説明

半導体装置およびその製造方法

【課題】従来の半導体装置は、コンタクトホールの底部に段差部があり、これにより、コンタクトホール内で配線金属が分断してしまうという問題があった。
【解決手段】本発明の半導体装置は、コンタクトホールの底部にもっとも近い部分の層間膜の開口径より半導体層の開口径が大きく、その開口径の差で生じる層間膜と半導体層との間の段差部を絶縁膜で埋める構成を有している。このような構成によって、コンタクトホールの内壁の縦端面と絶縁膜の表面とが段差のない連続したなめらかな曲面を形成し、コンタクトホール内での配線金属の分断を防止する。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は半導体装置およびその製造方法に関し、特に半導体層と配線部材とを接続するためのコンタクトホールを有する半導体装置の構造とその製造方法に関する。
【背景技術】
【0002】
半導体装置に設けるコンタクトホールとは、半導体層に設ける他の層と電気的に絶縁するための層間膜に設ける開口のことであって、ビアホールと呼ぶこともある。
コンタクトホールは、半導体基板の表面に形成する不純物拡散層や不純物を拡散してある多結晶シリコン配線などの半導体層と配線金属とを電気的に接続する役割を有する。このようなコンタクトホールの状態を定義する特性をコンタクト特性と呼ぶ。
コンタクト特性とは、半導体層と金属配線とのオーミック特性、接触抵抗特性、界面安定性、密着性などをいい、電気的な特性と物理的な特性とを総称したものである。これらのうち、接触抵抗特性は特に重要である。半導体層と金属配線とが所定の抵抗値を持つようにするものであるから、半導体装置の歩留まりや、信頼性に大きな影響を与える。
【0003】
図11はコンタクトホール内で配線金属の被覆性が低下し、配線金属が不連続となり、断線した様子を示した従来知られている半導体装置のコンタクトホールを説明する断面図である。
11は半導体基板、12は半導体層、13は層間膜、14はコンタクトホール、15は配線金属、107は半導体層12の凹部、101は凹部107の端部、102はコンタクトホール14の内壁、130は層間膜13に生じた段差部である。
【0004】
半導体基板11の材質はシリコン(Si)である。半導体基板11の表面には、素子を形成する領域に不純物イオン注入し、熱拡散して半導体層12が形成してある。半導体基板11の表面には、半導体基板11や半導体層12が配線金属15と電気的に接続されないように層間膜13が形成されている。層間膜13には配線金属15と半導体層12とが電気的に接続するためのコンタクトホール14が形成してある。コンタクトホール14の内壁102は、層間膜13のコンタクトホール14内の縦端面となる。
【0005】
コンタクトホール14の底部の半導体層12の表面は凹部107を有している。凹部107の外周端は、端部101である。端部101は、層間膜13の下部に位置している。つまり、コンタクトホール14の内壁102より外側に端部101があり、段差部130を形成している。
この段差部130によって、内壁102からコンタクトホール14の底部である半導体層12に至る部分はなだらかではない不連続面になる。このような段差部130が形成される理由を次に説明する。
【0006】
層間膜13にコンタクトホール14を開口する方法として、既に知られているプラズマエッチング法を用いる。
【0007】
プラズマエッチング法では、使用する装置毎に、装置特有のプラズマ密度の2次元的な分布を持っていることにより、エッチング速度も2次元的な分布を持つ。
このような事情から、コンタクトホール14を開口する際に、層間膜13の表面から半導体層12に到達するまでのエッチング処理を所定の処理条件で行っても、半導体ウェハ内にエッチングが速く終了する領域と遅くまでかかってしまう領域とができてしまう。
【0008】
同一の半導体ウェハ内で、エッチング速度に違いが出てしまうと、コンタクトホール1
4の開口が正常に行われない領域もできてしまう。これを防ぐために、プラズマエッチング法では、層間膜13の表面から半導体層12の表面にまで正常にコンタクトホール14が開口できるように、層間膜13の膜厚とエッチング速度の商より算出される理論上のエッチング処理時間より長い処理時間を設定する。
【0009】
このような設定条件では、エッチング速度が速い領域においては、設定した処理時間よりも短い時間で層間膜13のエッチング処理が終了してしまうから、エッチング速度が遅い領域でエッチングが終了するときには、半導体層12の表面をエッチングしてしまう。この現象をオーバーエッチングという。 オーバーエッチングが進むと、半導体層12の表面に凹部107形成される。
【0010】
オーバーエッチング状態では、半導体層12の横方向にもエッチングが進行するから、半導体層12の外周端である端部101は、層間膜13の下部にまで達してしまう。
このようにして、コンタクトホール14の内壁102は半導体層12と連続な面にはならず、段差部130が形成される。
【0011】
次に、この段差部130の影響を説明する。コンタクトホール14の形成工程後の配線金属15の成膜工程において、段差部130は、家屋の屋根の庇のような役割となり、配線金属15は、一様に成膜できなくなってしまう。図11はこの状態を示しており、配線金属15は、内壁102の表面とコンタクトホール14の底部とに分断されてしまう。
【0012】
近年、半導体装置は、搭載する半導体素子の微細化に伴う回路の高集積化に伴い、コンタクトホールは微細化する傾向にある。微細化したコンタクトホール14では、その開口径と層間膜13の厚みとの比が大きくなる。
つまり、仮に微細化していない半導体装置と微細化している半導体装置との層間膜13の膜厚が同じであったとしても、コンタクトホール14の開口径が小さくなることから、コンタクトホール14の底部においては、配線金属15が到達しにくくなる。この部分において、半導体層12がオーバーエッチングされている部分があると、配線金属15の成膜が不均一になり、より分断が起きやすくなる。
【0013】
コンタクトホール14内で発生する配線金属15の分断は、配線金属15自体の断線と同義であるから、信号が正常に伝達しないという現象である。このような現象は、半導体装置の歩留まりを大きく低下させ、同時に半導体装置の信頼性も低下させる。これらは、改善すべき深刻な問題であって、この問題を解決するための従来知られているコンタクトホールの改良案は、多くの提案をみるものである(例えば、特許文献1参照。)。
【0014】
特許文献1に示した従来技術を図12を用いて説明する。図12は、特許文献1に示した従来技術を説明しやすいようにその趣旨を逸脱しない範囲で書き直した断面図である。図12において、すでに説明した同一の構成には同一の番号を付与している。
【0015】
コンタクトホール14の底部の半導体層12の表面には、コンタクトホール14の開口径より小さい凹部117が形成されている。
凹部117の外周端である端部101は、コンタクトホール14の内壁102の内側(コンタクトホール14の中心側)に位置しているために、図11に示した従来知られているコンタクトホール14の段差部130は形成されない。
【0016】
また、上述のような構成を実現するために、特許文献1に示した従来技術では、層間膜13にコンタクトホール14をプラズマエッチング法を用いて形成する工程において、プラズマエッチングする際に、コンタクトホール14の内壁102にシリコン(Si)と炭素(C)と弗素(F)とからなる高分子膜を成膜させながら層間膜13をエッチングし、
開口後、高分子膜を除去する製造方法が提案されている。
【0017】
【特許文献1】特開平11−297828号公報(第6頁、第1図)
【発明の開示】
【発明が解決しようとする課題】
【0018】
特許文献1に示した従来技術では、図11に示したような段差部130は形成されないため、この部分での配線金属15の分断はないという利点はあるものの、コンタクト特性の中のオーミック特性が悪化してしまうという問題があった。すなわち、凹部117の端部101がコンタクトホール14の内部にあるために、その底部が均一でなく2段階の形状となってしまう。このため、端部101で電界集中が起きるなど、半導体と金属との均一な接触を妨げてしまうのである。
言うまでもないが、この端部101の形状を半導体ウェハ全面に渡り制御することは難しく、これによっても、半導体装置の均一なコンタクト特性を維持することができないのである。
【0019】
また、コンタクトホール14の底部では、高分子膜の残渣により、有効接触面積が縮小し、接触抵抗特性が悪化するという問題もあった。
詳しく説明する。この高分子膜の残渣は、その製造方法に関係する問題である。 特許文献1に示した従来技術は、コンタクトホール14の内壁102に高分子膜を成膜させながら層間膜13をエッチングするという方法を用いているが、高分子膜は、四弗化メタン(CF)と酸素(O)との混合ガスを用いたプラズマによるエッチング処理で除去している。プラズマは、コンタクトホール14の開口径が小さくなるほどその底部に入り込みにくくなるから、コンタクトホール14の底部では、高分子膜が除去されずに残る残渣が発生してしまうのである。
この高分子膜の残渣は、コンタクトホール14の内部で配線金属15と半導体層12などとの接触面積を低下させる。このように有効接触面積が縮小することにより、接触抵抗が高くなり、コンタクト特性のうちの接触抵抗特性が悪化してしまうのである。
【0020】
また、この高分子膜の残渣は、炭素(C)と弗素(F)とからなる低エネルギー表面をもつ膜であるため、配線金属15と半導体層12および層間膜13との密着性を低下させる。
これらの密着性が低下すると、配線金属15の成膜後の外部からの衝撃や熱処理による熱膨張、高分子膜の残渣のガス化などにより、配線金属15と半導体層12や層間膜13との界面において隙間を発生させてしまう。
このような隙間は、配線金属15に通電したときに配線金属15のマイグレーション耐性を低下させる。さらに、プラグ配線においては、コンタクトホール14に埋め込んだプラグ金属と半導体層12や層間膜13との密着性が悪くなり、プラグ金属が抜け落ちてしまうといった不具合が生じる。いずれの場合においても、配線の信頼性を大きく低下させてしまうのである。
【0021】
このような問題は、コンタクトホール14の開口径が小さくなる微細化した半導体装置においては、より顕著になるのである。
【0022】
本発明が解決しようとする課題は、コンタクトホール内での配線金属と半導体層との密着性と、配線金属と層間膜の縦端面との密着性が低下してしまう点と、コンタクト抵抗が高くなってしまう点など、コンタクト特性を悪化させることのないコンタクトホールを有する半導体装置を提供することにある。
【課題を解決するための手段】
【0023】
上記課題を解決するために本発明の半導体装置は、次のような構成を採用する。
【0024】
半導体層上部に層間膜を有し、層間膜に半導体層まで達するコンタクトホールを備え、コンタクトホール内の半導体層の表面は凹部形状を有する半導体装置であって、
凹部の直径は、コンタクトホールの底部に最も近い部分の開口径より大きく、凹部の端部からコンタクトホールの底部に最も近い部分の内壁まで絶縁膜を有し、絶縁膜は、コンタクトホールの内壁と段差なく連続した曲面を有していることを特徴とする。
【0025】
半導体層は、半導体基板の表面に形成する不純物拡散層または半導体基板上部に設ける多結晶半導体層であることを特徴とする。
【0026】
コンタクトホールは、層間膜の上部側の開口径より半導体層側の開口径が小さいテーパー形状を有していることを特徴とする。
【0027】
コンタクトホールの層間膜の最下部から仮想線を延長し、仮想線が半導体層と接する部分の近辺の半導体層には、金属と半導体との合金層を設けることを特徴とする。
【0028】
金属は化学的特長として酸化物を還元する性質を有する金属であることを特徴とする。
【0029】
上記課題を解決するために本発明の半導体装置は、次のような製造方法を採用する。
【0030】
半導体基板または半導体層の上部に層間膜を形成する工程と、層間膜にコンタクトホールを形成する工程と、コンタクトホールの底部に露出した半導体基板または半導体層の表面にコンタクトホールの開口径より直径が大きい凹部を形成する工程と、凹部の表面に絶縁膜を成膜する工程と、凹部の端部からコンタクトホールの内壁まで絶縁膜を残し、その他の絶縁膜を除去するエッチング工程と、エッチング工程により半導体基板または半導体層の表面にできたダメージ層を回復させる回復用熱処理工程と、コンタクトホールの内部に配線部材を成膜する配線部材成膜工程とを有することを特徴とする。
【0031】
熱処理工程と配線部材成膜工程との間に、コンタクトホールの内壁を覆うように高融点金属を成膜し熱処理する高融点金属形成工程を有することを特徴とする。
【発明の効果】
【0032】
本発明の半導体装置のコンタクトホール底部は、コンタクトホールの内壁の縦端面と底部の半導体層に形成される凹部の表面との間にできる段差部に絶縁膜を形成することによって、コンタクトホール内を段差がない連続した面で構成する。
このような構成にすることによって、コンタクトホール底部における配線金属の被覆性が向上し、コンタクトホール底部における配線の分断が発生しないという効果がある。
また、コンタクトホールの内壁の縦端面および半導体層の表面には高分子膜が無いため、コンタクトホール内部において、配線金属と半導体層や層間膜との密着性が向上するという効果がある。
さらに、コンタクトホール底部の半導体層の表面には高分子膜の残渣がないため、有効接触面積を縮小させることがなく、接触抵抗特性が悪化しないのである。
【発明を実施するための最良の形態】
【0033】
以下、図面を用いて本発明を実施するための最適な形態の半導体装置の構造とその製造方法とを説明する。
【0034】
[本発明の第1の実施形態の構造説明:図1〜図2]
図1と図2とを用いて本発明の第1の実施形態の半導体装置の構造を説明する。図1は
、本発明の半導体装置の断面図である。図2は、本発明の特徴である絶縁膜を説明するための図であって、図1に示すコンタクトホールの底部角を拡大した図である。図2の右側がコンタクトホールの中心方向である。図2(a)は、層間膜の角の段差部を説明する図であって、図2(b)は、段差部を覆うように設ける絶縁膜を説明する図である。
【0035】
図において、11は半導体基板、12は半導体層、13は層間膜、14はコンタクトホール、15は配線金属、16は絶縁膜、107は半導体層12の凹部、101は凹部107の端部、102はコンタクトホール14の内壁、130は層間膜13に生じた段差部である。段差部130は、図では層間膜13の角部付近を矢印で指し示しているが、層間膜13の角部分に生じる段差そのものである。なお、従来技術と同一の構成には同一の番号を付与している。
【0036】
図1に示すように、半導体基板11に素子領域となる箇所に半導体層12が形成してある。半導体基板11の上部には層間膜13が形成してある。半導体層12の上部の層間膜13にはコンタクトホール14が形成してある。
コンタクトホール14の底部の半導体層12の表面には凹部107が形成してある。
【0037】
図2(a)に示すように、半導体層12の表面の凹部107の端部101は、層間膜13の下側にあって、コンタクトホール14の内壁102より外側(コンタクトホール14の中心とは反対の方向)にある。つまり、凹部107の開口径は、コンタクトホール14の底部にもっとも近い部分の開口径より大きい。このような形状は、層間膜13の角部分に段差130を形成する。この段差130は、層間膜13が凹部107に対して家屋の屋根の庇のように張り出す形状を有している。
図2(b)に示すように、絶縁膜16は、この庇の下に設けており、凹部107の端部101と層間膜13の角部分との間に形成し、段差部130を埋めるように形成している。
【0038】
このような形状によって、コンタクトホール14の内壁102から絶縁膜16のコンタクトホール14側の面までは、段差のない連続したなめらかな曲面を有するようになる。つまり、コンタクトホール14の内部は、層間膜13の上部から半導体層12までも段差がなく連続したなめらかな形状を有するのである。
したがって、コンタクトホール14の内部に形成する配線金属15には、分断が生じることもないのである。
【0039】
図1と図2とに示すように、コンタクトホール14の内部が、段差のない連続したなめらかな形状を有することにより、配線金属15がコンタクトホール14の底部においてこの部分を完全に被覆することができるため、配線金属15の被覆性が向上することによりコンタクトホール14が微細化し開口径が小さくなったとしても安定したコンタクト特性が得られる。
【0040】
図1と図2とでは、半導体層12として半導体基板11に形成した不純物拡散層を例にあげて説明したが、半導体基板11の上部に設ける多結晶シリコンに不純物を拡散させた多結晶半導体層を半導体層12と考えてもよいことは言うまでもない。
【0041】
また、図1と図2とに示す構造では、コンタクトホール14の内壁102は、半導体基板11に対して図面上垂直な形状を例にして説明したが、これに限定されない。コンタクトホール14において、層間膜13の上部側の開口径より半導体層12側の開口径が小さい形状であってもよいのである。
このように、内壁102がテーパー形状を有していると、配線金属15はさらにコンタクトホール14の底部を被覆しやすくなり、これにより、さらに接触抵抗特性が向上する
のである。
【0042】
[本発明の第1の実施の形態の製造方法の説明:図3〜図6]
次に、図1と図2とに示す本発明の第1の実施形態の半導体装置の製造方法を図3から図6の断面図を用いて説明する。
【0043】
まず、図3に示すように、シリコンの単結晶からなる半導体基板11の表面の素子領域に不純物をイオン注入し、このイオン注入後、1000℃近傍の温度で熱処理を行い、イオン注入した不純物を半導体基板11の内部に拡散させ半導体層12を形成する。不純物としては、リン(P)、ボロン(B)、砒素(As)などを用いる。
次に、半導体基板11上に層間膜13を知られている化学的気相成長法(CVD法)で成膜する。層間膜13としてリンがドーピングされている硝子膜(PSG)と、リンとボロンとがドーピングされている硝子膜(BPSG)との積層膜を用いる。
【0044】
次に、層間膜13の上部に感光性樹脂17を塗布し、知られているホトリソグラフィ技術を用いて、パターニングを行なう。このパターニングは、コンタクトホール14を設ける位置に感光性樹脂17を開口するように行なう。
【0045】
次に、図4に示すように、パターニングされた感光性樹脂17をマスクとして、知られているプラズマエッチング法を用いて、層間膜13にコンタクトホール14を形成する。
このとき、コンタクトホール14の底部の半導体層12の表面をエッチングし、凹部107を形状する。このエッチングは、凹部107の端部101が層間膜13の下部に位置するまでエッチングする。これにより、内壁102と凹部107とが不連続面となり、段差部130が形成される。
なお、この凹部107の形成は、オーバーエッチングにより行っても構わない。コンタクトホール14を形成後、剥離剤を用いて感光性樹脂17を剥離除去する。
【0046】
次に、図5に示すように、知られている酸化処理を行い、コンタクトホール14の底部の半導体層12の表面にシリコン酸化膜18を形成する。
シリコン酸化膜18の膜厚は、凹部107の端部101とコンタクトホール14の内壁102との直線距離をtとしたとき、tとほぼ同じ膜厚で成膜する。
酸化処理の一例としては、800℃〜950℃の温度で、水素と酸素とを燃焼させた水の雰囲気で酸化を行なうウェット酸化法を用いる。
ウェット酸化法を用いる理由は、1000℃近傍の温度で、酸素または酸素と窒素との混合ガスで行なうドライ酸化法に比べ、低温でシリコン酸化膜18を成膜できることと、酸化膜の成膜速度が速いため、半導体層12内の不純物の再拡散を最小限に止めることができるためである。
半導体層12内の不純物の再拡散が問題にならない場合は、ドライ酸化法を用いてもよい。
【0047】
次に、図6に示すように、知られているアルゴン(Ar)イオンを用いたスパッタエッチング法を用いて、コンタクトホール14底部に成膜したシリコン酸化膜18を除去する。スパッタエッチング法は、アルゴン(Ar)イオンを用いた異方性の強い物理的なエッチング法であるため、コンタクトホール14の底部にもっとも近い部分の開口径とほぼ同じ領域のシリコン酸化膜18をエッチング除去する。
この工程によって、コンタクトホール14内の層間膜13の段差部130を埋めている部分のシリコン酸化膜18が残り、このシリコン酸化膜18が絶縁膜16となるのである。
この絶縁膜16により、内壁102と絶縁膜16のコンタクトホール14の内部側の端面とが連続面になり、段差がなく連続したなめらかな曲面形状となる。
【0048】
コンタクトホール14の底部において、エッチングで形成した凹部107の表面には、シリコンの結晶の乱れによるダメージ層(図示せず)が形成されてしまう。このため、このダメージ層を回復するための回復用熱処理を行う。その条件は、不活性ガス雰囲気で700℃〜1000℃の急速加熱処理を行うというものである。急速加熱方法としては、例えば、ハロゲンランプを使用するランプアニール装置を用いるが、もちろんこの装置に限定はせず、加熱できる他の装置を用いても構わない。
ダメージ層を回復させる理由は、ダメージ層が高抵抗部分となるため、後に形成する配線金属15と半導体層12との接触抵抗が高くなってしまうことを防止するためである。
【0049】
次に、配線金属15を知られているスパッタ法を用いて成膜し、知られているホトリソグラフィ技術とエッチング技術とにより、配線金属15をパターニングする。
配線金属15として、アルミニウム(Al)にシリコン(Si)が1%程度含有している金属を用いるが、配線金属15の材料はこれに限定せず、銅(Cu)などを用いてもよいことは周知である。このような工程を行うと、図1に示すような構成になるのである。
【0050】
[本発明の第2の実施形態の構造説明:図7〜図10]
次に、図7を用いて本発明の半導体装置の第2の実施形態を説明する。図7は、その断面を模式的に示すものである。なお、19は高融点金属膜、20はシリサイド層である。また、既に説明した同一の構成には同一の番号を付与している。
【0051】
コンタクトホール14の底部の構造については、既に説明しているとおりであるが、本発明の第2の実施形態の特徴は、配線金属15の下部に高融点金属膜19を設け、凹部107の表面にシリサイド層20を形成している点である。
配線金属15と高融点金属膜19とは、積層構造になっており、コンタクトホール14の底部では、半導体層12の凹部107のシリコン(Si)と高融点金属膜19とが反応してできた反応生成物であるシリサイド層20が形成されている。このシリサイド層20は、金属と半導体との合金層である。
【0052】
図8から図10を用いて詳しく説明する。図8は、コンタクトホール14の内部の凹部107の端部101近辺を拡大した図であって、まだ高融点金属膜19とシリサイド層20とを有していない状態を示している。図9は、高融点金属膜19を形成した状態を示している。図10は、熱処理によってシリサイド層20を形成した状態を示している。100は絶縁膜16のコンタクトホール14の中心側の端部である。
絶縁膜16の端部100は、コンタクトホール14の中心に向かうほどその膜厚が薄くなっている。
絶縁膜16は、シリコン酸化膜で構成している。その上部に、高融点金属膜19を形成し熱処理を施すことにより、端部100の絶縁膜16は高融点金属膜19により還元しシリコン化するとともに、この部分をシリサイド化するのである。その様子を図9と図10とに示す。図10に示すように、凹部107の端部101に近い側の絶縁膜16は、その膜厚が厚いためにシリサイド化されずにそのまま残るのである。
【0053】
絶縁膜16がシリサイド化される部分は、コンタクトホール14の底部にもっとも近い部分の層間膜13の最下部からコンタクトホール14の底部に向かって仮想線を延長し、この仮想線が半導体層12と接する部分までである。この近辺の半導体層12からコンタクトホール14の中心に向かって、一様にシリサイド層20が形成されるのである。
【0054】
高融点金属膜19は、例えば、チタン(Ti)やチタン窒化(TiN)膜との積層構造の膜を用いることができる。チタン(Ti)は、強い還元性を持つ金属であるから、酸化物と接触することで酸化物を還元する特性を有している。
このような高融点金属膜19は、例えば、アルミニウム(Al)を主成分とする配線金属15が半導体層12の内部へ拡散しないように、拡散防止膜としての役割も持っている。
【0055】
シリサイド層20の抵抗値は、金属に近く十分に低いため、接触抵抗値は増加しない。このような構成とすることにより、コンタクトホールの接触抵抗特性を向上させることができる。特に、微細化しコンタクトホールの開口径が小さい半導体装置は、接触抵抗値が大きくなるから、本発明の第2の実施形態の構成は、よりコンタクト特性を向上させる。
【0056】
[本発明の第2の実施形態の製造方法の説明:図7〜図10]
次に、本発明の第2の実施形態の半導体装置の製造方法を説明する。図7に示した本発明の第2実施形態の製造方法を再び図8から図10を用いて説明する。
半導体基板11上にコンタクトホール14を形成し、絶縁膜16を形成するまでの工程は、既に説明してあるので省略する。
【0057】
図8に示すように、スパッタエッチング法でコンタクトホール14の底部の半導体層12の表面に形成したシリコン酸化膜18を除去することで、残った部分が絶縁膜16となるが、この絶縁膜16のコンタクトホール14の中心側の端部100は、その膜厚が非常に薄くなっている。
【0058】
次に、図9に示すように、高融点金属膜19を知られているスパッタ法を用いて成膜する。高融点金属膜19として、チタン(Ti)とチタン窒化膜(TiN)膜との積層膜を用いる。
【0059】
次に、図10に示すように、不活性ガス雰囲気で450℃〜700℃の熱処理を行う。不活性ガスとして、窒素ガスを用いる。また、熱処理は、ハロゲンランプを用いたランプアニール装置を用いて行う。もちろんこの装置に限定はせず、加熱できる他の装置を用いても構わない。
【0060】
この工程により、高融点金属膜19のチタン(Ti)は、絶縁膜16の端部100の薄いシリコン酸化膜を還元しシリコン(Si)にするとともに、このシリコン(Si)とシリサイド化反応を起こす。同時に、コンタクトホール14の底部においても、高融点金属膜19のチタン(Ti)と接触している半導体層12の表面でシリサイド化反応を起こし、図10に示すようなシリサイド層20を形成する。
【0061】
次に、配線金属15を知られているスパッタ法を用いて成膜し、知られているホトリソグラフィ技術とエッチング技術とにより、配線金属15をパターニングする。
配線金属15として、アルミニウム(Al)主材料とし、銅(Cu)が0.5%程度含有している金属を用いる。このような工程を行うと、図7に示すような構成になるのである。
【0062】
ところで、既に図6を用いて説明した通り、絶縁膜16を形成する際のエッチング時に、アルゴン(Ar)イオンを用いたスパッタエッチング法を用いることにより、コンタクトホール14底部の半導体層12の表面にダメージ層ができてしまう。このダメージ層を回復するため回復用熱処理を行うが、シリサイド層20を形成した後の熱処理とこの回復用熱処理とを同時に行うこともできる。
このようにすることにより、回復用熱処理の工程を別途設ける必要がなくなり、工程を短縮することができる。
【産業上の利用可能性】
【0063】
本発明の半導体装置は、コンタクトホールの底部の端部に絶縁膜を設けることにより、コンタクトホール内を段差部のない連続したなめらかな曲面にすることができる。このため、高いコンタクト特性を要求される半導体装置に適用することができる。特に、高集積化した半導体装置に好適である。
【図面の簡単な説明】
【0064】
【図1】本発明の半導体装置の第1の実施の形態を説明する断面図である。
【図2】本発明の半導体装置の第1の実施の形態を詳細に説明する断面図である。
【図3】本発明の半導体装置の第1の実施の形態のコンタクトホールを形成する製造工程を説明する断面図である。
【図4】本発明の半導体装置の第1の実施の形態のコンタクトホールを形成する製造工程を説明する断面図である。
【図5】本発明の半導体装置の第1の実施の形態のシリコン酸化膜を成膜する製造工程を説明する断面図である。
【図6】本発明の半導体装置の第1の実施の形態の絶縁膜を形成する製造工程を説明する断面図である。
【図7】本発明の半導体装置の第2の実施の形態を説明する断面図である。
【図8】本発明の半導体装置の第2の実施の形態の絶縁膜を形成する構成と製造工程とを説明する断面図である。
【図9】本発明の半導体装置の第2の実施の形態の高融点金属膜の構成とその成膜の製造工程とを説明する断面図である。
【図10】本発明の半導体装置の第2の実施の形態のシリサイド層の構成とその形成のための製造工程とを説明する断面図である。
【図11】従来の知られている半導体装置を説明する断面図である。
【図12】従来技術の半導体装置を説明する断面図である。
【符号の説明】
【0065】
11 半導体基板
12 半導体層
13 層間膜
14 コンタクトホール
15 配線金属
16 絶縁膜
17 感光性樹脂
18 シリコン酸化膜
19 高融点金属膜
20 シリサイド層
100 絶縁膜16の端部
101 端部
102 コンタクトホール14の内壁
107 半導体層12の凹部
130 段差部

【特許請求の範囲】
【請求項1】
半導体層上部に層間膜を有し、該層間膜に該半導体層まで達するコンタクトホールを備え、該コンタクトホール内の前記半導体層の表面は凹部形状を有する半導体装置であって、
前記凹部の直径は、前記コンタクトホールの底部に最も近い部分の開口径より大きく、
前記凹部の端部から前記コンタクトホールの底部に最も近い部分の内壁まで絶縁膜を有し、
前記絶縁膜は、前記コンタクトホールの内壁と段差なく連続した曲面を有していることを特徴とする半導体装置。
【請求項2】
前記半導体層は、半導体基板の表面に形成する不純物拡散層または半導体基板上部に設ける多結晶半導体層であることを特徴とする請求項1に記載の半導体装置。
【請求項3】
前記コンタクトホールは、前記層間膜の上部側の開口径より前記半導体層側の開口径が小さいテーパー形状を有していることを特徴とする請求項1または2に記載の半導体装置。
【請求項4】
前記コンタクトホールの前記層間膜の最下部から仮想線を延長し、該仮想線が前記半導体層と接する部分の近辺の前記半導体層には、金属と半導体との合金層を設けることを特徴とする請求項1から3のいずれか1つに記載の半導体装置。
【請求項5】
前記金属は化学的特長として酸化物を還元する性質を有する金属であることを特徴とする請求項4記載の半導体装置。
【請求項6】
半導体基板または半導体層の上部に層間膜を形成する工程と、
前記層間膜にコンタクトホールを形成する工程と、
前記コンタクトホールの底部に露出した前記半導体基板または前記半導体層の表面に前記コンタクトホールの開口径より直径が大きい凹部を形成する工程と、
前記凹部の表面に絶縁膜を成膜する工程と、
前記凹部の端部から前記コンタクトホールの内壁まで前記絶縁膜を残し、その他の前記絶縁膜を除去するエッチング工程と、
前記エッチング工程により前記半導体基板または前記半導体層の表面にできたダメージ層を回復させる回復用熱処理工程と、
前記コンタクトホールの内部に配線部材を成膜する配線部材成膜工程とを有することを特徴とする半導体装置の製造方法。
【請求項7】
前記熱処理工程と前記配線部材成膜工程との間に、前記コンタクトホールの内壁を覆うように高融点金属を成膜し熱処理する高融点金属形成工程を有することを特徴とする請求項6に記載の半導体装置の製造方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate


【公開番号】特開2007−80937(P2007−80937A)
【公開日】平成19年3月29日(2007.3.29)
【国際特許分類】
【出願番号】特願2005−263685(P2005−263685)
【出願日】平成17年9月12日(2005.9.12)
【出願人】(000001960)シチズン時計株式会社 (1,939)
【Fターム(参考)】