説明

集積回路のメタライゼーションスキームにおけるバリア層のボトムレス堆積方法

【課題】デュアルダマシンメタライゼーションにおいて、Cu配線構造のバリア材料を絶縁層の表面上のみに選択的に形成し、接続構造部のエレクトロマイグレーションを抑制するとともに、下層導電層との接続抵抗を低減する選択的堆積方法を提供する。
【解決手段】Cu層20上の絶縁層14,15をエッチングしてトレンチとビアを開孔する。ビア底部のCu層の表面10に原子層成長(ALD)ブロック層を形成する。この後、原子層成長(ALD)法を用いてTiNバリア材料26を絶縁層表面12、13に堆積する。ブロック層により、ビア底部のCu層の表面にはバリアは形成されないため、ビア底部のCuは露出した状態のままである。開口部内にCu18を充填するとCu層に直接接続することが出来る。

【発明の詳細な説明】
【技術分野】
【0001】
本方法は、概ね、集積回路の一次加工及び二次加工に関し、さらに詳細には、金属配線構造と、バリア層の選択的堆積とに関する。
【背景技術】
【0002】
微細化に焦点が当たっており集積回路の複雑さ及び速度要件が増していることによって、さらに高い集積密度が、引き続き必要とされている。これを達成するために、能動素子の寸法及びこれらの素子を接続する構造体の寸法が、縮小され続けている。これらの配線構造は、所望の配線パターンにより異なるが、中間絶縁層により相互に隔てられるかまたは絶縁層を介して導電接続により相互に接続されるかのいずれかである多重の金属レベルを含み得る。この寸法縮小の他に、厳しい速度仕様を満たすことができるさらなる方法が、必要とされている。通常、金属レベルはアルミニウム(Al)層であり、絶縁層は酸化層である。信号遅延を低減させるためには、アルミニウムと比較して伝導率が高い金属層を選択し、及び/または、酸化層に比べて誘電率が低い絶縁層を選択することができる。これらの目的を達成するために、銅含有金属層及び/または銅含有接続部が、近い将来導入されるだろう。
【0003】
配線構造内の銅(Cu)の使用には、一般に知られた欠点がいくつかある。Cuは、周りの絶縁層内に非常に移動しやすく、このことは、信頼性及び信号遅延に負の影響を及ぼす。この問題を解決するために、いくつかの解決方法が提案されてきた。耐熱金属のような材料が、周囲の層内への銅の移動を妨げるためのバリア層として使用されてきた。
【0004】
一般に利用されている技術によって、非選択的方法でバリア層を堆積させることにより、銅イオンの周囲の層内への移動は防止される。図1は、結果として生ずる構造を示している。導電底面10と、絶縁層14内開口部の(トレンチフロア13を含む)絶縁側壁12とが、バリア材料16で覆われている。化学気相成長法(CVD)の場合、バリア16は、コンフォーマルに堆積される。物理気相成長法(PVD)の場合には、開口部の垂直壁及び底部のカバレッジは、構造体の上部と比較して薄い。しかしながら、垂直カバレッジと水平カバレッジとの間の比率は、堆積パワー、堆積バイアスなどのようなプロセスパラメータを変更することにより、ある程度変化させることができる。
【0005】
いくつかの問題は、バリア層の堆積に関連している。バリア層は、絶縁層14、15内の開口部の絶縁側壁12及び導電底壁10上に堆積されることから、底壁12上にバリア層が生じることによって、不都合がいくつか発生する。開口部が金属18で満たされると、上に横たわる金属18と下に横たわる金属20との間のバリア層16は、バリア16が、電子に対してフラックス発散点になることから、構造体へのエレクトロマイグレーション挙動に有害な影響を及ぼす。その結果、次の回路工程中においてエレクトロマイグレーションにより、金属原子について断絶が、生じてしまう。
【0006】
絶縁層内の開口部の底壁10上にバリア層16があることによって、さらに不都合が生じる。バリア層16と下に横たわる導電層20との間の接着が、必ずしも良好とは限らないことから、異なる導電レベル間の電流が影響を受けて、導電パスの信頼性及び抵抗率に不利な影響を及ぼす。
【0007】
米国特許第5,904,565号明細書において、集積回路内の異なるレベル間における銅と銅の直接接続が、開示されている。第1のステップにおいて、バリア層は、ビア内にコンフォーマルに堆積する。第2のステップにおいて、低い方の銅のレベルを覆うバリア層は、異方性エッチングにより選択的に除去される。垂直側壁を覆うバリアは、残っている。この方法は、従来のバリア形成より、プロセスがより複雑でプロセスステップが多いことを意味し、これによって、実行することにより困難が生じる。さらに、コストが増加することになる。
【0008】
結果として、集積回路(IC)内の金属レベルの高品質な導電性挙動が得られるような、絶縁層内に形成された開口部の絶縁表面上に選択的にバリア層を堆積することによって金属と金属の直接接続を形成する方法に対する必要性が、存在する。
【特許文献1】米国特許第5,904,565号明細書
【発明の開示】
【課題を解決するための手段】
【0009】
基板上に材料特にバリア材料を選択的に堆積させる方法を本明細書において説明する。本方法は、第2の表面を露出させたまま第1の表面上に材料を選択的に提供し、ここで、第1及び第2の表面の材料組成は異なっている。本方法には、第1の表面をコンディショニングしてその上に配位子を形成し、その後に、第2の表面上には堆積させないようにしながら第1のコンディショニングした表面上にバリア層を堆積させることが含まれることが、好ましい。
【0010】
第1の表面は絶縁層からなり、第2の表面は導電層からなることが望ましい。さらに詳細には、好ましい実施形態において、説明されている少なくとも絶縁層から本質的に導電材料からなる層までを通る開口部の側壁の一部分上にバリア層を堆積させる方法を説明する。本方法には、絶縁層内に開口部を形成し、絶縁側壁の上に配位子を形成するように少なくとも開口部の絶縁側壁をコンディショニングし、その後に、導電側壁上にはバリア層を堆積させないようにしながら絶縁側壁上にバリア層を堆積させることが含まれる。
【0011】
本発明の一態様によれば、本方法には、コンディショニング後に第2の表面上に形成された配位子を除去することが含まれる。
【0012】
本発明の別の態様によれば、コンディショニングは、第1及び第2の表面を変化させ(例えば化学的または物理的変化)、その後に、コンディショニングされた第2の表面をさらに変化させることになる。さらなる変化は、コンディショニング変化を除去すること、または、コンディショニング変化を成長ブロック表面形成に変えることが含まれ得る。典型的なさらなる変化は、還元環境で加熱すること、還元環境でプラズマ処理すること、真空または高圧下で加熱すること、または、クリーニングまたは化学還元のような化学処理を含む。あるいは、第2の表面を変化させることには、第1の表面をコンディショニングする前または後に、成長ブロックまたは犠牲層を形成することが含まれ得る。
【0013】
本発明の実施形態において、前記コンディショニングは、絶縁材料からなる前記開口部の前記側壁の一部分である化学分子と、前記開口部の前記側壁上に配位子を形成する適切な雰囲気との間の化学反応である。コンディショニングは、前記導電材料からなる前記開口部の前記側壁と、前記開口部の前記側壁上に配位子を形成する適切な雰囲気との間の化学反応も含まれ得る。前記コンディショニングは、本質的に導電材料からなる前記側壁上に形成された前記配位子が除去されることを特徴とする追加のステップも含まれ得る。
【0014】
本発明の一態様によれば、バリア層を堆積することは、原子層成長法により実行される。
【0015】
本発明の一態様によれば、絶縁層内に形成された開口部は、ビアホール、コンタクトホール、またはトレンチである。
【0016】
本発明の一態様によれば、絶縁材料は、二酸化ケイ素、窒化ケイ素、シリコンオキシナイトライド、低−k材料または誘電率の低い多孔材料にすることができる。
【0017】
本発明の一態様によれば、配位子は、ヒドロキシル、シアノ、NH2、NH、フルオロ、ブロモ、ヨード、クロロ、メチル、アルコキソ、β−ジケトネート、イソプロポキソ及び他の炭素含有基から、選択される。
【0018】
本発明の一態様によれば、導電材料は、銅、アルミニウム、タングステン、コバルト、銀、金、プラチナ、パラジウム、イリジウム、ロジウムまたはルテニウムにすることができる。
【0019】
本発明の一態様によれば、バリア層には、耐熱金属の窒化物及びケイ素窒化物と、耐熱金属炭化物及びケイ素炭化物と、耐熱金属ホウ化物及びケイ素ホウ化物と、耐熱金属リン化物及びケイ素リン化物と、耐熱金属オキシナイトライド及びシリコンオキシナイトライドと、からなる群から、選択される材料が含まれる。特定の例には、Co、Ta、Ti、TiN、TaN、Si3N4、WxN、HfxN、MoxN及び/またはそれらのコンパウンドからなる群から選択された材料が含まれる。
【発明を実施するための最良の形態】
【0020】
基板上に、層、好ましくはバリア層を堆積させる方法を、本明細書において説明する。基板は、材料の組成が異なる少なくとも第1の表面及び第2の表面を含んでいる。本方法は、それらの表面の少なくとも1つをコンディショニングしてコンディショニング表面上に配位子を形成し、その後、非コンディショニング表面上への堆積が生じないようにしながら、コンディショニングされた表面上にバリア層を堆積させることを含むのが、好ましい。本明細書で使用されているコンディショニングとは、さらなる堆積のために表面を整えることであり、図示した実施形態においては、所望のバリア層を形成するように該表面を原子層成長(ALD)プロセスを受けやすい状態にすることを含む。逆に、非コンディショニング表面とは、所望のバリア層用ALDプロセスに実質的に反応しないものである。「非コンディショニング」表面は、この表面をコンディショニングしないことによってまたはこの表面上におけるコンディショニングをさらに変化させることによって、得られる。
【0021】
デュアルダマシンメタライゼーション中の選択的バリア堆積に関連して示したが、特に高ステップカバレッジを伴う選択的堆積が所望される場合には、本明細書において開示した原理及び利点が、他の状況において適用されることは、当業者には容易に分かるだろう。本発明は、絶縁及び導電材料の一方と比べて、絶縁及び導電材料の他方の上に選択的に堆積させるために特に有用である。
【0022】
好ましい方法は、基板上に形成された絶縁層を通る開口部の第1の側壁上にバリア層を選択的に堆積させること、及び、第2の側壁を露出させることを含む。第1の側壁は、本質的に絶縁材料からなる開口部の側壁として定義される。第2の側壁は、本質的に導電材料からなる開口部の側壁である。本方法によって、集積回路メタライゼーションスキームによる異なる導電レベル間における直接接続が提供される。導電レベル間のバリア層は、構造体へのエレクトロマイグレーション挙動に有害な影響を及ぼすので、第2の側壁上には、このバリア層は形成されない。
【0023】
特筆したが、好ましい実施形態の特定の目的は、バリア層を選択的に堆積させることに関し、これにより、超大規模集積回路(ULSI)のメタライゼーションにおいてバリアで金属層を覆うという問題は回避される。ダマシン技術によって、水平金属パターン及び垂直金属接続を形成可能となる。これらの接続は、IC内において加工されている2つの水平金属パターン間の導電接続を提供可能とするために必要である。このような接続を提供するためには、通常、第1の開口部は、絶縁層内に、または、2つの異なる導電レベル間の絶縁層のスタック内に、形成する必要がある。このような開口部の一例が、トレンチ、コンタクトホールまたはビアホールである。この開口部は、次のステップにおいて適宜の金属で充填されて、その結果、2つの異なる水平導電レベル間の垂直接続が実現する。周囲の絶縁層内への金属の移動を防止するために、金属を堆積させる前に開口部内に移動バリア層を堆積する。
【0024】
図1におけるのと同様の部分の参照のために同じ参照番号が用いられている、図2(結果として生じた構造)及び図3(中間のプロセス)において、それらの図に関連して、集積回路メタライゼーションについての本発明を図示している。ULSIメタライゼーションスキームにおいて、さらに詳細には、ダマシンアプローチにおいて、水平及び垂直金属接続は、絶縁層14及び15を囲んで形成される。これらの垂直金属接続は、2つの水平導電レベル間に導電接続を提供可能とするために必要である。デュアルダマシンプロセッシングにおいて、垂直接続は、上部水平接続と同時に形成される。本明細書において使用されている「水平」及び「垂直」という用語は、本技術においてウェハまたはチップが素子の表を上にして水平な場合の方向について従来使用されてきた相対的な方向を指すに過ぎないことが、当然であることは理解されよう。
【0025】
このような接続を提供するためには、まず、基板上に形成された絶縁層14、15内に開口部22を形成する。図示したデュアルダマシンに関連して、開口部22は、上方の絶縁層15内に形成されたトレンチと、下方の絶縁層14内のトレンチに沿った別の位置に形成されたコンタクトビアとを含んでいる。他の構成において、開口部が、コンタクトビアだけまたはトレンチだけを有する場合があることを、当業者は理解するだろう。
【0026】
他の技術の中では、絶縁層14、15の上面にハードマスク層を用いることにより、絶縁層14、15内に開口部22を形成することができる。ハードマスク層は、炭化ケイ素にすることができるが、それに限定はされない。絶縁層14、15内の開口部22は、導電層20に隣接しかつそれを露出している。チップ設計の技術水準において、開口部22は、高アスペクト比、すなわち、2:1を越え、しばしば4:1を越えるアスペクト比を有するのが、典型的である。開口部は、より大きな特徴として、例えば、ボンディングパスまたはキャパシタなどの、5μmを越える線幅を有する開口部にすることもできる。
【0027】
開口部22は、第1の側壁12及び第2の側壁10を有している。第1の側壁12は、本質的に絶縁材料からなるとともに「垂直」部分と「水平」トレンチフロア13とを含む、開口部22の側壁として画定されている。第2の側壁10は、本質的に導電材料からなる開口部22の側壁であり、図示した実施形態においては開口部22の底面を指す。絶縁層は、二酸化ケイ素、窒化ケイ素、シリコンオキシナイトライド、低−kポリマーまたは誘電率の低い多孔材料から形成することができる。絶縁層は、炭化ケイ素、窒化ケイ素、または他の種々の無機絶縁材料などの材料で覆うこともできる。基板は、部分的に処理したまたはもとのウェハか、或いは、半導性材料からなるスライス例えばガラススライス、または導電性材料にすることができる。基板には、パターン導電層を含ませることができる。詳細には、前記基板を、部分的に処理されたウェハまたはスライスにする場合、能動及び/または受動素子の少なくとも一部分を予め形成し、かつ/または、これらの素子を接続する構造体の少なくとも一部分を形成することができる。
【0028】
絶縁層14、15内の開口部22は、パターン構造体をリソグラフィー次にエッチングすることによって形成することができる。エッチングは、ドライエッチングまたはウェットエッチングにすることができるが、ドライエッチングが好ましい。エッチプラズマの組成は、絶縁材料の特性により異なる。
【0029】
次のステップにおいて、本技術分野で公知の技術によって、開口部を清浄にすることが、好ましい。
【0030】
開口部22の第1の側壁12上に化学配位子が形成されるように、開口部22の側壁をコンディショニングする。前記化学配位子は、絶縁材料22の化学分子と共有結合する化学基または原子である。コンディショニングは、基板を、従って第1の側壁を空気中にまたは特定の雰囲気中にさらした結果発生し得る化学反応すなわち化学作用であって、その結果、側壁の化学組成が変わる。コンディショニングは、基板、従って第1の側壁を、水蒸気またはカスケードウォーターリンスなどのウェット環境にさらすことによる化学反応であってもよい。アルコールによって、次の堆積のために好適なコンディショニングを提供できる。
【0031】
いくつかの構成においては、コンディショニングは、空気または特定の雰囲気にさらす必要が必ずしもないことも意味し、それは、クリーニングされる開口部を空気中に露出する前に、開口部の側壁上に化学配位子が予め存在するような絶縁層を選択することができるためである。このように自然にコンディショニングされる絶縁層の例として、酸化物含有層がある。特定の雰囲気は、開口部が形成される際のエッチング環境の一部分とすることができる。このようにして、第1の側壁12は、エッチング中にその場でコンディショニングされ、底または第2の側壁10は、清浄にエッチングされる。第2の側壁10の変化は、エッチング中に取り除くことができる。
【0032】
化学配位子は、次のバリア層堆積の少なくとも初期段階の間に雰囲気中に存在する別の化学基または化学分子と化学反応によって選択的に置換可能であるように選択される化学基または原子である。これらの化学配位子(及びそれらのための典型的なソース流体)には、ヒドロキシル(水分及びアルコール)、シアノ(HCN)、NH2(NH3及びN2H4)、NH(NH3)、フルオロ(フッ素)、ブロモ(臭素)、ヨード(ヨウ素)、クロロ(塩素)、メチル(有機物)、アルコキソ(アルコール)、β−ジケトネート(β−ジケトネート)、イソプロポキソ(イソプロキシド)、及び他の炭素含有基があるが、これらに限定はされない。ソース流体は、一般に、イオン化されて、配位子により容易に付着させるためにラジカル状態で基板に提供され得ることが、理解されよう。化学配位子は、実施形態において示した絶縁材料からなる(トレンチフロア13を含む)第1の側壁12上に形成することが、好ましい。図3は、(トレンチフロア13を含む)第1の絶縁表面12上にのみ形成された水酸基の配位子を示している。
【0033】
導電材料の特性によっては、開口部22の第2の側壁10上に化学配位子を形成することもできる。この場合には、化学配位子は、開口部22の第2の側壁10から選択的に除去することが望ましい。このような選択的除去には、還元環境で基板を適度に加熱すること、または、還元環境でプラズマ処理することを含み得るが、これらに限定はされない。有利には、コンディショニング配位子と種々の材料との間の結合力が異なるために、銅、銀、金及びプラチナなどの金属から配位子を除去することの方が、絶縁材料から同様の配位子を除去することより一般に容易である(すなわち、エネルギーが少なくて済む)。
【0034】
空気または別の雰囲気と接触している第2の側壁10上における導電材料の層は、変化し得る。この変化は、酸化のような化学反応、または、物質の吸着のような物理的変化であり得る。その変化には、例えば、次の堆積化学物質と反応しないかまたは第1の表面上におけるよりかなり遅い堆積になるブロック層を第2の表面10上に形成することも含み得る。非限定的例として、バリア堆積の前にシリコンハライドソースガスのパルスになり得るシリコンハライドにさらすステップによって、−SiXn配位子(ここで、X=F、Cl、BrまたはI、かつ、n=1、2、または3)を形成可能である。これらのブロック配位子は、例えば、第1の表面の絶縁壁上におけるより容易に、第2の表面の(例えば、第1の表面をコンディショニングしている間に形成される自然酸化物または酸化物などの)酸化物上に形成される。
【0035】
第2の表面についての別の典型的な変化には、第2の表面上に犠牲層を形成することが含まれる。非限定的例だが、バリア層形成前に第2の表面上に酸化タングステン層(WO3)を形成可能である。バリア層が、ALDによりWF6及びNH3の交互パルスにより形成された窒化タングステン(WN)を含有している場合には、WN堆積中に、特に以下に示すようにWF6のパルス中に、犠牲層をゆっくりエッチング除去することができる。
【0036】
WO3(固体) + 2WF6(気体) → 3WOF4(気体)
(例えば、成長ブロック層または犠牲層の残りなどの)変化させた層は、どれも、バリア形成後の(例えば、銅充填などの)さらなる堆積の前に除去することが好ましい。材料により異なるが、変化したものの除去には、真空下または高圧下で基板を加熱すること、またはクリーニングステップ、化学還元、選択的エッチング、またはきちんと時間を決めたウェットエッチングなどの化学処理が含まれ得る。すでに形成された及び次のステップにおいて形成される導電材料18、20の特性により異なるものの、変化させた層は、必ずしも特定のプロセスステップにおいて除去する必要はないが、さらなるプロセス中に除去する場合が時にあり得ることに、留意されたい。例えば、以下の説明から理解されるだろうが、開口部22を導電材料18で充填またはライニングする間に、表面の変化は、自然に除去され得る。
【0037】
さらなるステップにおいて、開口部22の第1の側壁12上にバリア層26を選択的に堆積する。バリア層26は、本質的に、開口部10の第2の側壁10上には形成されない、すなわち、下にある導電層20の表面はバリア層で覆われない。好ましい実施形態においては、本質的に導電材料からなりよって堆積が生じない前記第2の側壁10上には、配位子は形成されない。絶縁層の特定の化学構造すなわち化学配位子があることによって、バリア層を選択的に堆積可能である。第1の側壁12上にある化学配位子は、堆積雰囲気中にある原子または分子と反応する。開口部の第2の側壁10上にある化学原子または分子は、堆積雰囲気中にある原子または分子とは反応しない。堆積雰囲気とは、本質的にバリア層形成に必要である化学成分からなる化学溶液、蒸気または気体である。結果として、バリア層26が、開口部22の第1の側壁12上へ選択的に堆積する。
【0038】
バリア層26は、原子層成長法(ALD)により堆積することが好ましい。ALDは、原子層膜成長による、材料と堆積雰囲気との間における化学分子または原子の交換に基づくものである。化学分子または原子の交換とは、化学反応である。層26は、連続的なステップにおいて形成され、各ステップには、化学反応または吸着により1つの原子層が形成されることが含まれる。バリア層26は、周りの絶縁層14、15内への金属イオンの移動を防止する材料からなる。バリア層26は、耐熱金属と、耐熱金属の窒化物及びケイ素窒化物と、耐熱金属炭化物及びケイ素炭化物と、耐熱金属ホウ化物及びケイ素ホウ化物と、耐熱金属リン化物及びケイ素リン化物と、耐熱金属オキシナイトライド及びシリコンオキシナイトライドと、からなる群から選択される材料とすることができるが、これらに限定はされない。バリア層26は、Co、Ta、Ti、TiN、TaN、Si3N4、WxN、HfxN、MoxN及び/またはそれらのコンパウンド(compound)であることが、好ましい。
【0039】
バリア材料は、金属間パスを遮らないことにより、バリア材料は、必ずしも高い導電性を有する必要がないので、有利である。従って、好ましい実施形態によって、300μΩ・cm未満からバリア材料を絶縁するまでの範囲の抵抗率を有する材料を含めて、広くバリア材料を選択可能であることが、有利である。特に、好ましい絶縁体は、アモルファス絶縁体である。
【0040】
好ましい方法は、原子層成長(ALD)方式であり、これによって、サイクル内の交互パルスでワークピースに反応物が供給される。サイクルごとに、吸着好ましくは化学吸着により、ライニング材料についてわずかほぼ1つの単層が形成されることが、好ましい。基板温度は、化学吸着を容易にする領域内に維持される。特に、基板温度は、吸着される種と下にある表面との間の損なわれていない化学結合を維持する程度かつ反応物種が分解しないのに十分低い温度に維持される。他方で、基板温度は、反応物が縮合せずかつ各相において所望の表面反応のための活性化エネルギーを提供するのに十分高く維持される。所定の種々のALD反応のための適切な温度領域は、表面の末端及び含まれる反応種により異なることは、当然である。
【0041】
各サイクルの各パルスまたは相は、実質的に自己限定的(self-limiting)であることが好ましい。以下に示した例において、各相は、自己終結的である(self-terminating)(すなわち、吸着好ましくは化学吸着された単層において、その相の化学物質と反応性でない表面が残る)。反応前駆体が、各相において過剰に供給されて、構造表面を飽和させる。表面が飽和することによって、(以下にさらに詳細に説明するように、(物理的大きさによる制限を受けやすい)全ての有効反応部位を反応物が占めることが保証され、それと同時に、反応物に対してより長くさらされる場所における過度の膜成長が自己終結により防止されることが、保証される。同時に、飽和及び自己終結する化学物質によって、第1の表面12のすぐれたステップカバレッジが、保証される。
【0042】
図4及び以下の表1は、典型的なプロセスを示している。特定の実施形態によるガス流の連続を表しており、それは、典型的ではあるがそれに限定するものではない。示した例において、導電性窒化物、より詳細には窒化金属は、ワークピースに金属ソースガスと窒素ソースガスとを交互に供給することによって形成される。各サイクルについて第1のまたは金属の相107では、望ましくは窒素ソースガスがない状態で金属含有材料の層が化学吸着される。各サイクルについて第2のまたは窒素相111では、望ましくは金属ソースガスがない状態で、堆積された金属含有層上において窒素含有材料が反応するかまたはそれが吸着される。他の構成においては、相の順番を逆にすることができること、及び、反応物の除去またはパージステップを先行するまたは後続する反応物のパルスの一部とみなすことができるということが、理解されよう。
【0043】
ライニング材料が形成されるダマシン構造表面(すなわち、トレンチフロア13を含むが第2の表面10は除いた第1の表面12)は、まず、金属ソースガスと反応する表面を提供するように、終結される。金属相107の反応物は、ある好ましいダマシン構造の酸化物及び窒化物表面上に、異なる表面を終結させることなく、化学吸着させることができる。
【0044】
金属相107は、自己限定され、その結果、わずか約1つの原子単層が、第1の相の間に堆積されることが、もっとも好ましい。望ましくは、揮発性金属ソースガスが、パルス104において提供される。典型的金属ソースガスは、四塩化チタン(TiCl4)、六フッ化タングステン(WF6)、五塩化タンタル(TaCl5)、タンタルペンタエトキシド、テトラキス(ジメチルアミノ)チタン、ペンタキス(ジメチルアミノ)タンタル、塩化銅(CuCl)及びコッパーヘキサフルオロアセチルアセトネートビニルトリメチルシラン(copper hexafluoroacetylacetonate vinyltrimethylsilane)(Cu(HFAC)VTMS)を含む。
【0045】
金属ソースガスがデュアルダマシンコンタクトビアの底部内へ拡散するのに十分な時間が経過した後、金属ソースガスの流れが遮断されて、金属パルス104が終わる。金属ソースガスがチャンバーからパージされるまで、キャリアガスがパージステップ106において引き続き流されることが、好ましい。
【0046】
パルス104の間に、金属ソースガスは、金属含有種の「単層」を堆積または化学吸着するように、露出され選択的に終結されたワークピースの表面と反応する。反応物は、理論上、ワークピースの露出された層上の利用可能な各部分に化学吸着するが、(特に終結配位子を有する)吸着された種の物理的大きさによって、概ね、単層の一部分に対するサイクルごとのカバレッジが制限されることになる。以下の表1の例においては、ALDプロセスは、およそ0.35Å/サイクルで窒化金属層を成長させ、その結果、約4.2Åのバルク結晶格子パラメータを有するTiNについては、およそ15サイクルごとに堆積された材料から完全な単層が有効に生成される。各サイクルとは、一対の金属ソースガスパルス及び窒素ソースガスパルスに相当する。本明細書において使用されている「単層」とは、従って、堆積中の単層の一部分を指し、主に、パルス104の自己限定効果に関連している。
【0047】
特に、ワークピース上に堆積または吸着した金属含有種は、自己終結して、表面が金属ソースガスとそれ以上反応しなくなる。以下に示す例においては、TiCl4(表1)では、塩化物が終端となったチタンの単層が残る。WF6では、フッ素が終端となったタングステンの単層が残ることになる。同様に他の揮発性ハロゲン化金属では、ハライドが終端となった表面が残ることになり、タンタルペンタエトキシド、テトラキス(ジメチルアミノ)チタン、及びペンタキス(ジメチルアミノ)タンタルのような有機金属では、有機配位子が終端となった表面が残る。金属ソースガスパルス104中において、このような表面は、金属ソースまたは反応物の他の成分とこれ以上反応しない。反応物への過度の露出は、過剰堆積にはならないために、金属相107のプロセス中の化学物質は、自己限定的であると言われる。濃度がより高い反応物にさらに長くさらしても、ワークピースの上面における堆積は、ビアフロアの近くの絶縁表面上における堆積を越えない。示したように、金属相107では、第2の表面10(図3)と容易に反応しないことが、好ましい。
【0048】
次に、サイクル115の第2の相111において、窒素ソースガスのパルス108が、ワークピースに提供される。図示した例において、窒素ソースガスは、アンモニアを含有している。第2の相111は、第1の相107により残された金属含有種の単層を窒素ソースガスに完全にさらすのに十分な時間維持されることが、好ましい。窒素ソースガスが、デュアルダマシンコンタクトビアの底部内へ拡散するのに十分な時間が経過した後、金属ソースガス流が遮断されて、窒素パルス108が終わる。窒素ソースガスがチャンバーからパージされるまで、パージステップ110においてキャリアガスを流し続けることが好ましい。
【0049】
窒素パルス108の間において、窒素ソースガスは、第1の層107により第1の表面12(図3)上に残され自己終結した金属単層と反応するかそれの上に化学吸着する。表1の実施形態において、この化学吸着には、金属単層のハロゲン終端が窒素含有種と入れ替わる、飽和可能な配位子交換反応が含まれる。他の構成においては、中間ゲッターまたはスカベンジ相によって、窒素パルスの前に金属単層のハロゲン終端が先ず取り除かれる。この場合には、第3の相において、窒素含有種は、ゲッター相により露出されたままの金属上の吸着物と反応する。いずれの場合においても、これによって、窒化金属は、第1の表面12上に、好ましくは単一の単層内に選択的に形成される。本プロセスによって化学量論量の窒化金属が残ることが、望ましい。金属相107について説明したように、単層は、吸着された種の物理的大きさのために、全ての反応可能な部分を占める必要はない。ただし、第2の相111は、自己限定的効果も有している。
【0050】
特に、窒素ソースガスは、前の金属ソースガスパルスの間にワークピース表面に化学吸着された金属含有種と反応する。該反応は、パルス108の間で、アンモニアまたは他の窒素ソース(例えば、ヒドラジン、Nラジカルなど)が、窒素及び、窒化金属単層の終端となるNHxテイルと反応しなくなることから、表面終結でもある。さらに、温度及び圧力状態を調節して、金属単層から下にある材料へアンモニアが移動しないようにする。この飽和性で自己限定的な反応相111において濃度がより高い反応物により長く晒しても、ワークピースの上面上に形成される窒化金属の厚さは、ビアフロアの近くの絶縁表面上に形成される窒化金属の厚さを超えない。繰り返すが、第2の表面10は窒素パルスと非反応性であることが、好ましい。
【0051】
(金属ソースパルス104及びパージ106を含む)金属相107と、(窒素ソースパルス108及びパージ110を含む)窒素相108とは、ともに、ALDプロセスにおいて繰り返されるサイクル115を画定している。最初のサイクル115の後、第2のサイクル115aが、実行され、そこでは、金属ソースガスパルス104aが、再度供給される。金属ソースガスは、前のサイクル115において形成された窒化金属表面上に金属含有種を化学吸着する。金属含有種は、晒された表面と容易に反応し、もう一つの単層または金属含有種の単層の一部分に堆積して、再度、金属ソースガスとそれ以上反応しない自己終結した表面が、残る。金属ソースガス流104aは、停止され、チャンバーからパージされ106a、(表1によれば)第2のサイクル115aの第2の相111aでは、窒素ソースガスを供給し、第2の金属単層を窒化物化する。あるいは、窒素相の前に、中間ゲッターまたはスカベンジ相が置かれる。
【0052】
窒化金属が、デュアルダマシン構造体内においてバリア機能を果たすのに十分な厚さに形成されるまで、サイクル115aを少なくとも約10回さらに好ましくは少なくとも20回繰り返す。好ましい実施形態の方法によって、ほぼ完全なステップカバレッジで、約200Å未満のさらに好ましくは100Å未満の厚さの層を形成することができることが、有利である。ステップカバレッジとは、基板の上面と比較した場合の、開口部底部近くの絶縁壁のカバレッジ比率に関連する。示したように、堆積は、導電底面と比べて、絶縁表面12上において選択的に起こることが、好ましい。
【0053】
次のステップにおいて、開口部22は、バリア層26により部分的に覆われ、当該技術において公知の堆積技術を利用して導電材料18(図2)により充填される。結果として、導電材料18で充填された開口部22とその下にある導電層20との間の直接接触が形成される。従って、2つの導電レベル間に発散または途切れは存在せず、バリア材料の固有抵抗に拘わらず、すぐれた導電性挙動がもたらされる。
【0054】
第1の実施形態において、基板上に形成された絶縁層内における開口部内に銅バリア層を堆積するための方法を開示する。
【0055】
絶縁層を基板上に堆積する。基板は、部分的に処理されたウェハまたは元のウェハにすることができる。基板は、部分的に処理されたウェハにすることが好ましい。より低い金属レベル、コンタクトレベルまたはトランジスタレベルになり得る、予め形成した導電回路エレメント20上に、絶縁層14、15を堆積することができる。絶縁層14、15には、上述の材料の1つを含ませることができる。示した実施形態においては、絶縁材料は、二酸化ケイ素の形態を有している。絶縁層14、15は、リソグラフィー及びドライエッチングステップによって、パターンが形成されて、その結果、開口部22が、デュアルダマシンアプローチを利用して二酸化ケイ素層内に形成される。開口部22の第1の側壁12は、二酸化ケイ素からなり、第2の側壁10は、導電材料20からなる。ドライエッチングステップの後には、基板を清浄にする。次のステップにおいて、配位子が二酸化ケイ素層上に形成されるように、例えば水酸化ケイ素の層が形成されるように、二酸化ケイ素層をコンディショニングする。これを得るために、ウェット雰囲気、OHまたはHプラズマのようなHまたはOHラジカルのソースに、絶縁層14、15をさらす。
【0056】
第1の側壁12、すなわち、絶縁層14、15の表面は、プラズマ内にある水素及びOHラジカルと反応する。反応は、プラズマにさらされた二酸化ケイ素の表面のみに限定される。一度、第1の側壁12の表面全体がヒドロキシルテイルまたは配位子により飽和すると、反応は自然に終わる。
【0057】
示した実施形態においては、第1の側壁12は、二酸化ケイ素を含んでおり、大気中にある水分とも反応し得る。コンディショニングは、自然に起こる。
【0058】
導電材料が銅である場合には、その上に犠牲層またはALDブロック層を形成することなどによって、銅層を変化させることができる。上に示したように、銅層の化学構造における変化は、一般に、バリア材料によるライニングより前またはその次のいずれかにおいて、充填する前に除去されるべきである。さらに、該表面の上に吸収されている物質は、除去すべきである。
【0059】
反応物のパルスを交互に繰り返す間に化学基が交換されることに基づく原子成長法(ALD)を利用してTiNバリア層26を選択的に堆積し、各反応物によって材料からわずか約1つの単層が形成されることが、好ましい。基板は、気相内でTiCl4と接触して、その結果、TiCl4と、絶縁材料上にある水酸基との反応が、生じる。開口部22の第2の側壁10上、すなわち、本質的に導電材料からなる側壁10上にはヒドロキシル配位子がないために、導電層とTiCl4との間では、化学反応は生じない。第1の反応生成物が、絶縁表面上に第1の層を形成する。次に、NH3と第1の反応生成物との間において反応が生じ、その結果、第2の層が形成される。次のステップにおいて、十分な厚さのバリア層が形成されるまで、一連の化学反応を繰り返す。
【0060】
下の表1は、超大規模集積化プロセス用デュアルダマシンメタライゼーションスキームにおけるバリア適用に適したTiN層を形成するための典型的な処理レシピを示している。処理レシピは、シングルウェハプロセスモジュールにおける1つのサイクルに相当する。詳細には、フィンランド国のASM Microchemistry Ltd.から市販され入手可能である、「PulsarTM 2000」という商品名で市販され入手可能なシングルウェハALDモジュール内において利用するために、示したパラメータを作成した。
【0061】
以下の表のパラメータは、例示的であるに過ぎないことに留意されたい。各プロセス相は、開口部22の少なくとも第1の表面を飽和させるようにコンディショニングすることが、望ましい。パージステップは、反応相の間においてビアから反応物を除去するようにコンディショニングする。同様のALDプロセスによって、約20:1を超えるアスペクト比を伴いボイド内において90%より上のステップカバレッジが達成されることが測定された。本明細書における開示を考慮すると、当業者は、許容可能な堆積速度で相を飽和させ自己終結させるために、異なる反応チャンバーのための及び選択した異なる条件のための堆積条件を容易に改良、置換、または、そうではなく変更することができる。
【0062】
本明細書において説明したALDプロセスは、反応物の供給が、トレンチ及びビアの表面を飽和させるのに十分である限りは、圧力及び反応物の濃度に比較的非感受性であることが、有利である。その上、本プロセスは、低温で操作可能である。バックエンドプロセス(back-end process)中に熱供給を維持しながら比較的速い堆積速度を達成するためには、プロセスを通じて約200℃と500℃との間にワークピースの温度を維持することが、好ましい。温度は、さらに好ましくは、約350℃と400℃との間に維持し、最も好ましくは、380℃と400℃との間に維持する。チャンバー内の圧力は、milli Torrの範囲から大気圧以上の範囲にすることができるが、好ましくは、約1Torrと500Torrとの間に維持し、さらに好ましくは、約10Torrと100Torrとの間に維持する。
【0063】
【表1】



上の表1は、デュアルダマシン構造のトレンチ及びコンタクトビア内への窒化チタン(TiN)バリアについてのALD用パラメータを示している。示したように、金属ソースガスには、四塩化チタン(TiCl4)が含まれ、キャリアガスには、窒素(N2)が含まれ、窒素ソースガスには、好ましくは、アンモニア(NH3)が含まれる。
【0064】
第1のサイクルの第1の相において、TiCl4は、デュアルダマシントレンチ及びコンタクトビアの(例えば、OH−またはNHx−が終端となった)第1の表面12上に化学吸着する。金属ソースガスには、他のプロセスパラメータの場合、ダマシン表面を飽和させるのに十分な割合のキャリア流が含まれることが、好ましい。チタン錯体の単層が、トレンチ及びビア表面上に残り、この単層は、クロライドにより自己終結する。第2の表面10上をコンディショニングしないことまたはコンディショニングを変えないことによって、TiCl4が第2の表面に吸着しないかまたはそれと反応しないことが、有利である。
【0065】
リアクターには、金属ソースガスをより小さい及び/またはより多い反応種へ変換する触媒が含まれることが望ましい。示した実施形態においては、好ましい反応チャンバーは、チタンの壁を有し、この壁によって、TiCl4がTiCl3へ変換されることが有利である。種は、小さい程、ビア内へ拡散しやすくなり、サイクルごとに占める反応可能な部位が多くなって、活性部位上への化学吸着がさらに容易となる。従って、触媒によって、堆積速度を高めることができる。当業者は、他の化学物質に対しては他の触媒を使用可能であることを容易に理解するだろう。
【0066】
TiCl4流を止めて引き続きキャリアガス流によりパージした後、NH3のパルスをワークピースに供給する。アンモニアには、他のプロセスパラメータの場合、金属含有単層の表面を飽和させるのに十分なキャリア流が含まれることが、好ましい。NH3は、配位子交換反応において金属単層のクロライド−終端表面と容易に反応し、窒化チタン(TiN)の単層を形成する。反応は、前に化学吸着された利用可能な金属クロライド錯体の数により制限される。アンモニアもキャリアガスもいずれもが、結果として生成した窒化チタン単層とはこれ以上反応はせず、窒素及びNHx架橋終端を有する単層が残る。好ましい温度及び圧力パラメータによって、さらに、アンモニアの金属単層への拡散が防止される。これらの条件下におけるNH3の反応物は、コンディショニングされていないまたはコンディショニングを変化させた(例えばブロック層または犠牲層を有する)第2の表面10とは反応しないことが、有利である。
【0067】
次のサイクルにおいて、第1の相では、TiCl4を導入し、TiCl4は、窒化チタンの単層の表面と容易に反応し、再度、クロライド−終端チタン層が残る。次に、第2のサイクルの第2の相は、第1のサイクルについて説明した通りである。これらのサイクルは、窒化チタンが所望の厚さに形成されるまで繰り返される。
【0068】
示した実施形態において、キャリアガスは、引き続き、各サイクルの両方の相の間一定の速度で流れる。ただし、交互に繰り返すガスパルスの間において、チャンバを排気することにより反応物を取り除くことができることは、理解されよう。1つの構成において、好ましいリアクターは、パルス堆積している間に一定の圧力を維持するためのハードウェア及びソフトウェアを組み込んでいる。1988年5月31日にPosaに発行された米国特許第4,747,367号明細書及び1988年8月2日にConger他に発行された米国特許第4,761,269号明細書の開示内容は、参照により本明細書に組み込まれたものとする。
【0069】
第1の表面は、(コンディショニングしていないまたは変化させた)第2の表面より(コンディショニングされた)第1の表面とより容易に反応するために、上記の堆積は、第1の表面に対して選択的となる。
【0070】
部分的に選択的である表面によって、所望の選択的な結果を得ることができることに留意されたい。例えば、いくつかのALDプロセスでは、特にALDプロセス自体が、金属上において競合エッチング反応を引き起こす場合には、絶縁体と比較してさらに遅い速度で金属上に堆積が行われることになる。同様に、材料が異なることにより、第2の表面に比較して第1の表面上における堆積速度が異なり得る。従って、部分的に選択的堆積をすることによって、金属表面と比較して絶縁表面上の層がより厚くなる。第1の表面上の所望の層をいくらか薄くすることになり、第2の表面上のより薄い層が完全にエッチングされた後にきっちり時間を合わせて停止される、次の等方性エッチングによって、このプロセスは、完全に選択的なものにすることができる。等方性エッチングは、米国特許第5,904,565号明細書に開示されているように、異方性エッチングより損傷が少なくさらに容易に達成されることが、有利である。
【0071】
次のステップにおいて、選択的バリア層26と露出された第2の表面10とを有する開口部22を銅で充填することができる。バリア層を選択的に形成した後、デュアルダマシン構造体を充填するために使用される方法及び堆積されたバリア層の導電性により異なるが、シード層が望ましい場合がある。示した実施形態においては、図示した窒化金属バリア上に銅の充填材を電気めっきすることが、望ましい。従って、バリア層26及び露出された第2の表面10の上に高導電性シード層をまず形成することが、好ましい。本技術分野において公知のように、シード層は、好ましくは金属層、さらに好ましくは銅を有し、多数のプロセスのどれによっても堆積させることができる。例えば、シード層は、例えばスパッタリングなどの物理気相成長法(PVD)、化学気相成長法(CVD)、原子層成長法(ALD)により形成することができる。CVDプロセスは、より高いステップカバレッジのシード層を堆積させるために利用可能である。有機金属CVD(MOCVD)技術が、例えば、Microelectronic Enginnering誌の第45巻第1号15〜27頁(1999年2月)の、Wolf他による「Cu(HFAC)VTMSを用いた銅化学気相成長プロセス及び装置のシュミレーション」に開示されており、該開示は、参照により本明細書に組み込まれたものとする。下にあるバリア層26が、導電性であれば、その上に、シード層を電気めっきまたは無電解めっき堆積することもできる。ALDによって前の窒化金属バリア層を形成した際に得られた高ステップカバレッジと関連して、このような方法は、多くのデュアルダマシンスキームに対して適切であり得る。
【0072】
シード層もALDにより形成することが、最も好ましい。付着、バリア及びシード層の1つまたはそれ以上を高ステップカバレッジで形成することにより体積が低減することによって、容量が大きくなり導電性充填材をより多く入れることができコンタクトビア及びトレンチが完全に充填される可能性が高まることから、配線の伝導率が高くなる。
【0073】
【表2】



上の表2は、ALD純金属プロセスを示している。相を交互に繰り返すと、塩化銅が、まず吸着し、次にTEBにより還元される。塩化銅は、有機銅種と比較して小さい反応種であることから、ワークピース上における反応部位の迅速かつより完全な飽和が容易になることが、有利である。
【0074】
シード層を形成した後、無電解めっきまたは電気めっきにより導電材料で開口部を充填する。堆積は、開口部のボトムアップ充填を完了するのに十分な厚さまで進行する。
【0075】
本発明は、前述の説明において、いくつかの好ましい実施形態に言及することにより説明されている。ただし、当業者は、他のいくつかの同等の実施形態、または、本発明を実施する他の方法を考えることができるのは、明らかであり、本発明の精神及び範囲は、添付した特許請求の範囲の用語によってのみ限定される。
【図面の簡単な説明】
【0076】
【図1】非選択的バリアを含む、集積回路メタライゼーションスキームにおけるデュアルダマシン構造の概略断面図である。
【図2】本発明の好ましい実施形態による、選択的バリアを含むデュアルダマシン構造の概略断面図である。
【図3】好ましい実施形態に従って、二次加工の中間ステージによる絶縁表面の選択的コンディショニングを示した、部分的に二次加工されたデュアルダマシン構造の概略断面図である。
【図4】本発明の好ましい実施形態による、バリア層を堆積させるためのガス流の典型的な図である。

【特許請求の範囲】
【請求項1】
原子層成長プロセスを利用して層を選択的に堆積する方法であって、該方法は、
第1の絶縁性の表面及び第2の導電性の表面を備える堆積基板を準備すること、及び、
前記堆積基板を少なくとも2つの反応物流体に交互に繰り返し晒すことによって、前記第2の表面と比べて選択的に前記第1の表面に層をコーティングすることを含み、
前記第2の表面は、選択的にコーティングする前に、前記原子層成長プロセスによって堆積をブロックするよう変化する、原子層成長プロセスを利用して層を選択的に堆積する方法。
【請求項2】
前記第1の表面は、集積回路内において絶縁層内の開口部を画定しており、前記第2の表面は、前記開口部により露出された金属エレメントで構成されている請求項1に記載の方法。
【請求項3】
選択的コーティングは、前記絶縁材料上にバリア材料を堆積させることを含む請求項1に記載の方法。
【請求項4】
前記バリア材料は、導電性であり、約300μΩ・cm未満の抵抗率を有している請求項3に記載の方法。
【請求項5】
前記バリア材料は、窒化金属を含む請求項3に記載の方法。
【請求項6】
前記バリア材料は、窒化チタンを含む請求項5に記載の方法。
【請求項7】
前記バリア材料は、絶縁体である請求項3に記載の方法。
【請求項8】
前記第2の表面を変化させることは、原子層成長によって成長をブロックするブロック物質の吸着を含む、請求項1に記載の方法。
【請求項9】
選択的に層をコーティングした後、前記第2の表面から前記ブロック物質を除去することをさらに含む請求項8に記載の方法。
【請求項10】
前記第2の表面を変化させることは、前記第2の表面上にブロック層を形成することを含む、請求項1に記載の方法。
【請求項11】
戦記ブロック層は、SiXnの化学式を有し、Xはフッ素(F)、塩素(Cl)、臭素(Br)、及びヨウ素(I)からなる群から選ばれ、nは1,2及び3からなる群から選ばれる整数である成長ブロック配位子を含む、請求項10に記載の方法。
【請求項12】
前記反応物流体と反応させるために少なくとも前記第1の表面をコンディショニングすることをさらに含む請求項1に記載の方法。
【請求項13】
コンディショニングが、前記第1の表面及び前記第2の表面上に配位子を形成し、次に、前記第2の表面上の前記配位子を成長ブロック層へ変換することを含む請求項12に記載の方法。
【請求項14】
前記第1の表面は、前記第2の表面を変化させる前にコンディショニングされる、請求項12に記載の方法。
【請求項15】
前記第1の表面は、前記第2の表面を変化させた後で、且つ選択的に層をコーティングする前にコンディショニングされる、請求項12に記載の方法。
【請求項16】
前記変化させることは、前記第2の表面上に成長ブロック層を形成することを含む、請求項1に記載の方法。
【請求項17】
前記成長ブロック層は、前記第2の表面をコーティングした後、且つさらなる堆積の前に選択的に除去される、請求項16に記載の方法。
【請求項18】
前記変化させることは、前記第2の表面上に犠牲層を形成することを含む請求項1に記載の方法。
【請求項19】
前記犠牲層は、前記少なくとも2つの反応物流体にさらすことによるエッチングを受けやすい材料を含んでいる請求項18に記載の方法。
【請求項20】
前記変化させることは、物理的変化を含む請求項1に記載の方法。
【請求項21】
前記変化させることは、化学的変化を含む請求項1に記載の方法。
【請求項22】
前記変化させることは、酸化を含む請求項21に記載の方法。
【請求項23】
原子層成長プロセスを利用して層を選択的に堆積する方法であって、該方法は、
第1の表面及び第2の表面を備える堆積基板を準備することと、
前記堆積基板を少なくとも2つの反応物流体に交互に繰り返し晒すことによって、前記第2の表面と比べて選択的に前記第1の表面に層をコーティングすることと、
前記第1の表面をコーティングする前に、前記反応物流体と反応させるために少なくとも前記第1の表面をコンディショニングすること、を含む
前記第1の表面及び第2の表面は、異なる材料組成を有している、原子層成長プロセスを利用して層を選択的に堆積する方法。
【請求項24】
前記第1の表面は、選択的にコーティングされる絶縁材料を含み、前記第2の表面は、導体を含む請求項23に記載の方法。
【請求項25】
前記第1の表面は、集積回路内において絶縁層内の開口部を画定しており、前記第2の表面は、前記開口部により露出された金属エレメントで構成されている請求項24に記載の方法。
【請求項26】
選択的コーティングは、前記絶縁材料上にバリア材料を堆積させることを含む請求項24に記載の方法。
【請求項27】
前記バリア材料は、導電性であり、300μΩ・cm未満の抵抗率を有している請求項26に記載の方法。
【請求項28】
前記バリア材料は、窒化金属を含む請求項26に記載の方法。
【請求項29】
前記バリア材料は、窒化チタンを含む請求項28に記載の方法。
【請求項30】
前記バリア材料は、絶縁体である請求項26に記載の方法。
【請求項31】
コンディショニングが、前記第1の表面上に選択的に配位子を形成することを含む請求項23に記載の方法。
【請求項32】
コンディショニングが、前記第1の表面及び前記第2の表面上に配位子を形成し、次に、前記第2の表面上の前記配位子を変化させることを含む請求項23に記載の方法。
【請求項33】
前記配位子を変化させることは、該配位子を成長ブロック層へ変換することを含む請求項32に記載の方法。
【請求項34】
前記配位子を変化させることは、前記第2の表面から選択的に前記配位子を除去することを含む請求項32に記載の方法。
【請求項35】
前記配位子を除去することは、前記基板を加熱することを選択的に含む請求項13に記載の方法。
【請求項36】
前記配位子を除去することは、還元環境に前記基板をさらすことを選択的に含む請求項35に記載の方法。
【請求項37】
前記配位子を除去することは、さらに前記基板を真空にさらすことを選択的に含む請求項35に記載の方法。
【請求項38】
前記配位子を除去することは、さらに前記基板を高圧にさらすことを選択的に含む請求項35に記載の方法。
【請求項39】
前記配位子を除去することは、化学還元を選択的に含む請求項34に記載の方法。
【請求項40】
前記配位子を除去することは、前記第2の表面をクリーニングすることを含む求項34に記載の方法。
【請求項41】
コンディショニングは、前記基板を水分にさらすことを含む請求項23に記載の方法。
【請求項42】
前記第1の表面は、酸化物の形態を備え、コンディショニングは、前記基板をソースHまたはOHラジカルにさらすことを含む請求項23に記載の方法。
【請求項43】
コンディショニングは、前記第1の表面上に、ヒドロキシル、シアノ、NH2、NH、フルオロ、ブロモ、ヨード、クロロ、メチル、アルコキソ、β−ジケトネート及びイソプロポキソからなる群より選択された配位子を形成することを含む請求項23に記載の方法。
【請求項44】
前記第1の表面をコーティングする前に、さらに前記第2の表面上に犠牲層を形成することを含む請求項23に記載の方法。
【請求項45】
前記犠牲層は、前記少なくとも2つの反応物流体にさらすことによるエッチングを受けやすい材料を含んでいる請求項44に記載の方法。
【請求項46】
準備することは、金属エレメントを露出させるために絶縁層内の開口部をプラズマエッチングすることを含み、これによって、前記絶縁層上にはその上にコンディショニング配位子がある前記第1の表面が、金属エレメント上にはその上にコンディショニング配位子がない前記第2の表面が、生じる請求項25に記載の方法。
【請求項47】
部分的に二次加工された集積回路内において開口部の絶縁側壁上にバリア層を選択的に形成する方法であって、該方法は、
導電表面は露出させたまま、前記部分的に二次加工された集積回路の絶縁表面上に配位子を形成すること、及び、
前記絶縁表面上の前記配位子と反応する気相反応物を導入して、前記絶縁表面上にバリア材料を選択的に堆積すること、を含む。
【請求項48】
気相反応物を導入することは、原子層成長プロセスにおいて、少なくとも第1及び第2の気相反応物を交互に導入することを含む請求項47に記載の方法。
【請求項49】
前記配位子は、ヒドロキシル、シアノ、NH2、NH、フルオロ、ブロモ、ヨード、クロロ、メチル、アルコキソ、β−ジケトネート、イソプロポキソからなる群より選択される請求項47に記載の方法。
【請求項50】
前記導電表面から前記配位子を除去することをさらに含む請求47に記載の方法。
【請求項51】
前記配位子を除去することは、還元することを含む請求項50に記載の方法。
【請求項52】
配位子を形成することは、前記絶縁表面を水分にさらすことを含む請求項47に記載の方法。
【請求項53】
配位子を形成することは、ヒドロキシルテイルを形成することを含む請求項47に記載の方法。


【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate


【公開番号】特開2008−78647(P2008−78647A)
【公開日】平成20年4月3日(2008.4.3)
【国際特許分類】
【出願番号】特願2007−235613(P2007−235613)
【出願日】平成19年9月11日(2007.9.11)
【分割の表示】特願2001−519484(P2001−519484)の分割
【原出願日】平成12年8月24日(2000.8.24)
【出願人】(503124724)インテルユニフェルシタイル マイクロ−エレクトロニカ セントリューム (イーエムエーセー) フェーゼットヴェー (1)
【出願人】(501380070)エーエスエム インターナショナル エヌ.ヴェー. (26)
【氏名又は名称原語表記】ASM INTERNATIONAL N.V.
【住所又は居所原語表記】The Netherlands 3723 BG Bilthoven Rembrandtlaan 7−9
【Fターム(参考)】