説明

画像補正方法、およびこれを用いたパターン欠陥検査方法

【課題】 マスクパターンの撮像データに対して簡便な方法により、高精度の位置補正を行う方法を実現し、高信頼性のパターン欠陥検査方法を実現する。
【解決手段】 この画像補整方法は、パターンが形成されている試料に光を照射し、その光学像を撮像した被検査パターン画像と、この被検査パターン画像に対応する検査基準パターン画像とを比較検査するパターン検査方法で用いる画像補正方法において、前記被検査パターン画像、及び検査基準パターン画像に対して2次元線形予測モデルを用いた入出力関係を記述する連立方程式を生成する連立方程式生成ステップと、前記入出力関係を記述した連立方程式を最小二乗法で推定して前記連立方程式のパラメータを求める連立方程式解法ステップと、前記パラメータの重心位置を求めるステップと、前記重心位置の値を用いて線形結合補間処理を行うことにより補正画像を生成するステップとからなっている。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、物体のパターン欠陥を検査するパターン検査技術に関し、特に半導体素子や液晶ディスプレイ(LCD)を製作する際に使用するリソグラフィ用マスクの欠陥を検査するパターン検査で用いるのに適した画像補正方法、およびこれを用いたパターン欠陥検査方法に関する。
【背景技術】
【0002】
多大な製造コストのかかる大規模集積回路(LSI)の製造に、歩留まりの向上は欠かせない。歩留まりを低下させる要因の一つとして、半導体ウェハ上に微細パターンを転写する際に使用されるリソグラフィ用マスクのパターン欠陥があげられる。近年、半導体ウェハ上に形成されるLSIパターン寸法の微細化に伴って、検出しなければならない欠陥の最小寸法も微細化している。そのため、LSI製造に使用される転写用マスクの欠陥を検査するパターン検査装置の高精度化が必要とされている。
【0003】
従来のパターン検査装置では、拡大光学系を用いてリソグラフィマスク等の試料上に形成されているパターンを所定の倍率で撮像し、設計データ、あるいは試料上の同一パターンの撮像と比較することにより検査を行うことが知られている(特許文献1参照)。この装置においては、試料はステージ上に載置され、ステージが動くことによって光束が試料上を走査し、検査が行われる。試料には、光源及び照明光学系によって光束が照射される。試料を透過あるいは反射した光は光学系を介して、センサ上に結像される。センサで撮像された画像は測定データとして比較回路へ送られる。比較回路では、画像同士の位置合わせの後、測定データと参照データとを適切なアルゴリズムに従って比較し、一致しない場合には、パターン欠陥有りと判定する。
【特許文献1】特開平8−76359号公報
【発明の開示】
【発明が解決しようとする課題】
【0004】
パターン検査において、測定データと参照データの位置合わせを高精度に行うことが必要である。
従来は位置補正量を算出するために、一方の画像を相対的に移動(シフト)させながら2画像の比較を行うが、その際に移動量(シフト量)を細かく振って画像のシフトを行い、例えば、画像間の階調差の総自乗和が最小となるようなシフト量を求める方法が取られてきた。この様な方法では、シフト量の最小単位を小さくすると探索に時間がかかるため、精度に限界があることが問題であった。
また、試料となるパターン画像の透過画像、及び反射画像を同時に検査する際に、透過画像、反射画像の両方に位置補正を行うのは、総計算量が多く、そのための装置製造費が増加する問題があった。
【0005】
本発明は、従来技術の上記問題点に鑑みてなされたもので、マスクのパターン欠陥を検出するために必要な測定画像データである被検査パターン画像と参照画像データである検査基準パターン画像の比較を、簡便な方法により実現するものであり、高精度にアライメントシフト量を求め、位置補正を行うことができる方法を提供する。さらに、高精度に透過画像、および反射画像の位置補正を行う方法を提供する。また、このような位置補正方法を使用して、高信頼性のパターン欠陥検査方法を実現する。
【課題を解決するための手段】
【0006】
第1の本発明は、パターンが形成されている試料に光を照射し、その光学像を撮像した被検査パターン画像と、この被検査パターン画像に対応する検査基準パターン画像とを比較検査するパターン検査方法で用いる画像補正方法であって、
前記被検査パターン画像、及び検査基準パターン画像に対して2次元線形予測モデルを用いた入出力関係を記述する連立方程式を生成する第1のステップ(連立方程式生成ステップ)と、
前記入出力関係を記述した連立方程式を最小二乗法で推定して前記連立方程式のパラメータを求める第2のステップ(連立方程式解法ステップ)と、
前記パラメータの重心位置を求める第3のステップと、
前記重心位置の値を用いて補間処理を行うことにより補正画像を生成する第4のステップと、を少なくとも備えることを特徴とする画像補正方法である。
【0007】
第2の本発明は、パターンが形成されている試料に光を照射し、その透過光と反射光との光学像をそれぞれ撮像した被検査パターン画像と、この被検査パターン画像に対応する検査基準パターン画像とを比較検査するパターン検査方法で用いる画像補正方法であって、
透過光による被検査パターン画像もしくは反射光による被検査パターン画像のいずれか一方の画像と、この被検査パターン画像に対応する検査基準パターン画像に対して2次元線形予測モデルを用いた入出力関係を記述する連立方程式を生成する第1のステップ(連立方程式生成ステップ)と、
前記入出力関係を記述した連立方程式を最小二乗法で推定して前記連立方程式のパラメータを求める第2のステップ(連立方程式解法ステップ)と、
前記求められたパラメータを用いて該一方の画像に対して推定モデル画像を合成する第3のステップと、
前記第2のステップで求めたパラメータの重心を求める第4のステップと、
前記第4のステップで求めた重心に、あらかじめ定めたオフセット値を加算する第5のステップと、
前記加算された重心位置の値を用いて、前記第1のステップで2次元線形予測を行わなかった他方の画像に対して補間処理を行って補正画像を生成する第6のステップと
を備えることを特徴とする画像補正方法である。
【0008】
第3の本発明は、パターンが形成されている試料に光を照射し、その光学像を撮像した被検査パターン画像と、この被検査パターン画像に対応する検査基準パターン画像とを用いて、パターンの比較検査を行うパターン欠陥検査方法であって、
前記被検査パターン画像、及び検査基準パターン画像に対して2次元線形予測モデルを用いた入出力関係を記述する連立方程式を生成する第1のステップ(連立方程式生成ステップ)と、
前記入出力関係を記述した連立方程式を最小二乗法で推定して前記連立方程式のパラメータを求める第2のステップ(連立方程式解法ステップ)と、
前記パラメータの重心位置を求める第3のステップと、
前記重心位置の値を用いて補間処理を行うことにより補正画像を生成する第4のステップと、
前記第4のステップで生成した補正画像と、前記検査基準パターンとを比較する第5のステップとを備えたことを特徴とするパターン欠陥検査方法である。
【0009】
第4の本発明は、パターンが形成されている試料に光を照射し、その透過光と反射光との光学像をそれぞれ撮像した被検査パターン画像と、この被検査パターン画像に対応する検査基準パターン画像とを比較検査するパターン検査方法で用いる画像補正方法であって、
透過光による被検査パターン画像もしくは反射光による被検査パターン画像のいずれか一方の画像と、この被検査パターン画像に対応する検査基準パターン画像に対して2次元線形予測モデルを用いた入出力関係を記述する連立方程式を生成する第1のステップ(連立方程式生成ステップ)と、
前記入出力関係を記述した連立方程式を最小二乗法で推定して前記連立方程式のパラメータを求める第2のステップ(連立方程式解法ステップ)と、
前記求められたパラメータを用いて該一方の画像に対して推定モデル画像を合成する第3のステップと、
前記第2のステップで求めたパラメータの重心を求める第4のステップと、
前記第4のステップで求めた重心に、あらかじめ定めたオフセット値を加算する第5のステップと、
前記加算された重心位置の値を用いて、前記第1のステップで2次元線形予測を行わなかった他方の画像に対して補間処理を行って補正画像を生成する第6のステップと
前記第6のステップで生成した補正画像と、前記検査基準パターンとを比較する第7のステップとを備えたことを特徴とするパターン欠陥検査方法である。
【発明の効果】
【0010】
上記本発明によれば、簡便な方法により高精度の位置補正を行うことができ、信頼性の高いパターン欠陥検査方法を実現できる。
【発明を実施するための最良の形態】
【0011】
[第1の実施の形態]
以下、検査基準パターン画像を、このパターンの設計データのデータベースから展開し、被検査パターン画像と比較して欠陥を検査する実施の形態について説明する。図3が、この実施の形態において用いることのできるマスク欠陥検査装置の概略図構成図である。以下図3に基づいて本実施の形態において用いることのできるマスク欠陥検査装置について説明する。
本マスク欠陥検査装置は、ホスト計算機を中心とした演算制御部300と、試料となるマスクのパターン画像を撮像する観測データ生成部310とからなっている。
【0012】
演算制御部300は、ホスト計算機301と、これに接続しているアドレスバス、及びデータバス等の信号伝送路302と、この信号伝送路302に接続されているステージ制御回路303、データメモリ304、データ展開回路305、参照回路306、及び比較回路307とを備えている。
【0013】
また、観測データ生成部310は、光源311、光源311から照射される光を集光して試料に照射する照明光学系312、試料313、該試料313を載置するステージ314、試料313のパターンに対応した光学像を撮像する拡大光学系315及びセンサ回路316からなっている。そして該ステージ314には、該ステージ314を駆動する駆動系308が接続されており、この駆動系308は、前記ステージ制御回路303によって制御される。
【0014】
以下、本実施の形態のマスク欠陥検査装置の動作について説明する。
マスクなどの試料313は、図示しないオートローダ機構によりステージ314上に自動的に搬送され、検査終了後に自動的に排出される。
ステージ314の上方に配置されている光源311から照射される光束は、照明光学系312を介して試料313を照射する。試料313の下方には、拡大光学系315及びセンサ回路316が配置されており、露光用マスクなどの試料313を透過した透過光は拡大光学系315を介してセンサ回路316のセンサ面に結像される。拡大光学系315は図示しない自動焦点機構により自動的に焦点調整がなされていてもよい。
【0015】
ステージ314は、ホスト計算機301の指令を受けたステージ制御回路303により制御され、X方向、Y方向、θ方向に駆動する3軸(X−Y−θ)モータの様な駆動系316によって移動可能となっている。これらの、Xモータ、Yモータ、θモータはステップモータを用いることができる。
センサ回路316には、TDIセンサのようなセンサが設置されている。ステージ314をX軸方向に連続的に移動させることにより、TDIセンサは試料313のパターンを撮像する。この撮像データは、測定パターンデータ(被検査パターン画像データ)として比較回路307に送られる。測定パターンデータは例えば8ビットの符号なしデータであり、各画素の明るさの階調を表現している。
【0016】
一方、データメモリ304に蓄積されているマスク設計データ等のデータベースから、マスクパターン画像をデータ展開回路305および参照回路306で生成し、この情報を、比較回路307に伝送する。
比較回路307では、試料313から得られる透過画像に対して、データ展開回路305と参照回路306で生成した検査基準パターン画像と、センサ回路316で生成された被検査パターン画像を取り込み、検査基準パターン画像を補正した後に複数のアルゴリズムに従って比較し、欠陥の有無を判定する。
【0017】
尚、前記演算制御部を構成するステージ制御部303、データ展開回路305、参照回路306、及び比較回路307は、電気的回路で構成されていても良いし、ホスト計算機301によって処理することのできるソフトウエアとして実現してもよい。また電気的回路とソフトウエアの組み合わせで実現しても良い。
【0018】
以下に、上記装置を用いて検査基準パターン画像を補正し、被検査パターン画像に対する新たな検査基準パターンを生成する方法を示す。図1が、そのブロック図である。
本実施の形態においては、このブロック図で示すプロセスに入る前に、周知の手段によって、あらかじめ、両画像の対応する各画素の階調差2乗和などで表される評価関数を最小にする位置を見つけて、1画素単位でシフトして画素位置ズレを補正しておくこと、すなわち、両画像の位置ズレを1画素未満に追い込んでおくことが好ましい。
【0019】
(ステップ11) 連立方程式生成ステップ
このプロセスでは、最初に、検査基準パターン画像を2次元入力データ、被検査パターン画像を2次元出力データと見なして2次元入出力線形予測モデルを設定するプロセスである。この方法について説明する。ここでは、5×5画素の領域を用いた5×5次の2次元線形予測モデルを例にとって説明する。
【0020】
【表1】

【0021】
2次元入力データと2次元出力データをそれぞれu(i,j)、y(i,j)とする。着目する画素のサフィックスをi,jとし、この画素を取り囲む2行前後および2列前後の合計25個の画素のサフィックスを表1のように設定する。
【0022】
ある1組の5×5領域の画素データについて、2次元出力データであるy及び2次元入力データであるuについて、以下の関係式(1)を設定する。
【数1】


式(1)におけるb00〜b44は、同定すべきモデルパラメータであり、ε(i,j)はノイズである。
【0023】
式(1)の意味するところは、被検査パターンのある1画素のデータyk = y(i,j)は、対応する検査基準パターンの1画素を取り囲む5×5画素のデータの線形結合で表すことができるということである。この関係について、概略説明図である図2を用いて説明する。すなわち、図2(b)の画素ykは、図2(a)の画素u(i-2,j-2), …u(i-2,j+2),…u(i-1,j-2),…u(i+2,j+2)のデータを線形結合したものとして表される。
【0024】
(ステップ12) 連立方程式解法ステップ
次のプロセスは、前記プロセスで設定した連立方程式を解することによってパラメータbを求めるプロセスである(モデルパラメータの同定)。
すなわち、式(1)をベクトルで表すと、
【数2】


となるように、まとめられる。従って、検査基準パターン画像と被検査パターン画像の座標i, jを走査して25組のデータを連立させればモデルパラメータbを同定できることになる。
実際には統計的観点から、式(3)のようにn(>25)組のデータを用意して、次のような最小2乗法に基づいて25次元の連立方程式を解き、αを同定する。
【0025】
【数3】


ここで、A=[x1,x2,…xn]T 、y=[y1,y2,…yn]T 、xkT α= yk (k=1,2,…n)である。
例えば、検査基準パターン画像と被検査パターン画像がそれぞれ512×512画素であれば、5×5次のモデルの走査によって画像の周囲を2画素ずつ減らされるので、
【数4】


のデータが得られることになり、統計的に見て充分な個数を確保することができる。
【0026】
(ステップ13) 重心算出ステップ
次のプロセスは、前記ステップで求められるパラメータb00〜b44の値のセットから、得られた同定パラメータb00〜b44の重心を計算するステップである。このプロセスは、任意の5×5画素の領域において、x方向の重心をu、y方向の重心をvとし、次の式(5)および式(6)によって重心u、vを求める。
【0027】
【数5】


【0028】
この重心は、本来5×5画素の中央にあるべき重心が、移動し、中央部以外の場所に存在していることを示しており、画素領域の中央からの変位がパターンのシフトに当たる。
【0029】
(ステップ14) モデル画像生成ステップ
このプロセスは、前記プロセスにおいて求めた重心u,vを用いて、新たな検査基準パターンを生成するステップである。
このステップにおいては、x、y方向のシフト量をそれぞれu,v、基準パターン画像の画素をziとして、線形結合による補正を行う。補正演算は、x、y方向の一次元フィルタを、基準パターン画像の画素zに順次適用することによって計算できる。ここでは、下記式(7)及び式(8)に示すように、双3次補間法を用いることによって行うことができる。
【数6】

【0030】
本実施の形態において、フィッティングの精度は、前記重心を求めることなく同定パラメータより直接モデル画像を生成する方が高いが、本実施の形態の演算は、画像の総光量が保存される性質があるので、補正による総光量の変化が影響する、例えば、パターン線幅欠陥の検出のような、比較アルゴリズムに適用する場合に効果がある。
【0031】
上記実施の形態においては、前記式(7)及び式(8)において、フィルタの係数をその都度計算することを想定しているが、予め異なるu,vに対応するフィルタの係数を計算しておき、テーブルとして記憶装置に用意しておくことにより、このフィルタ演算は高速に実行することができる。
【0032】
[第2の実施の形態]
第2の実施の形態は、前記第1の実施の形態で示した画像補正方法を採用したパターン検査方法である。
すなわち、第1の実施の形態におけるステップ11からステップ14を実施することによって、画像のシフトが高精度で補正された新たな検査基準パターン画像が生成された。そこで、この新たな検査基準パターン画像と、被検査パターン画像を比較することによって、試料上に形成されているパターンの欠陥を検査することができる。
このプロセスにおいて用いられる手法は、従来から行われている任意の2画像の一致を検査するアルゴリズムを使用することができる。具体的には、基準パターンと検査パターンの各画素の階調差が所定の値を超えた場合に欠陥とするレベル比較等のアルゴリズムを挙げることができる。
【0033】
[第3の実施の形態]
以下、本発明の第3の実施の形態について詳細に説明する。
本実施の形態は、マスクパターンの検査を透過光によって得られるパターンと、反射光によって得られるパターンの双方を用いて検査する場合に適した欠陥検査方法に関するものである。以下、この実施の形態において採用することができるマスク欠陥検査装置の概略について説明するが、この説明において、前記第1、及び第2の実施の形態と同等のプロセス、あるいは構成については、その詳細な説明は省略する。
図4は、本実施の形態を適用するのに適したマスク欠陥検査装置の概略構成図である。 本マスク欠陥検査装置は、ホスト計算機を中心とした演算制御部400と、試料となるマスクのパターン画像を撮像する観測データ生成部410とからなっている。
【0034】
演算制御部400は、ホスト計算機401と、これに接続しているアドレスバス、及びデータバス等の信号伝送路402と、この信号伝送路402に接続されたステージ制御回路403、データメモリ404、データ展開回路405、参照回路406、及び比較回路407を備えている。
【0035】
観測データ生成部410は、光源411、光源411から照射される光等を集光して試料に照射する照明光学系412、試料413、該試料413を載置するステージ414、試料403からの透過光のパターン光学像を撮像する第1の拡大光学系415及び第1のセンサ回路416からなっている。また、該照明光学系412と試料413との間には、ビームスプリッタ417が配置されており、試料413に照射された光の反射光が、該ビームスプリッタによって反射され、第2の拡大光学系418を介して第2のセンサ回路419のセンサ面において結像する。
【0036】
そして該ステージ414には、該ステージ414を駆動する駆動系408が接続されており、この駆動系408は、前記ステージ制御回路403によって制御される。
【0037】
比較回路407では、透過、反射それぞれの画像に対して、データ展開回路405および参照回路406で生成した基準パターンデータと、測定パターンデータを取り込み、画像補正を行った後に複数のアルゴリズムに従って比較し、欠陥を検出する。
【0038】
以下、本実施の形態のマスク欠陥検査装置の動作について説明する。
マスクなどの試料413は、図示しないオートローダ機構によりステージ414上に自動的に搬送され、検査終了後に自動的に排出される。ステージ414の上方に配置されている光源411によって照射される光束は照明光学系412を介して試料413を照射する。試料413の下方には、第1の拡大光学系415及び第1のセンサ回路416が配置されており、露光用マスクなどの試料413を透過した透過光は第1の拡大光学系415を介して第1のセンサ回路416のセンサ面に結像される。
また、前記第照明光学系412と試料413との間に配置されているビームスプリッタ417により、試料414に照射された光の反射光が第2の拡大光学系418を介して第2のセンサ回路419のセンサ面に結像する。これによって試料413からの反射画像データが形成される。
前記第1及び第2の拡大光学系415,418は図示しない自動焦点機構により自動的に焦点調整がなされていてもよい。
【0039】
ステージ414は、ホスト計算機401の指令を受けたステージ制御部403により制御され、X方向、Y方向、θ方向に駆動する3軸(X−Y−θ)モータの様な駆動系408によって移動可能となっている。これらの、Xモータ、Yモータ、θモータはステップモータを用いることができる。
第1、及び第2のセンサ回路416,419には、TDIセンサのようなセンサが設置されている。ステージ414をX軸方向に連続的に移動させることにより、前記TDIセンサは試料413のパターンを撮像する。この撮像データは、測定パターンデータ(被検査パターン画像データ)として比較回路407に送られる。測定パターンデータは例えば8ビットの符号なしデータであり、各画素の明るさの階調を表現している。
【0040】
データメモリ404に蓄積されているマスク設計データ等のデータベースから、マスクパターン画像をデータ展開回路405および参照回路406で生成し、この情報を、比較回路407に伝送する。
比較回路407では、試料413から得られる透過画像に対して、データ展開回路405および参照回路406で生成した検査基準パターン画像と、第1のセンサ回路416で生成された被検査パターン画像を取り込み、検査基準パターン画像を補正した後に複数のアルゴリズムに従って比較し、欠陥の有無を判定する。
【0041】
尚、前記演算制御部400の構成の内、ステージ制御部403、データ展開回路405、参照回路406、及び比較回路407は、電気的回路で構成されていても良いし、ホスト計算機401によって処理することのできるソフトウエアとして実現してもよい。
【0042】
以下に、検査基準パターン画像を補正して、被検査パターン画像に対する新たな検査基準パターンを生成する方法を示す。図5はそのブロック図である。
このブロック図のプロセスに入る前に、前処理として、あらかじめ、両画像の対応する各画素の階調差2乗和などで表される評価関数を最小にする位置を見つけて、1画素単位でシフトして画素位置ズレを補正しておく。つまり、両画像の位置ズレを1画素未満に追い込んでおくことが好ましい。
【0043】
(ステップ21) 連立方程式生成ステップ(透過画像)
このプロセスは、透過画像に対して2次元線形予測の連立方程式を生成する工程である。連立方程式を生成する手法については、前述の第1の実施の形態におけるステップ11で記述した方法を採用することができる。
【0044】
(ステップ22) 連立方程式解法ステップ(透過画像)
このプロセスは、前ステップで生成した連立方程式を解き、透過画像の同定パラメータを算出する。このプロセスにおいても、前述の第1の実施の形態におけるステップ12で記述した手法を採用することができる。
【0045】
(ステップ23) モデル画像生成ステップ(透過画像)
同定されたパラメータαと、同定に用いた入出力画像データを式(1)に代入し、画素の座標i, jを走査するシミュレーション演算を行うことによって、透過画像のモデル画像を生成する。このモデル画像が、目的とする補正画像である。この補正画像では、最小2乗法に基づくフィッティングによって、1画素未満の画素位置ズレや伸縮・うねりノイズ、リサイズ処理、センシングノイズの低減が実現されている。ここで、シミュレーションに用いるデータには当然、欠陥画素が含まれることになるが、同定に用いた全データ数に比べてごく少数であるため、最小2乗法ではフィッティングされず、モデル画像には現れない。また、周囲のS/N比が向上しているので、欠陥画素が強調される効果もある。
【0046】
(ステップ24) 重心算出ステップ
このプロセスは、透過画像の同定パラメータから、その重心を算出するプロセスである。このプロセスにおいても、前述の第1の実施の形態におけるステップ13で記述した手法を採用することができる。
【0047】
(ステップ25) オフセット加算ステップ
透過画像と反射画像とは、同一の試料を観測しても、それらの間の位置ずれを回避することは困難である。そしてこの位置ずれは、個々のマスク欠陥検査装置特有のものであり、予め測定しておくことができる。
このオフセットを測定するには、以下のような方法を採用することができる。すなわち、テストパターンを透過・反射両方のセンサで同時に撮像し、得た画像から両者の位置ずれ量を測定することである。
前記プロセスで求めた重心の値に、前記したように既知の透過、反射画像センサ間のオフセットを加算し、反射画像のシフト量とする。
【0048】
(ステップ26) モデル画像生成ステップ(反射画像)
前記ステップで求めたシフト量を元に、線形結合補間により、反射画像の補正を行う。このステップでは、前記ステップ14で記述した手法を採用することができる。
【0049】
(ステップ27) マスク欠陥検査
このステップは、前記工程までに得られた透過画像、及び反射画像のデータを元に、これらを比較することによりマスク欠陥を検査する。
このステップにおいては、画像データベースから展開した検査基準パターン画像を基準画像とし、透過画像あるいは、反射画像を被検査画像として比較を行うことができるが、これに限定されるものではない。
【0050】
なお、上記実施の形態においては、パターンの透過画像からシフト量を求め、その結果から反射画像の位置補正を行う例を示したが、逆に反射画像からシフト量を求め、透過画像の位置補正を行ってもよい。
上記実施の形態においては、撮像データと設計データを比較するDie to Database 方式として説明してきたが、撮像データ同士を比較するDie to Die方式あるいは両者の併用方式に適用することもできる。
さらに、本発明は上述の実施の形態に限定されず、本発明の主旨を逸脱しない範囲で種々変形して実施することができる。
【図面の簡単な説明】
【0051】
【図1】本発明の第1の実施の形態のプロセスを説明するためのプロセス図である。
【図2】本発明を説明するためのパターンの図である。
【図3】本発明の第1の実施の形態において用いるのに適したマスク欠陥検査装置の概略構成図である。
【図4】本発明の第3の実施の形態において用いるのに適したマスク欠陥検査装置の概略構成図である。
【図5】本発明の第3の実施の形態のプロセスを説明するためのプロセス図である。
【符号の説明】
【0052】
300…演算制御部
301…ホスト計算機
302…信号伝送路
303…ステージ制御回路
304…データメモリ
305…データ展開回路
306…参照回路
307…比較回路
308…駆動系
310…観測データ生成部
311…光源
312…照明光学系
313…試料
314…ステージ
315…拡大光学系
316…センサ回路
400…演算制御部
401…ホスト計算機
402…信号伝送路
403…ステージ制御回路
404…データメモリ
405…データ展開回路
406…参照回路
407…比較回路
408…駆動系
410…観測データ生成部
411…光源
412…照明光学系
413…試料
414…ステージ
415…第1の拡大光学系
416…第1のセンサ回路
417…ビームスプリッタ
418…第1の拡大光学系
419…第2のセンサ回路

【特許請求の範囲】
【請求項1】
パターンが形成されている試料に光を照射し、その光学像を撮像した被検査パターン画像と、この被検査パターン画像に対応する検査基準パターン画像とを比較検査するパターン検査方法で用いる画像補正方法であって、
前記被検査パターン画像、及び検査基準パターン画像に対して2次元線形予測モデルを用いた入出力関係を記述する連立方程式を生成する第1のステップ(連立方程式生成ステップ)と、
前記入出力関係を記述した連立方程式を最小二乗法で推定して前記連立方程式のパラメータを求める第2のステップ(連立方程式解法ステップ)と、
前記パラメータの重心位置を求める第3のステップと、
前記重心位置の値を用いて補間処理を行うことにより補正画像を生成する第4のステップと、を少なくとも備えることを特徴とする画像補正方法。
【請求項2】
パターンが形成されている試料に光を照射し、その透過光と反射光との光学像をそれぞれ撮像した被検査パターン画像と、この被検査パターン画像に対応する検査基準パターン画像とを比較検査するパターン検査方法で用いる画像補正方法であって、
透過光による被検査パターン画像もしくは反射光による被検査パターン画像のいずれか一方の画像と、この被検査パターン画像に対応する検査基準パターン画像に対して2次元線形予測モデルを用いた入出力関係を記述する連立方程式を生成する第1のステップ(連立方程式生成ステップ)と、
前記入出力関係を記述した連立方程式を最小二乗法で推定して前記連立方程式のパラメータを求める第2のステップ(連立方程式解法ステップ)と、
前記求められたパラメータを用いて該一方の画像に対して推定モデル画像を合成する第3のステップと、
前記第2のステップで求めたパラメータの重心を求める第4のステップと、
前記第4のステップで求めた重心に、あらかじめ定めたオフセット値を加算する第5のステップと、
前記加算された重心位置の値を用いて、前記第1のステップで2次元線形予測を行わなかった他方の画像に対して補間処理を行って補正画像を生成する第6のステップと
を備えることを特徴とする画像補正方法。
【請求項3】
パターンが形成されている試料に光を照射し、その光学像を撮像した被検査パターン画像と、この被検査パターン画像に対応する検査基準パターン画像とを用いて、パターンの比較検査を行うパターン欠陥検査方法であって、
前記被検査パターン画像、及び検査基準パターン画像に対して2次元線形予測モデルを用いた入出力関係を記述する連立方程式を生成する第1のステップ(連立方程式生成ステップ)と、
前記入出力関係を記述した連立方程式を最小二乗法で推定して前記連立方程式のパラメータを求める第2のステップ(連立方程式解法ステップ)と、
前記パラメータの重心位置を求める第3のステップと、
前記重心位置の値を用いて補間処理を行うことにより補正画像を生成する第4のステップと、
前記第4のステップで生成した補正画像と、前記検査基準パターンとを比較する第5のステップとを備えたことを特徴とするパターン欠陥検査方法。
【請求項4】
パターンが形成されている試料に光を照射し、その透過光と反射光との光学像をそれぞれ撮像した被検査パターン画像と、この被検査パターン画像に対応する検査基準パターン画像とを比較検査するパターン検査方法で用いる画像補正方法であって、
透過光による被検査パターン画像もしくは反射光による被検査パターン画像のいずれか一方の画像と、この被検査パターン画像に対応する検査基準パターン画像に対して2次元線形予測モデルを用いた入出力関係を記述する連立方程式を生成する第1のステップ(連立方程式生成ステップ)と、
前記入出力関係を記述した連立方程式を最小二乗法で推定して前記連立方程式のパラメータを求める第2のステップ(連立方程式解法ステップ)と、
前記求められたパラメータを用いて該一方の画像に対して推定モデル画像を合成する第3のステップと、
前記第2のステップで求めたパラメータの重心を求める第4のステップと、
前記第4のステップで求めた重心に、あらかじめ定めたオフセット値を加算する第5のステップと、
前記加算された重心位置の値を用いて、前記第1のステップで2次元線形予測を行わなかった他方の画像に対して補間処理を行って補正画像を生成する第6のステップと
前記第6のステップで生成した補正画像と、前記検査基準パターンとを比較する第7のステップとを備えたことを特徴とするパターン欠陥検査方法。


【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate


【公開番号】特開2006−276454(P2006−276454A)
【公開日】平成18年10月12日(2006.10.12)
【国際特許分類】
【出願番号】特願2005−95464(P2005−95464)
【出願日】平成17年3月29日(2005.3.29)
【出願人】(305008983)アドバンスド・マスク・インスペクション・テクノロジー株式会社 (105)
【Fターム(参考)】