説明

変位検出装置、露光装置、およびデバイス製造方法

【課題】 例えばガラス基板の表面に付着した異物の影響を抑えて、その裏面の面位置の変位を高精度に検出することのできる変位検出装置。
【解決手段】 被検面(20a)の面位置の変位を検出する変位検出装置は、第1乃至第3の光(L1,L2,L3)を被検面の第1乃至第3位置へそれぞれ導いて被検面またはその近傍に第1乃至第3の集光点を形成するための、第1乃至第3の光に共通の光学系(3,4,5)と、被検面で反射された第1乃至第3の光に基づいて第1乃至第3位置における第1乃至第3変位情報をそれぞれ検出し、該3つの変位情報のうちの互いに最も類似した2つの変位情報に基づいて被検面の面位置の変位を検出する検出系(DS:5,4,3,6,7,8,9)とを備えている。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、変位検出装置、露光装置、およびデバイス製造方法に関する。さらに詳細には、本発明は、被検面の面位置の変位を光学的に検出する装置に関するものである。
【背景技術】
【0002】
特開平4−366711号公報には、対物レンズを介して被検面に光源からの光を投光し、対物レンズを介した被検面からの反射光に基づいて被検面の面位置(被検面の法線方向に沿った位置)の変位を検出する変位検出装置が記載されている。具体的に、この公報に開示された変位検出装置では、対物レンズを介して被検面にレーザ光を集光し、被検面で反射されて上記対物レンズを経た光を4分割センサで受光する。そして、非点収差法を用いて、4分割センサの出力信号に基づき、被検面の面位置の変位を検出する。
【0003】
【特許文献1】特開平4−366711号公報
【発明の開示】
【発明が解決しようとする課題】
【0004】
特許文献1に開示された変位検出装置を用いて、ガラス基板の裏面の面位置の変位を検出する場合、例えばその表面に付着した異物(ゴミなど)の影響により、比較的大きな検出誤差が発生することがある。
【0005】
本発明は、前述の課題に鑑みてなされたものであり、例えばガラス基板の表面に付着した異物の影響を抑えて、その裏面の面位置の変位を高精度に検出することのできる変位検出装置を提供することを目的とする。
【課題を解決するための手段】
【0006】
前記課題を解決するために、本発明の第1形態では、被検面の面位置の変位を検出する変位検出装置において、
第1乃至第3の光を前記被検面の第1乃至第3位置へそれぞれ導いて前記被検面またはその近傍に第1乃至第3の集光点を形成するための、前記第1乃至第3の光に共通の光学系と、
前記被検面で反射された前記第1乃至第3の光に基づいて前記第1乃至第3位置における第1乃至第3変位情報をそれぞれ検出し、該3つの変位情報のうちの互いに最も類似した2つの変位情報に基づいて前記被検面の面位置の変位を検出する検出系とを備えていることを特徴とする変位検出装置を提供する。
【0007】
本発明の第2形態では、第1形態の変位検出装置を備え、所定のパターンを感光性基板に露光することを特徴とする露光装置を提供する。
【0008】
本発明の第3形態では、第2形態の露光装置を用いて、前記所定のパターンを前記感光性基板に露光する露光工程と、
前記所定のパターンが転写された前記感光性基板を現像し、前記所定のパターンに対応する形状のマスク層を前記感光性基板の表面に形成する現像工程と、
前記マスク層を介して前記感光性基板の表面を加工する加工工程とを含むことを特徴とするデバイス製造方法を提供する。
【発明の効果】
【0009】
本発明の変位検出装置では、共通の光学系により、第1乃至第3の光を被検面の第1乃至第3位置へそれぞれ導いて、被検面またはその近傍に第1乃至第3の集光点を形成する。そして、被検面で反射された第1乃至第3の光に基づいて第1乃至第3位置における第1乃至第3変位情報をそれぞれ検出し、これらの3つの変位情報のうちの互いに最も類似した2つの変位情報に基づいて被検面の面位置の変位を検出する。
【0010】
したがって、例えばガラス基板の裏面の面位置の変位を検出する場合、その表面において第1乃至第3の光が通過する領域のうちのいずれか1つの領域に異物が付着していたとしても、異物の影響を受けていない2つの光により得られた2つの変位情報に基づいて、ガラス基板の裏面の面位置の変位を検出することができる。換言すれば、本発明の変位検出装置では、例えばガラス基板の表面に付着した異物の影響を抑えて、その裏面の面位置の変位を高精度に検出することができる。
【発明を実施するための最良の形態】
【0011】
本発明の実施形態を、添付図面に基づいて説明する。図1は、本発明の実施形態にかかる変位検出装置の構成を概略的に示す図である。本実施形態では、非点収差法を用いてガラス基板の裏面の面位置の変位を検出する変位検出装置に対して本発明を適用している。図1において、ガラス基板20の裏面20aの法線方向にZ軸を、裏面20aにおいて図1の紙面に平行な方向にY軸を、裏面20aにおいて図1の紙面に垂直な方向にX軸をそれぞれ設定している。
【0012】
図1を参照すると、本実施形態の変位検出装置は、例えばレーザーダイオードのような光源LSと、光源LSからの光をガラス基板20の裏面(装置側の面とは反対側の面)20aに対して集光させる照射光学系ILと、被検面である裏面20aで反射された光に基づいて裏面20aの面位置の変位を検出する検出系DSとを備えている。照射光学系ILは、光源LSからの光の入射順に、コリメートレンズ1と、グレーティング2と、偏光ビームスプリッター3と、1/4波長板4と、対物レンズ5とを備えている。
【0013】
検出系DSは、ガラス基板20の裏面20aからの反射光の入射順に、対物レンズ5と、1/4波長板4と、偏光ビームスプリッター3と、集光レンズ6と、シリンドリカルレンズ7と、光検出部8とを備えている。また、検出系DSは、光検出部8に接続された信号処理部9を備えている。本実施形態の変位検出装置では、光源LSが、例えば偏光ビームスプリッター3の偏光分離面3aに対してs偏光状態の光を供給する。光源LSから射出された光は、コリメートレンズ1を介して、グレーティング2に入射する。
【0014】
グレーティング2の回折作用により生成された0次回折光L1、+1次回折光L2、および−1次回折光L3は、偏光ビームスプリッター3に入射する。図1並びに関連する図5および図6において、グレーティング2により生成された0次回折光L1を実線で、+1次回折光L2を二点鎖線で、−1次回折光L3を破線で示している。偏光ビームスプリッター3に入射した3つのs偏光状態の光L1,L2,L3は、偏光分離面3aで反射され、偏光ビームスプリッター3から射出された後、1/4波長板4に入射する。
【0015】
1/4波長板4を介して円偏光状態に変換された3つの光L1,L2,L3は、対物レンズ5を介して、ガラス基板20の表面20bに入射する。表面20bに入射した3つの光L1,L2,L3は、ガラス基板20の内部を伝播した後、裏面20aに入射する。裏面20aで反射された3つの光L1,L2,L3は、ガラス基板20の内部を伝播し、表面20bから射出された後、対物レンズ5に入射する。
【0016】
本実施形態では、グレーティング2により生成された3つの光L1,L2,L3が、被検面である裏面20aまたはその近傍に集光点をそれぞれ形成する。以下、説明を簡単にするために、3つの光L1,L2,L3が裏面20a上の互いに異なる位置に集光点をそれぞれ形成するものとする。対物レンズ5を介した3つの反射光L1,L2,L3は、1/4波長板4を介してp偏光状態に変換された後、偏光ビームスプリッター3に入射する。偏光ビームスプリッター3に入射した3つのp偏光状態の反射光L1,L2,L3は、偏光分離面3aを透過し、偏光ビームスプリッター3から射出された後、集光レンズ6に入射する。
【0017】
集光レンズ6を介した3つの反射光L1,L2,L3は、XZ平面において正の屈折力を有し且つYZ平面において無屈折力のシリンドリカルレンズ7を介して、光検出部8に達する。シリンドリカルレンズ7は、偏光ビームスプリッター3を経た3つの反射光L1,L2,L3に非点収差を発生させる機能を有する。なお、集光レンズ6の前側(偏光ビームスプリッター3側)にシリンドリカルレンズ7を配置することもできる。光検出部8は、図2に示すように、Y方向に沿って間隔を隔てて配置された3つの4分割センサ81,82,83を有する。また、たとえば光源LS自体が必要十分な非点収差を有している場合には、シリンドリカルレンズ7を省略してもよい。このような光源LSとしてはレーザーダイオードを用いることができる。
【0018】
中央の4分割センサ81は、グレーティング2により生成された0次回折光L1を受光するように位置決めされ、例えば+X方向および+Y方向と45度をなす方向に延びる線状の領域と+X方向および−Y方向と45度をなす方向に延びる線状の領域とにより等分割された4つの受光部81a,81b,81c,81dを有する。換言すれば、4つの受光部81a,81b,81c,81dは、4分割センサ81の中心点に関して点対称に配置されている。
【0019】
図2中左側の4分割センサ82は、+1次回折光L2を受光するように位置決めされ、4分割センサ81と同様に点対称に配置された4つの受光部82a,82b,82c,82dを有する。図2中右側の4分割センサ83は、−1次回折光L3を受光するように位置決めされ、4分割センサ81と同様に点対称に配置された4つの受光部83a,83b,83c,83dを有する。光検出部8の出力、すなわち4分割センサ81,82,83の出力信号S1,S2,S3は、信号処理部9に供給される。
【0020】
先ず、本実施形態の変位検出装置における動作の理解を容易にするために、非点収差法を用いる通常の構成例(以下、「比較例」という)における動作を説明する。比較例では、図1の構成からグレーティング2の設置が省略されている。その結果、被検面である裏面20aまたはその近傍に集光点を形成する光の数は1つであり、これに対応して、光検出部8に設けられる4分割センサの数も1つである。以下、図1を参照して比較例の動作を理解することができるように、上述の0次回折光L1に対応する単一の光がガラス基板20の裏面20aで反射され、中央の4分割センサ81に対応する単一の4分割センサ84(図3を参照)に達するものとする。
【0021】
比較例では、光学的な理想状態において、ガラス基板20の裏面20aが所定位置(例えば対物レンズ5の焦点位置)にあるとき、裏面20aからの反射光は、図3の中央に示すように4分割センサ84において4つの受光部84a〜84dの中心点を中心とする円形状の光分布84eを形成する。そして、ガラス基板20の裏面20aが上記所定位置からZ方向に移動すると、収差発生部材としてのシリンドリカルレンズ7の作用により、4分割センサ84に形成される光分布は、裏面20aの移動方向(+Z方向または−Z方向)およびZ方向に沿った移動量に応じて、図3の左側および右側において参照符号84eaおよび84ebで模式的に示すように、4つの受光部84a〜84dの中心点付近を中心とする楕円形状に変化する。
【0022】
4分割センサ84の出力信号Sは、次の式(1)により表される。式(1)において、Saは受光部84aの受光光量に対応する値であり、Sbは受光部84aに隣接する受光部84bの受光光量に対応する値である。また、Scは受光部84aと対向する受光部84cの受光光量に対応する値であり、Sdは受光部84bと対向する受光部84dの受光光量に対応する値である。なお、本実施形態における4分割センサ81,82,83の出力信号S1,S2,S3についても同様である。
S=(Sa+Sc)−(Sb+Sd) (1)
【0023】
式(1)により表される4分割センサ84の出力信号Sと、ガラス基板20の裏面20aの面位置の変位Dとの間には、図4に示すような関係が成立する。図4において、横軸は変位Dを、縦軸は4分割センサ84の出力信号Sを表している。出力信号Sと変位Dとの関係を表すS字状の線(Sカーブ)は、その原点(S=D=0の点)を中心とする所定の範囲において高い線形性(リニアリティ)を有する。
【0024】
4分割センサ84の出力信号Sが供給される信号処理部9では、出力信号Sの変化量の符号に基づいてガラス基板20の裏面20aの移動方向(すなわち変位Dの符号)を求め、出力信号Sの変化量の絶対値に基づいてガラス基板20の裏面20aのZ方向に沿った移動量(すなわち変位Dの絶対値)を求める。具体的には、信号処理部9は、例えば4分割センサ84の出力信号Sがゼロである初期状態からの裏面20aの面位置の変位Dの符号および絶対値を、4分割センサ84の出力信号Sの符号および絶対値に基づいて算出する。
【0025】
比較例では、ガラス基板20の裏面20aへの入射光束が表面20bを通過する領域または裏面20aからの射出光束が表面20bを通過する領域に、図1において参照符号21で示すような異物(ゴミ、水滴など)が付着していると、この異物21により4分割センサ84へ達する光が影響を受け、ひいては検出誤差が発生する。
【0026】
本実施形態では、図5に明瞭に示すように、グレーティング2により生成された3つの光L1,L2,L3が、対物レンズ5を介して、ガラス基板20の表面20b上の互いに異なる領域R1,R2,R3を通過した後、裏面20a上の互いに異なる位置P1,P2,P3に集光点を形成する。裏面20aで反射された3つの光L1,L2,L3は、表面20b上の領域R1,R2,R3を再び通過し、対物レンズ5を介した後、最終的に互いに異なる4分割センサ81,82,83に達する。
【0027】
こうして、4分割センサ81では、裏面20a上の第1位置P1で反射された第1の光L1に基づいて、第1位置P1における面位置の変位情報が得られる。4分割センサ82では、裏面20a上の第2位置P2で反射された第2の光L2に基づいて、第2位置P2における面位置の変位情報が得られる。4分割センサ83では、裏面20a上の第3位置P3で反射された第3の光L3に基づいて、第3位置P3における面位置の変位情報が得られる。
【0028】
したがって、例えば図1に示すように、ガラス基板20の表面20bにおいて第3の光L3の通過領域R3に異物21が付着している場合(厳密には異物21の少なくとも一部が通過領域R3にかかっている場合)、4分割センサ83で得られる変位情報は異物21の影響を受けて、4分割センサ81で得られる変位情報および4分割センサ82で得られる変位情報とは実質的に異なるものになる。
【0029】
具体的には、例えば図2に示すように、第1の光L1が4分割センサ81に形成する光分布81eと第2の光L2が4分割センサ82に形成する光分布82eとは互いに類似したものになるが、第3の光L3が4分割センサ83に形成する光分布83eは光分布81eおよび82eとは実質的に異なるものになる。換言すれば、4分割センサ81の出力信号S1と4分割センサ82の出力信号S2とは互いに類似した値になるが、4分割センサ83の出力信号S3は出力信号S1およびS2とは実質的に異なる値になる。この場合、信号処理部9では、出力信号S1とS2とS3との比較により、出力信号S3が異物21の影響を受けていることを検知し、出力信号S1とS2とに基づいて、ガラス基板20の裏面20aの面位置の変位Dを算出する。
【0030】
さらに具体的には、例えば中央の基準となる4分割センサ81のSカーブの原点に対する4分割センサ82のSカーブの原点のオフセットX2、および4分割センサ83のSカーブの原点のオフセットX3を予め求める。また、4分割センサ81のSカーブの原点を中心とする所定範囲におけるSカーブの傾き(リニアリティ)を、面位置の変化に対する信号S1の変化率K1として例えば計測により予め求める。同様に、4分割センサ82,83のSカーブの原点を中心とする所定範囲におけるSカーブの傾きを、面位置の変化に対する信号S2,S3の変化率K2,K3として例えば計測により予め求める。
【0031】
こうして、裏面20a上の位置P1,P2,P3における面位置の変位計測値D1,D2,D3が、4分割センサ81,82,83で得られた信号S1,S2,S3に基づいて、次の式(2)〜(4)により求められる。
D1=S1×K1 (2)
D2=(S2+X2)×K2 (3)
D3=(S3+X3)×K3 (4)
【0032】
4分割センサ81,82,83の出力信号S1,S2,S3は、次の式(1a),(1b),(1c)によりそれぞれ表される。式(1a)において、S1aは受光部81a、S1bは受光部81b、S1cは受光部81c、S1dは受光部81dの受光光量に対応する値である。式(1b)において、S2aは受光部82a、S2bは受光部82b、S2cは受光部82c、S2dは受光部82dの受光光量に対応する値である。式(1c)において、S3aは受光部83a、S3bは受光部83b、S3cは受光部83c、S3dは受光部83dの受光光量に対応する値である。
【0033】
S1=(S1a+S1c)−(S1b+S1d) (1a)
S2=(S2a+S2c)−(S2b+S2d) (1b)
S3=(S3a+S3c)−(S3b+S3d) (1c)
【0034】
信号処理部9では、|D1−D2|と|D1−D3|と|D2−D3|とを比較し、その値が最小になる変位計測値の組合せを選ぶ。そして、例えば、選んだ2つの変位計測値Di,Djの平均値(Di+Dj)/2を、被検面である裏面20aの面位置の変位Dとして求める。第3の光L3の通過領域R3に異物21が付着している場合、|D1−D2|の値が最小になるので、4分割センサ81で得られた信号S1に基づいて計算された面位置の変位計測値D1と、4分割センサ82で得られた信号S2に基づいて計算された面位置の変位計測値D2との平均値(D1+D2)/2を変位Dとして求める。
【0035】
以上のように、本実施形態では、グレーティング2により生成された3つの光L1,L2,L3を、共通の光学系(3,4,5)により、ガラス基板20の裏面20a上の互いに異なる位置P1,P2,P3へそれぞれ導いて、位置P1,P2,P3に集光点をそれぞれ形成する。そして、裏面20a上の位置P1,P2,P3で反射された3つの光L1,L2,L3に基づいて、位置P1,P2,P3における変位情報として変位計測値D1,D2,D3をそれぞれ検出し、これら3つの変位情報D1,D2,D3のうちの互いに最も類似した2つの変位情報に基づいて裏面20aの面位置の変位Dを検出する。
【0036】
したがって、ガラス基板20の表面20bにおいて3つの光L1,L2,L3が通過する領域R1,R2,R3のうちのいずれか1つの領域に異物21が付着していたとしても、異物21の影響を受けていない2つの光により得られた2つの変位情報に基づいて、ガラス基板20の裏面20aの面位置の変位Dを検出することができる。換言すれば、本実施形態の変位検出装置では、ガラス基板20の表面20bに付着した異物21の影響を抑えて、その裏面20aの面位置の変位Dを高精度に検出することができる。
【0037】
本実施形態では、ガラス基板20の表面20bにおいて隣り合う2つの光束の中心間距離を、表面20bにおける各光束の通過領域R1,R2,R3の直径と、表面20bに付着することが想定される異物21の直径との和よりも大きく設定することにより、2つの光が同時に異物21の影響を受けることがなくなり確実に検出精度を向上させることができる。すなわち、1つの異物が1つの4分割センサにしか影響を及ぼさないようにするには、次の条件式(5)を満たすことが必要である。
p>2×NA×t/n+d (5)
【0038】
条件式(5)において、pは、図5に示すように、ガラス基板20の表面20bにおいて隣り合う2つの光束の中心間距離である。NAは対物レンズ5の開口数であり、tはガラス基板20の厚さ(Z方向の寸法)であり、nはガラス基板20を形成する光学材料の屈折率である。dは、異物21の直径である。換言すれば、条件式(5)は、ガラス基板20の表面20bにおいて隣り合う2つの光束の中心間距離pが、表面20bにおける光束の通過領域R1,R2,R3に外接する円の直径(=2×NA×t/n)と、表面20bに付着することが想定される異物21に外接する円の直径の最大値dとの和よりも大きく設定すべきことを意味している。
【0039】
なお、上述の実施形態では、偏光ビームスプリッター3を経た3つの光L1,L2,L3に非点収差を発生させる収差発生部材としてのシリンドリカルレンズ7と、ガラス基板20の裏面20aからの3つの反射光L1,L2,L3をそれぞれ光電変換する光電変換部としての3つの4分割センサ81〜83とを用いて、非点収差法により被検面である裏面20aの面位置の変位を検出している。しかしながら、非点収差法に限定されることなく、例えばナイフエッジ法や臨界角法などの手法を用いて被検面の面位置の変位を検出する変位検出装置に対して本発明を適用することができる。
【0040】
以下、図6および図7を参照して、ナイフエッジ法によりガラス基板の裏面の面位置の変位を検出する変位検出装置の構成例を説明する。図6の変形例は図1の実施形態と類似の構成を有するが、シリンドリカルレンズ7に代えて遮光部材10が用いられ、3つの4分割センサ81〜83に代えて3つの2分割センサ91〜93が用いられている点が図1の実施形態と相違している。以下、図1の実施形態との相違点に着目して、図6の変形例の構成および作用を説明する。
【0041】
図6の変形例では、集光レンズ6を介した3つの反射光L1,L2,L3が、遮光部材10に入射する。遮光部材10は、装置の光軸AXと直交してY方向に延びるエッジ10aを有し、3つの反射光束L1,L2,L3のうち光軸AXから+X方向にある部分を遮る機能を有する。光検出部8’は、図7に示すように、Y方向に沿って間隔を隔てて配置された3つの2分割センサ91,92,93を有する。中央の2分割センサ91は、グレーティング2により生成された0次回折光L1を受光するように位置決めされ、Y方向に延びる線状の領域により等分割された2つの受光部91aおよび91bを有する。
【0042】
換言すれば、2つの受光部91aと91bとは、2分割センサ91の中心点を通ってY方向に延びる線分に関して対称に配置されている。図7中左側の2分割センサ92は、+1次回折光L2を受光するように位置決めされ、2分割センサ91と同様に対称に配置された2つの受光部92aおよび92bを有する。図7中右側の2分割センサ93は、−1次回折光L3を受光するように位置決めされ、2分割センサ91と同様に対称に配置された2つの受光部93aおよび93bを有する。
【0043】
2分割センサ91の出力信号S1は、次の式(6)により表される。式(6)において、S1aは受光部91aの受光光量に対応する値であり、S1bは受光部91bの受光光量に対応する値である。2分割センサ92の出力信号S2および2分割センサ93の出力信号S3についても同様である。
S1=S1a−S1b (6)
【0044】
図6の変形例において、第3の光L3の通過領域R3に異物21が付着している場合、図7に示すように、第1の光L1が2分割センサ91に形成する光分布91cと第2の光L2が2分割センサ92に形成する光分布92cとは互いに類似したものになるが、第3の光L3が2分割センサ93に形成する光分布93cは光分布91cおよび92cとは実質的に異なることになる。換言すれば、2分割センサ91の出力信号S1と2分割センサ92の出力信号S2とは互いに類似した値になるが、2分割センサ93の出力信号S3は出力信号S1およびS2とは実質的に異なる値になる。
【0045】
図6の変形例では、例えば図1の実施形態と同様の手法により、2分割センサ91,92,93で得られた信号S1,S2,S3に基づいて、裏面20a上の位置P1,P2,P3における面位置の変位計測値D1,D2,D3を求める。次いで、|D1−D2|と|D1−D3|と|D2−D3|とを比較し、その値が最小になる変位計測値の組合せを選ぶ。そして、例えば、選んだ2つの変位計測値Di,Djの平均値(Di+Dj)/2を、被検面である裏面20aの面位置の変位Dとして求める。
【0046】
したがって、ガラス基板20の表面20bにおいて3つの光L1,L2,L3が通過する領域R1,R2,R3のうちのいずれか1つの領域に異物21が付着していたとしても、異物21の影響を受けていない2つの光により得られた2つの変位情報に基づいて、ガラス基板20の裏面20aの面位置の変位Dを検出することができる。換言すれば、図6の変形例においても、図1の実施形態の場合と同様に、ガラス基板20の表面20bに付着した異物21の影響を抑えて、その裏面20aの面位置の変位Dを高精度に検出することができる。
【0047】
なお、上述の実施形態および変形例では、3つの光L1,L2,L3が、被検面である裏面20a上に集光点を形成している。しかしながら、これに限定されることなく、例えば裏面20aの面粗さの影響を受けにくくするために、裏面20aの近傍、例えばガラス基板20の内部に3つの光L1,L2,L3の集光点を形成してもよい。
【0048】
また、上述の実施形態および変形例では、グレーティング2の回折作用により、光源LSが供給する光から、0次回折光L1、+1次回折光L2、および−1次回折光L3を生成している。しかしながら、光源からの光を第1乃至第3の光に分割する光分割部材として、グレーティング以外の適当な光学素子を用いることができる。
【0049】
また、上述の実施形態および変形例では、グレーティング2により生成された3つの光L1,L2,L3を反射して対物レンズ5へ導くための偏向部材として、偏光分離面3aを有する偏光ビームスプリッター3を用いている。しかしながら、これに限定されることなく、この種の偏向部材については様々な形態が可能である。例えば、この種の偏向部材として、偏光分離面を有しない通常のビームスプリッターを用いることができる。一般的には、光分割部材により生成された第1乃至第3の光を偏光型または通常型のビームスプリッターにより反射または透過させて対物レンズへ導き、被検面を経て偏光型または振幅分割型のビームスプリッターを透過または反射した第1乃至第3の光をそれぞれ光電変換することができる。
【0050】
振幅分割型のビームスプリッターを用いる場合には、面位置の変位の検出に寄与しない光が発生し、ひいては光量損失が発生する。この場合、必要に応じて、面位置の変位の検出に寄与しない光を用いて光源の光量変化をモニターし、その安定化を図ることができる。同様に、偏光ビームスプリッターを用いる場合にも、必要に応じて、面位置の変位の検出に寄与しない光を積極的に発生させ、この光を用いて光源の光量変化をモニターすることができる。
【0051】
また、上述の実施形態および変形例では、ガラス基板20の表面20bに付着した異物21の影響に着目して、変位検出装置の作用を説明している。しかしながら、表面20bに付着した異物21だけでなく、例えばガラス基板20内の脈理、異物、泡なども検出誤差の原因になることがある。図1の実施形態および図6の変形例では、表面20bに付着した異物21の影響だけでなく、例えばガラス基板20内の脈理、異物、泡などの影響も抑えて、裏面20aの面位置の変位を高精度に検出することができる。
【0052】
また、上述の実施形態および変形例では、装置を固定した状態において、被検面であるガラス基板20の裏面20aの面位置の変位を検出している。しかしながら、これに限定されることなく、例えば検出変位Dが常に一定値(例えばゼロ)になるように対物レンズ5または装置全体をZ方向に移動させ、対物レンズ5または装置全体のZ方向移動量に基づいて被検面の面位置の変位を検出することもできる。
【0053】
また、上述の実施形態および変形例では、ガラス基板20の裏面20aの面位置の変位を検出する変位検出装置を例にとって本発明を説明したが、これに限定されることなく、ガラス基板の裏面以外の被検面の変位の検出に対しても同様に本発明を適用することができる。換言すれば、図1の実施形態または図6の変形例にかかる変位検出装置の適用例については、様々な形態が可能である。
【0054】
以下、図8を参照して、露光装置における基板ステージの面位置の変位の検出に、上述の実施形態または変形例にかかる変位検出装置を適用した構成例を説明する。図8の露光装置は、たとえば露光光源であるArFエキシマレーザ光源を含み、オプティカル・インテグレータ(ホモジナイザー)、視野絞り、コンデンサレンズ等から構成される照明系61を備えている。照明系61は、光源から射出された露光光により、転写すべきパターンが形成されたマスク(レチクル)Mを照明する。
【0055】
照明系61は、例えばマスクMの矩形状のパターン領域全体、あるいはパターン領域全体のうちX方向に沿って細長いスリット状の領域(例えば矩形状の領域)を照明する。マスクMのパターンからの光は、所定の縮小倍率を有する投影光学系PLを介して、フォトレジストが塗布されたウェハ(感光性基板)Wの単位露光領域にマスクMのパターン像を形成する。すなわち、マスクM上での照明領域に光学的に対応するように、ウェハWの単位露光領域において、マスクMのパターン領域全体と相似な矩形状の領域、あるいはX方向に細長い矩形状の領域(静止露光領域)にマスクパターン像が形成される。
【0056】
マスクMは、マスクステージMS上においてXY平面と平行に保持されている。マスクステージMSには、X方向、Y方向およびZ軸廻りの回転方向にマスクMを微動させる機構が組み込まれている。マスクステージMSには図示を省略した移動鏡が設けられ、この移動鏡を用いるマスクレーザ干渉計(不図示)が、マスクステージMS(ひいてはマスクM)のX方向、Y方向および回転方向の位置をリアルタイムに計測する。
【0057】
ウェハWは、Zステージ62上においてXY平面と平行に保持されている。Zステージ62は、投影光学系PLの像面と平行なXY平面に沿って移動するXYステージ63上に取り付けられ、ウェハWのフォーカス位置(Z方向の位置)および傾斜角(XY平面に対するウェハWの表面の傾き)を調整する。Zステージ62には移動鏡(不図示)が設けられ、この移動鏡を用いるウェハレーザ干渉計(不図示)が、Zステージ62のX方向、Y方向およびZ軸廻りの回転方向の位置をリアルタイムに計測する。XYステージ63は、ベース64上に載置され、ウェハWのX方向、Y方向および回転方向の位置を調整する。
【0058】
マスクレーザ干渉計の出力およびウェハレーザ干渉計の出力は、主制御系(不図示)に供給される。主制御系は、マスクレーザ干渉計の計測結果に基づいて、マスクMのX方向、Y方向および回転方向の位置の制御を行う。即ち、主制御系は、マスクステージMSに組み込まれている機構に制御信号を送信し、この機構が制御信号に基づいてマスクステージMSを微動させることにより、マスクMのX方向、Y方向および回転方向の位置の調整を行う。
【0059】
また、主制御系は、オートフォーカス方式及びオートレベリング方式により、ウェハWの表面を投影光学系PLの像面に合わせ込む(像面と一致させる)ために、ウェハWのフォーカス位置および傾斜角の制御を行う。即ち、主制御系は、ウェハステージ駆動系(不図示)に制御信号を送信し、ウェハステージ駆動系が制御信号に基づいてZステージ62を駆動することにより、ウェハWのフォーカス位置および傾斜角の調整を行う。
【0060】
また、主制御系は、ウェハレーザ干渉計の計測結果に基づいて、ウェハWのX方向、Y方向および回転方向の位置の制御を行う。即ち、主制御系は、ウェハステージ駆動系に制御信号を送信し、ウェハステージ駆動系が制御信号に基づいてXYステージ63を駆動することにより、ウェハWのX方向、Y方向および回転方向の位置の調整を行う。
【0061】
ステップ・アンド・リピート方式では、ウェハW上に縦横に設定された複数の単位露光領域のうちの1つの単位露光領域に、マスクMのパターン像を一括的に露光する。その後、主制御系は、ウェハステージ駆動系に制御信号を送信し、ウェハステージ駆動系によりXYステージ63をXY平面に沿ってステップ移動させることにより、ウェハWの別の単位露光領域を投影光学系PLに対して位置決めする。こうして、マスクMのパターン像をウェハWの単位露光領域に一括露光する動作を繰り返す。
【0062】
ステップ・アンド・スキャン方式では、主制御系は、マスクステージMSに組み込まれた機構に制御信号を送信すると共に、ウェハステージ駆動系に制御信号を送信し、投影光学系PLの投影倍率に応じた速度比でマスクステージMSおよびXYステージ63を移動させつつ、マスクMのパターン像をウェハWの1つの単位露光領域に走査露光する。その後、主制御系は、ウェハステージ駆動系に制御信号を送信し、ウェハステージ駆動系によりXYステージ63をXY平面に沿ってステップ移動させることにより、ウェハWの別の単位露光領域を投影光学系PLに対して位置決めする。こうして、マスクMのパターン像をウェハWの単位露光領域に走査露光する動作を繰り返す。
【0063】
すなわち、ステップ・アンド・スキャン方式では、ウェハステージ駆動系およびウェハレーザ干渉計などを用いてマスクMおよびウェハWの位置制御を行いながら、矩形状(一般にはスリット状)の静止露光領域の短辺方向であるY方向に沿って、マスクステージMSとXYステージ63とを、ひいてはマスクMとウェハWとを同期的に移動(走査)させることにより、ウェハW上には静止露光領域の長辺に等しい幅を有し且つウェハWの走査量(移動量)に応じた長さを有する領域に対してマスクパターンが走査露光される。
【0064】
本実施形態の露光装置は、ウェハ(感光性基板)Wを支持するZステージ(基板ステージ)62の面位置の変位を検出するための1つまたは複数の変位検出装置60を備えている。変位検出装置60は、例えば図1の実施形態または図6の変形例にかかる装置と同様の構成を有する。変位検出装置60は、例えば国際公開第2007/097466号パンフレットに記載されたZセンサ72a〜72dとして使用され、基板ステージ上に設けられた光学式エンコーダ用のガラス基板の裏面の面位置すなわち基板ステージの表面の面位置の変位を検出する。
【0065】
次に、図8の実施形態にかかる露光装置を用いたデバイス製造方法について説明する。図9は、半導体デバイスの製造工程を示すフローチャートである。図9に示すように、半導体デバイスの製造工程では、半導体デバイスの基板となるウェハWに金属膜を蒸着し(ステップS40)、この蒸着した金属膜上に感光性材料であるフォトレジストを塗布する(ステップS42)。つづいて、上述の実施形態の露光装置を用い、マスク(レチクル)Mに形成されたパターンをウェハW上の各ショット領域に転写し(ステップS44:露光工程)、この転写が終了したウェハWの現像、つまりパターンが転写されたフォトレジストの現像を行う(ステップS46:現像工程)。その後、ステップS46によってウェハWの表面に生成されたレジストパターンをマスクとし、ウェハWの表面に対してエッチング等の加工を行う(ステップS48:加工工程)。
【0066】
ここで、レジストパターンとは、上述の実施形態の露光装置によって転写されたパターンに対応する形状の凹凸が生成されたフォトレジスト層であって、その凹部がフォトレジスト層を貫通しているものである。ステップS48では、このレジストパターンを介してウェハWの表面の加工を行う。ステップS48で行われる加工には、例えばウェハWの表面のエッチングまたは金属膜等の成膜の少なくとも一方が含まれる。なお、ステップS44では、上述の実施形態の露光装置は、フォトレジストが塗布されたウェハWを、感光性基板つまりプレートPとしてパターンの転写を行う。
【0067】
図10は、液晶表示素子等の液晶デバイスの製造工程を示すフローチャートである。図10に示すように、液晶デバイスの製造工程では、パターン形成工程(ステップS50)、カラーフィルタ形成工程(ステップS52)、セル組立工程(ステップS54)およびモジュール組立工程(ステップS56)を順次行う。
【0068】
ステップS50のパターン形成工程では、プレートPとしてフォトレジストが塗布されたガラス基板上に、上述の実施形態の露光装置を用いて回路パターンおよび電極パターン等の所定のパターンを形成する。このパターン形成工程には、上述の実施形態の露光装置を用いてフォトレジスト層にパターンを転写する露光工程と、パターンが転写されたプレートPの現像、つまりガラス基板上のフォトレジスト層の現像を行い、パターンに対応する形状のフォトレジスト層を生成する現像工程と、この現像されたフォトレジスト層を介してガラス基板の表面を加工する加工工程とが含まれている。
【0069】
ステップS52のカラーフィルタ形成工程では、R(Red)、G(Green)、B(Blue)に対応する3つのドットの組をマトリックス状に多数配列するか、またはR、G、Bの3本のストライプのフィルタの組を水平走査方向に複数配列したカラーフィルタを形成する。
【0070】
ステップS54のセル組立工程では、ステップS50によって所定パターンが形成されたガラス基板と、ステップS52によって形成されたカラーフィルタとを用いて液晶パネル(液晶セル)を組み立てる。具体的には、例えばガラス基板とカラーフィルタとの間に液晶を注入することで液晶パネルを形成する。ステップS56のモジュール組立工程では、ステップS54によって組み立てられた液晶パネルに対し、この液晶パネルの表示動作を行わせる電気回路およびバックライト等の各種部品を取り付ける。
【0071】
また、本発明は、半導体デバイス製造用の露光装置への適用に限定されることなく、例えば、角型のガラスプレートに形成される液晶表示素子、若しくはプラズマディスプレイ等のディスプレイ装置用の露光装置や、撮像素子(CCD等)、マイクロマシーン、薄膜磁気ヘッド、及びDNAチップ等の各種デバイスを製造するための露光装置にも広く適用できる。更に、本発明は、各種デバイスのマスクパターンが形成されたマスク(フォトマスク、レチクル等)をフォトリソグラフィ工程を用いて製造する際の、露光工程(露光装置)にも適用することができる。
【図面の簡単な説明】
【0072】
【図1】本発明の実施形態にかかる変位検出装置の構成を概略的に示す図である。
【図2】本実施形態における光検出部の構成を概略的に示す図である。
【図3】比較例における光検出部の構成を概略的に示す図である。
【図4】4分割センサの出力信号と被検面の面位置の変位との関係を示す図である。
【図5】1つの異物が1つの4分割センサにしか影響を及ぼさない条件を説明する図である。
【図6】ナイフエッジ法を用いる変形例にかかる変位検出装置の構成を概略的に示す図である。
【図7】図6の変形例における光検出部の構成を概略的に示す図である。
【図8】露光装置における基板ステージの面位置の変位の検出に対して変位検出装置を適用した構成例を説明する図である。
【図9】半導体デバイスの製造工程を示すフローチャートである。
【図10】液晶表示素子等の液晶デバイスの製造工程を示すフローチャートである。
【符号の説明】
【0073】
LS 光源
IL 照射光学系
DS 検出系
2 グレーティング
3 偏光ビームスプリッター
4 1/4波長板
5 対物レンズ
7 シリンドリカルレンズ
8 光検出部
9 信号処理部
20 ガラス基板
20a ガラス基板の裏面

【特許請求の範囲】
【請求項1】
被検面の面位置の変位を検出する変位検出装置において、
第1乃至第3の光を前記被検面の第1乃至第3位置へそれぞれ導いて前記被検面またはその近傍に第1乃至第3の集光点を形成するための、前記第1乃至第3の光に共通の光学系と、
前記被検面で反射された前記第1乃至第3の光に基づいて前記第1乃至第3位置における第1乃至第3変位情報をそれぞれ検出し、該3つの変位情報のうちの互いに最も類似した2つの変位情報に基づいて前記被検面の面位置の変位を検出する検出系とを備えていることを特徴とする変位検出装置。
【請求項2】
前記共通の光学系は、前記被検面としての基板の裏面またはその近傍に前記第1乃至第3の光の集光点を形成し、
前記基板の表面において隣り合う2つの光束の中心間距離は、前記基板の表面における光束の通過領域に外接する円の直径と、前記基板の表面に付着することが想定される異物に外接する円の直径の最大値との和よりも大きく設定されていることを特徴とする請求項1に記載の変位検出装置。
【請求項3】
前記共通の光学系は、光源からの光を前記第1乃至第3の光に分割する光分割部材と、該光分割部材と前記被検面との間の光路中に配置された対物レンズとを有し、
前記検出系は、前記被検面で反射され且つ前記対物レンズを経た前記第1乃至第3の光に基づいて前記被検面の面位置の変位を検出することを特徴とする請求項1または2に記載の変位検出装置。
【請求項4】
前記共通の光学系は、前記光分割部材により生成された前記第1乃至第3の光を反射または透過させて前記対物レンズへ導くビームスプリッターを有し、
前記検出系は、前記ビームスプリッターを透過または反射した前記第1乃至第3の光をそれぞれ光電変換する第1乃至第3光電変換部を有することを特徴とする請求項3に記載の変位検出装置。
【請求項5】
前記第1乃至第3光電変換部はそれぞれ4分割センサを有することを特徴とする請求項4に記載の変位検出装置。
【請求項6】
前記検出系は、前記ビームスプリッターと前記光電変換部との間の光路中に配置されて前記ビームスプリッターを経た前記第1乃至第3の光に非点収差を発生させる収差発生部材を有することを特徴とする請求項5に記載の変位検出装置。
【請求項7】
前記検出系は、前記ビームスプリッターを経た前記第1乃至第3の光を部分的に遮る遮光部材を有し、
前記第1乃至第3光電変換部はそれぞれ2分割センサを有することを特徴とする請求項4に記載の変位検出装置。
【請求項8】
前記ビームスプリッターは偏光分離面を有することを特徴とする請求項4乃至7のいずれか1項に記載の変位検出装置。
【請求項9】
請求項1乃至8のいずれか1項に記載の変位検出装置を備え、所定のパターンを感光性基板に露光することを特徴とする露光装置。
【請求項10】
前記感光性基板を支持する基板ステージを備え、
前記変位検出装置は、前記基板ステージの面位置の変位を検出することを特徴とする請求項9に記載の露光装置。
【請求項11】
請求項9または10に記載の露光装置を用いて、前記所定のパターンを前記感光性基板に露光する露光工程と、
前記所定のパターンが転写された前記感光性基板を現像し、前記所定のパターンに対応する形状のマスク層を前記感光性基板の表面に形成する現像工程と、
前記マスク層を介して前記感光性基板の表面を加工する加工工程とを含むことを特徴とするデバイス製造方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate


【公開番号】特開2009−236654(P2009−236654A)
【公開日】平成21年10月15日(2009.10.15)
【国際特許分類】
【出願番号】特願2008−82497(P2008−82497)
【出願日】平成20年3月27日(2008.3.27)
【出願人】(000004112)株式会社ニコン (12,601)
【Fターム(参考)】