説明

外観検査方法および外観検査装置

【課題】ウェハ各部の検査画像の撮像にあたり、ウェハのソリに対処しつつフォーカス補正を容易に行え、検査時間を大幅に短縮できる外観検査方法および外観検査装置の提供。
【解決手段】ウェハをアライメントする際(P1)に用いられるアライメントパターンについてのマーク合焦位置を測定し(P2)、このマーク合焦位置を基にウェハのソリ形状を求め、このソリ形状からウェハの被検査面の各部における各部合焦位置を算出するので(P3)、ウェハの被検査面の各部ごとにフォーカス調整(合焦)することが不要となる。すなわち、ウェハの各部ごとに合焦する手間が掛かることなく、ウェハ各部における合焦位置を得ることができるので、孔が明いていたり裏面側への接触が不可とされたウェハのソリに対処しつつフォーカス補正を容易に行うことができ、ウェハの外観検査に要する時間を大幅に短縮できる。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、半導体ウェハ等の外観検査に用いるウェハ各部の検査画像を撮像する際に、ウェハのソリによってウェハの各部の間で合焦位置のズレが生じる場合のフォーカス補正に関する。
【背景技術】
【0002】
従来、半導体集積回路が実装され、多数のIC(Integrated Circuit)チップに個片化される半導体ウェハの外観検査においては、CCD(charge-coupled device)カメラなどでウェハの各部を撮像し、撮像された各検査画像について画像処理を実施するが、この各検査画像の撮像に際し、ウェハのソリによるフォーカスのずれに対処する必要がある。この対処方法として、1つには、図8(A)および(B)に示すように、反っているウェハWを冶具Jにより真空チャックし、図8(C)のように、ウェハW全体を平坦な状態に矯正するという方法がある。このようにウェハWのソリを矯正しておけば、ウェハW中央などの1箇所のみで合焦すればよいので、処理が簡単である。なお、図8および図9では、ウェハのソリの度合を強調して示した。
【0003】
一方、ウェハの撮像は、ウェハの被検査面を複数の撮像範囲に分割した際の各部ごとにそれぞれ行われることから、被検査面の各部それぞれについて合焦することにより、ウェハのソリに対処するという方法もある。公知の合焦方法としては、例えば、レーザー光源からフォーカス用のレンズを介して光束を照射し、ウェハの被検査面で反射された光束をレンズで集光し、そのレンズの結像位置近傍の光電センサの検出信号に基いて、フォーカスレンズをモータで駆動する(特許文献1)。
あるいは、ウェハの中央などに検査用のアライメントマークを形成しておき、ウェハを上下動させた際の各位置(高さ)でそれぞれ、検査用アライメントマークを画像処理装置でモニタし、当該検査用アライメントマークの画像信号のコントラストが最大となる位置(高さ)を合焦位置として設定することにより、フォーカス調整を行う(特許文献2)。
【0004】
【特許文献1】特開平5−5827号公報
【特許文献2】特開平5−21318号公報
【発明の開示】
【発明が解決しようとする課題】
【0005】
ところで、半導体ウェハには、図9(A)および(B)に示すように孔Hが明いたものがあり、このような孔明きウェハの場合には、真空チャックが不可である。また、孔が明いていない半導体ウェハでも、裏面側への冶具の接触が許容されない場合には、同様に、真空チャックなどでソリを矯正できない。このように、ウェハのソリを機械的に矯正できない場合において、ウェハのソリに対処するには、ウェハの各部についてそれぞれ、フォーカスを調整する方法を採ればよい。しかしながら、特許文献1、2のようにフォーカスレンズやウェハの上下動を伴う合焦処理をウェハの各部ごとに行うには、大変な手間および時間を要する。
【0006】
このような問題に鑑みて、本発明の目的は、ウェハ各部の検査画像の撮像にあたり、ウェハのソリを機械的に矯正できない場合でも、ウェハのソリに対処しつつフォーカス補正を容易に行え、検査時間を大幅に短縮できるウェハの外観検査方法および外観検査装置を提供することにある。
【課題を解決するための手段】
【0007】
本発明のウェハの外観検査方法は、ウェハの被検査面の各部をそれぞれ撮像手段により撮像した際の各検査画像を基に画像処理を行うウェハの外観検査方法であって、前記ウェハの被検査面に形成されるアライメントマークを用いて前記ウェハを基準位置に位置決めするアライメント工程と、前記アライメントマークについての前記撮像手段のマーク合焦位置を測定するマーク合焦位置測定工程と、前記マーク合焦位置に基いて前記ウェハのソリ形状を求め、このソリ形状に基いて前記被検査面の前記各部についての前記撮像手段の各部合焦位置を算出する各部合焦位置算出工程と、前記撮像手段により前記各部ごとに前記各部合焦位置にて前記各検査画像を撮像する検査画像撮像工程とを備えることを特徴とする。
【0008】
また、本発明のウェハの外観検査装置は、ウェハの被検査面の各部をそれぞれ撮像して各検査画像を得る撮像手段と、前記各検査画像を処理する画像処理装置とを有するウェハの外観検査装置であって、前記ウェハの被検査面に形成されるアライメントマークを用いて前記ウェハを基準位置に位置決めするアライメント手段と、前記アライメントマークについての前記撮像手段のマーク合焦位置を測定するアライメントマーク合焦位置測定手段と、前記マーク合焦位置に基いて前記ウェハのソリ形状を求め、このソリ形状に基いて前記被検査面の前記各部についての前記撮像手段の各部合焦位置を算出する各部合焦位置算出手段とを備え、前記撮像手段は、前記各部ごとに前記各部合焦位置にて前記各検査画像を撮像することを特徴とする。
【0009】
これらの発明によれば、基準位置にウェハをアライメントする際に用いられるアライメントマークについてのマーク合焦位置を測定し、このマーク合焦位置を基にウェハのソリ形状を求め、このソリ形状からウェハの被検査面の各部における各部合焦位置を算出するので、ウェハの被検査面の各部ごとにフォーカス調整(合焦)することが不要となる。
すなわち、アライメントの際にはアライメントマークを含むウェハの部位がモニタされるが、このアライメントの際と同時、もしくは直後などの略同じタイミングでアライメントマークについてのマーク合焦位置の測定を行えばよいため、画像処理の構成が簡略化され、処理の効率化が図られる。つまり、アライメント工程とマーク合焦位置測定工程とは、あるいはアライメント手段とマーク合焦位置測定手段とは、略同じタイミングで処理することが可能であり、本発明では、ウェハ各部ごとに合焦することなくウェハ各部における合焦位置を得ることができるから、ウェハのソリに対応するフォーカス補正を迅速に行うことができる。
以上により、孔が明いていたり裏面側への接触が不可などのウェハについても、ウェハ各部の検査画像の撮像にあたり、ウェハのソリに対処しつつフォーカス補正を容易に行え、ウェハの外観検査に要する時間を大幅に短縮できる。
【0010】
本発明のウェハの外観検査方法では、前記アライメントマークを複数設け、前記各部合焦位置算出工程では、前記各アライメントマークそれぞれの前記マーク合焦位置について近似式を求め、この近似式により前記ソリ形状を表すことが好ましい。
【0011】
この発明によれば、複数のアライメントマークそれぞれの各マーク合焦位置についての近似式を導くことにより、フォーカス補正をより適切に行うことができる。
【0012】
本発明のウェハの外観検査装置では、前記アライメントマークは、前記被検査面内のX方向およびY方向において互いに異なる位置に3つ以上設けられることが好ましい。
【0013】
この発明によれば、3つ以上のアライメントマークにより、ウェハの被検査面におけるX方向のソリおよびY方向のソリの両方を把握可能となるので、フォーカス補正をより一層適切に行うことができる。
【0014】
本発明のウェハの外観検査装置では、前記アライメントマークは、前記ウェハが個片化される複数のチップのいずれかに形成される半導体パターンとして形成されていることが好ましい。
【0015】
この発明によれば、チップに形成される半導体パターンをアライメントマークとしても活用できる。
【発明を実施するための最良の形態】
【0016】
以下、図面を参照して本発明の実施形態について説明する。
図1は、本実施形態における外観検査装置1の構成外略図である。図2は、外観検査装置1により検査されるウェハ2の平面模式図である。
外観検査装置1は、半導体ウェハ2が設置されるテーブル3と、テーブル3をX方向およびY方向に駆動する駆動装置31と、テーブル3の上方に設けられ、ウェハ2を撮像する撮像手段としてのカラーCCDカメラ4と、モニタ5Aを有する画像処理装置5とを備えている。なお、テーブル3上には、搬送機6によってウェハ2が順次搬送される。
【0017】
画像処理装置5には、カメラ4と、テーブル3の駆動装置31と、搬送機6とがそれぞれ接続され、カメラ4により撮像された画像は、画像処理装置5内部の処理手段に取り込まれる。この画像処理装置5により、カメラ4と駆動装置31との同期が図られており、ウェハ2を撮像する際は、駆動装置31によりテーブル3をX方向およびY方向に駆動してカメラ4に対してウェハ2を移動させる。
【0018】
ウェハ2は、平面略円形状であり、エッチングやプリントなどで加工された被検査面2Aの略全体が外観検査装置1により検査され、ダイシング、スライシングなどによって多数のチップ20に個片化される。1つ1つのチップ20には、集積回路を構成する複数の微細な半導体パターン(図示せず)が形成されている。また、ウェハ2には、厚み方向に貫通する図示しない孔が散点的に形成されている。
ここで、ウェハ2の被検査面2A(図2)を検査する際は、この被検査面2Aの略全体、あるいはチップ20が切り出される領域(図2の場合はチップ20が配列された矩形状の領域)を複数の撮像範囲(ウェハ各部)に分割して撮像する。なお、本実施形態に限らず、カメラ4をテーブル3に対して移動させることにより、ウェハ2の各部をそれぞれ撮像してもよい。本実施形態では、ウェハ2における撮像単位である各部の数は1500〜1600となっている。
【0019】
ウェハ2の外周には、テーブル3への位置決め用に形成された直線状のオリフラ2Bが形成されている。また、ウェハ2の被検査面2Aにおいて各チップ20に個片化されない外周部には、ウェハ2の基準位置へのアライメント用のアライメントマーク2C,2Dがウェハ2の径方向両端側にそれぞれ形成されている。
【0020】
さらに、多数のチップ20のうち、ウェハ2の平面中心近傍に配置されたチップ200と、被検査面2Aの平面方向においてX座標およびY座標を仮定したときにX軸両端側に配置されたチップ20X1,20X2と、Y軸両端側に配置されたチップ20Y1,20Y2との合計5つには、図3に拡大して示すように、アライメントマークとしてのアライメントパターン21がそれぞれ形成されている。このアライメントパターン21は、エッチングやプリントによりウェハ2表面に形成された半導体パターンであり、図3では円形状であるが、矩形状などの他の形状であってもよく、さらに、集積回路を構成するパターンとしてつまり回路用とアライメント用とを兼ねるように形成されていてもよい。なお、図3のチップには、アライメントパターン21のほかに、集積回路を構成する多数の半導体パターンが形成されているが、その図示は省略した。
【0021】
ここで、ウェハ2のアライメントは、粗アライメントおよび微アライメントの2段階に亘って行われ、粗アライメントには、オリフラ2B、およびウェハ2外周部のアライメントマーク2C,2Dが用いられる。また、微アライメントには、チップ200,20X1,20X2,20Y1,20Y2それぞれのアライメントパターン21が用いられる。
【0022】
図4は、画像処理装置5の内部構成を示すブロック図である。画像処理装置5は、粗アライメントを行う粗アライメント手段51と、微アライメントを行う微アライメント手段52と、各チップ200,20X1,20X2,20Y1,20Y2のアライメントパターン21それぞれについてのカメラ4のマーク合焦位置を測定するマーク合焦位置測定手段53と、各マーク合焦位置に基いてウェハ2のソリ形状を求め、このソリ形状に基いてウェハ2の被検査面2Aの各部についての各部合焦位置を算出する各部合焦位置算出手段54とを有して構成されている。これらの手段51〜54は、画像処理装置5が実装するCPUなどの制御手段50にそれぞれ読み込まれて実行される。
各部合焦位置算出手段54は、マーク合焦位置についての近似式を求める近似式作成手段541を有する。
【0023】
以下、図5のフロー図を参照し、外観検査装置1におけるウェハ2の検査画像取り込みに至るまでの工程について説明する。当該工程は、大略、ウェハ2を基準位置に位置決めするアライメント工程P1と、アライメントパターン21についての合焦位置の測定を行うマーク合焦位置測定工程P2と、ウェハ2のソリ形状を求め、このソリ形状に基いて被検査面2Aの各部における各部合焦位置を算出するフォーカス補正工程P3と、工程P3で算出された各部合焦位置にてウェハ2の検査画像を撮像する検査画像撮像工程P4とによって構成されている。これらの工程のうち、フォーカス補正工程P3により、ウェハ2のソリに対処してウェハ2各部についての合焦位置が補正される。これは、本実施形態のウェハ2には、前述のように孔(図示せず)が明いているため、真空チャックなどでソリを矯正する方法を採ることができないためである。
【0024】
アライメント工程P1は、粗アライメント工程P11と、微アライメント工程P12とを有する。粗アライメント工程P11では、粗アライメント手段51(図4)により、オリフラ2Bおよびアライメントマーク2C,2Dを用いてウェハ2の基準位置へのアライメントを行う。本実施形態では、画像処理装置5を通じてもしくはモニタ5Aを観察して手動で、テーブル3を駆動することにより、被検査面2Aの面内X方向、面内Y方向、および面内回転方向のそれぞれにおいて、ウェハ2をアライメントする。
なお、アライメントの方法は任意であり、例えば、予めマスタウェハについて作製されたアライメント用の基準パターンデータを用いた画像処理によってアライメントできる。この他、マスクを使用し、マスクに形成された孔とアライメントマーク2C,2Dとの位置合わせを行うことによってアライメントしてもよい。
【0025】
次の、微アライメント工程P12では、微アライメント手段52により、各チップ200,20X1,20X2,20Y1,20Y2それぞれのアライメントパターン21を用いて、ウェハ2のアライメントを行う。この微アライメントでは、アライメントパターン21の寸法がウェハ2外周のアライメントマーク2C,2Dなどの寸法よりも小さく、また、用いるアライメントパターン21の数が多い(5つ)ことから、ウェハ2が基準位置により正確にアライメントされる。アライメントする方向や方法については、粗アライメント工程P11と同様であってよい。
【0026】
続くマーク合焦位置測定工程P2は、第1マーク合焦位置測定工程P21〜第5マーク合焦位置測定工程P25の各工程を有する。
第1〜第5マーク合焦位置測定工程P21〜P25は、駆動装置31によりテーブル3を駆動することでウェハ2を移動させる移動工程PMを挟んで、マーク合焦位置測定手段53により、チップ200,20X1,20X2,20Y1,20Y2の各アライメントパターン21についてそれぞれ行われる。
この際のマーク合焦位置測定手段53による合焦の方法は任意であるが、例えば、カメラ4に設けられた移動機構により、カメラ4と被検査面2Aとの距離を調整し、各距離で撮像されたモニタ画像の輝度コントラストなどに基いて、マーク合焦位置を測定できる。
【0027】
図6および図7は、第1〜第5マーク合焦位置測定工程P21〜P25においてそれぞれ測定されたマーク合焦位置およびその比例配分による近似曲線を示す。図6におけるX方向および、図7におけるY方向は、図2中のX方向およびY方向とそれぞれ対応する。
図6には、チップ20X1,200,20X2の各アライメントパターン21についてそれぞれ、マーク合焦位置20X1F,200F,20X2Fを示した。これらにより、ウェハ2は自重などの影響により、基準位置Bと比較した際に、X方向において略中央が上方に反っていることがわかる。
また、図7には、チップ20Y1,200,20Y2の各アライメントパターン21についてそれぞれ、マーク合焦位置20Y1F,200F,20Y2Fを示した。これらにより、ウェハ2は自重などの影響により、基準位置Bと比較した際に、Y方向において略中央が上方に反っていることがわかる。
【0028】
図5に戻り、フォーカス補正工程P3は、近似式作成手段541による近似式を求めるソリ形状算出工程P31と、この近似式により表されるウェハ2のソリ形状を基にウェハ2各部についてのカメラ4の合焦位置を算出する各部合焦位置算出工程P32とを有する。ソリ形状算出工程P31では、図6、図7に示したように、マーク合焦位置200F,20X1F,20X2F,20Y1F,20Y2Fについての近似式が近似式作成手段541により求められ、この近似式によりウェハ2のソリ形状が表される。そして、次の各部合焦位置算出工程P32では、この近似式を基に、各部合焦位置算出手段54によってウェハ2の被検査面2Aを複数の撮像範囲に分割した際の各部についての合焦位置が求められる。
【0029】
これらの工程P31,P32を経て、検査画像撮像工程P4に至る。この検査画像撮像工程P4では、カメラ4により、これまでの工程で得られたウェハ2各部における合焦位置にてウェハ2の被検査面2Aを各部ごとに撮像し、撮像された各検査画像は、画像処理装置5に取り込まれる。引き続き、画像処理装置5により、各検査画像に基いて、良品パターンや隣接パターンとの比較によるパターンマッチング法などによる欠陥の検出、欠陥分類などを実施した後、ウェハ2の外観検査を終了する。
【0030】
以上述べた本実施形態は、次のような効果を奏する。
(1)外観検査装置1によれば、ウェハ2をアライメントする際に用いられるアライメントパターン21についてのマーク合焦位置が測定され、このマーク合焦位置を基にウェハ2のソリ形状が求められ、このソリ形状からウェハ2の被検査面2Aの各部における各部合焦位置が算出されるので、ウェハ2の被検査面2Aの各部ごとにフォーカス調整(合焦)することが不要となる。すなわち、ウェハ2の各部ごとに合焦する手間が掛かることなく、ウェハ2各部における合焦位置を得ることができるので、ウェハ2のソリに対応するフォーカス補正を迅速に行うことができる。
よって、孔(図示せず)が明いているウェハ2各部の検査画像の撮像にあたり、ウェハ2のソリに対処しつつフォーカス補正を容易に行うことができるので、ウェハ2の外観検査に要する時間を大幅に短縮できる。
【0031】
(2)また、ウェハ2から形成される各チップ200,20X1,20X2,20Y1,20Y2それぞれにおける合計5つのアライメントパターン21を用いて、これらのアライメントパターン21について測定されたマーク合焦位置についての近似式を導くことにより、フォーカス補正をより適切に行うことができる。
【0032】
(3)さらに、各チップ200,20X1,20X2,20Y1,20Y2それぞれにおけるアライメントパターン21は、ウェハ2の被検査面2Aの面内X方向およびY方向においてそれぞれ異なる位置に配置され、ウェハ2の被検査面2AにおけるX方向のソリおよびY方向のソリの両方が把握されるから、フォーカス補正をより一層適切に行うことができる。
【0033】
(4)そして、ウェハ2から切り出されるチップ20に形成される半導体パターンをアライメントパターン21としても使用したため、ウェハ2の被検査面2Aの外周部にアライメント用のマークやパターンを形成できない場合であっても、アライメントを介したフォーカス補正を実現できる。
【0034】
以上の実施形態において、本発明を具体的に説明したが、本発明は、本発明の要旨を逸脱しない範囲で種々の変形、改良が可能である。
例えば、前記実施形態では、粗アライメントと微アライメントとの2段階でアライメントを実施したが、これに限らず、微アライメントに用いたチップのアライメントパターン21のみを用いて、アライメントを行うことも検討できる。
また、前記実施形態では、5つのアライメントパターン21を用いてたが、これに限らず、例えば、被検査面2Aの外周に沿って散点的にアライメントマークを3箇所設けることによっても、ウェハ2の被検査面2A面内のX方向およびY方向におけるソリ形状を算出できる。
【0035】
さらに、前記実施形態では、アライメント工程P1において5つのアライメントパターン21によりアライメントした後に、マーク合焦位置測定工程P2において各アライメントパターン21についての合焦位置の測定を行っていたが、これらのアライメント工程P1とマーク合焦位置測定工程P2とを1つの工程にまとめることも可能である。つまり、アライメントの際に各アライメントパターン21がカメラ4によりモニタされるから、このとき同じタイミングで、アライメントパターン21についてのカメラ4の合焦位置を測定することも考えられる。
【0036】
本発明を実施するための最良の構成、方法などは、以上の記載で開示されているが、本発明は、これに限定されるものではない。すなわち、本発明は、主に特定の実施形態に関して特に図示され、かつ、説明されているが、本発明の技術的思想および目的の範囲から逸脱することなく、以上述べた実施形態に対し、形状、材質、数量、その他の詳細な構成において、当業者が様々な変形を加えることができるものである。
したがって、上記に開示した形状、材質などを限定した記載は、本発明の理解を容易にするために例示的に記載したものであり、本発明を限定するものではないから、それらの形状、材質などの限定の一部もしくは全部の限定を外した部材の名称での記載は、本発明に含まれるものである。
【図面の簡単な説明】
【0037】
【図1】本発明の実施形態における半導体ウェハの外観検査装置の構成外略図。
【図2】前記実施形態における半導体ウェハの平面模式図。
【図3】前記実施形態における半導体ウェハから形成される各チップのうち、アライメントパターンが形成されたチップの拡大平面図。
【図4】前記実施形態における画像処理装置の内部構成を示すブロック図。
【図5】前記実施形態における外観検査工程を示すフロー図。
【図6】前記実施形態におけるウェハのX方向に沿って配置された各アライメントパターンについての合焦位置を近似曲線と共に示す図。
【図7】前記実施形態におけるウェハのY方向に沿って配置された各アライメントパターンについての合焦位置を近似曲線と共に示す図。
【図8】本発明の参考図(孔無しウェハを示す)。
【図9】本発明の参考図(孔明きウェハを示す)。
【符号の説明】
【0038】
1・・・外観検査装置、2・・・ウェハ、2A・・・被検査面、4・・・カメラ(撮像手段)、5・・・画像処理装置、20・・・チップ、21・・・アライメントパターン(アライメントマーク)、52・・・微アライメント手段(アライメント手段)、53・・・マーク合焦位置測定手段、54・・・各部合焦位置算出手段、200,20X1,20X2,20Y1,20Y2・・・チップ、200F,20X1F,20X2F,20Y1F,20Y2F・・・マーク合焦位置、B・・・基準位置、P12・・・微アライメント工程(アライメント工程)、P21〜P25・・・第1マーク合焦位置測定工程〜第5マーク合焦位置測定工程、P31・・・ソリ形状算出工程、P32・・・各部合焦位置算出工程、P4・・・検査画像撮像工程。

【特許請求の範囲】
【請求項1】
ウェハの被検査面の各部をそれぞれ撮像手段により撮像した際の各検査画像を基に画像処理を行うウェハの外観検査方法であって、
前記ウェハの被検査面に形成されるアライメントマークを用いて前記ウェハを基準位置に位置決めするアライメント工程と、
前記アライメントマークについての前記撮像手段のマーク合焦位置を測定するマーク合焦位置測定工程と、
前記マーク合焦位置に基いて前記ウェハのソリ形状を求め、このソリ形状に基いて前記被検査面の前記各部についての前記撮像手段の各部合焦位置を算出する各部合焦位置算出工程と、
前記撮像手段により前記各部ごとに前記各部合焦位置にて前記各検査画像を撮像する検査画像撮像工程とを備える
ことを特徴とするウェハの外観検査方法。
【請求項2】
請求項1に記載のウェハの外観検査方法において、
前記アライメントマークを複数設け、
前記各部合焦位置算出工程では、前記各アライメントマークそれぞれの前記マーク合焦位置について近似式を求め、この近似式により前記ソリ形状を表す
ことを特徴とするウェハの外観検査方法。
【請求項3】
ウェハの被検査面の各部をそれぞれ撮像して各検査画像を得る撮像手段と、前記各検査画像を処理する画像処理装置とを有するウェハの外観検査装置であって、
前記ウェハの被検査面に形成されるアライメントマークを用いて前記ウェハを基準位置に位置決めするアライメント手段と、
前記アライメントマークについての前記撮像手段のマーク合焦位置を測定するアライメントマーク合焦位置測定手段と、
前記マーク合焦位置に基いて前記ウェハのソリ形状を求め、このソリ形状に基いて前記被検査面の前記各部についての前記撮像手段の各部合焦位置を算出する各部合焦位置算出手段とを備え、
前記撮像手段は、前記各部ごとに前記各部合焦位置にて前記各検査画像を撮像する
ことを特徴とするウェハの外観検査装置。
【請求項4】
請求項3に記載のウェハの外観検査装置において、
前記アライメントマークは、前記被検査面内のX方向およびY方向において互いに異なる位置に3つ以上設けられる
ことを特徴とするウェハの外観検査装置。
【請求項5】
請求項3または4に記載のウェハの外観検査装置において、
前記アライメントマークは、前記ウェハが個片化される複数のチップのいずれかに形成される半導体パターンとして形成されている
ことを特徴とするウェハの外観検査装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate


【公開番号】特開2007−294815(P2007−294815A)
【公開日】平成19年11月8日(2007.11.8)
【国際特許分類】
【出願番号】特願2006−123551(P2006−123551)
【出願日】平成18年4月27日(2006.4.27)
【出願人】(000002369)セイコーエプソン株式会社 (51,324)
【Fターム(参考)】