説明

原子層堆積によって半導体材料を形成するためのシステム及び方法

【課題】半導体材料を堆積させる新規な方法及び堆積システムを提供する。
【解決手段】III−V族半導体材料を基板に堆積させる方法は、複数のガスコラムに対する基板の空間的位置づけを変更することによってIII族元素のガス状前駆体及びV族元素のガス状前駆体を基板に連続的に導入するステップを含む。例えば、基板は、各々が異なる前駆体を配置する複数の実質的に位置合わせされたガスコラムに対して移動することができる。前駆体を生成するための熱運動化ガス噴射器は、入口と、熱運動化管路と、液体試薬を保持するように構成された液体容器と、出口とを含むことができる。1つ又は複数のIII−V族半導体材料を基板の表面に形成するための堆積システムは、前駆体を複数のガスコラムを介して基板に誘導するように構成された1つ又は複数のそのような熱運動化ガス噴射器を含むことができる。

【発明の詳細な説明】
【関連出願の相互参照】
【0001】
[0001]本出願の主題は、Arena等の名において2009年3月3日に出願された米国特許出願第61/157,112号の主題、及びRonald T. Bertran, Jr.の名において2010年9月30日に出願された、「Thermalizing Gas Injectors for Generating Increased Precursor Gas, Material Deposition Systems Including Such Injectors, and Related Methods」という名称の米国特許出願第12/894,724号の主題に関連し、それらの出願の各々の開示全体はその全体が参照により本明細書に組み込まれる。
【技術分野】
【0002】
[0002]本発明の実施形態は、一般に、基板に材料を堆積させるためのシステム、及びそのようなシステムを製作及び使用する方法に関する。より詳細には、本発明の実施形態は、基板にIII−V族半導体材料を堆積させる原子層堆積(ALD)法、及びそのようなシステムを製作及び使用する方法に関する。
【背景技術】
【0003】
[0003]III−V族半導体材料は電子用途及びオプトエレクトロニクス用途で使用するために急速に発展している。多くのIII−V族半導体材料は直接バンドギャップを有し、それにより、発光ダイオード(LED)及びレーザダイオード(LD)などのオプトエレクトロニクスデバイスを製作するのに特に有用になる。窒化ガリウム(GaN)、窒化インジウム(InN)、窒化アルミニウム(AlN)、及びそれらの合金(一般にIII族窒化物と呼ばれる)などの特定のIII−V族半導体材料は、青色及び紫外光放出オプトエレクトロニクスデバイスを含むより短い波長のLED及びLDを生成するための重要な材料となってきている。広バンドギャップIII族窒化物は、高電流レベル、高降伏電圧、及び高温において動作するIII族窒化物の能力のため高周波及び高電力電子デバイスで利用することもできる。
【0004】
[0004]III−V族半導体材料を堆積させるために広く使用されている1つのプロセスは当技術分野で有機金属化学気相成長(MOCVD)と呼ばれる。MOCVDプロセスでは、基板は、基板の表面にIII−V族材料のエピタキシャル堆積をもたらすように反応チャンバ内で反応、分解、又は反応及び分解の両方を行う1つ又は複数のガス状前駆体にさらされる。多くの場合、MOCVDプロセスを使用して、基板を含む反応チャンバにIII族元素を含む前駆体(すなわち、III族元素前駆体)及びV族元素を含む前駆体(すなわち、V族元素前駆体)の両方を導入することによってIII−V族半導体材料を堆積させる。これにより、基板の表面にさらされる前に前駆体(すなわち、III族元素前駆体及びV族元素前駆体)の混合がもたらされる。
【0005】
[0005]MOCVDプロセスを使用してIII−V族半導体材料を堆積させるには、基板の表面での成長速度と気相での化合物形成との間の平衡を必要とする。具体的には、III族元素前駆体及びV族元素前駆体を混合すると、好適な成長基板上にIII−V族半導体材料を形成するのに本来であれば使用される前駆体を消費する粒子の形成をもたらすことがある。MOCVDプロセスの間に利用可能な前駆体を消費すると、特に大きい反応チャンバでは、III−V族半導体材料の成長速度、厚さ、及び組成を制御するのに困難が生じる。MOCVDプロセスを使用して形成されるIII−V族半導体材料の厚さ及び組成における変動は、波長特定LEDなどの特定放出波長を有するデバイスのスループット及び歩留りに悪影響を与えることがある。さらに、MOCVDプロセスによって形成されるIII−V族半導体材料の堆積速度は一般に低く、したがって、ウェハ当たりのスループットが低下し、コストが増加する。
【0006】
[0006]原子層堆積(ALD)は、原子スケールの厚さ制御によりコンフォーマル材料を堆積させるのに使用されるプロセスである。ALDを使用してIII−V族半導体材料を堆積させることができる。ALDは、少なくとも2つの試薬又は前駆体の使用を含む多段自己制御プロセスである。一般に、第1の前駆体が基板を含む反応器に導入され、基板の表面に吸着される。過剰前駆体は、反応器をポンプで排気し、例えばパージガスを使用してパージすることによって除去することができる。次に、第2の前駆体が反応器に導入され、吸着された材料と反応して基板上に材料のコンフォーマル層又は薄膜を形成する。選択成長条件下で、堆積反応は、最初に吸着された材料が第2の前駆体と完全に反応した後、反応が終了するという自己制御となることができる。過剰前駆体は、再度、反応器をポンプで排気し、パージすることによって除去される。このプロセスを繰り返して材料の別の層を形成することができ、サイクルの数が堆積された薄膜の全厚さを決定する。
【0007】
[0007]ALDプロセスを利用して形成されたIII−V族半導体材料は、従来のMOCVDプロセスで形成されたものよりも高い結晶品質のものとすることができる。ALDプロセスは堆積された結晶性材料への前駆体組み込みをより良好に制御し、その結果、形成された結晶性材料、例えばそのようなALDプロセスで形成されたIII−V族半導体材料の組成をより良好に制御することができる。III−V族半導体材料の組成のそのような厳格な制御は、発光デバイスでは、例えば、単一の成長基板に製作された発光デバイス間、及び成長基板ごとの発光デバイス間での均一な放出波長を保証するために重要となることがある。
【0008】
[0008]しかし、従来のALDプロセスによるIII−V族半導体材料の成長速度はMOCVDと比較して比較的低い。さらに、従来のALDによるIII−V族半導体材料のスループットを高くするにはロードサイズの増大を必要とし、それは反応器から過剰前駆体及びパージガスをパージするのを困難にする。したがって、現在利用可能なALD反応器は、多くの場合、単一のウェハ処理用に構成されており、それは、ALDによるIII−V族半導体材料のウェハ当たりのスループットの低下及びコストの増加をもたらす。
【0009】
[0009]最近、各前駆体が空間的に分離された領域に継続的に供給され、基板が各前駆体を連続して通り過ぎるとき、各前駆体が基板に導入されるALD法及びシステムが開発された。そのようなプロセスは当技術分野ではしばしば「空間ALD」又は「S−ALD」と呼ばれる。
【発明の概要】
【0010】
[0010]この概要は概念のうちの選択されたものを簡単な形態で紹介するために提供され、そのような概念は本発明のいくつかの例示の実施形態の以下の詳細な説明でさらに説明される。この概要は、請求項に記載の主題の重要な特徴又は本質的な特徴を特定することを意図するものではなく、請求項に記載の主題の範囲を限定するために使用することを意図するものでもない。
【0011】
[0011]いくつかの実施形態では、本発明はIII−V族半導体材料などの材料を基板に堆積させる方法を含む。III族元素前駆体及びV族元素前駆体は、複数の実質的に位置合わせされたガス噴射器のうちの交互のガス噴射器に導入することができる。基板は複数の実質的に位置合わせされたガス噴射器に対して移動され、その結果、基板の表面はIII族元素前駆体及びV族元素前駆体にさらされて、基板の表面に少なくとも1つのIII−V族半導体材料を形成することができる。
【0012】
[0012]追加の実施形態では、本発明は半導体材料を形成するための堆積システムを含む。堆積システムは、複数の実質的に位置合わせされたガス噴射器を含むマニホールドと、マニホールドの長さに沿って基板を移動させるための少なくとも1つの組立体とを含むことができる。実質的に位置合わせされたガス噴射器のうちの少なくとも1つは、入口と、熱運動化管路(thermalizing conduit)と、液体試薬を保持するように構成された液体容器と、出口とを含む。経路は、入口から熱運動化管路を通って液体容器内の内部空間まで、及び液体容器内の内部空間から出口まで延びる。
【図面の簡単な説明】
【0013】
【図1】[0014]本明細書で説明する少なくとも1つのガス噴射器を含むマニホールドを含む本発明の堆積システムの例示の実施形態を概略的に示す断面図である。
【図2】[0015]マニホールドの少なくとも1つのガス噴射器に供給することができるガス混合物の実施形態の例を概略的に示す図である。
【図3】[0016]本発明のガス噴射器の例示の一実施形態を概略的に示す図であり、1つ又は複数のガス噴射器を図1の堆積システムなどの本発明の堆積システムの実施形態で使用することができる。
【図4】[0017]図2のガス噴射器の一部分の拡大部分切断図である。
【図5】[0018]図3と同様であるが、能動及び受動加熱要素をさらに含む本発明のガス噴射器の別の実施形態を概略的に示す図である。
【図6】[0019]本発明のガス噴射器の別の例示の実施形態を概略的に示す図であり、1つ又は複数ガス噴射器を図1の堆積システムなどの本発明の堆積システムの実施形態で使用することができる。
【図7】[0020]図6と同様であるが、能動及び受動加熱要素をさらに含む本発明のガス噴射器の別の実施形態を概略的に示す図である。
【図8】[0021]ガス噴射器の別の実施形態を概略的に示す図であり、1つ又は複数のガス噴射器を図1の堆積システムなどの本発明の堆積システムの実施形態で前駆体ガスを基板上に噴射するのに使用することができる。
【図9】[0022]本発明の堆積システム及び方法の実施形態の一例を概略的に示す上から見た図である。
【発明を実施するための形態】
【0014】
[0013]本発明は、添付の図で示される本発明の例示の実施形態の以下の詳細な説明を参照してより完全に理解することができる。
【0015】
[0023]本明細書に提示される図は、いかなる特定の構成要素、デバイス、又はシステムも実際の外観を意味するものではなく、本発明の実施形態を説明するために使用される単に理想化された表示である。
【0016】
[0024]いくつかの参考文献が本明細書に引用されおり、それらの開示はすべての目的のために参照によりその全体が本明細書に組み込まれる。さらに、引用された参考文献のどれも、本明細書でどのように特徴づけられるかにかかわらず、本明細書で特許請求される主題の本発明に対する先行技術として認められない。
【0017】
[0025]本明細書で使用される「III−V族半導体材料」という用語は、周期律表のIIIA族の1つ又は複数の元素(B、Al、Ga、及びIn)と周期律表のVA族の1つ又は複数の元素(N、P、As、及びSb)とから少なくとも主として構成される任意の半導体材料を意味する。例えば、III−V族半導体材料は、限定はしないが、窒化ガリウム、リン化ガリウム、ヒ化ガリウム、窒化インジウム、リン化インジウム、ヒ化インジウム、窒化アルミニウム、リン化アルミニウム、ヒ化アルミニウム、窒化インジウムガリウム、リン化インジウムガリウム、ヒ化インジウムガリウム、窒化アルミニウムガリウム、リン化アルミニウムガリウム、ヒ化アルミニウムガリウム、リン化窒化インジウムガリウムなどを含む。
【0018】
[0026]本明細書で使用される「ガス」という用語は、ガス(独立した形状も容積も持たない流体)及び蒸気(浮遊している拡散した液体又は固形物を含むガス)を含み、「ガス」及び「蒸気」という用語は本明細書では同義語として使用される。
【0019】
[0027]本明細書で使用される「ALD成長サイクル」という用語は、第1の前駆体に基板の表面をさらすことと、基板の表面への第1の前駆体の化学吸着と、第2の前駆体に基板の表面をさらすことと、材料の層を形成するための表面反応とを意味する。
【0020】
[0028]前駆体として、例えば三塩化ガリウム(GaCl)、三塩化インジウム(InCl)、及び/又は三塩化アルミニウム(AlCl)などの1つ又は複数のハロゲン化金属の外部供給源を利用する方法及びシステムが最近開発された。そのような方法及びシステムの例は、Arena等の名において2009年9月10日に公開された米国特許出願公開第2009/0223442A1号に開示されており、その出願の全開示はその全体が参照により本明細書に組み込まれる。さらに、改善されたガス噴射器も、そのような方法及びシステムで使用するために最近開発された。そのようなガス噴射器の例は、例えば、Arena等の名において2009年3月3日に出願された米国特許出願第61/157,112号、及びRonald T. Bertran, Jr.の名において2010年9月30日に出願された、「Thermalizing Gas Injectors for Generating Increased Precursor Gas, Material Deposition Systems Including Such Injectors, and Related Methods」という名称の米国特許出願第12/894,724号に開示されており、それらの出願の各々の全開示はその全体が参照により本明細書に組み込まれる。
【0021】
[0029]ハロゲン化金属は無機ALD前駆体として分類される。ALDプロセスでそのような無機ハロゲン化金属前駆体を使用すると、例えば有機前駆体と比較して有利となることがあるが、それは、それらが、一般に、より小さく、より反応的で、熱的に安定であり、通常、堆積された結晶材料中にわずかな量の配位子残渣が残るためである。小さい配位子は、立体障害の危険性を低減させ、その結果、サイクル当たりの成長を低下させる。高い熱的安定性により、高温における熱分解なしに堆積が可能になる。
【0022】
[0030]本発明の実施形態は、以下でさらに詳細に説明するように、原子層堆積(ALD)プロセスに新しいガス噴射器を含み、それを使用する。米国特許出願第61/157,112号又は米国特許出願第12/894,724号に説明されているものなどの複数のガス噴射器102A、102B、102C、102Dを含む本発明の堆積システム100の実施形態の一例が、図1を参照して以下で説明される。ガス噴射器102A、102B、102C、102Dの各々は、ALDプロセスで使用するために原料ガスを1つ又は複数の前駆体に変換するように構成することができる。堆積システム100は一連のALD成長サイクルを行い、各成長サイクルはIII−V族半導体材料の層を形成する。したがって、堆積システム100は、例えば発光ダイオード(LED)などを含むデバイス構造体形成で使用するために、各々が所望の組成及び厚さを有するIII−V族半導体材料の複数の層を形成するのに使用することができる。
【0023】
[0031]堆積システム100は、マニホールド104と、トラック、コンベヤ、又は支持体などの組立体106とをさら含むことができる。マニホールド104は、ポート110を通して少なくとも1つのガスを受け取るように構成された複数のガスコラム108を含むことができる。ガスコラム108は、マニホールド104を形成するために互いに長手方向に位置合わせして配置することができる。マニホールド104のガスコラム108は、直線、折り返し、又はつづら折れ構成などの任意の好適な構成で配列することができる。実施形態によっては、マニホールド104は、III−V族半導体材料を堆積させるか、さもなければ供給することが望ましい1つ又は複数の加工物基板112(例えば、1つ又は複数のダイ又はウェハ)に対して方向矢印103で示されるように移動するように構成される。他の実施形態では、組立体106は、マニホールド104のガスコラム108に対して加工物基板112を方向矢印105で示されるように移動させるように構成される。例えば、加工物基板112はダイ又はウェハを含むことができる。したがって、ガスコラム108は、加工物基板112がガスコラム108と組立体106との間の空間を通り過ぎるように組立体106の上方の十分な距離に位置づけることができる。
【0024】
[0032]堆積システム100、より詳細には堆積システム100のマニホールド104の以下の説明では、「長手の」及び「横断の」という用語は、図1に示されるように、マニホールド104及び組立体106に対する方向を指すのに使用され、長手方向は図1の視点からは水平方向であり、横断方向は図1の視点からは垂直方向である。長手方向は、「マニホールドの長さに沿って」又は「組立体の長さに沿って」延びる方向とも呼ばれる。
【0025】
[0033]実施形態によっては、堆積システム100は、1つ又は複数のガスをマニホールド104に供給し、マニホールド104からガスを除去するのに使用されるガス流システムを含む。例えば、堆積システム100は、それぞれ、ガス噴射器102A、102B、102C、102Dにガスを供給するガス供給源114A、114B,114C、114Dを含むことができる。
【0026】
[0034]例えば、ガス供給源114A、114B、114C、114Dのうちの1つ又は複数は、ガス噴射器102A、102B、102C、102Dに供給することができるIII族元素又はV族元素の外部供給源を含むことができる。III族元素供給源は、ガリウム(Ga)の供給源、インジウム(In)の供給源、及びアルミニウム(Al)の供給源のうちの少なくとも1つを含むことができる。非限定の例として、III族元素供給源は、三塩化ガリウム(GaCl)、三塩化インジウム(InCl)、及び三塩化アルミニウム(AlCl)のうちの少なくとも1つを含むことができる。GaCl、InCl、又はAlClのうちの少なくとも1つを含むIII族元素供給源は、例えばGaCl、InCl、又はAlClなどの二量体の形態とすることができる。V族元素供給源は、窒素(N)の供給源、ヒ素(As)の供給源、及び/又はリン(P)の供給源を含むことができる。限定ではなく例として、V族元素供給源は、アンモニア(NH)、アルシン(AsH)、又はホスフィン(PH)のうちの1つ又は複数を含むことができる。実施形態によっては、原料ガスは、水素ガス(H)、ヘリウムガス(He)、アルゴン(Ar)などのような1つ又は複数のキャリアガスを使用して、ガス供給源114A、114B、114C、114Dからガス噴射器102A、102B、102C、102Dに供給することができる。したがって、原料ガスは1つ又は複数のIII族元素原料並びに1つ又は複数のキャリアガスを含むことができる。
【0027】
[0035]原料ガスがガス供給源114A、114B、114C、114Dから管路116を通して搬送されるとき、原料ガスは、原料ガスから前駆体ガスを生成するのに十分な温度に加熱することができる。例えば、原料ガスはGaCl及びHを含むことができ、それらは、三塩化ガリウムが水素の存在下で塩化ガリウム(GaCl)と、塩化水素ガス(HCl)及び/又は塩素ガス(Cl)などの塩素化化学種とに解離するのに十分な温度まで加熱することができる。
【0028】
[0036]ガス供給源114A、114B、114C、114Dはガス噴射器102A、102B、102C、102Dに供給することができる。ガス噴射器102A、102B、102C、102Dの各々は、1つ又は複数の前駆体を生成し、その前駆体を加工物基板112に導入するように構成することができる。例えば、ガス噴射器102A、102B、102C、102Dは前駆体ガスを細長いガスコラム108に供給するように構成することができ、その細長いガスコラム108は、加工物基板112の主表面に実質的に垂直な方向に加工物基板112の主表面の方に前駆体ガスを誘導するように構成することができる。したがって、ガスコラム108の各々の下にあるトラック106上の区域は、加工物基板112が前駆体ガスにさらされる噴射ポイントを示す。
【0029】
[0037]ガス噴射器102A、102B、102C、102Dは各々独立して動作することができ、隣接するガス噴射器102A、102B、102C、102Dによって放出されるガスの相互汚染を防止するために、十分な距離で、隣接する噴射器102A、102B、102C、102Dから間隔を置くことができる。ガス噴射器102A、102B、102C、102Dの各々は、加工物基板112の表面を飽和させるのに十分な量のガスを供給し、加工物基板112の表面に材料の層を堆積させるように構成することができる。図1に示された堆積システム100のマニホールド104は、4つのガス噴射器102A、102B、102C、102Dが示されているが、任意の数のガス噴射器を使用することができる。例えば、前駆体(例えば、III族元素前駆体又はV族元素前駆体)を加工物基板112に供給するのに使用されるガス噴射器の数は、材料(例えば、III−V族半導体材料)の所望の厚さに基づいて選択することができる。
【0030】
[0038]III族元素前駆体がGaCl、InCl、又はAlClを含むガスから形成される実施形態では、III族元素前駆体は、後で説明するように、ガス噴射器102A、102B、102C、102Dのうちの少なくとも1つを使用してガスから形成することができる。
【0031】
[0039]堆積システム100は、III−V族半導体材料の堆積中に前駆体ガスの分離を維持するための特徴も含む。例えば、堆積システム100は、対応するガスコラム108にパージガスを供給するための少なくとも1つのパージガス供給源118と、方向矢印121によって示されるように、堆積システム100から過剰前駆体ガスを引き出すための排気ライン120とを含むことができる。パージガス供給源118は、アルゴン(Ar)、窒素(N)、及びヘリウム(He)などのパージガスを含むことができる。パージガス供給源118を使用して、ガスコラム108を介して加工物基板112にパージガスを送り出すことができる。例えば、パージガス供給源118は、加工物基板112に前駆体を供給するのに使用されるガスコラム108の2つの間に配設されたガスコラム108のうちの少なくとも1つにパージガスを供給することができる。ガスコラム108は、加工物基板112の表面から過剰ガス(すなわち、前駆体ガス及びパージガス)を除去するのに使用することもできる。過剰ガスは、堆積システム100からの除去のためにガスコラム108を通って排気ライン120に到達することができる。例えば、過剰ガスは、加工物基板112に前駆体ガス及びパージガスを供給するように構成されたガスコラム108の各々の間に配設されたガスコラム108のうちの1つを通して除去することができる。
【0032】
[0040]組立体106は、加工物基板112を支持するように、実施形態によっては、連続したガスコラム108の各々の下を順々に加工物基板112を移送するように構成される。単一の加工物基板112が図1では示されているが、組立体106は処理のために任意の数の加工物基板112を支持するように構成することができる。実施形態によっては、組立体106は、マニホールド104の長さに沿って加工物基板112を移送することができる。加工物基板112及びマニホールド104は、互いに対して、対応するガス噴射器102A、102B、102C、102Dによって生成された前駆体ガスの各々が加工物基板112の表面を飽和させることができる速度で移動させることができる。加工物基板112の表面が前駆体の各々にさらされるとき、材料の層は加工物基板112の表面の上に堆積することができる。
【0033】
[0041]加工物基板112がガスコラム108に対して移動されるとき、加工物基板112の表面の上にIII−V族半導体材料を形成するための複数のALD成長サイクルは完了することができる。
【0034】
[0042]前に述べたように、堆積システム100のガス噴射器102A、102B、102C、102Dのうちの1つ又は複数は、図2〜7を参照しながら詳細に説明するガス噴射器の様々な実施形態のうちの1つとするか又は含むことができる。実施形態によっては、ガス噴射器102A、102B、102C、102Dは、米国特許出願第61/157,112号に説明されているような熱運動化ガス噴射器を含むが、原料ガス(又は原料ガスの分解又は反応生成物)と反応するための液体試薬を保持するように構成された貯蔵器をさらに含むことができる。例えば、貯蔵器は、例えば、液体ガリウム、液体アルミニウム、液体インジウムなどの液体金属又は他の元素を保持するように構成することができる。実施形態によっては、貯蔵器は、例えば、鉄、シリコン、マグネシウムなどの1つ又は複数の固体材料を保持するように構成することができる。
【0035】
[0043]図2は、本発明のガス噴射器200の一実施形態の斜視図である。図2に示されるように、ガス噴射器200は、入口202、出口204、熱運動化管路206、及び容器210を含む。容器210は液体試薬を保持するように構成される。例えば、液体ガリウム、液体インジウム、液体アルミニウムなどのような液体金属を容器210内に配置することができる。例えば、GaCl及びHを含む原料ガスを入口202に供給することができる。原料ガスは入口202から熱運動化管路206に流れ込むことができる。熱運動化管路206は、熱運動化管路206内の流路の断面面積、熱運動化管路206を通る原料ガスの流量、及び熱運動化管路206の全長の関数とすることができる望ましい量の時間(すなわち、滞留時間)の間、熱運動化管路206を通って流れる原料ガスを加熱するように構成することができる。熱運動化管路206は、以下でさらに詳細に説明するように、1つ又は複数の能動又は受動加熱要素に隣接して配置されるように整形及び構成することができる。
【0036】
[0044]さらに、熱運動化管路206は、熱運動化管路206によって占められる物理的空間の長さが熱運動化管路206を通る流路の実際の長さよりも著しく短くなるように1つ又は複数の湾曲区間、すなわち折り返しを含むことができる。別の言い方をすれば、熱運動化管路206の長さは、入口202と液体容器210との間の最短距離よりも長くすることができる。実施形態によっては、熱運動化管路206の長さは、入口202と液体容器210との間の最短距離の少なくとも約2倍、入口202と液体容器210との間の最短距離の少なくとも約3倍、又は入口202と液体容器210との間の最短距離の少なくとも約4倍にさえすることができる。例えば、熱運動化管路206は、図2に示されるように、180°の角度にわたる湾曲区間によって端と端を突き合わせて一緒に接続された全体的に平行な複数の直線区間を含むつづら折れ構成を有することができる。
【0037】
[0045]熱運動化管路206は、例えば石英などの耐熱材料で少なくとも実質的に構成される管を含むことができる。
【0038】
[0046]実施形態によっては、原料ガスは熱運動化管路206内で少なくとも部分的に分解することができる。例えば、原料ガスがGaCl及びHを含む実施形態では、GaClは、Hの存在下で、ガス状GaClと、例えば、塩化水素ガス(HCl)及び/又は塩素ガス(Cl)などの塩素化ガス化学種とに分解され得る。
【0039】
[0047]ガスは熱運動化管路206から容器210に流れ込む。図3は容器210の拡大部分切断図である。図3に示されるように、容器210は下部壁212、上部壁214、及び少なくとも1つの側壁216を含む。図2及び3の実施形態では、貯蔵器は、下部壁212及び上部壁214の各々が円形形状を有し、少なくとも実質的に平面であるように、且つ側壁216が少なくとも実質的に円筒状(例えば、管状)であるような全体的な円筒形状を有する。下部壁212、上部壁214、及び少なくとも1つの側壁216は一緒に中空本体を画定し、その内部は液体ガリウムなどの液体試薬を保持するための貯蔵器を画定する。
【0040】
[0048]中空容器210内の内部空間は、液体ガリウム、液体インジウム、液体アルミニウムなどの液体試薬で部分的に満たすことができる。例えば、容器210は、空所又は空間222が容器210内の液体試薬の上に存在するように図3において破線220で示されたレベルまで液体試薬で満たすことができる。熱運動化管路206から流れ出るガスは、容器210内の液体試薬の上の空間222に噴射することができる。非限定の例として、熱運動化管路206から流れ出るガスは下部壁212を通って管224に流れ込むことができる。実施形態によっては、管224は、容器210内に延びる熱運動化管路206の一体化部分を含むことができる。管224は、容器210内に配置された液体試薬を通って液体試薬の上の空間222まで延びることができる。管224は、管224の端部部分が液体試薬の上で水平に延びるように90度曲りを含むことができる。図3に示されるように、液体試薬の表面に面する管224の側面に管224の円筒状側壁を通して開口を設けることができ、その結果、管224を通って流れるガスは開口226を通って管224を出ることになる。開口226を出て行くガスは、ガスの1つ又は複数の成分と液体試薬との間の反応を促進するために液体試薬の表面の方に向けられた方向に開口から外に誘導することができる。
【0041】
[0049]例えば、原料ガスがGaClとHなどキャリアガスとを含み、原料ガスが熱運動化管路206内で分解されてガス状GaClと塩素化ガス化学種とを含んでいる実施形態では、容器210内の液体試薬は液体ガリウムを含むことができ、液体ガリウムは熱運動化管路206内で生成された塩素化ガス化学種(例えばHCl)と反応して追加のガス状GaClを形成することができる。代替として、容器210内の液体試薬は液体インジウム、液体アルミニウムを含むことができ、それらはそれぞれ塩素化ガス化学種(例えばHCl)と反応してInCl、AlClを形成することができる。容器210内の液体試薬の上の空間222内のガスは出口ポート228を通って容器から流れ出ることができる。例えば、出口ポート228は、管224の水平に延びた部分の上の容器210の上部壁214に配置することができる。出口ポート228は出口管路230に通じることができ、その端部はガス噴射器200の出口204を画定することができる。
【0042】
[0050]容器210の様々な構成要素は、例えば石英などの耐熱材料で少なくとも実質的に構成することができる。
【0043】
[0051]GaClは、GaNを形成するための望ましい前駆体ガスであり得る。したがって、(原料ガスとしてGaClを使用するシステムでは)GaClの熱分解に由来する過剰塩素化ガスを追加のGaClに変換することによって、堆積されたGaN材料への過剰塩素化ガス化学種の有害な影響を避けることができるが、それは、加工物基板112(図1)に導入される塩素化ガス化学種の量を低減することができるからである。そのような有害な影響には、例えば、窒化ガリウム結晶格子への塩素原子の取り込みと、堆積されたGaN薄膜の亀裂及び層間剥離とが含まれることがある。さらに、有害な影響には、例えば、過剰塩化水素ガス(HCl)を形成することが含まれることがある。塩化水素は、堆積システム100内で、堆積されたIII族窒化物層へのエッチング剤として働き、それによって、III族窒化物の成長速度を低下させ、さらに堆積を妨げることがある。さらに、過剰塩素化化学種を液体ガリウムと反応させて追加のGaClを形成することによって、堆積システム100の効率を改善することができる。
【0044】
[0052]図4は、図2のガス噴射器200、並びにガス噴射器200の少なくとも熱運動化管路206及び容器210を加熱するための能動及び受動加熱構成要素を含む熱運動化ガス噴射器300の別の実施形態を示す。言い換えれば、ガス噴射器200の熱運動化管路206及び容器210の少なくとも一方を加熱するために熱運動化管路206及び容器210の少なくとも一方に隣接して少なくとも1つの加熱要素を配設することができる。
【0045】
[0053]図4に示されるように、熱運動化ガス噴射器300は、ガス噴射器200の熱運動化管路206によって囲まれた全体的に円筒状の空間内に配設される円筒状受動加熱要素302を含む。
【0046】
[0054]受動加熱要素302は、堆積システム100内で直面することがある高温の腐食性環境に耐えることもできる高い放射率値(1に近い)をもつ材料(黒体材料)で少なくとも実質的に構成することができる。そのような材料は、例えば、それぞれ、0.98、0.92、及び0.92の放射率値を有する窒化アルミニウム(AlN)、炭化ケイ素(SiC)、及び炭化ホウ素(BC)を含むことができる。
【0047】
[0055]受動加熱要素302は中実又は空洞とすることができる。実施形態によっては、受動加熱要素302は空洞とすることができ、温度モニタリング及び制御のために受動加熱要素の内部空間内に熱電対を配置することができる。追加の実施形態では、受動加熱要素302のまわり、及び受動加熱要素302と周囲にある熱運動化管路206との間に円筒状熱電対を配置することができる。
【0048】
[0056]追加の実施形態では、空洞の円筒状受動加熱要素を、熱運動化管路206の1つ又は複数の直線区間の上及びまわりに配設することができる。そのような実施形態では、円筒状熱電対は、空洞の円筒状受動加熱要素と、空洞の円筒状受動加熱要素によって囲まれた熱運動化管路206の区間との間に配置することができる。
【0049】
[0057]熱運動化ガス噴射器300は能動加熱要素304をさらに含むことができる。能動加熱要素304は、ガス噴射器200の熱運動化管路206及び容器210の各々を少なくとも部分的に囲むことができる。実施形態によっては、能動加熱要素304は全体的に円筒状とすることができ、図4に示されるように、熱運動化管路206及び容器210の各々の少なくとも一部のまわりを完全に延びることができる。能動加熱要素304は、例えば、抵抗加熱要素、誘導加熱要素、及び放射加熱要素のうちの少なくとも1つを含むことができる。絶縁ジャケット306は、能動加熱要素304及び受動加熱要素302が熱運動化管路206(又は少なくともその中に含まれる1つ又は複数のガス)及び容器210(又は少なくともその中に含まれる液体試薬及び1つ又は複数のガス)を加熱する加熱プロセスの効率を改善するように、図4に示されるように、ガス噴射器200、受動加熱要素302、及び能動加熱要素304を少なくとも実質的に囲むことができる。
【0050】
[0058]熱運動化ガス噴射器300の能動及び受動加熱要素は、約500℃から約1000℃までの間の温度まで、熱運動化管路206、容器210、及び原料ガスを加熱することができてもよい。
【0051】
[0059]図5は本発明のガス噴射器400の別の実施形態を示す。図5のガス噴射器400は図2のガス噴射器200と同様であり、入口202、出口204、熱運動化管路406、及び容器210を含む。容器210は、図2及び3に関連して説明したようなものである。熱運動化管路406は、図2の熱運動化管路206が延びているようなつづら折れ構成を有する代わりに、熱運動化管路406が螺旋経路に沿って延びる(すなわち、螺旋構成を有する)という点を除いて図2の熱運動化管路206と実質的に同様である。
【0052】
[0060]図5に示されるように、本発明の実施形態は外側筐体450をさらに含むことができる。外側筐体450は、少なくともガス噴射器400の熱運動化管路406及び容器210を囲み、保護するように構成することができる。外側筐体450は、例えば、パージガス(例えば、パージガス)を搬送するのに使用することができる追加のガス案内管路としても働くことができる。例えば、外側筐体450は入口ポート452及び出口ポート454を含むことができ、その結果、ガスは入口ポート452と出口ポート454との間を外側筐体450を通って流れることができる。本発明の追加の実施形態では、外側筐体450は、図2のガス噴射器200、図4のガス噴射器300、又は本明細書において以下で説明する他のガス噴射器に設けることができる。
【0053】
[0061]引き続き図5を参照すると、動作中に、GaCl及びHなどの原料ガスは、100立方センチメートル毎分(sccm)未満、50sccm未満、又はさらに10sccm未満の流入流量で入口202を通ってガス噴射器400に入る。しかし、流量は、20標準リットル毎分(SLM)よりも大きく、例えば、30SLM以上などにすることができる。GaClなどのガス状前駆体は、約500℃から約1000℃までの間の温度で出口204を通ってガス噴射器400を出て行く。窒素ガス、又は窒素ガスと水素ガス(H)との混合物などのパージガスは約1〜5SLMの流入流量で入口ポート452を通って外側筐体450に入り、外側筐体450の少なくとも内部で過圧力を維持する。パージガスは出口ポート454を通って外側筐体450を出て行く。パージガスは、さらに、外側筐体450を通過するとき加熱されることができる。
【0054】
[0062]図6は、図5のガス噴射器400と実質的に同様のガス噴射器を含むが、外側筐体450のない熱運動化ガス噴射器500の別の実施形態を示す。したがって、ガス噴射器500は、本明細書で前に説明したように、熱運動化管路406及び容器210を含む。ガス噴射器500は入口202及び出口204をさらに含む。図6の熱運動化ガス噴射器は、図4のガス噴射器300に関連して前に説明したもののような能動及び受動加熱要素をさらに含む。特に、図6のガス噴射器500は前に説明した円筒状受動加熱要素302を含み、円筒状受動加熱要素302は、ガス噴射器500の螺旋状熱運動化管路406に囲まれる全体的に円筒状の空間内に配置される。熱運動化ガス噴射器500は、図4に関連して前に説明したように、能動加熱要素304及び保温ジャケット306をさらに含むことができる。前に説明したように、熱運動化ガス噴射器500の能動及び受動加熱要素は、約500℃から約1000℃までの間の温度まで、熱運動化管路406、容器210、及び原料ガスを加熱することができる可能性がある。
【0055】
[0063]図7は、加工物基板112上にドーパント前駆体を噴射するのに使用することができるガス噴射器500の一例を示す。ガス噴射器500は、図2及び3に関連して前に説明したような入口202、出口204、及び容器210を含む。全体的に直線の管路502は、入口202から容器210まで延びることができる(図2及び3の熱運動化管路206の代わりに)。容器210は、例えば、液体アルミニウム、液体インジウムなどの液体金属試薬を保持するように構成することができる。本発明のいくつかの実施形態では、容器210は、例えば、鉄、シリコン、又はマグネシウムなどの1つ又は複数の固体材料を保持するように構成することができる。
【0056】
[0064]ガス噴射器500は、例えば、図4のガス噴射器300に関連して前に説明した能動加熱要素304及び保温ジャケット306などの能動及び/又は受動加熱要素をさらに含むことができる。能動及び/又は受動加熱要素を使用して、容器210(又は少なくともその中に含まれる液体)を、容器210内の金属を液体状態に維持するのに十分な温度まで加熱することができる。
【0057】
[0065]ガス状塩化水素、塩素、又はガス状GaClなどの原料ガスは外部ガス供給源から入口202に供給することができる。原料ガスは入口202から管路502を通って容器210まで流れることができ、原料ガスは容器内の金属試薬と反応して前駆体ガス(例えば、InCl、AlCl、FeClなど)を形成することができる。前駆体ガスは出口204を通って容器210から流れ出ることができる。
【0058】
[0066]堆積システム100の他のガス噴射器の流量と比べてガス噴射器500によるガスの流量は選択的に制御され、得られたIII−V族半導体材料におけるドーパント前駆体から堆積された元素の濃度を制御することができる。
【0059】
[0067]上述のように、本発明の熱運動化ガス噴射器の実施形態は、S−ALDプロセスを使用してIII−V族半導体材料を堆積させるために、ガス状のIII族元素前駆体及びV族元素前駆体を加工物基板112上に噴射するのに使用することができる。例えば、実施形態によっては、本発明の熱運動化ガス噴射器は、水素の存在下でのGaClの熱分解によって、及びGaClのそのような熱分解に由来する塩素化化学種(例えばHCl、Cl)と液体ガリウムとの反応によって、GaClをガス状GaClに変換し、ALDプロセスにおけるGaNの堆積のためにGaClを加工物基板112上に噴射するのに使用することができる。
【0060】
[0068]図8(A)〜(D)は、方向矢印107によって示されるようにガス供給源114A、114B、114C、114D(図1)によって外部的に供給される原料ガスからIII族元素前駆体を生成するのに使用することができる管路116及びガス噴射器102の構成の例を示す。例えば、III族元素前駆体は、図3及び7に関して説明したように、1つ又は複数のIII族元素及び1つ又は複数のキャリアガスを含むガスから、又は加熱されたIII族元素(すなわち、液体ガリウム、液体アルミニウム、液体インジウムなど)の上を塩化水素(HCl)蒸気などのガスを通過させてGaCl、AlCl、又はInClなどのIII族前駆体ガスを形成することによって生成することができる。図8(A)〜(D)に関して説明するように前駆体ガスを形成することによって、前駆体ガスの濃度は所望の組成を有するIII−V族半導体材料を形成するように調整することができる。実施形態によっては、管路116は、様々な前駆体を噴射器102に輸送し、且つそこから輸送するための複数の枝路126A、126B、126Cを含むことができる。管路116の枝路126A、126B、126Cは、方向矢印109によって示されるような単一のガス流を形成するように集束し、単一のガス流はガスコラム108(図1)に供給することができる。
【0061】
[0069]図8(A)に示されるように、GaClと、InCl及びAlClの少なくとも一方とを含む前駆体混合物を、噴射器102を使用して形成することができる。例えば、GaClは、管路116の第1の枝路126AでGaCl及び塩素化ガスに変換することができ、InCl又はAlClは、それぞれ、管路116の第2の枝路126BでInCl又はAlClに変換することができる。前駆体混合物がGaCl及びInClを含む実施形態では、前駆体混合物は、加工物基板112(図1)上にInGaN、InGaAs、及びInGaPのうちの1つ又は複数を形成するのに使用することができる。前駆体混合物がGaCl及びAlClを含む実施形態では、前駆体混合物は、加工物基板112(図1)上にAlGaN、AlGaAs、及びAlGaPのうちの1つ又は複数を形成するのに使用することができる。
【0062】
[0070]図8(B)及び(C)を参照すると、GaCl、AlCl、InCl、又はFeClのうちの2つ以上のものなどの2つ以上のIII族元素前駆体は、図3及び7に関して説明したものなどのガス噴射器102を使用して、加熱されたIII族元素供給源(例えば、インジウム供給源又はアルミニウム供給源)の上を外部供給源からのGaClを通過させることによって形成することができる。非限定の例として、GaClは、加熱されたインジウム供給源の上を通過してInCl及びGaClを形成し、加熱されたアルミニウム供給源の上を通過してAlCl及びGaClを形成し、又は加熱された鉄供給源の上を通過してFeCl及びGaClを形成する。追加のGaCl前駆体は、ガリウム供給源の上を塩化水素及び塩素ガスの少なくとも一方を通過させることによって形成することができる。
【0063】
[0071]管路116の第1の枝路126Aでは、GaCl及び塩化水素若しくは塩素ガスの少なくとも一方を、図3及び7に関して説明したものなどの噴射器102を使用して1つ又は複数のGaCl及びHから生成することができる。管路116の第2の枝路126Bでは、追加のGaCl又は追加のIII族元素前駆体を噴射器102で生成することができる。追加のGaClが生成される実施形態では、GaCl、塩化水素、又は水素ガスのうちの少なくとも1つから生成された塩素化ガスをガリウムと反応させて追加のGaClを形成することができる。追加のIII族元素前駆体が形成される実施形態では、GaClから生成されたGaCl、塩化水素、又は塩素をインジウム、アルミニウム、又は鉄のうちの少なくとも1つと反応させて、追加のIII族元素前駆体(すなわち、InCl、AlCl、又はFeCl)を形成することができる。管路116の第1の枝路126A及び第2の枝路126Bは集束し、その結果、ガスの混合がもたらされる。
【0064】
[0072]実施形態によっては、III−V族半導体材料に不純物を注入するために使用することができる追加のガスを管路116に加えることができる。図8(C)に示されるように、管路116の第1の枝路126Aに供給されるGaClは、管路116の第3の枝路126Cに供給されるドーパントガスと混合することができる。好適なドーパントガスには、限定はしないが、鉄含有ガス、二塩化シラン(HSiCl)、シラン(SiH)、及び四塩化ケイ素(SiCl)が含まれる。オプションとして、管路116の第2の枝路126Bを使用して、図8(B)に関して説明したように、追加のIII族元素前駆体又は追加のGaClを生成することができる。
【0065】
[0073]図8(D)に示される追加の実施形態では、管路116は枝路126A、126B、及び126Cを含むことができ、GaCl、InCl、及びAlClのうちの1つを枝路126A、126B、126Cのうちの少なくとも2つに供給してGaCl、InCl、及びAlClのうちの少なくとも2つの混合物を含むガスを形成することができる。GaCl、InCl、及びAlClのうちの少なくとも2つの組合せを使用して、例えばInGaN又はAlGaNなどの三元III族化合物及び例えばAlInGaNなどの四元III族化合物を形成することができる。
【0066】
[0074]図1に関して説明した堆積システム100は、S−ALDによってIII−V族半導体材料を形成する方法で使用することができる。例えば、この方法はIII−V族半導体材料を形成するために複数のALD成長サイクル122、124を使用することができ、ALD成長サイクルの各々は加工物基板112を少なくとも1つのIII族前駆体及び少なくとも1つのV族前駆体にさらすことを含む。過剰前駆体及びパージガスは、少なくとも1つのIII族前駆体及び少なくとも1つのV族前駆体が混合しないようにするために排気ライン120に接続されたガスコラム108によって除去することができる。したがって、各ALD成長サイクル122、124は特定のIII−V族半導体材料の層を形成することができる。堆積システム100を使用して任意の数のALD成長サイクルを行い、所望の厚さの特定のIII−V族半導体材料を形成するか、又は異なるIII−V族半導体材料の複数の層を形成することができる。成長サイクルの各々の間に加工物基板112に供給される前駆体は、所望のIII−V族半導体材料、又は異なるIII−V族半導体材料の所望の複数の層を加工物基板112に形成するように調整することができる。例えば、この方法を使用して、LEDの組成などのデバイス層に有用な異なる組成を有するIII−V族半導体材料を含む複数の層を形成することができる。
【0067】
[0075]組立体106及びマニホールド104の少なくとも一方はマニホールド104に対する加工物基板112の移動を確立するように構成される。加工物基板112は組立体106に配置され、マニホールド104の長さに沿った一連の噴射位置(すなわち、長手方向に位置合わせされたガス噴射器102A、102B、102C、102Dの各々の下の位置)を通ってマニホールド104に対して移動することができる。噴射位置の各々において、加工物基板112は、III族材料、V族材料、又はIII−V族化合物材料の層が加工物基板112に堆積されるように、上にあるガス噴射器102A、102B、102C、102Dによって少なくとも1つのIII族元素前駆体又は少なくとも1つのV族元素前駆体にさらされ得る。ガス噴射器102A、102B、102C、102Dは、所望のIII−V族半導体材料を形成するために前駆体流量及び組成を制御するようにプログラムすることができる。
【0068】
[0076]III族元素前駆体は、前に説明した本発明の熱運動化ガス噴射器の実施形態を使用してIII族元素供給源から形成することができる。実施形態によっては、GaCl、InCl、及びAlClのうちの少なくとも1つと、H、N、及びArなどの1つ又は複数のキャリアガスとを、ガス噴射器102A、102B、102C、102Dを使用して熱運動化して、III族元素前駆体(すなわち、GaCl、InCl、及びAlCl)を形成することができる。他の実施形態では、GaCl、InCl、及びAlClなどのガスの混合物を含むIII族元素供給源を使用してInGaN、InGaAs、InGaP、AlGaN、AlGaAs、及びAlGaPなどの三元及び四元III−V族半導体材料を形成することができる。例えば、ガスの混合物は、図8(A)〜(D)に関して説明したように、ガス噴射器102A、102B、102C、102Dに入るのに先立って形成することができる。そのような混合物を使用して、加工物基板112に三元及び四元III−V族半導体材料を形成することができる。例えば、加工物基板112にInGaN、InGaAs、又はInGaPを形成するためにガス噴射器102A、102B、102C、102Dのうちの1つ又は複数にGaCl及びInClの混合物を供給することができ、又は加工物基板112にAlGaN、AlGaAs、又はAlGaPを形成するためにガス噴射器102A、102B、102C、102DにGaCl及びAlClの混合物を供給することができる。混合物中のガスの比は所望の組成を有するIII−V族半導体材料を形成するように調整することができる。
【0069】
[0077]V族元素前駆体は、V族元素源を熱運動化することによって、又は当技術分野で既知の他の技法(例えば、プラズマ生成技法)によって形成することができる。例えば、アンモニア(NH)、アルシン(AsH)、及びホスフィン(PH)のうちの少なくとも1つを熱運動化して、V族元素前駆体を形成することができる。
【0070】
[0078]本発明のいくつかの実施形態では、ガス噴射器102A、102B、102C、102Dのうちの1つ又は複数を使用して、GaCl、InCl、又はAlClなどのIII族元素前駆体を生成し、III族元素前駆体に加工物基板112の主表面をさらすことができる。本発明の追加の実施形態では、ガス噴射器102A、102B、102C、102Dのうちの1つ又は複数を使用して異なるIII族元素前駆体を生成することができ、それを使用して、例えば、InGaN、AlGaN、InAlGaNなどのような2つ以上の異なるIII族元素を含むIII族窒化物化合物材料を形成することができる。限定ではなく例として、第1及び第3のガス噴射器102A、102Cを使用して、1つ又は複数のGaCl(GaClの熱分解によって、及びGaClのそのような熱分解に由来する塩素化化学種と液体ガリウムとの反応によってGaClをガス状GaClに変換することによる)、InCl(InClの熱分解によって、及びInClのそのような熱分解に由来する塩素化化学種と液体インジウムとの反応によってInClをガス状InClに変換することによる)、及びAlCl(AlClの熱分解によって、及びInClのそのような熱分解に由来する塩素化化学種と液体インジウムとの反応によってAlClをガス状AlClに変換することによる)のうちの1つ又は複数を供給することができ、第2の及び第4のガス噴射器102B、102Dを使用してガス状アンモニア(NH)、ガス状アルシン(AsH)、又はガス状ホスフィン(PH)を供給することができる。各ガス噴射器102A、102B、102C、102Dは十分な量の前駆体ガスを加工物基板112に導入して加工物基板112に材料の層を堆積させることができる。堆積システム100は、所望の厚さのIII−V族半導体材料、又は異なるIII−V族半導体材料の複数の層を加工物基板112に堆積させるために任意の数のガス噴射器102A、102B、102C、102Dを含むことができる。さらに、加工物基板112は、望ましい厚さのIII−V族半導体材料、又は異なるIII−V族半導体材料の複数の層を得るために堆積システム100を任意の回数通過させることができる。
【0071】
[0079]本発明のさらなる追加の実施形態では、ガス噴射器102A、102B、102C、102Dのうちの少なくとも1つを使用して、III−V族半導体材料にドーパント(例えば、鉄原子若しくはイオン、又はシリコン原子若しくはイオン)を導入するのに使用することができるドーパント前駆体(例えば、塩化鉄(FeCl)又はシリコン(Si)を含む気相化学種)を生成することができる。堆積プロセスの間、ドーパント前駆体は、堆積されているIII−V族半導体材料にドーパントが結果として組み込まれるように別の物質に分解及び/又は別の物質と反応することができる。そのような実施形態では、ドーパント前駆体を噴射するのに使用されるガス噴射器中でドーパント前駆体を熱的に分解することが必要でない場合がある。
【0072】
[0080]非限定の例として、ALD成長サイクル122、124の各々を使用して、所望の組成を有するIII−V族半導体材料の層、又は各々が異なる組成を有するIII−V族半導体材料の複数の層を形成することができる。第1のALD成長サイクル122を行って、III−V族半導体材料の第1の層を堆積させることができる。加工物基板112が第1のALD成長サイクル122によりマニホールド104の長さに沿って移動するとき、加工物基板112は第1の噴射器102Aと連通するガスコラム108の下に位置づけることができる。第1の噴射器102Aは対応するガスコラム108を通して加工物基板112にIII族元素前駆体を供給することができ、III族元素は加工物基板112の表面に吸収され得る。
【0073】
[0081]過剰ガス又はIII族元素前駆体は、排気ライン120に接続されたガスコラム108を通して加工物基板112の表面からガスをポンプで排気することによって加工物基板112から除去することができる。加工物基板112の表面をパージガスにさらすことによって、ポンプによる排気動作と排気動作との間にパージ動作を行うこともできる。
【0074】
[0082]次に、加工物基板112はマニホールド104に対して第2の噴射器102Bの下の位置まで移動することができる。加工物基板112を、第2の噴射器102Bによって供給されるV族元素前駆体にさらすことができる。第2の噴射器102Bは十分な量のV族元素前駆体を加工物基板112に導入し、V族元素は第1の噴射器102Aによって加工物基板112の表面に堆積されたIII族元素と反応してIII−V族半導体材料の第1の層を形成することができる。過剰ガス又はV族元素前駆体は、前に説明したように、ポンプによる排気及びパージを行うことによって加工物基板112から除去することができる。ALD成長サイクル122はIII−V族半導体材料の第1の層の厚さを増加させるために任意の回数繰り返すことができる。
【0075】
[0083]別のALD成長サイクル124を行って、III−V族半導体材料の第1の層と異なる組成を有するIII−V族半導体材料の第2の層を堆積させることができる。加工物基板112が第2のALD成長サイクル124によりマニホールド104に対して移動されるとき、加工物基板112は第3の噴射器102Cの下に位置づけることができる。第3の噴射器102CはIII族元素前駆体を加工物基板112に導入し、III族元素は加工物基板112の表面に吸収され得る。
【0076】
[0084]過剰ガス又は前駆体は、前に説明したように、ポンプによる排気及びパージを行うことによって加工物基板112から除去することができる。
【0077】
[0085]過剰ガスを除去した後、加工物基板112はマニホールド104に対して第4の噴射器102Dの下の位置まで移動することができる。第4の噴射器102DはV族元素前駆体を加工物基板112に導入し、V族元素は加工物基板112の表面に堆積されたIII族元素と反応してIII−V族半導体材料の第2の層を形成することができる。ALD成長サイクル124はIII−V族半導体材料の第2の層の厚さを増加させるために任意の回数繰り返すことができる。
【0078】
[0086]ALD成長サイクル122、124の一方で形成されたIII−V族半導体材料の層の厚さは、使用された前駆体と、マニホールド104の長さに沿った加工物基板112の相対的移動の速度とによって決めることができる。任意の数のALD成長サイクル122、124を行って、所望の厚さのIII−V族半導体材料を堆積するか、又は異なる組成を有するIII−V族半導体材料の層を形成することができる。ガス噴射器102A、102B、102C、102Dによって加工物基板112に導入される前駆体のタイプを調整して、所望のIII−V族半導体材料、又はIII−V族半導体材料の所望の複数の層を形成することができる。III−V族半導体材料の複数の層を含む構造体が形成される実施形態では、1つ又は複数の第1のALD成長サイクル122を行うことによって所望の厚さの特定のIII−V族半導体材料を加工物基板112に形成することができ、その後、1つ又は複数の第2のALD成長サイクル124を行って所望の厚さの別の異なるIII−V族半導体材料を形成することができる。ALD成長サイクル122、124を調整して、堆積システム100を使用して堆積されたIII−V族半導体材料の各層の厚さ及び組成を制御することができる。
【0079】
[0087]加工物基板112とマニホールド104との相対的移動により、従来のCVDシステムのようなALD成長サイクル間の反応チャンバからの加工物基板112のローディング及びアンローディング、温度勾配、清浄化、ポンプ停止などなしに加工物基板112を異なる前駆体に連続的に順次さらすことができる。マニホールド104に対する加工物基板112の相対的移動の速度を前駆体の反応時間に応じて変化させ、それにより、III−V族半導体材料の成長速度を高くすることができる。堆積されたIII−V族半導体材料の各々の厚さ及び組成は、堆積システム100の噴射位置(すなわち、ガス噴射器102A、102B、102C、102Dに対応するガスコラム108の各々の下の位置)の数と、これらの噴射位置の各々で加工物基板112に導入される前駆体のタイプとによって決定することができる。したがって、堆積システム100は、III−V族半導体材料の各々の厚さ及び組成の正確な制御を可能にする。堆積システム100は、各々が所望の厚さ及び組成を有するIII−V族半導体材料層の任意の組合せを堆積させるように構成することができる。堆積システム100及び関連する方法は、さらに、従来の堆積システム及び方法と比較してIII−V族半導体材料のスループットを実質的に向上させ、したがって、製作コストを低減させる。堆積システム100は、さらに、レーザダイオード、LED、高周波及びパワーダイオードなどのIII族窒化物系デバイスで使用されるものなどのIII−V族半導体材料の多層を含む構造体の製作を可能にする。
【0080】
[0088]次の例は本発明の一実施形態をより詳細に説明するのに役立つ。この例は、本発明の範囲に関して網羅的又は排他的であると解釈されるべきでない。
【0081】
[0089]図9は、図1に示したような堆積システム100を上から見た図であり、異なるIII−V族半導体材料の多層を含む構造体、特に多重量子井戸LED構造体を形成する方法における堆積システム100の使用を示す。堆積システム100を使用してGaN、InN、AlN、及びIII族窒化物合金を堆積させることができる。加工物基板112は、サファイア基板上のn型GaN材料などのテンプレート構造体を含むことができる。GaN材料は約1μm〜約20μmの範囲の厚さを有し、n型材料を製造するためにシリコンを電気的にドープすることができる。堆積システム100を使用して、加工物基板112のGaN層上に複数の活性層(図示せず)を形成することができる。例えば、活性層は、LEDを含むことができるデバイス構造体の基礎を形成することができる。追加の実施形態では、活性層は、レーザダイオード、トランジスタ、太陽電池、MEMSなどを形成するように組合せ及び構成することができる。
【0082】
[0090]堆積システム100は、約350℃〜約750℃の範囲の温度及び約1000mTorr〜約7600mTorrの範囲の圧力で維持することができる。非限定の例として、原料ガスは約1sccm〜約100sccmの範囲の流量で供給され得る。
【0083】
[0091]実施形態によっては、堆積システム100は、複数の堆積区域130A、130B、130C、130D、130E、130Fを含むことができ、それらの各々を使用して複数の層を含む構造体が加工物基板112に形成され、層の各々は特定の組成を有するIII−V族半導体材料を含む。例えば、この構造体はLEDデバイス層構造体とすることができる。ドープしたp型AlGaNの層とドープしたp型GaNとの下にあるInGaNとGaNとの交互層を含む構造体が形成される実施形態では、堆積システム100は、InGaN材料を堆積させるための第1及び第3の堆積区域130A、130Cと、GaN材料を堆積させるための第2及び第4の堆積区域130B、130Dと、ドープしたp型AlGaN材料を堆積させるための第5の堆積区域130Eと、ドープしたp型GaN材料を堆積させるための第6の堆積区域130Fとを含むことができる。加工物基板112が堆積システム100の区域130A、130B、130C、130D、130E、130Fを通り過ぎるとき、適切なIII族前駆体及び窒素前駆体の交互暴露を加工物基板112に導入して、所望のIII−V族半導体材料を形成することができる。
【0084】
[0092]実施形態によっては、1nmの厚さの所望のIII−V族半導体材料を1メートルのマニホールド104ごとに堆積することができる。組立体106が、マニホールド104の長さに沿って加工物基板112を移動させるのに使用されるトラック又はコンベヤを備える実施形態では、トラックは、100nmの厚さを有するIII−V族半導体材料、例えばLEDデバイス層状構造体などを形成するのに十分な数のガス噴射器102A、102B、102C、102Dの下で加工物基板112を移動させるために約100メートルの長さを有することができる。堆積システム100は利用可能な空間に応じて様々な構成で配列することができる。堆積システムが毎時約1000ウェハの処理速度及び約100平方メートル(m)を有する実施形態では、毎時1000ウェハのデバイス層状構造体納品速度が想定される。これは、約0.1m/ウェハ/時の面積/有効サイクルタイム/ウェハに相当し、これは従来のCVD反応器の処理速度と比較して実質的な改善である。
【0085】
[0093]本発明の追加の非限定の例示の実施形態が下記で説明される。
【0086】
[0094]実施形態1:半導体材料を堆積させる方法であって、この方法は、複数の実質的に位置合わせされたガスコラムのうちの第1のガスコラムを通してIII族元素前駆体を流すステップと、複数の実質的に位置合わせされたガスコラムのうちの第2のガスコラムを通してV族元素前駆体を流すステップと、複数の実質的に位置合わせされたガスコラムに対する基板の移動を確立するステップと、基板の表面をIII族元素前駆体及びV族元素前駆体に連続的にさらしてIII−V族半導体材料を形成するステップとを含む。
【0087】
[0095]実施形態2:少なくとも1つのIII族元素を含むガスを分解してIII族元素前駆体を生成するステップをさらに含む、実施形態1に記載の方法。
【0088】
[0096]実施形態3:少なくとも1つのIII族元素を含むガスを分解してIII族元素前駆体を生成するステップが、GaCl、InCl、及びAlClのうちの少なくとも1つを分解してGaCl、InCl、及びAlClのうちの少なくとも1つと塩素とを形成するステップとを含む、実施形態2に記載の方法。
【0089】
[0097]実施形態4:GaCl、InCl、及びAlClのうちの少なくとも1つを分解してGaCl、InCl、及びAlClのうちの少なくとも1つと塩素とを形成するステップが、GaClを分解してGaClと塩素とを形成するステップを含む、実施形態3に記載の方法。
【0090】
[0098]実施形態5:塩素を液体ガリウムと反応させて追加のGaClを形成するステップをさらに含む、実施形態2又は3に記載の方法。
【0091】
[0099]実施形態6:基板の表面をIII族元素前駆体及びV族元素前駆体に繰り返してさらすことによってIII−V族半導体材料の厚さを増加させるステップをさらに含む、実施形態1〜5のいずれか1つに記載の方法。
【0092】
[00100]実施形態7:第1のガスコラムと第2のガスコラムとの間に配置された第3のガスコラムを通してパージガスを流すステップと、基板をパージガスにさらして基板の表面から過剰III族元素前駆体及び過剰V族元素前駆体を除去するステップとをさらに含む、実施形態1〜6のいずれか1つに記載の方法。
【0093】
[00101]実施形態8:基板の表面をIII族元素前駆体及びV族元素前駆体に連続的にさらすステップが、基板の表面をGaCl、InCl、及びAlClのうちの少なくとも1つにさらしてガリウム、インジウム、及びアルミニウムのうちの少なくとも1つを基板の表面に吸収させるステップと、基板の表面に吸収されたガリウム、インジウム、及びアルミニウムの少なくとも1つを窒素、ヒ素、及びリンのうちの少なくとも1つにさらすステップとを含む、実施形態1〜7のいずれか1つに記載の方法。
【0094】
[00102]実施形態9:基板の表面をIII族元素前駆体及びV族元素前駆体に連続的にさらしてIII−V族半導体材料を形成するステップが、窒化ガリウム、窒化インジウム、窒化アルミニウム、窒化インジウムガリウム、ヒ化インジウムガリウム、リン化インジウムガリウム、窒化アルミニウムガリウム、ヒ化アルミニウムガリウム、及びリン化アルミニウムガリウムのうちの少なくとも1つを形成するステップを含む、実施形態1〜8のいずれか1つに記載の方法。
【0095】
[00103]実施形態10:基板の表面をIII族元素前駆体及びV族元素前駆体に連続的にさらしてIII−V族半導体材料を形成するステップが、約100nmの厚さを有するIII−V族半導体材料を形成するステップを含む、実施形態1〜9のいずれか1つに記載の方法。
【0096】
[00104]実施形態11:基板の表面を別のIII族元素前駆体及び別のV族元素前駆体に連続的にさらしてIII−V族半導体材料の上に別のIII−V族半導体材料を形成するステップをさらに含み、別のIII−V族半導体材料がIII−V族半導体材料と異なる組成を有する、実施形態1〜10のいずれか1つに記載の方法。
【0097】
[00105]実施形態12:半導体材料を堆積させる方法であって、熱運動化ガス噴射器内で少なくとも1つの原料ガスを熱的に分解してIII族元素前駆体を形成するステップと、少なくとも1つのガスコラムを通してIII族元素前駆体を基板の表面の方に誘導して少なくとも1つのIII族元素を基板の表面に吸収させるステップと、少なくとも1つのガスコラムと実質的に位置合わせされた少なくとも別のガスコラムを通してV族元素前駆体を基板の表面の方に誘導してIII−V族半導体材料を形成するステップとを含む方法。
【0098】
[00106]実施形態13:少なくとも1つのガスコラム及び少なくとも別のガスコラムに対する基板の移動を確立するステップをさらに含む、実施形態12に記載の方法。
【0099】
[00107]実施形態14:少なくとも1つのガスコラム及び少なくとも別のガスコラムに対する基板の移動を確立するステップが、複数のガスコラムのうちの少なくとも1つのガスコラム及び少なくとも別のガスコラムに対する基板の移動を確立するステップを含む、実施形態13に記載の方法。
【0100】
[00108]実施形態15:熱運動化ガス噴射器内で少なくとも1つの原料ガスを熱的に分解してIII族元素前駆体を形成するステップが、熱運動化ガス噴射器内でGaCl、InCl、及びAlClのうちの少なくとも1つを熱的に分解してGaCl、InCl、及びAlClのうちの少なくとも1つと塩素ガスとを形成するステップを含む、実施形態12〜14のいずれか1つに記載の方法。
【0101】
[00109]実施形態16:塩素ガスを熱運動化ガス噴射器内で液体ガリウム、液体インジウム、及び液体アルミニウムのうちの少なくとも1つと反応させて追加のGaCl、InCl、及びAlClのうちの少なくとも1つを形成するステップをさらに含む、実施形態15に記載の方法。
【0102】
[00110]実施形態17:GaClを熱運動化ガス噴射器内で液体インジウム、液体アルミニウム、及び液体鉄のうちの少なくとも1つと反応させてInGaCl、AlGaCl、及びFeGaClのうちの少なくとも1つを形成するステップをさらに含む、実施形態15又は16に記載の方法。
【0103】
[00111]実施形態18:III族元素前駆体を少なくとも1つのガスコラムを通して基板の表面の方に誘導して少なくとも1つのIII族元素を基板の表面に吸収させるステップが、GaCl、InCl、及びAlClのうちの少なくとも1つを少なくとも1つのガスコラムを通して基板の表面の方に誘導してガリウム、インジウム、及びアルミニウムのうちの少なくとも1つを基板の表面に吸収させるステップを含む、実施形態12〜17のいずれか1つに記載の方法。
【0104】
[00112]実施形態19:GaCl、InCl、及びAlClのうちの少なくとも1つを基板の表面の方に誘導するステップが、基板をGaClにさらすステップを含む、実施形態18のいずれか1つに記載の方法。
【0105】
[00113]実施形態20:V族元素前駆体を少なくとも別のガスコラムを通して基板の表面の方に誘導するステップが、窒素、ヒ素、及びリンのうちの少なくとも1つを少なくとも別のガスコラムを通して基板の表面の方に誘導するステップを含む、実施形態12〜19のいずれか1つに記載の方法。
【0106】
[00114]実施形態21:アンモニア、アルシン、及びホスフィンのうちの少なくとも1つを熱運動化してV族元素前駆体を生成するステップをさらに含む、実施形態12〜20のいずれか1つに記載の方法。
【0107】
[00115]実施形態22:基板の表面を少なくとも1つのパージガスにさらして基板の表面からIII族元素前駆体及びV族元素前駆体の少なくとも一方を除去するステップをさらに含む、実施形態12〜21のいずれか1つに記載の方法。
【0108】
[00116]実施形態23:1つ又は複数のガスを誘導するように構成された複数の実質的に位置合わせされたガスコラムを備えるマニホールドであって、実質的に位置合わせされたガスコラムの少なくとも1つが、入口と、熱運動化管路と、液体試薬を保持するように構成された液体容器と、出口と、入口から熱運動化管路を通って液体容器内の内部空間まで及び液体容器内の内部空間から出口まで延びる経路とを備える熱運動化ガス噴射器からIII族前駆体ガスを受け取るように構成された、マニホールドと、マニホールドに対して基板を移動させるための少なくとも1つの組立体と、を備える堆積システム。
【0109】
[00117]実施形態24:熱運動化管路が入口と液体容器との間の最短距離よりも大きい長さを有する、実施形態23に記載の堆積システム。
【0110】
[00118]実施形態25:液体容器内に少なくとも1つの液体III族元素をさらに備える、実施形態23又は24に記載の堆積システム。
【0111】
[00119]実施形態26:少なくとも1つの液体III族元素が、液体ガリウム、液体インジウム、及び液体アルミニウムのうちの少なくとも1つを含む、実施形態25に記載の堆積システム。
【0112】
[00120]実施形態27:熱運動化管路及び液体容器の少なくとも一方が石英で少なくとも実質的に構成される、実施形態23〜26のいずれか1つに記載の堆積システム。
【0113】
[00121]実施形態28:熱運動化管路及び液体容器の少なくとも一方に隣接して配置された少なくとも1つの加熱要素をさらに備える、実施形態23〜27のいずれか1つに記載の堆積システム。
【0114】
[00122]実施形態29:少なくとも1つの加熱要素が、窒化アルミニウム、炭化ケイ素、及び炭化ホウ素のうちの少なくとも1つで少なくとも実質的に構成された受動加熱要素を備える、実施形態23〜27のいずれか1つに記載の堆積システム。
【0115】
[00123]実施形態30:少なくとも1つのガス供給源と、ガス供給源から少なくとも1つの熱運動化ガス噴射器の入口まで原料ガスを搬送するように構成された少なくとも1つのガス流入管路とをさらに備える、実施形態23〜27のいずれか1つに記載の堆積システム。
【0116】
[00124]実施形態31:少なくとも1つのガス供給源がGaCl、InCl、及びAlClのうちの少なくとも1つの供給源を備える、実施形態30に記載の堆積システム。
【0117】
[00125]実施形態32:複数のガスコラムの各々の間に配置された少なくとも1つのパージガスノズルをさらに備える、実施形態23〜31のいずれか1つに記載の堆積システム。
【0118】
[00126]実施形態33:少なくとも1つのガスコラムに隣接する別のガスコラムが少なくとも1つのパージガスを受け取るように構成される、実施形態23〜32のいずれか1つに記載の堆積システム。
【0119】
[00127]実施形態34:マニホールドに対して基板を移動させるための少なくとも1つの組立体が、マニホールドの長さに沿って一連の噴射位置を通して基板を移送するように構成されたトラックシステムを備え、各噴射位置が複数のガスコラムのうちの1つの下にある、実施形態23〜33のいずれか1つに記載の堆積システム。
【0120】
[00128]上述の本発明の実施形態は、これらの実施形態が添付の特許請求の範囲及びそれらの法的均等物の範囲によって規定される本発明の実施形態の単なる例であるので、本発明の範囲を限定しない。任意の均等な実施形態は本発明の範囲内にあることが意図される。実際には、本明細書で図示及び説明したものに加えて、説明した要素の代替の有用な組合せなどの本発明の様々な変形が、本説明から当業者には明らかとなるであろう。そのような変形も添付の特許請求の範囲の範囲以内にあることが意図される。
【符号の説明】
【0121】
100 堆積システム
102、102A、102B、102C、102D ガス噴射器
103 方向矢印
104 マニホールド
105 方向矢印
106 組立体、トラック
107 方向矢印
108 ガスコラム
109 方向矢印
110 ポート
112 加工物基板
114A、114B、114C、114D ガス供給源
116 管路
118 パージガス供給源
120 排気ライン
121 方向矢印
122、124 成長サイクル
126A 第1の枝路
126B 第2の枝路
126C 第3の枝路
130A、130B、130C、130D、130E、130F 堆積区域
200 ガス噴射器
202 入口
204 出口
206 熱運動化管路
210 液体容器
212 下部壁
214 上部壁
216 側壁
220 破線
222 空間
224 管
226 開口
228 出口ポート
230 出口管路
300 熱運動化ガス噴射器
302 受動加熱要素
304 能動加熱要素
306 保温ジャケット
400 ガス噴射器
406 熱運動化管路
450 外側筐体
452 入口ポート
454 出口ポート
500 熱運動化ガス噴射器
502 管路

【特許請求の範囲】
【請求項1】
複数の実質的に位置合わせされたガスコラムのうちの第1のガスコラムを通してIII族元素前駆体を流すステップと、
前記複数の実質的に位置合わせされたガスコラムのうちの第2のガスコラムを通してV族元素前駆体を流すステップと、
前記複数の実質的に位置合わせされたガスコラムに対する基板の移動を確立するステップと、
前記基板の表面を前記III族元素前駆体及び前記V族元素前駆体に連続的にさらしてIII−V族半導体材料を形成するステップと、
を含む半導体材料を堆積させる方法。
【請求項2】
少なくとも1つのIII族元素を含むガスを分解して前記III族元素前駆体を生成するステップをさらに含む、請求項1に記載の方法。
【請求項3】
少なくとも1つのIII族元素を含むガスを分解して前記III族元素前駆体を生成する前記ステップが、GaCl、InCl、及びAlClのうちの少なくとも1つを分解してGaCl、InCl、及びAlClのうちの少なくとも1つと塩素化化学種とを形成するステップを含む、請求項2に記載の方法。
【請求項4】
GaCl、InCl、及びAlClのうちの少なくとも1つを分解してGaCl、InCl、及びAlClのうちの少なくとも1つと塩素化化学種とを形成する前記ステップが、GaClを分解してGaClと塩素化化学種とを形成するステップを含む、請求項3に記載の方法。
【請求項5】
前記塩素化化学種を液体ガリウムと反応させて追加のGaClを形成するステップをさらに含む、請求項4に記載の方法。
【請求項6】
GaCl、InCl、及びAlClのうちの少なくとも1つを分解してGaCl、InCl、及びAlClのうちの少なくとも1つと塩素化化学種とを形成する前記ステップが、GaCl、InCl、及びAlClのうちの少なくとも1つを分解してGaCl、InCl、及びAlClのうちの少なくとも1つと、塩化水素及び塩素ガスの少なくとも一方とを形成するステップを含む、請求項3に記載の方法。
【請求項7】
前記基板の前記表面を前記III族元素前駆体及び前記V族元素前駆体に繰り返してさらすことによって前記III−V族半導体材料の厚さを増加させるステップをさらに含む、請求項1に記載の方法。
【請求項8】
前記第1のガスコラムと前記第2のガスコラムとの間に配置された第3のガスコラムを通してパージガスを流すステップと、
前記基板を前記パージガスにさらして前記基板の前記表面から過剰III族元素前駆体及び過剰V族元素前駆体を除去するステップと、
をさらに含む、請求項1に記載の方法。
【請求項9】
前記基板の表面を前記III族元素前駆体及び前記V族元素前駆体に連続的にさらす前記ステップが、
前記基板の前記表面をGaCl、InCl、及びAlClのうちの少なくとも1つにさらしてガリウム、インジウム、及びアルミニウムのうちの少なくとも1つを前記基板の前記表面に吸収させるステップと、
前記基板の前記表面に吸収された前記ガリウム、インジウム、及びアルミニウムのうちの少なくとも1つを窒素、ヒ素、及びリンのうちの少なくとも1つにさらすステップと、
を含む、請求項1に記載の方法。
【請求項10】
前記基板の表面を前記III族元素前駆体及び前記V族元素前駆体に連続的にさらしてIII−V族半導体材料を形成する前記ステップが、窒化ガリウム、窒化インジウム、窒化アルミニウム、窒化インジウムガリウム、ヒ化インジウムガリウム、リン化インジウムガリウム、窒化アルミニウムガリウム、ヒ化アルミニウムガリウム、リン化アルミニウムガリウム、窒化アルミニウムインジウムガリウム、ヒ化アルミニウムインジウムガリウム、及びリン化アルミニウムインジウムガリウムのうちの少なくとも1つを形成するステップを含む、請求項1に記載の方法。
【請求項11】
前記基板の表面を前記III族元素前駆体及び前記V族元素前駆体に連続的にさらしてIII−V族半導体材料を形成する前記ステップが、約1000nm未満の厚さを有する前記III−V族半導体材料を形成するステップを含む、請求項1に記載の方法。
【請求項12】
前記基板の表面を別のIII族元素前駆体及び別のV族元素前駆体に連続的にさらして前記III−V族半導体材料の上に別のIII−V族半導体材料を形成するステップをさらに含み、前記別のIII−V族半導体材料が前記III−V族半導体材料と異なる組成を有する、請求項1に記載の方法。
【請求項13】
1つ又は複数のガスを誘導するように構成された複数の実質的に位置合わせされたガスコラムを備えるマニホールドであって、前記複数のガスコラムの少なくとも1つが、
入口と、
熱運動化管路と、
液体試薬を保持するように構成された液体容器と、
出口と、
前記入口から前記熱運動化管路を通って前記液体容器内の内部空間まで、及び前記液体容器内の前記内部空間から前記出口まで延びる経路と、
を備える熱運動化ガス噴射器からIII族前駆体ガスを受け取るように構成された、マニホールドと、
前記マニホールドに対して基板を移動させるための少なくとも1つの組立体と、
を備える堆積システム。
【請求項14】
前記熱運動化管路が前記入口と前記液体容器との間の最短距離よりも大きい長さを有する、請求項13に記載の堆積システム。
【請求項15】
前記液体容器内に少なくとも1つの液体III族元素をさらに備え、前記少なくとも1つの液体III族元素が、液体ガリウム、液体インジウム、及び液体アルミニウムのうちの少なくとも1つを含む、請求項13に記載の堆積システム。
【請求項16】
前記熱運動化管路及び前記液体容器の少なくとも一方に隣接して配置された少なくとも1つの加熱要素をさらに備える、請求項13に記載の堆積システム。
【請求項17】
前記少なくとも1つの加熱要素が、窒化アルミニウム、炭化ケイ素、及び炭化ホウ素のうちの少なくとも1つで少なくとも実質的に構成された受動加熱要素を備える、請求項13に記載の堆積システム。
【請求項18】
少なくとも1つのガス供給源と、
前記ガス供給源から前記少なくとも1つの熱運動化ガス噴射器の前記入口まで原料ガスを搬送するように構成された少なくとも1つのガス流入管路と、
をさらに含む、請求項13に記載の堆積システム。
【請求項19】
前記少なくとも1つのガス供給源が、GaCl、InCl、及びAlClのうちの少なくとも1つの供給源と、窒素ガス及び水素ガスの少なくとも一方を含むパージガスと、を備える、請求項18に記載の堆積システム。
【請求項20】
前記少なくとも1つのガスコラムに隣接する別のガスコラムが少なくとも1つのパージガスを受け取るように構成される、請求項13に記載の堆積システム。


【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate


【公開番号】特開2012−80082(P2012−80082A)
【公開日】平成24年4月19日(2012.4.19)
【国際特許分類】
【外国語出願】
【出願番号】特願2011−169572(P2011−169572)
【出願日】平成23年8月2日(2011.8.2)
【出願人】(598054968)ソイテック (101)
【氏名又は名称原語表記】Soitec
【住所又は居所原語表記】Parc Technologique des fontaines chemin Des Franques 38190 Bernin, France
【Fターム(参考)】