説明

二流体ノズル、該二流体ノズルを用いた基板洗浄装置および基板洗浄方法

【課題】基板を効率良く洗浄しながらも基板へのダメージを低減することができる二流体ノズルおよび該二流体ノズルを用いた基板洗浄装置および基板洗浄方法を提供する。
【解決手段】二流体ノズル301において、液体吐出口327を環状で且つスリット状に開口させるとともに、液体吐出口327の開口面積を1.8mm以上かつ36mm以下に設定している。このため、従来ノズルに比べて単位時間当たりの供給液滴数を増加させ、基板Wを実用的かつ効率的に洗浄することが可能となる。しかも、液体吐出口327のスリット幅を0.1mm以上かつ1.0mm以下の範囲に設定しているので、基板Wへのダメージ発生に寄与する比較的大きな粒径の液滴が生成されるのを抑制することができる。したがって、基板Wを効率良く洗浄しながらも基板Wへのダメージを低減することができる。

【発明の詳細な説明】
【技術分野】
【0001】
この発明は、液体と気体とを衝突させて生成した液体の液滴を噴射する二流体ノズルおよび該二流体ノズルを用いて、半導体ウエハ、フォトマスク用ガラス基板、液晶表示用ガラス基板、プラズマ表示用ガラス基板、FED(Field Emission Display;電界放出ディスプレイ)用基板、光ディスク用基板、磁気ディスク用基板、光磁気ディスク用基板などの各種基板(以下、単に「基板」という)に対して洗浄処理を施す基板洗浄装置および基板洗浄方法に関するものである。
【背景技術】
【0002】
半導体装置や液晶表示装置などの電子部品の製造工程では、基板の表面に成膜やエッチングなどの処理を繰り返し施して微細パターンを形成していく工程が含まれる。ここで、微細加工を良好に行うためには基板表面を清浄な状態に保つ必要がある。そこで、必要に応じて基板の洗浄処理が行われる(特許文献1参照)。この特許文献1に記載の発明では、処理液(液体)に気体を衝突させて生成した液体の液滴を基板に供給する二流体ノズルを備えている。この二流体ノズルはいわゆる外部混合方式の二流体ノズルであり、該二流体ノズルの先端部には円形の液体吐出口のまわりに環状の気体吐出口が形成されている。そして、二流体ノズルは液体吐出口から吐出された処理液に気体吐出口から吐出された気体を衝突させることで処理液の液滴を生成し、該液滴を基板に供給している。これにより、基板表面に付着しているパーティクル(微小汚物)が基板から除去され基板の洗浄処理が行われる。
【0003】
ところで、二流体ノズルを用いた洗浄処理では、次の技術事項が知られている。その技術事項とは、基板に供給される液体の液滴の数(以下、単に「液滴数」という)が多いほど、パーティクルが基板から除去される割合(以下「除去率」という)が向上することである。したがって、この知見に基づけば、液滴数を増加させることで除去率を向上させることが可能である。そこで、液滴数を増加させるために処理時間を長くすることが考えられる。しかしながら、この場合には装置のスループットが低下してしまうという問題がある。したがって、単位時間当たりに基板に供給される液滴数(以下「単位時間当たりの供給液滴数」という)を増加させることが必要とされる。
【0004】
単位時間当たりの供給液滴数を増加させるための方策として液体の流量を増加させることが考えられる。しかしながら、液体の流量を増加させると、液体の流速が大きくなる結果、液体の微粒化効率が低下してしまう。また、単位時間当たりの供給液滴数を増加させるための他の方策として液体吐出口の開口面積を大きくすることが考えられる。しかしながら、円形の液体吐出口の開口面積を単に大きくすると、液体吐出口から吐出される液体の厚み(吐出方向に直交する方向の液体の幅)が大きくなる結果、液体の微粒化効率が低下してしまう。このように微粒化効率が低下してしまうと、液体の流量等を増加しているにもかかわらず、供給液滴数の増加が得られない。
【0005】
そこで、液体の微粒化効率を高めるために、次のような二流体ノズルが提案されている。例えば、特許文献2に記載の二流体ノズルでは、液体および気体をそれぞれ、2つの環状吐出口(2重の環状吐出口)から吐出させている。これにより、液体を薄膜状に吐出させて液体の微粒化効率を高めている。
【0006】
また、特許文献3に記載の二流体ノズルでは、ノズル中心に形成された中心空気流路のまわりに環状の液体流路(中間環状流路)が形成されている。また、環状の液体流路の外側に環状の外側空気流路(外側環状流路)が形成されている。そして、環状の液体流路からの水(液体)が中心空気流路から噴出される空気(気体)と衝突した後、環状の外側空気流路からの空気と衝突して二流体ノズルの先端部に設けられた開口より液滴が噴射される。
【0007】
【特許文献1】特開2004−349501号公報(図2)
【特許文献2】特開2005−288390号公報(図2)
【特許文献3】特許第3382573号(図2)
【発明の開示】
【発明が解決しようとする課題】
【0008】
しかしながら、特許文献2,3に記載の二流体ノズルは単に液体の微粒化効率を高めるために液体吐出口を環状で且つスリット状に形成しているのみであり、液体吐出口の開口面積および液体吐出口のスリット幅の大きさについて十分に考慮されていなかった。そのため、次のような問題が発生することがあった。例えば、液体吐出口の開口面積によっては、基板を効率的に洗浄することができない場合があった。また、液体吐出口のスリット幅の大きさによっては、基板に形成されたパターンがダメージを受ける場合があった。
【0009】
この発明は上記課題に鑑みなされたものであり、基板を効率良く洗浄しながらも基板へのダメージを低減することができる二流体ノズルおよび該二流体ノズルを用いた基板洗浄装置および基板洗浄方法を提供することを目的とする。
【課題を解決するための手段】
【0010】
この発明は、気体を吐出する気体吐出口と、環状で且つスリット状に開口して液体を吐出する液体吐出口とが形成されたノズル本体を有し、液体吐出口から吐出された液体に気体吐出口から吐出された気体を衝突させて生成した液体の液滴を噴射する二流体ノズルにおいて、液体吐出口のスリット幅が0.1mm以上かつ1.0mm以下であるとともに、液体吐出口の開口面積が1.8mm以上かつ36mm以下であることを特徴としている。
【0011】
このように構成された発明では、液体吐出口を環状で且つスリット状に開口させるとともに液体吐出口の開口面積を1.8mm以上かつ36mm以下に設定している。詳しい実験結果については後で詳述するが、上記した範囲に液体吐出口の開口面積を設定することで特許文献1に記載の二流体ノズル(以下「従来ノズル」という)に比べて単位時間当たりの供給液滴数を増加させることが可能となる。すなわち、液体吐出口の開口面積を36mm以下に設定することで十分な供給液滴数の増加を得られる。一方で、液体吐出口の開口面積が1.8mm未満であるときには、環状で且つスリット状に開口させた液体吐出口から適切に液体を吐出することが困難になり、目詰まり等を引き起こすおそれがある。これに対し、上記した範囲に液体吐出口の開口面積を設定することで基板を実用的かつ効率的に洗浄することが可能な液滴を得られることとなる。
【0012】
しかも、上記のように、スリット幅を0.1mm以上かつ1.0mm以下の範囲に設定する二流体ノズルとすることで、単位時間当たりの供給液滴数を増加させた場合であっても、基板へのダメージを低減することができる。すなわち、二流体ノズルから供給される液滴の粒径は基板に与えるダメージに大きく関連するが、スリット幅を上記のように設定することで、比較的大きな粒径の液滴が生成されるのを抑制することができる。例えば、スリット幅が1.0mmを超えると、二流体ノズルから供給される液滴に比較的大きな粒径の液滴が含まれるようになる。その結果、比較的大きな粒径の液滴が基板に供給され、基板に与えるダメージが大きくなってしまう。また、逆にスリット幅が0.1mm未満であるときには、液体吐出口の目詰まりが発生し易くなり、実使用に耐えなくなる。これに対し、スリット幅が0.1mm以上かつ1.0mm以下の範囲である二流体ノズルを用いるときには、後述の実験結果に示すように、基板へのダメージ発生に寄与する比較的大きな粒径の液滴が生成されるのを抑制することができる。これにより、基板へのダメージを低減することができる。
【0013】
したがって、上記のように液体吐出口の開口面積およびスリット幅を設定することにより、基板を効率良く洗浄しながらも基板へのダメージを低減することができる二流体ノズルを得ることができる。
【0014】
ここで、液体吐出口の開口面積を34mm以上かつ36mm以下に設定することが好ましい。後述の実験結果に示すように、処理時間の経過とともに基板に供給される累積の液滴数が増加し、除去率も向上するが、所定の液滴数に達すると、除去率は頭打ちになる。このため、液体吐出口の開口面積を大きくするほど、従来ノズルに比べて単位時間当たりの供給液滴数を増加させることができるが、液体吐出口の開口面積を大きくしすぎても、除去率のさらなる向上は見込めない。したがって、効率的な基板の洗浄およびコンパクトな二流体ノズルを提供する観点からは液体吐出口を上記範囲に設定することが好ましい。
【0015】
また、気体吐出口を環状で且つスリット状に開口させるとともに、気体吐出口を液体吐出口に対して内方または外方の少なくともいずれか一方に形成してもよいし、液体吐出口の内方および外方の両方に形成してもよい。この場合、液体吐出口と気体吐出口とは同心円状に形成するのが好ましい。これにより、液体吐出口から吐出される液体を均一に液滴化することができる。
【0016】
また、液体吐出口を、互いに分離して形成された、複数の環状で且つスリット状に開口した開口部から構成し、各開口部のスリット幅を0.1mm以上かつ1.0mm以下にするとともに、複数の開口部の開口面積の総和が1.8mm以上かつ36mm以下となるように構成してもよい。この構成によれば、ノズル先端部の大きさが拡大するのを抑制しながら所望の開口面積を有する液体吐出口をノズルに形成することができる。したがって、上記した効果、つまり供給液滴数の増加という効果に加えて、ノズルをコンパクトに構成することができる。このような観点からは、さらに複数の開口部の各々は同心円状に形成するのが好ましい。
【0017】
また、本発明にかかる基板洗浄装置は、請求項1ないし7のいずれかに記載の二流体ノズルと、二流体ノズルを基板の表面に沿って基板に対して相対移動させる移動機構とを備え、二流体ノズルから液体の液滴を基板に供給させながら移動機構により二流体ノズルを基板に対して相対移動させることで基板表面に対して洗浄処理を施すように構成してもよい。この構成によれば、従来ノズルに比べて単位時間当たりの供給液滴数を増加させながも基板表面の各部に比較的大きな粒径の液滴が供給されるのを防止することができる。これにより、基板を効率良く洗浄しながらも基板へのダメージを低減することができる。
【0018】
また、二流体ノズルと基板との間隔を規定する間隔規定機構をさらに設けて、移動機構は、間隔規定機構により二流体ノズルと基板との間隔を規定した状態で二流体ノズルを基板に対して相対移動させるように構成してもよい。この構成によれば、基板表面の各部に安定した状態で液滴を供給することができ、基板表面を良好に洗浄することができる。
【発明の効果】
【0019】
この発明によれば、液体吐出口を環状で且つスリット状に開口させるとともに、液体吐出口の開口面積を1.8mm以上かつ36mm以下に設定している。このため、基板を実用的かつ効率的に洗浄することが可能となる。しかも、スリット幅を0.1mm以上かつ1.0mm以下の範囲に設定しているので基板へのダメージを低減することができる。したがって、基板を効率良く洗浄しながらも基板へのダメージを低減することができる。
【発明を実施するための最良の形態】
【0020】
二流体ノズルを用いた基板洗浄においては、液体吐出口の形状が単位時間当たりの供給液滴数および基板へのダメージに密接に関連していると考えられるが、その関連性について本願発明者は二流体ノズルを用いた種々の実験などを行い、次のような知見を得た。以下、図1ないし図5を参照しつつ、実験内容および知見内容について詳述する。
【0021】
<液滴数と除去率の関係>
図1は処理時間と除去率の関係を示す図である。本願発明者は、従来ノズルを用いて処理時間を変更したときのパーティクルの除去率を評価した。図2は、実験に使用した従来ノズルの先端部を下方から見た図である。従来ノズル2の先端部には円形の液体吐出口21が形成されている。また、液体吐出口21の外方に環状で且つスリット状に開口した気体吐出口22が形成されている。液体吐出口の開口面積は1.77mm(開口径:1.5mm)、気体吐出口の開口面積は0.81mmとなっている。このような従来ノズル2を用いて各処理時間ごとに以下のようにして除去率が求められる。
【0022】
最初に、枚葉式の基板洗浄装置(大日本スクリーン製造社製、スピンプロセッサSS―3000)を用いてウエハを強制的に汚染させる。その後、ウエハ表面に付着しているパーティクルの数(初期値)を測定する。パーティクル数の測定はKLA−Tencor社製のパーティクル評価装置SP1−TBIを用いて評価を行っている。続いて、基板洗浄装置にてウエハに対して従来ノズル2を用いた洗浄処理を施す。ここで、洗浄条件を表1に示すように設定した。
【0023】
【表1】

そして、上記洗浄条件で各処理時間ごとに洗浄処理を受けたウエハ表面に付着しているパーティクル数をパーティクル評価装置を用いて測定する。それから、洗浄処理後のパーティクル数と洗浄処理前のパーティクル数(初期値)とを対比することで除去率を算出している。
【0024】
図1の実験結果から明らかなように、処理時間が長くなるほど、つまりウエハ表面に供給される累積の液滴数が増加するとともに、除去率が向上することが分かる。また、所定の処理時間(所定の液滴数)に達すると、除去率は頭打ちになることが分かる。具体的には、処理時間を32sから増加させていくにつれて除去率が向上するが、処理時間を32s(除去率:約60%)の20倍(640s)にすることで、除去率が85%付近で頭打ちになることが分かる。
【0025】
したがって、除去率を最大限に高めるためには、ウエハ表面に供給する液滴数を20倍に増加させることが最も効率的であると言える。しかしながら、液滴数を増加させるために、処理時間を長くすると、液滴数の増加(処理時間の長さ)に応じて装置のスループットが低下してしまう。そのため、装置のスループットを低下させることなく、除去率を向上させる方策を実施する必要がある。
【0026】
そこで、液滴の速度を増加させることで除去率を高めることが考えられる。すなわち、気体流量を増加させることで液滴の速度を増加させ、それによって処理時間を延長することなく(処理時間を一定としながら)、除去率を高めることが考えられる。例えば、気体流量を13L/minから20L/minに増加させることで、処理時間32sで85%程度の除去率を達成することができる。しかしながら、液滴の速度を高めて除去率を高めた場合には、表2に示すように、ウエハ表面に与えるダメージが増加してしまうという問題がある。なお、ウエハ表面のダメージは、KLA−Tencor社製のダメージ評価装置KLA2132を用いている。
【0027】
【表2】

表2から明らかなように、所定の除去率(85%程度)を達成するために、液滴速度を増加させてしまうと、処理時間(累積液滴数)を20倍にした場合に比較してダメージ数が約4倍に増加してしまう。すなわち、処理時間を長くすることなく(処理時間を32sとする)、処理時間(累積液滴数)20倍時における除去率(85%程度)を達成しようとすると、ウエハ表面に与えるダメージ数が約4倍に増加してしまう。
【0028】
そこで、上記した方策に替えて、装置のスループットの低下を抑制しつつ、除去率を向上させるために、単位時間当たりの供給液滴数を増加させることが考えられる。その方策のひとつとして、液体流量を増加させることが考えられるが、単に液体流量のみを増加させた場合には、液体の流速が大きくなり、液滴の微粒化効率が低下してしまう。また、他の方策として、液体吐出口の開口面積を大きくすることが考えられる。しかしながら、円形の液体吐出口の開口面積を単に大きくすると、液体吐出口から吐出される液体の厚み(吐出方向に直交する方向の液体の幅)が大きくなる結果、液滴の微粒化効率が低下してしまう。このように微粒化効率が低下してしまうと、液体の流量等を増加しているにもかかわらず、供給液滴数の増加が得られない。
【0029】
そこで、本発明では、「課題を解決するための手段」の項で説明したように、液体吐出口を環状で且つスリット状に形成するとともに、液体吐出口の形状を以下のように設定している。
【0030】
図3は本発明の一実施形態にかかる二流体ノズルの先端部を下方から見た図である。本発明では、二流体ノズル3の液体吐出口31は環状で且つスリット状に形成されており、液体吐出口31の開口面積を1.8mm以上かつ36mm以下の範囲に設定している。このように液体吐出口31の開口面積を設定することで、「課題を解決するための手段」の項で説明したように、従来ノズル2(液体吐出口の開口面積:1.77mm)に比べて単位時間当たりの供給液滴数を増加させ、基板を実用的かつ効率的に洗浄することが可能となる。ここで、特に液体吐出口31の開口面積を34mm以上かつ36mm以下に設定することが好ましい。図1の実験結果に示すように、処理時間の経過とともに基板に供給される累積の液滴数が増加し、除去率も向上するが、処理時間を20倍にする(基板に供給される累積の液滴数が20倍になる)と、除去率が頭打ちになる。このため、液体吐出口31の開口面積を従来ノズル2の開口面積の20倍(35.3mm)より大きくしても、開口面積の増大に見合った除去率のさらなる向上は見込めない。したがって、効率的な基板の洗浄およびコンパクトな二流体ノズルを提供する観点からは液体吐出口31を上記範囲に設定することが好ましい。
【0031】
また、この発明では、環状で且つスリット状に形成した液体吐出口31のスリット幅を後述するように0.1mm以上かつ1.0mm以下の範囲に設定しているので、液体を薄膜状に吐出させることができる。このため、液体吐出口31の開口面積を従来ノズルに比べて大きくしても、液体の微粒化効率が低下するのを防止することができる。つまり、液体の微粒化効率が低下するのを防止しつつ、液体吐出口31の開口面積を大きくすることが可能となっている。したがって、液体吐出口31の開口面積を上記した範囲に設定することで単位時間当たりの供給液滴数を増加させることができる。
【0032】
<液滴の粒径ごとの存在割合>
次に、従来ノズルから供給される液滴の粒径と本発明にかかる二流体ノズルから供給される液滴の粒径を比較した結果について図4を参照しつつ説明する。
【0033】
図4は液滴の粒径ごとの存在割合を示す図である。ここで、従来例とあるのは、図2に示す従来ノズル2から液滴を吐出した場合のデータである。また、実施例1,2とあるのは本発明にかかる、液体吐出口を環状で且つスリット状に形成した二流体ノズル3から液滴を吐出した場合のデータであり、実施例1はスリット幅を0.5mmとしたときのデータを、実施例2はスリット幅を0.1mmとしたときのデータを示している。表3に各データにおける二流体ノズルの液滴生成条件を示す。
【0034】
【表3】

ここで、従来例および実施例1,2において液体流量をすべて同一にしている。これは次のような理由による。すなわち、液体流量が変化すると液滴の粒径が変化する。そこで、液体流量の液滴の粒径への影響を排除するため、液体流量を一定にしている。これにより、従来例と実施例との間で液体吐出口の形状の相違が液体の微粒化に与える影響を確認することができる。また、実施例1と実施例2との間でスリット幅の相違が液体の微粒化に与える影響を確認することができる。
【0035】
また、従来例と実施例との間で気体流量が大きく相違するのは、気体吐出口の開口面積において実施例1,2が従来例よりも大きくなっていることによる。ここで、従来例および実施例1,2における気体流量は各ノズルから液滴を吐出して基板に対して洗浄処理を施した場合に、パーティクルの除去率が同等となるときの各ノズルに供給する気体流量となっている。例えば、実施例1においては、実施例1に示すノズル(液体吐出口のスリット幅0.5mm)を用いて基板を洗浄したときの除去率が従来例に示すノズル(従来ノズル)を用いて基板を洗浄したときの除去率と同等とするために、100L/minの気体流量を必要としている。ここで、基板の洗浄においては液体流量および処理時間を同一としている。このように気体流量を設定することで従来例および実施例1,2においてパーティクルの除去率を同等とした場合における液滴の粒径ごとの存在割合を確認することができる。なお、各データにおける液滴の粒径ごとの存在割合は次のようにして求められる。
【0036】
図5は液滴の粒径ごとの存在割合を確認する方法を模式的に示す図である。二流体ノズルから液滴を噴射させながら液滴噴射範囲内における各部の液滴の状態を撮影する。具体的には、縦0.7mm、横1mmの長方形の液滴撮影ウィンドウを液滴噴射範囲内で走査させながら300回撮影する。撮影は二流体ノズルから鉛直方向下方に離間した所定の位置(水平方向における液滴噴射範囲の中心位置)から液滴噴射範囲の端縁位置に向けて液滴撮影ウィンドウを1mm移動させるごとに行われる。そして、撮影した各画像を画像処理することにより、画像内の液滴の粒径とその個数を算出する。続いて、撮影された液滴をその粒径ごとに分類する。具体的には、撮影された液滴を0〜5um,5〜10um,・・・というように5um間隔で粒径ごとに分類する。その後、分類された粒径ごとの液滴数を液滴の総数(撮影された液滴の総数)で除算することで各粒径ごとの存在割合が求められる。なお、このような液滴の粒径および個数の測定には、Lavision社製のSizingMasterを用いている。
【0037】
図4から明らかなように、実施例1,2では従来例に対して液滴の粒径の存在割合が全体として小さくなる方向にシフトしていることが分かる。具体的には、従来例では150umを超える粒径の液滴が数多く存在しているのに対し、実施例1,2では150umを超える粒径の液滴はほとんど見られない(170um以上の粒径の液滴に限えば皆無である)。その一方で、実施例1,2では従来例に比較して50um前後の比較的小さな粒径の液滴が増加しており、比較的小さな粒径の液滴が効率良く生成されていることが分かる。このように、実施例1,2では比較的小さな粒径の液滴が効率良く生成される一方、比較的大きな粒径の液滴が生成されるのが抑制されていることが分かる。
【0038】
これにより、実施例1,2では従来例と同等の除去率を達成する場合において、基板へのダメージを低減することが可能となる。すなわち、比較的大きな粒径の液滴は液滴の速度が比較的低速の段階から基板にダメージを与えてしまう。このため、基板へのダメージを低減する観点からは液滴の粒径は小さい方が好ましい。実施例1,2では従来例に比較して基板へのダメージ発生に寄与する比較的大きな粒径の液滴が生成されるのが抑制されているので、従来例と同等の除去率を達成する場合において基板へのダメージを低減することが可能となる。
【0039】
ここで、比較的大きな液滴が生成されるのを抑制することができるスリット幅の上限値は1.0mmである。液体吐出口31のスリット幅が1.0mmを超えると、二流体ノズル3から供給される液滴に比較的大きな粒径の液滴が含まれるようになる。その結果、比較的大きな粒径の液滴が基板に供給され、基板に与えるダメージが大きくなってしまう。その一方で、スリット幅が0.1mm未満であるときには、液体吐出口31の目詰まりが発生し易くなり、実使用に耐えなくなる。したがって、スリット幅が0.1mm以上かつ1.0mm以下の範囲において、基板の洗浄を実用的に行うとともに、基板へのダメージ発生に寄与する比較的大きな粒径の液滴が生成されるのを抑制することができる。
【0040】
そこで、この発明にかかる二流体ノズル、該二流体ノズルを用いた基板洗浄装置および基板洗浄方法では、二流体ノズルの液体吐出口の開口面積およびスリット幅を上記した範囲に設定することにより、基板を効率良く洗浄しながらも基板へのダメージを低減している。以下、図面を参照しつつ具体的な実施形態について詳述する。
【0041】
<基板処理システム>
図6はこの発明にかかる基板洗浄装置の一実施形態を装備した基板処理システムを示す平面レイアウト図である。基板処理システムは、半導体ウエハ等の基板Wに付着したパーティクルや各種金属不純物などの汚染物質を除去するための洗浄処理に用いられる枚葉式の基板処理システムである。この基板処理システムは、基板処理部PSと、この基板処理部PSに結合されたインデクサ部IDとを備えている。インデクサ部IDは、複数枚の基板Wを収納したカセットC(複数の基板Wを密閉した状態で収容するFOUP(Front Opening Unified Pod)、SMIF(Standard Mechanical Inter Face)ポッド、OC(Open Cassette)など)から処理を行うべき基板Wを1枚ずつ搬出するとともに処理を終えた基板Wを再度カセットC内に搬入するためのインデクサロボット11を備えている。各カセットCは、複数枚の基板Wを微小な間隔をあけて上下方向に積層して保持するための複数段の棚(図示省略)を備えており、各段の棚に1枚ずつ基板Wを保持することができるようになっている。各段の棚は、基板Wの下面の周縁部に接触し、基板Wを下方から保持する構成となっており、基板Wはほぼ水平な姿勢でカセットCに収容されている。
【0042】
基板処理部PSは、平面視においてほぼ中央に配置された基板搬送ロボット12と、この基板搬送ロボット12が取付けられたフレーム100とを有している。また、このフレーム100には、基板搬送ロボット12を取り囲むように、複数個(この実施形態では4個)の基板洗浄装置10が設けられている。これらの基板洗浄装置10は後述するように同一構成を有しており、二流体ノズルから吐出される噴霧状の洗浄液により基板洗浄を行う。
【0043】
基板搬送ロボット12は、4個の基板洗浄装置10に対して基板Wを搬送することが可能となっている。また、基板搬送ロボット12はインデクサ部IDに配置されたインデクサロボット11から未処理の基板Wを受け取るとともに、インデクサロボット11に処理済の基板Wを受け渡すように動作する。このため、未処理の基板Wはインデクサロボット11および基板搬送ロボット12によって基板洗浄装置10のいずれかに搬入されて当該基板洗浄装置10による基板洗浄処理を受け、また洗浄処理済の基板Wは基板搬送ロボット12によって基板洗浄装置10から搬出された後にインデクサロボット11を介してカセットCに戻される。
【0044】
図7はこの発明にかかる基板洗浄装置の一実施形態を示す側面概要図である。この基板洗浄装置10は、基板を回転可能に支持するスピンチャック111と、このスピンチャック111に支持された基板Wの周囲に昇降可能に配設された洗浄液の飛散防止用カップ112と、スピンチャック111に支持された基板Wに液体と気体とが混合した噴霧状の洗浄液を供給する二流体ノズル301と、二流体ノズル301を基板Wの表面に沿って移動させる移動機構200とを備える。
【0045】
スピンチャック111は、モータ121の駆動により鉛直方向を向く軸を中心に回転する構成となっている。またスピンチャック111には、基台120上に複数の支持ピン122が設けられて基板Wを支持可能となっている。そして、この基板Wの表面に沿って二流体ノズル301が移動機構200により水平移動する。
【0046】
移動機構200は、二流体ノズル301を支持する支持アーム202と、支持アーム202を軸203周りに回動させる駆動部とを有している。すなわち、スピンチャック111の上方位置で二流体ノズル301が支持アーム202の先端部に支持されている。また、支持アーム202の基端部は軸203の上端に一体回転可能に連結されている。そして、正逆回転可能なモータ204が制御部150からの信号に応じて作動することで支持アーム202が軸203周りに回動する。これにより、二流体ノズル301は、飛散防止用カップ112の側方の待機位置と、スピンチャック111に保持された基板W上との間で水平移動する。
【0047】
ここで、基板Wに対する二流体ノズル301の配設状態は任意であるが、基板Wへの液滴の供給方向が基板Wの表面の法線方向とほぼ一致するように、二流体ノズル301を配置してもよい。そして、このような配置姿勢を保ったまま、移動機構200は二流体ノズル301を基板Wの表面とほぼ平行に相対移動させてもよい。これによって、二流体ノズル301からの液滴を基板Wの表面に対して所定の液滴供給状態で供給することができ、基板Wの表面全体を均一に処理することができる。
【0048】
モータ204には、ロータリエンコーダ205が付設されている。このロータリエンコーダ205は、例えば、軸203周りの回転に伴う支持アーム202の絶対角度θを監視するための情報を制御部150に出力する。また、支持アーム202の絶対角度θと、基板W上における二流体ノズル301の位置とは相互に対応するため、支持アーム202の絶対角度θを監視することによって基板洗浄中における二流体ノズル301の位置を監視することができる。
【0049】
上述したモータ204とロータリエンコーダ205は昇降ベース206上に支持されている。この昇降ベース206は鉛直方向を向くガイド軸207に摺動自在に嵌め付けられているとともに、ガイド軸207に並設されているボールネジ208に螺合されている。このボールネジ208は昇降モータ209の回転軸に連動連結されている。なお、昇降モータ209の回転量はロータリエンコーダ211によって検出される。二流体ノズル301が基板Wの上方にあたる洗浄位置にある際に昇降モータ209を駆動すると、二流体ノズル301が昇降されて、基板W面からの二流体ノズル301の吐出孔の高さが調節される。これにより、二流体ノズル301と基板Wとの間隔が規定される。このように、この実施形態では、昇降モータ209が本発明の「間隔規定機構」として機能する。
【0050】
移動機構200は昇降モータ209により二流体ノズル301と基板Wとの間隔を所定の間隔(例えば6mm)に規定した状態でモータ204の駆動により二流体ノズル301を基板Wに対して水平移動させる。このように二流体ノズル301を基板Wの表面上で移動させることによって、基板Wの表面各部に安定した状態で液滴(噴霧状の洗浄液)を供給することができ、基板Wの表面を良好に洗浄することができる。
【0051】
二流体ノズル301は、気体としての圧縮空気を導入する配管302と、液体としての純水を供給する配管311とが連通接続された二流体ノズルを構成する。配管302は圧縮空気供給部303に接続されている。また、この配管302には、そこを流通する空気の圧力を制御部150から入力された制御信号に対応する圧力に調整する電空レギュレータ304と、そこを流通する空気の圧力を検出する圧力センサ305と、そこを流通する空気の流量を検出する流量センサ306とが配設されている。なお、空気の代わりに窒素ガスなどの不活性ガスを使用してもよい。
【0052】
また、配管311は、純水供給部307に接続されている。また、この配管311には、そこを流通する純水の圧力を制御部150から入力された制御信号に対応する圧力に調整する電空レギュレータ308と、そこを流通する純水の圧力を検出する圧力センサ309と、そこを流通する純水の流量を検出する流量センサ310とが配設されている。なお、純水の代わりに超純水や薬液等を使用してもよい。
【0053】
<二流体ノズルの構成>
図8は二流体ノズルの内部構造を模式的に示す図である。同図(a)は二流体ノズルの縦断面図であり、同図(b)は二流体ノズルの先端部を下方から見た図である。また同図(c)は同図(a)のA−A’線断面図である。この二流体ノズル301はノズル本体320を備え、ノズル本体320は中心軸321、内筒322および外筒323を有する。中心軸321は内筒322の中空部に挿入されている。中心軸321は基端側(上端側)で先端側(下端側)に比べ大径となっており、中心軸321の基端側が内筒322に嵌入されている。内筒322は基端部322aと先端部322bとにより形成されている。
【0054】
中心軸321の先端側と内筒322の基端部322aとに挟まれた空間は液体導入室324を構成し、液体導入口325を介して液体導入室324に圧縮空気を導入する配管302が接続されている。中心軸321の先端側と内筒322の先端部322bとの間は環状の液体流路326を構成し、液体流路326の先端(下端)が円環状で且つスリット状に開口した液体吐出口327を形成している。つまり、液体流路326は中心軸321の先端側を囲んだ環状の液体通路を規定している。液体流路326の上端は液体導入室324に接続されており、純水供給部307からの純水が配管311を介して液体導入室324に導入されると、液体流路326を通じて純水が液体吐出口327から吐出される。ここで、液体吐出口327のスリット幅Wdが0.1mm以上かつ1.0mm以下の範囲に設定される一方、開口面積Sが1.8mm以上かつ36mm以下の範囲に設定される(同図(b))。
【0055】
内筒322の先端部322bの周囲には外筒323が取り付けられており、内筒322の先端部322bと外筒323とに挟まれた空間が気体流路328を構成している。内筒322の先端部322bはその一部が図8(c)に示すように十字状に延びて外筒323の内壁に接続されている。これにより、気体流路328は内筒322の先端部322bと外筒323との接続部分において4つに流路が分割されている。気体流路328の先端部は内筒322の先端部322bを囲んだ環状の気体通路を構成し、気体流路328の先端(下端)が円環状で且つスリット状に開口した気体吐出口329を形成している。より具体的には、気体流路328の先端は先細りにテーパ状とされており、先端側にいくにつれて気体流路328の内方に形成された液体流路326に近接するように傾斜している。このように、この実施形態では、気体吐出口329は液体吐出口327に対して外方に形成されている。また、液体吐出口327と気体吐出口329とは同心円状に形成される。
【0056】
気体流路328の上方側は気体導入口330を介して配管302に接続されている。このため、圧縮空気供給部303から配管302を介して圧縮空気が気体流路328に供給されると、圧縮空気が気体吐出口329から吐出される。このように吐出される圧縮空気の吐出軌跡は、液体吐出口327からの純水の吐出軌跡に交わっている。すなわち、液体吐出口327からの液体(純水)流は、ノズル本体320の下方の空間において気体(圧縮空気)流と衝突する。このため、液体吐出口327からの純水の吐出方向の直近において純水はそれに衝突する圧縮空気によって速やかに液滴化される。こうして、洗浄用の液滴が生成される。
【0057】
以上のような構成を有する基板洗浄装置10においては、スピンチャック111の駆動により基板Wが回転される。そして、二流体ノズル301を基板Wの表面上で移動させながら、二流体ノズル301から基板Wの表面に向かって純水と圧縮空気とが混合されて生成された純水の液滴(液滴化された純水)を噴射させる。また、こうして純水の液滴を基板Wの表面に供給しながら、二流体ノズル301は基板Wの表面に沿って水平移動される。これにより、基板Wの表面全域が均一に処理される。すなわち、二流体ノズル301から基板Wの表面に大きな運動エネルギーを持つ液滴を衝突させることができ、この液滴の運動エネルギーにより、基板Wの表面に付着したパーティクルが物理的に除去される。
【0058】
以上のように、この実施形態によれば、液体吐出口327を環状で且つスリット状に開口させるとともに液体吐出口の開口面積を1.8mm以上かつ36mm以下に設定している。このため、従来ノズルに比べて単位時間当たりの供給液滴数を増加させ、基板Wを実用的かつ効率的に洗浄することが可能となる。すなわち、液体吐出口327の開口面積を36mmより大きくしても開口面積の増大に見合った除去率の向上は認められず、除去率をさらに向上させることはできない。一方で、液体吐出口の開口面積が1.8mm未満であるときには、環状で且つスリット状に開口させた液体吐出口から適切に液体を吐出することが困難になり、目詰まり等を引き起こすおそれがある。これに対し、上記した範囲に液体吐出口327の開口面積を設定することで基板Wを実用的かつ効率的に洗浄することが可能となる。
しかも、液体吐出口327のスリット幅を0.1mm以上かつ1.0mm以下の範囲に設定することで、単位時間当たりの供給液滴数を増加させた場合であっても、基板Wへのダメージを低減することができる。すなわち、スリット幅が1.0mmを超えると、二流体ノズル301から供給される液滴に比較的大きな粒径の液滴が含まれるようになる。その結果、比較的大きな粒径の液滴が基板Wに供給され、基板Wに与えるダメージが大きくなってしまう。また、逆にスリット幅が0.1mm未満であるときには、液体吐出口の目詰まりが発生し易くなり、実使用に耐えなくなる。これに対し、スリット幅が0.1mm以上かつ1.0mm以下の範囲であるときには、基板Wへのダメージ発生に寄与する比較的大きな粒径の液滴が生成されるのを抑制することができる。これにより、基板Wへのダメージを低減することができる。
【0059】
<その他>
なお、本発明は上記した実施形態に限定されるものではなく、その趣旨を逸脱しない限りにおいて上述したもの以外に種々の変更を行うことが可能である。例えば、上記実施形態では、気体吐出口329を液体吐出口327に対して外方に形成しているが、気体吐出口329を液体吐出口327に対して内方に形成してもよい。また、液体吐出口327から吐出される液体を効率良く液滴化するために、図9に示すように、液体吐出口327の内方および外方の両方に気体吐出口を形成してもよい。なお、図9では、液体吐出口327の内方に円形の気体吐出口331を形成しているが、環状で且つスリット状に気体吐出口を形成してもよい。要は液体吐出口327から吐出される液体を効率良く液滴化することができればよい。
【0060】
また、上記実施形態では、二流体ノズル301の先端部に単一の開口により構成された液体吐出口327を形成しているが、液体吐出口の構成はこれに限定されない。例えば、図10に示すように、互いに分離して形成された、複数の環状で且つスリット状に開口した開口部を有するように液体吐出口を構成してもよい。図10では、環状で且つスリット状に開口した気体吐出口に挟まれるようにして2つの開口部327a,327bが同心円状に形成されている。具体的には、気体吐出口329aと気体吐出口329bとの間に開口部327aが、気体吐出口329bと気体吐出口329cとの間に開口部327bが形成されている。この場合、各開口部327a,327bのスリット幅を0.1mm以上かつ1.0mm以下にするとともに、2つの開口部327a,327bの開口面積の総和が1.8mm以上かつ36mm以下となるように構成すればよい。この構成によれば、ノズル先端部の大きさが拡大するのを抑制しながら所望の開口面積を有する液体吐出口をノズルに形成することができる。したがって、単位時間当たりの供給液滴数を増加させながらも基板Wが受けるダメージを低減するという効果に加えて、二流体ノズルをコンパクトに構成することができる。また、このような開口部は2つに限らず、3つ以上設けるようにしてもよい。この場合、各開口部のスリット幅を0.1mm以上かつ1.0mm以下にするとともに、3つ以上設けられた開口部の開口面積の総和が1.8mm以上かつ36mm以下となるように構成すればよい。さらに、ノズルをコンパクトに構成するという観点からは、複数の開口部の各々は同心円状に形成するのが好ましい。
【産業上の利用可能性】
【0061】
この発明は、半導体ウエハ、フォトマスク用ガラス基板、液晶表示用ガラス基板、プラズマ表示用ガラス基板、FED用基板、光ディスク用基板、磁気ディスク用基板、光磁気ディスク用基板などを含む基板全般に向けて液体と気体とを衝突させて生成した液体の液滴を供給する二流体ノズル、該二流体ノズルを用いて基板に対して洗浄処理を施す基板洗浄装置および基板洗浄方法に適用することができる。
【図面の簡単な説明】
【0062】
【図1】処理時間と除去率の関係を示す図である。
【図2】実験に使用した従来ノズルの先端部を下方から見た図である。
【図3】本発明の一実施形態にかかる二流体ノズルの先端部を下方から見た図である。
【図4】液滴の粒径ごとの存在割合を示す図である。
【図5】液滴の粒径ごとの存在割合を確認する方法を模式的に示す図である。
【図6】この発明にかかる基板洗浄装置の一実施形態を装備した基板処理システムを示す平面レイアウト図である。
【図7】この発明にかかる基板洗浄装置の一実施形態を示す側面概要図である。
【図8】二流体ノズルの内部構造を模式的に示す図である。
【図9】この発明の変形形態にかかる二流体ノズルの先端部を下方から見た図である。
【図10】この発明の変形形態にかかる二流体ノズルの先端部を下方から見た図である。
【符号の説明】
【0063】
3,301…二流体ノズル
31,327…液体吐出口
32,329,331…気体吐出口
329a,329b,329c…気体吐出口
200…移動機構
209…昇降モータ(間隔規定機構、移動機構)
320…ノズル本体
327a,327b…開口部
W…基板

【特許請求の範囲】
【請求項1】
気体を吐出する気体吐出口と、環状で且つスリット状に開口して液体を吐出する液体吐出口とが形成されたノズル本体を有し、前記液体吐出口から吐出された前記液体に前記気体吐出口から吐出された前記気体を衝突させて生成した前記液体の液滴を噴射する二流体ノズルにおいて、
前記液体吐出口のスリット幅が0.1mm以上かつ1.0mm以下であるとともに、前記液体吐出口の開口面積が1.8mm以上かつ36mm以下であることを特徴とする二流体ノズル。
【請求項2】
前記液体吐出口の開口面積が34mm以上かつ36mm以下である請求項1記載の二流体ノズル。
【請求項3】
前記気体吐出口は環状で且つスリット状に開口され、
前記気体吐出口は前記液体吐出口に対して内方または外方の少なくともいずれか一方に形成される請求項1または2記載の二流体ノズル。
【請求項4】
前記気体吐出口は、前記液体吐出口の内方および外方の両方に形成される請求項3記載の二流体ノズル。
【請求項5】
前記液体吐出口と前記気体吐出口とは同心円状に形成される請求項3または4記載の二流体ノズル。
【請求項6】
前記液体吐出口は、互いに分離して形成された、複数の環状で且つスリット状に開口した開口部を有し、
各開口部のスリット幅が0.1mm以上かつ1.0mm以下であるとともに、前記複数の開口部の開口面積の総和が1.8mm以上かつ36mm以下である請求項1ないし4のいずれかに記載の二流体ノズル。
【請求項7】
前記複数の開口部の各々は同心円状に形成される請求項6記載の二流体ノズル。
【請求項8】
請求項1ないし7のいずれかに記載の二流体ノズルと、
前記二流体ノズルを前記基板の表面に沿って前記基板に対して相対移動させる移動機構と
を備え、
前記二流体ノズルから前記液体の液滴を前記基板に供給させながら前記移動機構は前記二流体ノズルを前記基板に対して相対移動させることで前記基板表面に対して洗浄処理を施す基板洗浄装置。
【請求項9】
前記移動機構は、前記二流体ノズルと前記基板との間隔を規定する間隔規定機構を有し、前記間隔規定機構により前記二流体ノズルと前記基板との間隔を規定した状態で前記二流体ノズルを前記基板に対して相対移動させる請求項8記載の基板洗浄装置。
【請求項10】
請求項1ないし7のいずれかに記載の二流体ノズルから前記液体の液滴を前記基板に供給する液滴供給工程と、
前記液滴供給工程に並行して、前記二流体ノズルを前記基板の表面に沿って前記基板に対して相対移動させて、前記基板表面に対して洗浄処理を施す相対移動工程と
を備えたことを特徴とする基板洗浄方法。
【請求項11】
前記相対移動工程では、前記二流体ノズルと前記基板との間隔を規定した状態で前記二流体ノズルを前記基板に対して相対移動させる請求項10記載の基板洗浄方法。


【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate


【公開番号】特開2009−88078(P2009−88078A)
【公開日】平成21年4月23日(2009.4.23)
【国際特許分類】
【出願番号】特願2007−253336(P2007−253336)
【出願日】平成19年9月28日(2007.9.28)
【出願人】(000207551)大日本スクリーン製造株式会社 (2,640)
【Fターム(参考)】