説明

光学素子検査装置

【課題】基準レンズがなくても被検光学素子の面形状誤差、面間偏心誤差、屈折率分布等を一度の測定で検知し、被検光学素子の合否を判定できる検査装置。
【解決手段】光源11と、光源11からの光束を被検光束Mと参照光束Rに分割する光束分割手段18と、被検光学素子22が配置される被検光束M中に配置され、設計値に基づく被検光学素子22の透過波面を略平面に変換する補正光学系23と、補正光学系23を透過した被検光束Mと被検光束Mとは異なる光路を経て平行光束とされた参照光束Rとを合成する光束合成手段26と、光束合成手段26を透過した光束を撮像する撮像手段28と、撮像手段28によって形成された干渉縞に基づいて被検光学素子22を透過した波面に係るパラメータを算出するパラメータ算出手段31と、パラメータに基づいて被検光学素子22の評価値を算出する評価値演算手段31とを備えた光学素子検査装置。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、光学素子検査装置に関し、詳しくは、光学素子の透過波面の干渉縞を測定して光学素子の検査を行う装置に関するものであり、特に、光学素子の面形状、面間隔、面間偏心、屈折率分布等を一度に測定して光学素子の合否を判定できる検査装置に関する。
【背景技術】
【0002】
従来、光学素子の総合検査方法としては、例えば特許文献1に開示されたレンズ総合検査機がある。この検査機は、光源からの光束を2つに分割し、その2つの光路に被検レンズと基準レンズを配置し、被検レンズの光路で発生する波面収差と基準レンズの光路で発生する波面収差の差として得られる干渉縞を解析して、レンズ面形状、レンズ肉厚、偏心等の値を知るものである。基準レンズとしては、いくつかの被検レンズの中から被検レンズの設計値に近いレンズを見つけ出すか、あるいは、研削加工等によって設計値に近い精度の良いレンズを作り、基準レンズとして使用するものである。
【特許文献1】特許第3206984号公報
【発明の開示】
【発明が解決しようとする課題】
【0003】
しかしながら、被検レンズがプラスチック光学素子の場合は、基準レンズを製作することが次の理由により非常に困難なため、上記従来技術で検査を行うことができない。すなわち、プラスチック光学素子は吸湿等によって光学特性が経時的に大きく変化し、また、レンズの光学面にキズが付きやすいために、被検レンズの中から基準レンズを見つけ出しても、時間が経つと基準レンズとして使用できなくなる。また、プラスチック光学素子はその材料特性から成形自由度が高く、ガラス光学素子よりも複雑な形状の光学素子である場合が多い。よって、ガラスでプラスチックと等価な基準レンズを製作することが非常に困難である。
【0004】
本発明は従来技術のこのような問題点に着目してなされたものであり、その目的は、基準レンズがなくても被検光学素子の面形状誤差、面間偏心誤差、屈折率分布等を一度の測定で検知し、被検光学素子の合否を判定できる検査装置を提供することである。
【課題を解決するための手段】
【0005】
上記課題を解決するための本発明の第1の光学素子検査装置は、光源と、前記光源からの光束を被検光束と参照光束に分割する光束分割手段と、被検光学素子が配置される被検光束中に配置され、設計値に基づく前記被検光学素子の透過波面を略平面に変換する補正光学系と、前記補正光学系を透過した被検光束と前記被検光束とは異なる光路を経て平行光束とされた前記参照光束とを合成する光束合成手段と、前記光束合成手段を透過した光束を撮像する撮像手段と、前記撮像手段によって形成された干渉縞に基づいて前記被検光学素子を透過した波面に係るパラメータを算出するパラメータ算出手段と、前記パラメータに基づいて前記被検光学素子の評価値を算出する評価値演算手段とを備えたことを特徴とするものである。
【0006】
この構成によれば、被検光学素子を透過した誤差の成分が乗った波面が、設計値に基づく被検光学素子の透過波面を略平面に変換する補正光学系によって誤差を含んで略平面波に変換されるので、基準レンズを用いることなく被検光学素子の透過波面を測定することができ、被検光学素子の合否を判定することが可能となる。特に被検光学素子がプラスチック光学素子の場合に好適である。
【0007】
本発明の第2の光学素子検査装置は、光源と、前記光源からの光束を被検光束と参照光束に分割する光束分割手段と、被検光束を偏向させる少なくとも一つの反射手段と、被検光学素子が配置される被検光束中に配置され、設計値に基づく前記被検光学素子の透過波面を略平面に変換する補正光学系と、前記補正光学系を透過した被検光束と前記被検光束とは異なる光路を経て平行光束とされた前記参照光束とを合成する光束合成手段と、前記光束合成手段を透過した光束を撮像する撮像手段と、前記撮像手段によって形成された干渉縞から前記被検光学素子の合否を判定する演算手段とを備えた光学素子検査装置であって、被検光束を偏向させる前記反射手段の少なくとも一つが前記被検光学素子の反射面であることを特徴とするものである。
【0008】
この構成によれば、被検光束の偏向を被検光学素子の反射面で行うので、少なくとも一つの反射面を含むプリズムタイプの被検光学素子の透過波面を容易に測定することができ、被検光学素子の合否を判定することが可能となる。
【0009】
本発明の第3の光学素子検査装置は、第1、第2の光学素子検査装置において、前記補正光学系は、少なくとも一つの回転対称な光学面と、少なくとも一つの回転非対称な光学面を有していることを特徴とするものである。
【0010】
この構成によれば、被検光学素子を透過した波面が回転非対称な形状である場合でも、補正光学系によって透過波面を略平面波に変換して解析可能な干渉縞を形成することが可能となり、光学素子の合否を判定することが可能となる。
【0011】
本発明の第4の光学素子検査装置は、第1の光学素子検査装置において、前記評価値演算手段は、前記被検光学素子の設計値を用いて計算された前記被検光学素子の透過波面に係るパラメータと、前記パラメータ算出手段からのパラメータとを比較することで、前記被検光学素子の評価値を算出することを特徴とするものである。
【0012】
この構成によれば、基準となる透過波面を計算によって求めておくので、製造誤差のないマスターサンプル(基準レンズ等)を準備する必要がなくなるため、被検光学素子の合否判定を簡便かつ安価に行うことが可能となる。
【発明の効果】
【0013】
以上の説明から明らかなように、本発明の光学素子検査装置によると、基準レンズがなくとも被検光学素子の面形状誤差、面間偏心誤差、屈折率分布等を一度の測定で検知して被検光学素子の合否を判定することができる。特に被検光学素子がプラスチック光学素子の場合は、本発明の光学検査装置を用いることによって、合否判定を容易に行うことが可能となる。
【発明を実施するための最良の形態】
【0014】
以下に、本発明の光学素子検査装置を実施例に基づいて説明する。
【0015】
図1は、本発明の実施例1の光学素子検査装置の構成を示す図である。光学素子検査装置51は、マッハツェンダー干渉計を用いて被検光学素子の透過波面を干渉縞として測定し、その干渉縞を解析して数値化された透過波面をZernike多項式にフィッティングし、Zernike多項式の係数を用いて被検光学素子の合否を判定する検査装置である。
【0016】
図1において、レーザ光源11からの光束は、可変NDフィルタ12と偏光板13を通過した後、対物レンズ14とピンホール15で構成されるスペイシャルフィルタ16によって波面ノイズが除去された理想的な球面波となる。そして、スペイシャルフィルタ16を通過した光束は、コリメートレンズ17によって平行光となり、光束分割手段18によって透過光と反射光に分割される。この透過光と反射光がそれぞれ参照光束Rと被検光束Mに相当する。
【0017】
参照光束Rは、ビームエクスパンダ19によって適切な光束径に拡大された後に、参照光束反射部材20で反射し、光束合成手段26に入射する。一方、被検光束Mは、被検光束反射部材21で反射した後に、被検光学素子22を通過し、2枚の球面レンズ24、25で構成され、設計値に基づく被検光学素子22の透過波面を略平面に変換する補正光学系23を通過することで、被検光学素子22によって変形した波面が誤差を含んで略平面波に変換され、光束合成手段26に入射する。そして、参照光束Rと被検光束Mが光束合成手段26で重畳されることによって干渉縞が生成される。
【0018】
このように、本発明の光学素子検査装置51は、被検光学素子22の透過波面を測定しているため、被検光学素子22の面形状、面間隔、面間偏心、絶対屈折率、屈折率分布等の光学素子22を構成する全ての項目を検査することが可能である。そのため、本発明の光学素子検査装置51は、製造された光学素子22が良品か不良品かを判断する合否判定に適している。
【0019】
本実施例において、被検光学素子22は回転対称な光学面で構成されている。その場合は、波面を略平面に変換するための補正光学系23も回転対称な光学素子で構成されることになる。本実施例では、補正光学系23は2枚の球面レンズ24、25で構成されているが、もちろん平面や非球面等が含まれるレンズで構成されていてもよい。また、もちろんレンズ枚数の制限もない。
【0020】
光束合成手段26を通過した干渉光束は、視野絞り27によって解析範囲を規定された後に、ズームレンズ29とCCD30とで構成される撮像手段28に入射し、干渉縞解析装置31に画像情報として取り込まれ、干渉縞解析が行われる。干渉縞解析は、フリンジスキャン法によって行われる。参照光束反射部材20を圧電素子によって反射面に対して垂直な方向に移動させて、被検光束Mと参照光束Rとの光路差を変化させる。光路差を変化させた複数の干渉縞を画像情報として干渉縞解析装置(PC)31に取り込み、演算処理によって干渉波面の位相データW(ρ,θ)の数値化が行われる。なお、図1の符号32は干渉縞解析装置(PC)31への入力装置、符号33は干渉縞解析装置(PC)31の結果が出力される出力装置である。
【0021】
数値化された干渉波面の位相データW(ρ,θ)は、Zernike多項式(特許文献1の式(1))にフィッティングされ、Zernike多項式の係数が解析結果として出力装置33に出力される。被検光学素子の合否は、このZernike多項式の係数によって判定される。詳細は後述する。
【0022】
なお、被検光学素子22からの出射波面は一般に平面波から大きく乖離した波面になるため、その波面と参照平面波との干渉縞を測定すると、干渉縞の密度が高くなりすぎるために干渉縞解析ができなくなるが、補正光学系23によって被検光学素子22からの出射波面が略平面波に変換されることで干渉縞の密度が低くなり、干渉縞解析装置31による干渉縞解析が可能になる。
【0023】
また、光束合成手段26は、2軸のティルト調整が可能なステージによって保持されている。被検光学素子22の設置位置によっては、生成される干渉縞に大きなティルト成分が加わる場合があるが、光束合成手段26の2軸のティルト調整によって、干渉縞に含まれるティルト成分を除去することができる。
【0024】
上記光学素子検査装置51は、マッハツェンダー型の干渉計によって被検光学素子22の透過波面を測定している。このような構成をとることにより、光束が被検光学素子22を通過する回数が1回だけとなるため、測定感度が上がりすぎないので、被検光学素子22の設置時における位置誤差の許容値を大きくすることが可能となる。また、適切な測定感度を保ちつつ、ダイナミックレンジと測定領域を両立することが可能となる。なお、本発明の実施例は全てマッハツェンダー型の干渉計の構成をとっているため、全ての実施例において上記の効果が得られる。
【0025】
図2に、被検光学素子22の合否判定手順を示すフローチャートを示す。図2の上側のラインに示すように、まず、被検光学素子22の干渉波面を測定し、干渉縞解析によりZernike多項式の係数を導出する。それとは別に、図2の下側のラインに示すように、被検物の設計値(面形状、面間隔、屈折率等) を用いた干渉縞のシミュレーションを行い、同様に、Zernike多項式の係数を導出する。そして、図2の中央のラインに示すように、双方のZernike多項式の係数同士を比較し、双方の差分が予め設定された閾値よりも大きいかどうかを判断し、被検光学素子22の合否判定を行う。なお、Zernike多項式のどの項を合否判定に用いるかは、被検光学素子22の光学特性や、製造過程に応じて適宜決定される。
【0026】
このように、実施例1の光学素子検査装置51は、基準レンズを用いることなく、被検光学素子22の合否判定を行うことが可能なため、基準レンズを製作することが困難なプラスチック光学素子の合否判定に適している。
【0027】
次に、本発明の実施例2の光学素子検査装置について説明する。図3は、本発明の実施例2の光学素子検査装置の構成を示す図である。基本的な構成は、図1に示した実施例1の光学素子検査装置と同様であるが、被検光学素子34が異なるために、被検光路の構成が異なっている。
【0028】
すなわち、被検光学素子34は3面(A面、B面、C面)の光学面を含んでおり、それぞれの光学面が自由曲面形状となっている。この被検光学素子34の光学面にレーザからの平行光を入射すると、別な光学面から出射する波面は平面から大きく乖離した形状になるため、このままでは干渉縞密度が高くなり干渉縞解析を行うことができないが、実施例1の補正光学系23と同様の機能を有する補正光学系35によって波面変換、すなわち、略平面波への変換を行うことで、干渉縞解析が可能となる。
【0029】
なお、本発明における自由曲面とは、以下の式(a)で定義されるものである。
【0030】

Z=cr2 /[1+√{1−(1+k)c2 2 }]+Σ Cj m n
j=2
・・・(a)
ここで、(a)式の第1項は球面項、第2項は自由曲面項である。
【0031】
球面項において、c、k、rの意味は以下の通りである。
c:頂点の曲率
k:コーニック定数(円錐定数)
r=√(X2 +Y2
また、自由曲面項を展開すると、以下のように表される。
【0032】

Σ Cj m n
j=2
=C2 X+C3
+C4 2 +C5 XY+C6 2
+C7 3 +C8 2 Y+C9 XY2 +C103
+C114 +C123 Y+C132 2 +C14XY3 +C154
+C165 +C174 Y+C183 2 +C192 3 +C20XY4
+C215
+C226 +C235 Y+C244 2 +C253 3 +C262 4
+C27XY5 +C286
+C297 +C306 Y+C315 2 +C324 3 +C333 4
+C342 5 +C35XY6 +C367
・・・・・・
ただし、Cj (jは2以上の整数)は係数である。
【0033】
図4に、被検光学素子34を用いた撮像光学系48における光束の通過する様子を示す。画角0°における主光線とマージナル光線を図示してある。撮像光学系48には、被検光学素子34(実施例2の被検光学素子)と被検光学素子40(実施例3の被検光学素子) とカバーガラス45、46が含まれる。なお、符号47は撮像光学系48の撮像面である。
【0034】
撮像光学系48を構成する光学部材の数値データを表1に示す。この実施例の構成パラメータにおいては、軸上主光線を、物体中心から光学系の絞りの中心を垂直に通り、像面中心に至る光線で定義する。そして、光学系の最も物体側の第1面(図4の場合は、カバーガラス45の物体側の面)の軸上主光線と交差する位置を偏心光学系の偏心光学面の原点として、軸上主光線に沿う方向をZ軸方向とし、物体から第1面に向かう方向をZ軸正方向とし、光軸が折り曲げられる平面をY−Z平面とし、原点を通りY−Z平面に直交する方向をX軸方向とし、図4の紙面の表から裏へ向かう方向をX軸正方向とし、X軸、Z軸と右手直交座標系を構成する軸をY軸とする。
【0035】
偏心面については、光学系の原点の中心からその面の面頂位置の偏心量(X軸方向、Y軸方向、Z軸方向をそれぞれX,Y,Z)と、その面の中心軸のX軸、Y軸、Z軸それぞれを中心とする傾き角(それぞれα,β,γ(°))とが与えられている。その場合、αとβの正はそれぞれの軸の正方向に対して反時計回りを、γの正はZ軸の正方向に対して時計回りを意味する。なお、面の中心軸のα,β,γの回転のさせ方は、面の中心軸とそのXYZ直交座標系を、まずX軸の回りで反時計回りにα回転させ、次に、その回転した面の中心軸を新たな座標系のY軸の回りで反時計回りにβ回転させると共に1度回転した座標系もY軸の回りで反時計回りにβ回転させ、次いで、その2度回転した面の中心軸を新たな座標系の新たな座標系のZ軸の回りで時計回りにγ回転させるものである。
【0036】
また、各実施例の光学系を構成する光学作用面の中、特定の面とそれに続く面が共軸光学系を構成する場合には、面間隔が与えられている。数値データ中、“FFS”は自由曲面、“REF”は反射面を示している。また、屈折率、アッベ数はd線のものである。
【0037】
〔表1〕
面番号 曲率半径 面間隔 偏心 屈折率 アッベ数
物体面 ∞ ∞
1 ∞ 偏心(1) 1.4950 65.0
2 ∞ 偏心(2)
3 FFS[1] 偏心(3) 1.6069 27.0
4 FFS[2] 偏心(4) 1.6069 27.0
5 FFS[3] 偏心(5)
6 ∞(絞り面) 偏心(6)
7 FFS[4] 偏心(7) 1.5256 56.4
8 FFS[5] 偏心(8) 1.5256 56.4
9 FFS[6] 偏心(9) 1.5256 56.4
10 FFS[7] 0.31 偏心(10)
11 ∞ 0.30 1.5163 64.1
12 ∞ 0.63
像 面 ∞
FFS[1]
4 = 4.1709 ×10-26 = 6.5908 ×10-28 =-1.0688 ×10-4
10=-1.1246 ×10-311= 6.6599 ×10-413= 1.6298 ×10-3
15= 7.4708 ×10-417=-2.9507 ×10-519= 9.7169 ×10-5
21=-1.7566 ×10-422=-2.5840 ×10-624= 5.7315 ×10-5
26=-3.4271 ×10-528= 3.0860 ×10-5
FFS[2]
4 =-3.9587 ×10-36 = 2.7654 ×10-28 =-1.0723 ×10-3
10= 1.9555 ×10-311= 7.7516 ×10-513=-1.7029 ×10-4
15= 3.4007 ×10-417=-3.4680 ×10-519= 1.0476 ×10-4
21= 4.8180 ×10-622=-6.2801 ×10-624=-4.7571 ×10-7
26= 1.6082 ×10-528=-8.1118 ×10-6
FFS[3]
3 =-3.3425 ×10-24 =-7.8403 ×10-26 =-4.0695 ×10-2
8 =-8.8984 ×10-310= 6.2496 ×10-311=-1.5720 ×10-3
13=-2.7166 ×10-215= 1.4357 ×10-317=-6.5515 ×10-4
19= 3.6911 ×10-421=-2.1928 ×10-422= 1.8341 ×10-3
24=-3.0393 ×10-326= 2.0951 ×10-328=-6.7649 ×10-4
FFS[4]
3 =-2.8391 ×10-24 = 1.2123 ×10-16 =-8.3113 ×10-2
8 = 7.8309 ×10-310= 2.1910 ×10-311= 6.5905 ×10-3
13=-1.7892 ×10-215= 1.5127 ×10-317=-6.7547 ×10-4
19= 4.3224 ×10-421=-8.3463 ×10-522=-2.3991 ×10-4
24=-8.1334 ×10-326= 7.9144 ×10-428=-4.9662 ×10-4
FFS[5]
4 = 3.8550 ×10-26 = 4.1924 ×10-28 = 1.7538 ×10-3
10=-3.9045 ×10-411= 8.7475 ×10-513= 6.4778 ×10-4
15= 1.7386 ×10-417=-1.0376 ×10-519=-1.6202 ×10-6
21=-1.7314 ×10-522=-2.3351 ×10-724= 1.1257 ×10-5
26=-9.6773 ×10-628=-9.8518 ×10-6
FFS[6]
4 =-2.4098 ×10-26 = 1.1095 ×10-28 = 2.5243 ×10-4
10= 8.0683 ×10-511=-1.0086 ×10-413= 8.3763 ×10-4
15= 3.5919 ×10-417=-6.6515 ×10-519= 5.2149 ×10-5
21= 6.6212 ×10-522= 4.1040 ×10-724= 4.0895 ×10-6
26=-6.4842 ×10-628=-9.8152 ×10-6
FFS[7]
3 = 4.8640 ×10-24 = 3.7051 ×10-26 = 6.3083 ×10-2
8 = 1.4429 ×10-310= 2.1610 ×10-411=-8.4235 ×10-3
13=-8.8574 ×10-315=-4.6112 ×10-317=-4.4861 ×10-4
19= 5.3081 ×10-421= 1.1103 ×10-322= 4.3529 ×10-4
24= 5.0879 ×10-426= 1.0880 ×10-328=-1.2467 ×10-4
偏心(1)
X= 0.00 Y= 0.00 Z= 0.00
α= 0.00 β 0.00 γ= 0.00
偏心(2)
X= 0.00 Y= 0.00 Z= 0.50
α= 0.00 β= 0.00 γ= 0.00
偏心(3)
X= 0.00 Y= -0.00 Z= 0.64
α= -0.95 β= 0.00 γ= 0.00
偏心(4)
X= 0.00 Y= -0.02 Z= 3.34
α=-41.75 β= 0.00 γ= 0.00
偏心(5)
X= 0.00 Y= 2.63 Z= 3.02
α=-83.86 β= 0.00 γ= 0.00
偏心(6)
X= 0.00 Y= 3.21 Z= 2.96
α=-83.86 β= 0.00 γ= 0.00
偏心(7)
X= 0.00 Y= 3.39 Z= 2.94
α=-83.86 β= 0.00 γ= 0.00
偏心(8)
X= 0.00 Y= 7.89 Z= 2.41
α=-101.29 β= 0.00 γ= 0.00
偏心(9)
X= 0.00 Y= 5.44 Z= 1.03
α=-150.09 β= 0.00 γ= 0.00
偏心(10)
X= 0.00 Y= 5.38 Z= 4.48
α=-180.00 β= 0.00 γ= 0.00

【0038】
上記撮像光学系48を構成する被検光学素子34は、図4に示すような実使用状態において、A面に入射した光束が屈折し、B面で光束が反射し、C面で光束が屈折し、そのC面より光束が被検光学素子34から出射する。このような光線の通過状態に近づけるために、図3に示した光学素子検査装置では、被検光束の偏向を被検光学素子34の反射面(B面)で行っている。
【0039】
このような構成をとることにより、実際の使用状態に近い光束が被検光学素子34を通過するので、光学素子検査装置51で測定した被検光学素子34の透過波面と、撮像光学系48の光学性能を対応付けることが可能になり、実際の光学性能と相関関係が高い合否判定を行うことが可能となる。なお、本発明の実施例は全て、実際の使用状態に近い光束が被検光学素子を通過するため、全ての実施例において上記の効果が得られる。
【0040】
なお、図3に示した光学素子検査装置51では、被検光学素子34のC面に光束が入射し、B面で光束が反射し、A面から光束が出射している。この構成は、光学素子検査装置51における被検光学素子34の設置の容易性に由来しているが、もちろん、被検光学素子34のA面に光束が入射し、B面で光束が反射し、C面から光束が出射する構成にしてもよい。
【0041】
図5は、図3の光学素子検査装置51に組み込まれている補正光学系35の構成を示す図である。補正光学系35は、接合球面レンズ36と、円筒面レンズ37で構成されている。被検光学素子34からの出射波面が回転非対称な形状であるため、補正光学系35には回転非対称な光学面を有する光学素子37が含まれている。このような補正光学系35を被検光学素子34の後方に配置することで、被検光学素子34からの出射波面を略平面波に変換することができ、CCD30で観測される干渉縞の縞密度が低くなり、解析可能な干渉縞となる。
【0042】
図6は、被検光学素子34と補正光学系35を光学素子検査装置51に組み込んだ場合に生成される干渉縞のシミュレーション結果の1例を示す図である。このように、被検光学素子34からの出射波面を補正光学系35によって略平面波に変換することによって、縞密度の低い、解析可能な干渉縞が生成される。なお、被検光学素子34の合否判定の方法については、実施例1と同様である。
【0043】
被検光学素子34に全く製造誤差が存在しない場合でも、補正光学系35によって変換された波面は参照光束の波面と一致しない。つまり、合否判定の基準となる被検光学素子34の透過波面は平面波ではなく、ある歪みを含んだ波面形状となる。このように被検光学素子34の合否判定を行うことにより、補正光学系35からの出射波面を完全な平面波に変換する必要がなくなるために、補正光学系35の設計自由度が高くなり、構造を単純化することができ、補正光学系35の製作を容易に行うことが可能となる。また、形状が複雑な光学素子でも、容易に合否判定を行うことが可能となる。
【0044】
図7に、図5の被検光学素子34とその周辺を拡大した図を示す。以下、図7を用いて被検光学素子34の光学素子検査装置51での設置位置を説明する。被検光学素子34に入射する光束の光軸が、撮像光学系の絞り面に相当する面(図7のp面)の中心軸と一致するように、被検光学素子34を設置する。さらに、被検光学素子34から出射する光束の光軸が、撮像光学系48(図4)のカバーガラス45の物体側の面に相当する面(図7のq面)の中心軸と一致するように、被検光学素子34を設置する。このように被検光学素子34を設置することで、後述する数値データのように配置された補正光学系35の中心軸と、被検光学素子34から出射する光束の光軸とを一致させることができ、図6に示したような干渉縞を生成することができる。
【0045】
以下の表2に、図5に示した補正光学系35を構成する光学部材の数値データを示す。図5の被検光学素子34は、図4の撮像光学系48に含まれる被検光学素子34と等価であるが、光束の向きが反対になっている。すなわち、図4の被検光学素子34では、光束がA面、B面、C面、絞り面の順に通過するが、図5の被検光学素子34では、絞り面、C面、B面、A面の順に通過する。
【0046】
表2の数値データにおいて、“CYL”はシリンドリカル光学面を示している。シリンドリカル光学面はY方向の曲率半径とX方向の曲率半径が異なる光学面である。それぞれの曲率半径を“RDY”、“RDX”として数値データを示す。また、以下の数値データでは、被検光学素子34の光学面を省略して記載している。被検光学素子34の光学面は、上述の表1の撮像光学系48の数値データに記載してある。なお、a面〜e面は図5に示した補正光学系35の光学面、q面は図7のカバーガラス45の物体側の面に対応する。
【0047】
〔表2〕
面番号 曲率半径 面間隔 屈折率(d線) アッベ数(d線)
1 (q面) ∞ 17.80
2 (a面) 131.65 2.50 1.7283 28.5
3 (b面) 16.49 11.00 1.6667 48.3
4 (c面) -24.47 208.22
5 (d面) CYL[1] 8.00 1.5163 64.1
6 (e面) CYL[2]
RDY RDX
CYL[1] ∞ 519.00
CYL[2] ∞ -103.80 。
【0048】
次に、本発明の実施例3の光学素子検査装置について説明する。図8は、本発明の実施例3の光学素子検査装置の構成を示す図である。基本的な構成は、図1に示した実施例1の光学素子検査装置と同様であるが、被検光学素子40が異なるために、被検光路の構成が異なっている。
【0049】
すなわち、被検光学素子40は4面(D面、E面、F面、G面) の光学面を含んでおり、それぞれの光学面が自由曲面形状となっている。実施例2と同様に、この被検光学素子40から出射する波面は平面から大きく乖離した形状になるため、このままでは干渉縞密度が高くなり干渉縞解析を行うことができないが、実施例1の補正光学系23と同様の機能を有する補正光学系41によって波面変換、すなわち、略平面波への変換を行うことで、干渉縞解析が可能となる。
【0050】
撮像光学系48を構成する被検光学素子40は、図4に示すような実使用状態において、D面に発散光が入射して屈折し、E面とF面で光束が反射し、G面で光束が屈折し、そのG面より光束が被検光学素子40から出射する。このような光線の通過状態に近づけるために、図8に示した光学素子検査装置では、被検光束の偏向を被検光学素子40の反射面(E面とF面) で行っており、かつ、被検光学素子40の前方に集光レンズ39を配置することで、被検光学素子40のD面に発散光を入射させるようにしている。
【0051】
図9は、図8の光学素子検査装置51に組み込まれている補正光学系41の構成を示す図である。補正光学系41は、接合球面レンズ42と、円筒面レンズ43、44で構成されている。被検光学素子40からの出射波面が回転非対称な形状であるため、補正光学系41には回転非対称な光学面を有する光学素子43、44が含まれている。このような補正光学系41を被検光学素子40の後方に配置することで、被検光学素子40からの出射波面を略平面波に変換することができ、CCD30で観測される干渉縞の縞密度が低くなり、解析可能な干渉縞となる。
【0052】
図10は、被検光学素子40と補正光学系41を光学素子検査装置51に組み込んだ場合に生成される干渉縞のシミュレーション結果の1例を示す図である。このように、被検光学素子40からの出射波面を補正光学系41によって略平面波に変換することによって、縞密度の低い、解析可能な干渉縞が生成される。なお、被検光学素子の合否判定の方法については、実施例1と同様である。
【0053】
図11に、図9の被検光学素子40とその周辺を拡大した図を示す。以下、図11を用いて被検光学素子40の光学素子検査装置51での設置位置を説明する。被検光学素子40に入射する光束の光軸が、撮像光学系の絞り面に相当する面(図11のr面)の中心軸と一致するように、被検光学素子40を設置する。さらに、被検光学素子40から出射する光束の光軸が、撮像光学系の撮像面に相当する面(図11のs面)の中心軸と一致するように、被検光学素子40を設置する。このように被検光学素子40を設置することで、後述する数値データのように配置された補正光学系41の中心軸と、被検光学素子40から出射する光束の光軸とを一致させることができ、図10に示したような干渉縞を生成することができる。
【0054】
以下の表3に、図9に示した集光レンズ39、被検光学素子40、補正光学系41を構成する光学部材の数値データを示す。図8の被検光学素子40は、図4の撮像光学系48に含まれる被検光学素子40と等価である。
【0055】
表3の数値データにおいて、“CYL”はシリンドリカル光学面を示している。シリンドリカル光学面はY方向の曲率半径とX方向の曲率半径が異なる光学面である。それぞれの曲率半径を“RDY”、“RDX”として数値データを示す。また、以下の数値データでは、被検光学素子40の光学面を省略して記載している。被検光学素子40の光学面は、上述の表1の撮像光学系48の数値データに記載してある。なお、f面〜h面、i面〜o面は図9に示した集光レンズ39、補正光学系41の光学面に対応し、r面は図11の撮像光学系の絞り面、s面は図11の撮像光学系の撮像光学系の撮像面に対応する。
【0056】
〔表3〕
面番号 曲率半径 面間隔 屈折率(d線) アッベ数(d線)
1 (f面) 27.97 9.50 1.6667 48.3
2 (g面) -18.85 2.50 1.7283 28.5
3 (h面) -152.94 40.00
4 (r面) ∞
(被検光学素子40:数値データは表1)
5 (s面) ∞ 22.90
6 (i面) 118.66 3.00 1.7283 28.3
7 (j面) 16.08 11.04 1.6700 47.2
8 (k面) -21.17 100.00
9 (l面) CYL[1] 3.30 1.5163 64.1
10 (m面) ∞ 92.00
11 (n面) ∞ 4.00 1.5163 64.1
12 (o面) CYL[2]
RDY RDX
CYL[1] -67.47 ∞
CYL[2] -129.75 ∞

【0057】
なお、上記の実施例においては、補正光学系23、35及び41を被検光学素子22、34及び40の透過波面側(出射光側)に配置したもので説明したが、被検光学素子22、34及び40の入射光側に配置しても同様の作用及び効果を得ることができる。
【図面の簡単な説明】
【0058】
【図1】本発明の実施例1の光学素子検査装置の構成を示す図である。
【図2】被検光学素子の合否判定手順を示すフローチャートである。
【図3】本発明の実施例2の光学素子検査装置の構成を示す図である。
【図4】実施例2と実施例3の被検光学素子を用いた撮像光学系における光束の通過する様子を示す図である。
【図5】図3の光学素子検査装置に組み込まれている補正光学系の構成を示す図である。
【図6】実施例2の光学素子検査装置で生成される干渉縞のシミュレーション結果の1例を示す図である。
【図7】図5の被検光学素子とその周辺を拡大した図である。
【図8】本発明の実施例3の光学素子検査装置の構成を示す図である。
【図9】図8の光学素子検査装置に組み込まれている補正光学系の構成を示す図である。
【図10】実施例3の光学素子検査装置で生成される干渉縞のシミュレーション結果の1例を示す図である。
【図11】図9の被検光学素子とその周辺を拡大した図である。
【符号の説明】
【0059】
R…参照光束
M…被検光束
11…レーザ光源
12…可変NDフィルタ
13…偏光板
14…対物レンズ
15…ピンホール
16…スペイシャルフィルタ
17…コリメートレンズ
18…光束分割手段
19…ビームエクスパンダ
20…参照光束反射部材
21…被検光束反射部材
22…被検光学素子
23…補正光学系
24、25…球面レンズ
26…光束合成手段
27…視野絞り
28…撮像手段
29…ズームレンズ
30…CCD
31…干渉縞解析装置
32…入力装置
33…出力装置
34…被検光学素子
35…補正光学系
36…接合球面レンズ
37…円筒面レンズ
39…集光レンズ
40…被検光学素子
41…補正光学系
42…接合球面レンズ
43、44…円筒面レンズ
45、46…カバーガラス
47…撮像面
48…撮像光学系
51…光学素子検査装置(本発明)

【特許請求の範囲】
【請求項1】
光源と、前記光源からの光束を被検光束と参照光束に分割する光束分割手段と、被検光学素子が配置される被検光束中に配置され、設計値に基づく前記被検光学素子の透過波面を略平面に変換する補正光学系と、前記補正光学系を透過した被検光束と前記被検光束とは異なる光路を経て平行光束とされた前記参照光束とを合成する光束合成手段と、前記光束合成手段を透過した光束を撮像する撮像手段と、前記撮像手段によって形成された干渉縞に基づいて前記被検光学素子を透過した波面に係るパラメータを算出するパラメータ算出手段と、前記パラメータに基づいて前記被検光学素子の評価値を算出する評価値演算手段とを備えたことを特徴とする光学素子検査装置。
【請求項2】
光源と、前記光源からの光束を被検光束と参照光束に分割する光束分割手段と、被検光束を偏向させる少なくとも一つの反射手段と、被検光学素子が配置される被検光束中に配置され、設計値に基づく前記被検光学素子の透過波面を略平面に変換する補正光学系と、前記補正光学系を透過した被検光束と前記被検光束とは異なる光路を経て平行光束とされた前記参照光束とを合成する光束合成手段と、前記光束合成手段を透過した光束を撮像する撮像手段と、前記撮像手段によって形成された干渉縞から前記被検光学素子の合否を判定する演算手段とを備えた光学素子検査装置であって、被検光束を偏向させる前記反射手段の少なくとも一つが前記被検光学素子の反射面であることを特徴とする光学素子検査装置。
【請求項3】
前記補正光学系は、少なくとも一つの回転対称な光学面と、少なくとも一つの回転非対称な光学面を有していることを特徴とする請求項1又は2記載の光学素子検査装置。
【請求項4】
前記評価値演算手段は、前記被検光学素子の設計値を用いて計算された前記被検光学素子の透過波面に係るパラメータと、前記パラメータ算出手段からのパラメータとを比較することで、前記被検光学素子の評価値を算出することを特徴とする請求項1記載の光学素子検査装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate


【公開番号】特開2007−170888(P2007−170888A)
【公開日】平成19年7月5日(2007.7.5)
【国際特許分類】
【出願番号】特願2005−365865(P2005−365865)
【出願日】平成17年12月20日(2005.12.20)
【出願人】(000000376)オリンパス株式会社 (11,466)
【Fターム(参考)】