ブレーキ制御を行う。そいて、その不足分を機械制動力(液圧制動力やモータ2制動力)で補うように、統合コントローラ21からの回生協調制御指令に基づいて回生協調ブレーキ制御を行う。
【0024】
また、車間制御コントローラ31は、運転者が設定したステアリングスイッチ28の情報、クルーズ制御作動許可状態、その他の必要情報を、統合コントローラ21から入力する。そして、車間制御コントローラ31は、統合コントローラ21からの情報に基づき、先行車に対する車間制御を実施すると判定すると、自車速、レーダーユニット32の検出に基づく先行車両の情報(車間距離や相対速度など)等に基づき、先行車に対して目標車間距離や目標車間時間とするための目標加速度及び目標減速度を演算する。そして、車間制御コントローラ31は、求めた目標加速度を車間クルーズ要求トルク(ACC要求トルク)として統合コントローラ21に出力する。また、車間制御コントローラ31は、求めた目標減速度を制動要求トルクとしてブレーキコントローラ25に出力する。
【0025】
また、車間制御コントローラ31は、DCA制御(Distance Control Assist)部31Aを有する。DCA制御部31Aは、統合コントローラ21から受信するアクセル開度APO情報と、車輪速センサ27の検出に基づく車速情報、レーダーユニット32からの情報に基づきペダル反力指令を演算する。そして、DCA制御部31Aは、先行車との車間を保つ為の運転者への支援情報として、演算した反力指令をペダルアクチュエータ34に出力する。ペダルアクチュエータ34は、入力したアクセルペダル33に反力を付与する。
【0026】
上記統合コントローラ21は、車両全体の消費エネルギーを管理し、最高効率で車両を走らせるための機能を担うものである。
上記統合コントローラ21は、エンジン回転数Neを検出するエンジン回転数センサ10、モータ回転数Nmを検出するモータ回転センサ11、変速機入力回転数を検出するAT入力回転センサ12、変速機出力回転数を検出するAT出力回転センサ13からの情報を入力する。また、統合コントローラ21は、アクセルセンサ20からアクセル開度APO情報、バッテリコントローラ26からバッテリ9の蓄電状態SOCの情報を入力する。また、上記統合コントローラ21は、CAN通信線を介して取得した情報を出力する。
【0027】
また、上記統合コントローラ21は、上記エンジンコントローラ22への制御指令によりエンジン1の動作制御を実行する。上記統合コントローラ21は、上記モータコントローラ23への制御指令によりモータ2の動作制御を実行する。上記統合コントローラ21は、上記ATコントローラ24への制御指令により第1クラッチ4の締結・開放制御を実行する。上記統合コントローラ21は、上記ATコントローラ24への制御指令により第2クラッチ5の締結・開放制御を実行する。
【0028】
ここで、本実施形態のハイブリッド車両における基本動作モードについて説明する。
車両停止中において、バッテリSOCの低下時であれば、エンジン1を始動して発電を行い、バッテリ9を充電する。そして、バッテリSOCが通常範囲になれば、第1クラッチ4は締結で第2クラッチ5は開放のままでエンジン1を停止する。
エンジン1による発進時には、アクセル開度APOとバッテリSOC状態によって、モータ2を連れ回し、力行/発電に切り替える。
【0029】
モータ走行(EVモード)は、エンジン始動に必要なモータトルクとバッテリ出力を確保し、不足する場合はエンジン走行に移行する。また、予め設定したマップ等に基づき予め設定した所定車速以上となると、モータ走行(EVモード)からエンジン走行(HEVモード)に移行する。またエンジン走行時において、アクセル踏み込み時のレスポンス向上のために、エンジントルク遅れ分をモータ2によりアシストする。すなわち、エンジン走行中は、エンジン1の動力だけ、若しくはエンジン1及びモータ2の動力の両方で走行するモードが存在する。
【0030】
ブレーキON減速時には、運転者のブレーキ操作に応じた減速力を回生協調ブレーキ制御にて得る。
エンジン走行やモータ走行中における変速時には、加減速中の変速に伴う回転数合わせのために、モータ2を回生/力行させ、トルクコンバータ無しでのスムーズな変速を行う。
図3は、本実施形態の統合コントローラ21の制御における基本的な指令値の基本的な流れを示す概要構成図を例示するものである。また、図4は本実施形態の統合コントローラ21の制御を機能的に説明する機能ブロック図である。
【0031】
次に、統合コントローラ21にて実行する制駆動制御処理における、本発明に関わる部分について説明する。
統合コントローラ21は、図4に示すように、要求発電トルク演算部21A、要求エンジントルク演算部21B、モータ出力可能トルク演算部21C、目標駆動トルク演算部21D、車両状態モード決定部21E、エンジン始動制御部21F、エンジン停止制御部21G、目標エンジントルク算出部21H、目標モータトルク算出部21J、目標クラッチトルク算出部21Kを備える。
【0032】
要求発電トルク演算部21Aは、車速情報やバッテリコントローラ26からのSOCなどのバッテリ情報などに基づき、モータ2で発電すべき要求発電トルクを演算する。
要求エンジントルク演算部21Bは、車速などの走行状態や要求発電トルク演算部21Aが演算した要求発電トルク等に基づき、エンジン1で発生すべき要求エンジントルクを演算する。
モータ出力可能トルク演算部21Cは、バッテリコントローラ26からのSOCなどのバッテリ情報や、車速などに基づき、モータ2が出力可能なモータ出力可能トルクを演算する。
【0033】
目標駆動トルク演算部21Dは、目標とする目標駆動トルクを演算する。目標駆動トルク演算部21Dは、ドライバ要求トルク演算部、自動制御要求トルク演算部を備える。ドライバ要求トルク演算部は、運転者の操作するアクセルペダル33の操作量(アクセル開度APO)に基づき、運転者が要求していると推定するドライバ要求トルクを演算する。また、自動制御要求トルク演算部は、自動走行制御スイッチであるステアリングスイッチの操作によって作動し、クルーズキャンセルスイッチ30の操作による終了まで、運転者が予め設定した走行条件(設定車速)の走行状態に自動調整するための自動制御要求トルクを演算する。そして、目標駆動トルク演算部21Dは、ドライバ要求トルク演算部が演算したドライバ要求トルクと自動制御要求トルク演算部が演算した自動制御要求トルクとに基づき、目標駆動トルクを演算する。
【0034】
本実施形態の目標駆動トルク演算部21Dは、図5に示すように、ドライバ要求トルク演算部21Da、自動制御要求トルク演算部21Db、第1目標駆動トルク演算部21Dc、車速リミッタトルク演算部21Dd、最終目標駆動トルク演算部21Deを備える。
ドライバ要求トルク演算部21Daは、少なくともアクセルペダル33のアクセル開度APO情報及び車速に基づき、ドライバ要求トルクを演算する。ドライバ要求トルク演算部21Daは、図3に示す例では、アクセル開度APO及び変速機入力回転数を入力し、ベーストルクマップを参照して基本ドライバ要求トルクを演算する。また、車速に基づき、クリープ・コースト駆動力テーブルを参照して第1の補正トルクを演算する。また、アクセル開度APO情報、変速機入力回転数、SOC等に基づく電力制限情報に基づき、MGアシストトルクMAPを参照して、第2の補正トルクを算出する。そして、ドライバ要求トルク演算部21Daは、演算した基本ドライバ要求トルク、第1の補正トルク、第2の補正トルクに基づき、最終的なドライバ要求トルクを求める。
【0035】
自動制御要求トルク演算部21Dbは、ステアリングスイッチ28及びACC許可信号を車間制御コントローラ31に出力すると共に、該車間制御コントローラ31から車間クルーズ要求トルク(ACC要求トルク)を入力する。また、自動制御要求トルク演算部21Dbは、ステアリングリングSWによって設定された設定車速及び現在の車速に基づき、設定車速にフィードバック制御するためのクルーズ要求トルクを演算する。そして、自動制御要求トルクは、ACC作動(車間制御の作動)の有無に応じて、車間クルーズ要求トルク(ACC要求トルク)若しくはクルーズ要求トルクの一方を自動制御要求トルクとして選択する。ここでは、ACC作動時には、クルーズ要求トルクよりも車間クルーズ要求トルクを優先して選択するように処理する。
【0036】
第1目標駆動トルク演算部21Dcは、ドライバ要求トルク演算部21Daが演算したドライバ要求トルクと、自動制御要求トルク演算部21Dbが演算した自動制御要求トルクのセレクトハイを実施して、大きい方を第1目標駆動トルクとして選択して出力する。
車速リミッタトルク演算部21Ddは、ステアリングスイッチ28によって設定される設定車速及び現在の車速に基づき、上限の車速以下とするための車速リミッタトルクを演算する。
最終目標駆動トルク演算部21Deは、第1目標駆動トルク演算部21Dcが出力する第1目標駆動トルクと、車速リミッタトルク演算部21Ddが演算した車速リミッタトルクとのセレクトローを実施する。すなわち、第1目標駆動トルクを車速リミッタトルクで制限して、目標駆動トルクを求める。
【0037】
車両状態モード決定部21Eは、アクセル開度APO、車速情報(又は変速機出力回転数)、モータ出力可能トルク、要求エンジントルク、及び目標駆動トルクに基づき、車両状態モード領域マップ(EV−HEV遷移マップ)などを参照して、目標とする目標車両状態モード(EVモード、HEVモード)を決定する。たとえば、車両制駆動制御のための目標駆動トルクに、エンジン1の始動に必要なクランキングトルクを加えたトルクが、モータ2が出力可能なトルクを下回ると、HEVモードからEVモードに運転モードが遷移する。また、バッテリ充電要求等のシステム要求による要求エンジントルクがある場合には、目標とする目標車両状態モードをHEVモードとする。そして、現在の車両状態モードがEVモードであり、目標車両状態モードがHEVモードである場合には、エンジン始動シーケンスの処理を行う。また、現在の車両状態モードがHEVモードであり、目標車両状態モードがEVモードである場合には、エンジン停止シーケンスの処理を行う。
【0038】
ここで、車両状態モードとしては、図6に示すように、HEVモード、EVモード、遷移時のモードである、エンジン停止シーケンス及びエンジン始動シーケンスのモードを備える。HEVモードは、少なくともエンジン1を駆動源として走行する車両状態モードである。エンジン停止シーケンスのモードは、HEVモードからEVモードに移行する際の遷移時の車両状態モードである。エンジン始動シーケンスのモードは、EVモードからHEVモードに移行する際の遷移時の車両状態モードである。そして、現在の車両状態モードと目標車両状態モードとが同じ場合には、前回の状態モードを保持する。例えば、現在の車両状態モードがEVモードで目標車両状態モードもEVモードの場合には、車両状態モードをEVモードとする。現在の車両状態モードがHEVモードで目標車両状態モードもHEVモードの場合には、車両状態モードをHEVモードとする。一方、現在の車両状態モードがEVモードで、目標車両状態モードがHEVモードの場合、若しくは現在の車両状態モードがHEVモードで、目標車両状態モードがEVモードの場合、遷移モードとして、エンジン1の停止若しくは始動の処理が完了するまでは、エンジン停止シーケンスのモード若しくはエンジン始動シーケンスのモードとなる。
【0039】
本実施形態における車両状態モード決定部21Eは、図7に示すように、エンジン始動判定処理部21Ea及びエンジン停止判定処理部21Ebを備える。
エンジン始動判定処理部21Eaの処理について、図8のフローチャートを参照して説明する。
まずステップS10では、下記条件を全て満足するか判定する。下記条件を全て満足する場合には、ステップS30に移行する。全ての条件を満足しない場合にはステップS20移行する。この判定によって、エンジン停止の処理を開始してからエンジンが停止するまでの間に上記起動操作を検出する。
(a)クルーズ制御中
(b)セットSW操作中
(c)車両状態モードがエンジン停止シーケンス中
ここで、クルーズ制御中とは、自動走行制御であるオートクルーズの制御が起動していることを指す。セットSW操作中とは、クルーズ制御開始のためにステアリングスイッチ28を操作を検知してから、予め設定した停止禁止時間の間であることを指す。車両状態モードが停止シーケンス中とは、エンジン停止指令がONとなって、エンジン停止のための処理中を指す。
【0040】
ステップS20では、下記の条件のいずれかを満足しているか否かを判定する。条件を満足する場合には、ステップS40に移行する。一方、下記条件を満足しない場合にはステップS50に移行する。
(d)クルーズ制御が解除されている。
(e)現在の車両状態モードがHEVモード
(f)現在の車両状態モードがEVモード
ステップS30では、セット操作時エンジン始動要求を「ON」に設定してステップS100に移行する。
ステップS40では、セット操作時エンジン始動要求を「OFF」に設定してステップS100に移行する。
ステップS50では、セット操作時エンジン始動要求として前回値を保持して、ステップS100に移行する。
【0041】
ステップS100では、オートクルーズの制御中か否かを判定する。クルーズ制御中の場合にはステップS110に移行する。クルーズ制御中でない場合にはステップS175に移行する。
ステップS110では、クルーズ要求トルク(目標駆動トルク)が、予め設定した始動判定トルク以上か否かを判定する。始動判定トルク以上の場合には、ステップS140に移行する。クルーズ要求トルク(目標駆動トルク)が、始動判定トルク未満の場合にはステップS120に移行する。
【0042】
ステップS120では、セット操作時エンジン始動要求がONか否かを判定する。セット操作時エンジン始動要求がONの場合には、ステップS150に移行する。OFFの場合にはステップS175に移行する。これによって、エンジン停止の処理を開始してからエンジンが停止するまでの間に上記起動操作を検出したとき、そのエンジン停止の処理を中止して、エンジンの運転を継続することとなる。
ステップS140では、クルーズエンジン始動要求をONにしてステップS180に移行する。
ステップS150では、クルーズエンジン始動要求をONにしてステップS180に移行する。
ステップS170では、クルーズエンジン始動要求をOFFにしてステップS180に移行する。
ステップS177では、クルーズエンジン始動要求をOFFにしてステップS180に移行する。
【0043】
ステップS180では、下記条件のいずれを満足する場合には、ステップS190に移行する。一方、条件を満足しない場合には、ステップS200に移行する。
(g)アクセル開度APOによる始動要求を満足する
(h)システムによる始動要求を満足するか否かを判定する。
(i)クルーズエンジン始動要求がON
アクセル開度APOによる始動要求は、現在のアクセル開度APOが予め設定した始動アクセル開度APO以上の場合に満足する。始動アクセル開度APOは、車速に応じて変更されても良い。
【0044】
また、システムによる始動要求とは、SOC低下、水温低下、EV禁止車速などのシステム等によるエンジン1の駆動が必要な状況の場合に他のエンジン始動要求を満足する。
クルーズエンジン始動要求がONとは、クルーズエンジン始動要求がONの場合である。
ステップS190では、エンジン始動要求をONにしてステップS250に移行する。
ステップS200では、エンジン始動要求をOFFにしてステップS250に移行する。
ステップS250では、エンジン始動要求がONの場合には、現在の車両状態モードがHEVモードでなければ、エンジン始動フラグをONにして、エンジン始動制御部21Fを作動する処理を実行する。その後、復帰する。
【0045】
また、エンジン停止判定処理部21Ebは、エンジン停止について判定する。本実施形態のエンジン停止判定処理部21Ebでは、下記の条件のいずれを満足すると、エンジン停止要求をONにする。下記条件のいずれも満足しない場合には、エンジン停止要求をOFFにする。
(j)アクセル開度APOが予め設定したエンジン停止開度以下
(k)クルーズ要求トルク(目標駆動トルク)が予め設定したエンジン停止トルク以下
【0046】
ただし、システム要求による停止禁止要求がある場合には、エンジン停止要求をOFFとする。システム要求による停止禁止要求とは、例えばSOCが予め設定した値以下に低下している場合、水温が予め設定した温度以下の場合、モータ2の許容回転数以上の車速などの場合である。
そして、エンジン停止要求がONの場合には、EVモードで無ければンジン停止フラグをONにして、エンジン停止制御部21Gを作動する処理を実行する。その後、復帰する。
【0047】
目標エンジントルク算出部21Hは、車両状態モード決定部21Eが決定した目標車両状態モード、車速などの走行状態情報、目標駆動トルク、発電のために要求される要求エンジントルクに基づき、目標エンジントルクを算出する。なお、目標車両状態モードがEVモードである場合には、エンジントルクは不要であるので、目標エンジントルクは、ゼロ若しくは負値となっている。また、予め設定したF/C条件を満足している場合には、エンジンに対して燃料カット(F/C)を指示し、エンジンは空回りしている状態になっている。
【0048】
目標モータトルク算出部21Jは、車両状態モード決定部21Eが決定した目標車両状態モード、車速などの走行状態情報、目標駆動トルク、要求発電トルクに基づき、目標モータトルクを算出する。例えば、目標駆動トルクから、目標エンジントルクに遅れ補正を施したトルク値分を減算した値を目標モータトルクとする。なお、他の制御部から回生ブレーキ要求トルク(<0)の入力がある場合には、目標モータトルクに対しその回生ブレーキ要求トルク分を足した値を最終的な目標モータトルクとする。
エンジン始動制御部21Fは、エンジン始動フラグがONの場合に作動して、モータ走行中にエンジン1を始動する処理を実施してHEVモードへの移行処理を行う。
【0049】
次に、エンジン始動制御部21Fの処理例について説明する。
エンジン始動制御部21Fは、モータ走行中にエンジン始動指令(エンジン始動フラグがON)を取得すると起動する。
まず第2クラッチ5を目標クラッチ伝達トルクにするための目標第2クラッチトルク指令を、ATコントローラ24に出力する。上記目標第2クラッチ伝達トルク指令TCL2は、エンジン始動処理前の出力トルク相当のトルクを伝達可能な伝達トルク指令であって、モータ2が出力する駆動力を増大したとしても出力軸トルクに影響を与えない範囲とする。ここで、ATコントローラ24は、指令に応じたクラッチ油圧が発生するように第2クラッチ油圧ユニットを制御する。
【0050】
次に、モータコントローラ23に、モータ2を回転数制御する指令を出力する。なお、モータ2の実トルクはモータ2に作用する負荷によって決定される。続いて、ATコントローラ24に対して、第1クラッチ4のトルク伝達トルクがエンジンクランキング用のトルクとなるトルク指令を出力する。続いて、エンジン回転数とモータ回転数とが同期したことを検知したら、クランキング処理の終了として第1クラッチ4を完全締結とする指令を出力する。第1クラッチ4の同期判定は、実モータ回転と実エンジン回転の差回転が規定値以下の状態が規定時間経過したときに同期したと判定する。規定値は第1クラッチ4トルク制御中から完全締結移行時の応答無駄時間相当の差回転を設定する。さらに、エンジン回転数が始動可能回転数以上になったことを検知したら、エンジンコントローラ22に対してエンジン始動指令を出力する。そして復帰する。
【0051】
エンジン停止制御部21Gは、エンジン停止指令(エンジン停止フラグがON)を取得すると起動し、HEVモードからEVモードへの移行処理を行う。
例えば、エンジン停止制御部21Gは、エンジン停止指令(エンジン停止フラグがON)を取得すると起動して、まず、ATコントローラ24に対して、第1クラッチ4を滑り締結する予め設定したトルク指令を出力する。同期をとって、モータコントローラ23に、モータ2を回転数制御する指令を出力する。これによって、第1クラッチ4によるエンジン1からのトルクを減少しつつ、モータトルクを増大して、目標駆動トルクを得る。目標モータトルクが目標駆動トルクとなったら、第1クラッチ4を目標クラッチ伝達トルク=0にするための目標第1クラッチ4トルク指令を、ATコントローラ24に出力する。その後、エンジンコントローラ22に対して目標エンジントルクにゼロを設定して出力する。これによって、エンジンは燃料カット(F/C)され、エンジンは空回りしている状態となる。
【0052】
目標クラッチトルク算出部21Kは、車両状態モード決定部21Eが決定した目標車両状態モード、エンジン1及びモータ2の発生トルクに基づき、第1クラッチ4及び第2クラッチ5の目標各クラッチトルクを算出する。なお、EVモード状態の場合には、通常、ATコントローラ24に対し、第1クラッチ4の開放指令を出力すると共に第2クラッチ5の締結指令を出力することで、第1クラッチ4を開放状態とすると共に、第2クラッチ5を締結状態とする。また、HEVモード状態の場合には、通常、ATコントローラ24に対し、第1クラッチ4の締結指令を出力すると共に第2クラッチ5の締結指令を出力することで、第1クラッチ4を締結状態とすると共に第2クラッチ5を締結状態とする。また、エンジン始動若しくは停止処理の場合には、上述の締結開放状態となるクラッチトルクを算出する。
なお、図3におけるVAPO演算21Lは、クルーズ要求トルクから逆算して対応する推定アクセル開度を演算して、演算した推定アクセル開度を変速用アクセル開度としてATコントローラ24に出力する。
【0053】
(作用)
自動走行であるオートクルーズ走行の制御中でない場合には、アクセル開度APOに基づくドライバ要求トルクを目標駆動トルクとして、駆動源であるエンジン1及びモータ2の少なくとも一方の出力が制御される。そして、例えば、アクセルが踏み込まれて車両が所定車速以上となるなど、エンジン始動条件を満足すると、エンジン1が始動されて、HEVモードでの走行状態となり、また、例えばアクセルが踏み戻されて、エンジン停止条件を満足すると、エンジン1が停止されてEVモードに移行する。
【0054】
一方、ステアリングスイッチ28が操作されて、オートクルーズ走行の制御が起動されると、運転者によって設定された車速とするための自動制御要求トルクが目標駆動力として算出され、その目標駆動トルクとなるように、駆動源であるエンジン1及びモータ2の少なくとも一方の出力が制御される。この場合、運転者が一時的な加速要求を実施しない場合には、アクセルペダル33はOFFの状態となっているが、一時的に加速したい場合にだけ、運転者はアクセルペダル33を踏み込むことで、車両は一時的に加速される。
【0055】
このように、自動走行状態であるオートクルーズ走行では、通常アクセルペダル33はOFFとしておくため、通常、自動制御要求トルクが目標駆動力となっている。
運転者が自動走行であるオートクルーズ走行に移行する場合には、アクセルペダル33を踏み込み、設定車速以上に自車両を加速させてから、アクセルペダル33を戻してアクセルペダル33をOFFに、その後、クルーズセットのためにステアリングスイッチ28を操作する。
【0056】
このときのタイムチャート例を図9に示す。
図9に示されるタイムチャートの場合には、アクセルペダル33が踏み込まれることで、目標駆動トルク(ドライバ要求トルク)が増大して車速も増加し、エンジン1が駆動源となるHEVモードでの走行が維持、若しくはHEVモード状態となっている。
その後、アクセルペダル33が戻されることで、車両状態モードがエンジン停止シーケンスのモードとなる。
続けて、ステアリングスイッチ28が操作されることで目標駆動トルク(自動制御要求トルク)とするために、エンジン始動状態を満足して、HEVモードに遷移する。
このとき、上記従来例のようなハイブリッド車両であれば、破線のように一旦、エンジン停止シーケンスからEVモードに移行し、さらに、エンジン始動シーケンスを経た後に、車両状態モードがHEVモードとなる。
【0057】
これに対し、本実施形態では、オートクルーズ走行を起動するために、ステアリングスイッチ28が操作されてから所定の間、少なくともオートクルーズ走行を起動したときに、図6のように、エンジン1が停止シーケンスになっている場合にはエンジン始動に移行してエンジンの運転を継続する。すなわち、エンジン始動状態であれば、その状態が保持され、エンジン停止シーケンス中であれば、EVモードに移行することなく、エンジンの運転を継続する。
この結果、エンジン1が停止して一旦EVモードに移行して再度エンジン1の始動という状態を低減できることから、運転者に与える違和感を低減することが出来る。
ここで、自動制御要求トルク演算部21Dbが自動走行手段を構成する。ステアリングスイッチ28が、運転者によって起動操作を行う操作子を構成する。
【0058】
(本実施形態の効果)
(1)自動走行手段は、運転者による起動操作によって作動して、運転者が設定した走行状態に自動調整するための目標駆動力(自動制御要求トルク)を算出する。そして、エンジン停止の処理を開始してからエンジンを停止するまでの間に上記起動操作を検出したとき、そのエンジン停止の処理を中止して、エンジンの運転を継続する。すなわち、上記起動操作を検出したときにエンジン停止の処理中と判定すると、エンジン停止の処理を中止して、EVモードに移行することなく、HEVモードに移行する処理を行うことで、エンジンの運転を継続する。
【0059】
自動走行に移行する際に、例えばアクセルペダルを戻してエンジン停止条件を満足しても、少なくとも起動操作を検出してから所定の間は、エンジンの運転状態を継続する。これによって、自動走行を指示する際に、エンジンを停止して一旦EVモードに移行することが回避される。この結果、短時間の間に、エンジン停止及び始動を繰り返すことが抑えられて、運転者に与える違和感を抑えることが出来る。
ここで、従来のハイブリッド車両にあっては、通常、エンジン停止シーケンスに移行すると、一度EVモードに移行してから、エンジン始動シーケンスを介してHEVモードとなる。
(2)上記自動走行手段は、運転者が設定した車速を目標車速とするための目標駆動力を算出する。
定速走行の自動走行の際には、エンジン運転状態での走行状態に成る可能性が高いので、より上述の効果を奏する。
【符号の説明】
【0060】
1 エンジン
2 モータ
4 第1クラッチ
5 第2クラッチ
7 駆動輪
20 アクセルセンサ
21 統合コントローラ
21A 要求発電トルク演算部
21B 要求エンジントルク演算部
21C モータ出力可能トルク演算部
21D 目標駆動トルク演算部
21Da ドライバ要求トルク演算部
21Db 自動制御要求トルク演算部(自動走行手段)
21Dc 第1目標駆動トルク演算部
21Dd 車速リミッタトルク演算部
21De 最終目標駆動トルク演算部
21E 車両状態モード決定部
21Ea エンジン始動判定処理部
21Eb エンジン停止判定処理部
21F エンジン始動制御部
21G エンジン停止制御部
21H 目標エンジントルク算出部
21J 目標モータトルク算出部
21K 目標クラッチトルク算出部
21L VAPO演算
22 エンジンコントローラ
23 モータコントローラ
24 ATコントローラ
25 ブレーキコントローラ
26 バッテリコントローラ
28 ステアリングスイッチ
30 クルーズキャンセルスイッチ
31 車間制御コントローラ

【特許請求の範囲】
【請求項1】
駆動輪に駆動力を伝達する駆動源としてエンジン及びモータを備えるハイブリッド車両の走行を制御する車両用走行制御装置であって、
運転者による起動操作によって作動して、運転者が設定した走行状態に自動調整するための目標駆動力を算出する自動走行手段を備え、
エンジン停止の処理を開始してからエンジンが停止するまでの間に上記起動操作を検出したとき、そのエンジン停止の処理を中止して、エンジンの運転を継続することを特徴とする車両用走行制御装置。
【請求項2】
上記自動走行手段は、運転者が設定した車速を目標車速とするための目標駆動力を算出することを特徴とする請求項1に記載した車両用走行制御装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate


【公開番号】特開2012−91558(P2012−91558A)
【公開日】平成24年5月17日(2012.5.17)
【国際特許分類】
【出願番号】特願2010−238349(P2010−238349)
【出願日】平成22年10月25日(2010.10.25)
【出願人】(000003997)日産自動車株式会社 (16,386)
【Fターム(参考)】