説明

積層体とその製造方法及びそれを用いたデバイス構造体の製造方法

【課題】各種デバイスを積層するための基材とするためのポリイミドフィルムと支持体との積層体であって、デバイス作製時の高温プロセスにおいても剥がれることなく、しかもポリイミドフィルム上にデバイスを作製した後には容易に支持体からポリイミドフィルムを剥離することができる積層体を提供する。
【解決手段】ポリイミドフィルム6として、少なくとも支持体1に対向させる面にプラズマ処理が施されたフィルムを用い、支持体1とポリイミドフィルム6とが対向する面の少なくとも一方にカップリング剤を用いて、接着剥離強度は異なり表面粗さは略同一である良好接着部分と易剥離部分とを形成するパターン化処理を施した後、重ね合わせて加圧加熱処理することとし、ポリイミドフィルム6は、70モル%以上がベンゾオキサゾール構造を有する芳香族ジアミン類を主成分とするジアミン類とテトラカルボン酸類との反応によって得られる。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、ポリイミドフィルムと無機物からなる支持体(以下単に「支持体」と称することもある)とから構成されてなる積層体の製造方法に関するものである。詳しくは、本発明は、ポリイミドフィルムを支持体となる無機基板に一時的ないし半永久的に貼り合わせた積層体を製造する方法に関し、かかる積層体は、半導体素子、MEMS素子、ディスプレイ素子など、薄膜からなり且つ微細な加工が必要となるデバイスをポリイミドフィルム表面に形成する際に有用である。さらに詳しくは、本発明にかかる積層体は、耐熱性と絶縁性に優れた薄いポリイミドフィルムと、それとほぼ同程度の線膨張係数を有する無機物(例えば、ガラス板、セラミック板、シリコンウエハ、金属板から選ばれた1種)からなる支持体との積層体であって、精緻な回路をマウントできる、寸法安定性と耐熱性と絶縁性に優れた積層体である。よって、本発明は、このような積層体、その製造方法、および該積層体を利用したデバイス構造体の製造方法に関する。
【背景技術】
【0002】
近年、半導体素子、MEMS素子、ディスプレイ素子など機能素子の軽量化、小型・薄型化、フレキシビリティ化を目的として、高分子フィルム上にこれらの素子を形成する技術開発が活発に行われている。例えば、情報通信機器(放送機器、移動体無線、携帯通信機器等)、レーダーや高速情報処理装置などといった電子部品の基材の材料としては、従来、耐熱性を有し且つ情報通信機器の信号帯域の高周波数化(GHz帯に達する)にも対応し得るセラミックが用いられていたが、セラミックはフレキシブルではなく薄型化もしにくいので、適用可能な分野が限定されるという欠点があった。
【0003】
半導体素子、MEMS素子、ディスプレイ素子などの機能素子を高分子フィルム表面に形成するにあたっては、高分子フィルムの特性であるフレキシビリティを利用した、いわゆるロール・トゥ・ロールプロセスにて加工することが理想とされている。しかしながら、半導体産業、MEMS産業、ディスプレイ産業界では、これまでウエハベースないしガラス基板ベース等のリジッドな平面基板を対象としたプロセス技術が構築されてきた。そのため、現実的な選択としては、高分子フィルムを、例えばガラス板、セラミック板、シリコンウエハ、金属板などの無機物からなるリジッドな支持体に貼り合わせし、所望の素子を形成した後に支持体から剥離することが考えられ、これにより既存インフラを利用して高分子フィルム上に形成した機能素子を得ることが可能となる。
【0004】
従来、無機物からなる支持体への高分子フィルムの貼り合わせは、粘着剤や接着剤を用いて広く行われてきた(特許文献1)。しかしながら、高分子フィルムと無機物からなる支持体とを貼り合わせた積層体に所望の機能素子を形成する場合、機能素子の形成を行う上で支障ないレベルの表面平滑性、寸法安定性、クリーン性、プロセス温度への耐性、微細加工に用いられる薬液への耐性等が当該積層体に求められる。特にポリシリコンや酸化物半導体などの機能素子の形成においては200〜500℃程度の温度域でのプロセスが必要となる。例えば低温ポリシリコン薄膜トランジスターの作製においては、脱水素化のために450℃、2時間程度の加熱処理が必要な場合があり、水素化アモルファスシリコン薄膜の作製においては、200℃から300℃程度の温度がフィルムに加わる可能性がある。このように機能素子の形成温度が高い場合には、高分子フィルムに耐熱性が必要であることは勿論、高分子フィルムと支持体との接合面(すなわち貼り合せ用の接着剤や粘着剤)がその加工温度に耐えなければならない。しかしながら、従来の貼り合せ用の接着剤や粘着剤は十分な耐熱性を有していなかったため、機能素子の形成温度が高い場合には適用できないのが現状であった。
【0005】
また、半導体薄膜のなかでも、線膨張係数が3ppm/℃程度と非常に小さいSiの薄膜を高分子フィルム上に形成する場合、フィルムと薄膜との間の線膨張係数の差が大きいと、薄膜中に応力が溜まり、性能の劣化や反りないし剥がれを招く原因になるという問題もある。特に薄膜形成プロセス中に高温が加わると、温度変化の間にフィルムと薄膜の間の線膨張係数の差に起因する応力が大きくなる。
【0006】
無機物からなる支持体へ貼り合せる高分子フィルムとしては、耐熱性の観点から融点の低いフィルムは適さず、例えば、ポリエチレンナフタレート、ポリエチレンテレフタレート、ポリイミド、ポリテトラフルオロエチレンからなる高分子フィルム、ガラス繊維強化エポキシ等が用いられる。特にポリイミドからなるフィルムは、耐熱性に優れ、しかも強靭であるので薄膜化が可能になるという長所を備えている。しかしながら、ポリイミドフィルムは、一般的に線膨張係数が大きく温度変化による寸法変化が著しいため、微細な配線をもつ回路の製造に適用しにくい等の問題があり、使用できる分野が限定される。このように、耐熱性、高機械的物性、フレキシブル性を具備した基材用として十分な物性のポリイミドフィルムを使ったデバイスは未だ得られていない。
【0007】
引張弾性率を高くしたポリイミドフィルムとして、ベンゾオキサゾール環を主鎖に有するポリイミドからなるポリイミドベンゾオキサゾールフィルムが提案されている(特許文献2)。また、このポリイミドベンゾオキサゾールフィルムを誘電層とするプリント配線板も提案されている(特許文献3、特許文献4)。しかし、これらのベンゾオキサゾール環を主鎖に有するポリイミドからなるポリイミドベンゾオキサゾールフィルムは、引張破断強度、引張弾性率が改良され、線膨張係数において満足し得る範囲のものとなっているが、その優れた機械的物性の反面で、薄くすればするほど取り扱いが困難となり、機械的、力学的特性が不十分であるなどの課題を有していた。
【0008】
また、これらのポリイミドフィルム上に熱可塑性樹脂などの接着剤層を設けて他の構造補強物を設ける試みもなされている。しかし、これによれば剛性改良の点では満足し得ても、接着剤層とする熱可塑性樹脂などの耐熱性の低さが、折角のポリイミドフィルムの耐熱性を台無しにする傾向を有していた。しかも熱可塑性樹脂は、一般に線膨張係数が大きく、かつこの層を薄くすることには限界があることから、加熱を施した際の寸法安定性にも悪影響を与える傾向を有していた。
【0009】
他方、樹脂基板を用いた柔軟性を有する表示装置として、固定基板上に、剥離層となる非晶質シリコン膜を介して樹脂基板を形成する工程と、前記樹脂基板上に少なくともTFT素子を形成する工程と、前記非晶質シリコン膜にレーザー光を照射することにより、前記非晶質シリコン膜において前記固定基板から前記樹脂基板を剥離する工程とを行い、前記樹脂基板を用いた柔軟性を有する表示装置を作製することが開示されている(特許文献5)。しかし、剥離に際して接着剤層をレーザー照射やエッチング手段を用いる必要があり、工程が煩雑になり且つ高コストになる。
なお、UV照射によって高分子フィルム同士を接着することは知られており、このときにカップリング剤を使うことが有効であることは開示されている(特許文献6)。しかし、この技術は、あくまで高分子フィルム同士の接着に関することであり、UV光照射によりカップリング剤自体の接着剥離力の制御を行ったものではない。
【先行技術文献】
【特許文献】
【0010】
【特許文献1】特開2008−159935号公報
【特許文献2】特開平06−056992号公報
【特許文献3】特表平11−504369号公報
【特許文献4】特表平11−505184号公報
【特許文献5】特開2009−260387号公報
【特許文献6】特開2008−19348号公報
【発明の概要】
【発明が解決しようとする課題】
【0011】
本発明は上記の様な事情に着目してなされたものであって、その目的は、各種デバイスを積層するための基材とするためのポリイミドフィルムと支持体との積層体であって、デバイス作製時の高温プロセスにおいても剥がれることなく、しかもポリイミドフィルム上にデバイスを作製した後には容易に支持体からポリイミドフィルムを剥離することができる積層体を提供することである。
【課題を解決するための手段】
【0012】
本発明者らは前記課題を解決するために鋭意検討した結果、支持体とポリイミドフィルムとが対向する面の少なくとも一方に、カップリング剤を用いて、接着剥離強度は異なり表面粗さは略同一である良好接着部分と易剥離部分とを形成するパターン化処理を施して、支持体とプラズマ処理を施したポリイミドフィルムとを接着させれば、良好接着部分にてデバイス作製時の高温プロセスにおいても剥がれることない十分な接着剥離強度を発現させ、デバイス作製後には易剥離部分に切り込みを入れることで、デバイス付きポリイミドフィルムを支持体から容易に剥がすことができること、さらにポリイミドフィルムとして特定組成のポリイミドフィルムを用いることにより、耐熱性がより一層向上し、ポリイミドフィルムの寸法安定性が支持体に近くなるので、積層体の反りや変形を抑制できること、を見出し、本発明を完成した。
【0013】
すなわち本発明は以下の構成からなる。
1)少なくとも支持体とポリイミドフィルムとから構成されてなる積層体の製造方法であって、前記ポリイミドフィルムとして、少なくとも前記支持体に対向させる面にプラズマ処理が施されたフィルムを用い、前記支持体と前記ポリイミドフィルムとが対向する面の少なくとも一方に、カップリング剤を用いて、接着剥離強度は異なり表面粗さは略同一である良好接着部分と易剥離部分とを形成するパターン化処理を施し、その後、前記支持体と前記ポリイミドフィルムとを重ね合わせて加圧加熱処理することとし、前記ポリイミドフィルムは、芳香族ジアミン類を主成分とするジアミン類と、芳香族テトラカルボン酸類を主成分とするテトラカルボン酸類との反応によって得られるフィルムであり、前記芳香族ジアミン類のうち70モル%以上がベンゾオキサゾール構造を有する芳香族ジアミンである、ことを特徴とする積層体の製造方法。
2)前記パターン化処理は、カップリング剤処理を施してカップリング処理層を形成し、次いでカップリング処理層の一部に不活性化処理を施して所定のパターンを形成することにより行う前記1)に記載の積層体の製造方法。
3)前記不活性化処理として、ブラスト処理、真空プラズマ処理、大気圧プラズマ処理、コロナ処理、活性放射線照射処理、活性ガス処理および薬液処理からなる群より選択される少なくとも1種を行う前記2)に記載の積層体の製造方法。
4)前記不活性化処理として、少なくともUV照射処理を行う前記3)に記載の積層体の製造方法。
5)前記加圧加熱処理はロールを用いて大気圧雰囲気下で行う前記1)〜4)のいずれかに記載の積層体の製造方法。
6)前記加圧加熱処理は加圧プロセスと加熱プロセスとに分離して行い、120℃未満の温度で加圧した後に、低圧もしくは常圧にて120℃以上の温度で加熱する前記1)〜5)のいずれかに記載の積層体の製造方法。
7)前記ポリイミドフィルムとして、前記プラズマ処理の後に酸処理を施したフィルムを用いる前記1)〜6)のいずれかに記載の積層体の製造方法。
【0014】
8)支持体とポリイミドフィルムとがカップリング処理層を介して積層されてなる積層体であって、前記支持体と前記ポリイミドフィルムとの間の剥離強度が異なる良好接着部分と易剥離部分とを有しており、該良好接着部分と該易剥離部分とが所定のパターンを形成していることを特徴とする積層体。
9)前記易剥離部分における支持体とポリイミドフィルムとの間の180度剥離強度が、前記良好接着部分における支持体とポリイミドフィルムとの間の180度剥離強度の1/2以下である前記8)に記載の積層体。
【0015】
10)ポリイミドフィルム上にデバイスが形成されてなる構造体を製造する方法であって、支持体とポリイミドフィルムとを有する前記8)または9)に記載の積層体を用いることとし、該積層体のポリイミドフィルム上にデバイスを形成した後、前記積層体の易剥離部分のポリイミドフィルムに切り込みを入れて該ポリイミドフィルムを前記支持体から剥離することを特徴とするデバイス構造体の製造方法。
【発明の効果】
【0016】
本発明の製造方法で得られる積層体は、支持体(ガラス板、セラミック板、シリコンウエハ、金属等)の一面と、ポリイミドフィルムの一面とが、接着剤層を介することなく貼り合わされた積層体であって、あらかじめ決めたパターンによって支持体とポリイミドフィルムの接着剥離強度が異なる良好接着部分と易剥離部分とに分かれているので、ポリイミドフィルムの上にデバイスを作製した後、易剥離部分のポリイミドフィルムに切り込みを入れて剥離することによって、容易にデバイス付きのポリイミドフィルムを得ることができる。また本発明にかかる積層体のポリイミドフィルムは、特定組成のジアミン類とテトラカルボン酸類との反応により得られるものであるので、より一層高い耐熱性を発現し、ポリイミドフィルムの寸法安定性が支持体に近くなることで、積層体の反りや変形を抑制するという効果をも奏する。
本発明によれば、絶縁性で可撓性、耐熱性を兼ね備えた薄いポリイミドフィルムに回路などを形成できる。さらに電子部品を搭載して電子デバイスを作製する時に、薄いポリイミドフィルムであっても、寸法安定性に優れた支持体に積層され固定されていることで精密な位置決めができ、多層に薄膜作製、回路形成など行なうことができる。しかも本発明の積層体は、プロセス中には熱が加わっても剥がれず、デバイス作製後に必要に応じてこの支持体から剥がす際にも、ポリイミドフィルムと支持体との剥離がスムースに実施できる。さらに本発明の積層体は、プロセス通過過程において剥離することのない剥離強度を有する積層体であるため、従来の電子デバイス作製プロセスをそのまま使うことが可能である。特に、ポリイミドフィルム上にデバイスを作製するに際しては、ポリイミドフィルムの表面特性から、密着性に優れ、平滑性にも優れるので、安定的に精度よくデバイス作製を実施することができる。このように、本発明の積層体は、絶縁性で可撓性、耐熱性を兼ね備えた、薄いポリイミドフィルムに回路などを形成した電子デバイス作製などに極めて有意義である。
【0017】
本発明によれば、ポリイミドフィルム原反にプラズマ処理と酸処理を加えることも可能である。この部分の工程はロールツーロールでの工程化が可能であり、効率的な処理が可能である。特にプラズマ処理まで行なったポリイミドフィルムロールは滑材があるため、ロールとしてのハンドリング性はプラズマ処理前と同等である。酸処理後のロール搬送についても、酸処理を行う面と反対側の面に粘着剤付の保護フィルムをつけることで、ロール搬送は容易になる。酸処理を行う面とは反対側の面はデバイス作製などを行う面となるため、傷つきなどを防ぐため保護フィルムを付けることもあるため、工程の増加にはつながらず、この保護フィルムに滑材があることで、ロール搬送もまったく問題なく行える。また、これとは別の工程構成として、ロールでプラズマ処理を行った後、カットシートにしてから酸処理を行うことも出来るため、簡便な実施も可能となる。生産性に優れた処理であることは、実施において有意義である。
【0018】
本発明の積層体は、耐熱性の無機物からなる支持体に支持されているので、回路配線作製および半導体形成時に、精密な位置決めをして、多層に薄膜作製、回路形成など行なうことができ、半導体作製時に高温のプロセスでも剥がれる事無く、薄膜堆積などが行なえる。またこの積層体は、半導体付加後にパターンの易剥離部分のみを剥離する場合は容易に剥離できるため、作製した半導体を破壊することがない。そして、この回路付加積層体および半導体素子が形成された半導体付加積層体に使用されるポリイミドフィルム積層体を剥がす事により、回路付加したデバイス付きポリイミドフィルムおよび半導体素子が形成された半導体付加したデバイス付きポリイミドフィルムを提供することができる。
【0019】
回路配線作製時に、精密な位置決めをして、多層に薄膜作製、回路形成など行なう際、寸法安定性に劣り形状変化の大きいポリイミドフィルムを単独で基板とすると、デバイス作製のための位置決めが困難になる。それに対して、寸法安定性に優れた固い支持体に固定し、デバイス作製後にポリイミドフィルムを固い支持体から剥がす本発明の方法においては、デバイス作製のための位置決めが容易であり、従来の電子デバイス作製プロセスをそのまま使い、ポリイミドフィルム上のデバイス作製を安定的に精度よく実施することができる。特に、本発明の積層体は、回路形成などが高温でなされる場合や精緻な回路形成に有意な積層体である。
【0020】
また、単結晶および多結晶Siによる太陽電池などは、薄型化が進むなか、割れ易く、プロセス中のハンドリング、そして、出来上がった後の耐久性に問題があったが、基板とするポリイミドフィルムを本発明のように支持体との積層体とすることにより、これら問題も解消できる。またこのときに容易に剥がせる部分があるため、電極引き出しも可能な補強基板を作製しうる。
【0021】
また、例えば、支持体としてウエハを用い、該ウエハ上にポリイミドワニスを塗り、その後に剥がしてポリイミドフィルム化した場合には、ウエハに同心円状の膜厚分布ができることや、ポリイミドフィルムの表と裏での構造の違いから、剥がしたときに反りのでるポリイミドフィルムとなったり、ポリイミドフィルムとウエハとの接着強度が強すぎ、かつポリイミドフィルムが脆いために、支持体からの剥離自体に困難を伴い、剥離時にフィルムを損傷することが多いといった問題がある。これに対して、本発明のように、別途作製したフィルムを貼る場合には、ウエハやガラスなどの支持体に対して狭い面積での膜厚はきわめて同一性が高く、先に回路を作製した後で貼り付けることも、貼り付けた後で回路を作製することも可能となり、回路製作に適している。
【図面の簡単な説明】
【0022】
【図1】図1は、本発明の積層体の製造方法の一実施態様を示す模式図である。
【図2】図2は、本発明のデバイス構造体の製造方法の一実施態様を示す模式図である。
【図3】図3は、パターン例を示す模式図である。
【図4】図4は、クレーター部を示すAFM像である。
【図5】図5は、図4に示すクレーター部の直線部分における断面AFM像である。
【図6】図6は、クレーター部を含むAFM像(10μm四方)である。
【図7】図7は、クレーター部の直径の測定方法を説明するための説明図である。
【図8】図8は、クレーター数の測定方法を説明するための説明図である。
【図9】図9は、デバイス構造体の一例である表示装置(表示用パネル)を示す断面図(a)および上面図(b)である。
【図10】図10は、デバイス構造体の他の一例である表示装置(表示用パネル)を示す断面図である。
【発明を実施するための形態】
【0023】
(積層体の製造方法)
本発明の積層体の製造方法は、少なくとも支持体とポリイミドフィルムとを用いて、これらから構成される積層体を製造する方法である。
【0024】
<支持体>
本発明における支持体は、無機物からなり基板として用いることのできる板状のものであればよく、例えば、ガラス板、セラミック板、シリコンウエハ、金属等を主体としているもの、および、これらガラス板、セラミック板、シリコンウエハ、金属の複合体として、これらを積層したもの、これらが分散されているもの、これらの繊維が含有されているものなどが挙げられる。
【0025】
前記ガラス板としては、石英ガラス、高ケイ酸ガラス(96%シリカ)、ソーダ石灰ガラス、鉛ガラス、アルミノホウケイ酸ガラス、ホウケイ酸ガラス(パイレックス(登録商標))、ホウケイ酸ガラス(無アルカリ)、ホウケイ酸ガラス(マイクロシート)、アルミノケイ酸塩ガラス等が含まれる。これらの中でも、線膨張係数が5ppm/℃以下のものが望ましく、市販品であれば、液晶用ガラスであるコーニング社製の「コーニング(登録商標)7059」や「コーニング(登録商標)1737」、「EAGLE」、旭硝子社製の「AN100」、日本電気硝子社製の「OA10」、SCHOTT社製の「AF32」などが望ましい。
【0026】
前記セラミック板としては、Al、Mullite、AlN、SiC、Si、BN、結晶化ガラス、Cordierite、Spodumene、Pb−BSG+CaZrO+Al、Crystallized glass+Al、Crystallized Ca−BSG、BSG+Quartz、BSG+Quartz、BSG+Al、Pb+BSG+Al、Glass−ceramic、ゼロデュア材などの基板用セラミックス、TiO、チタン酸ストロンチウム、チタン酸カルシウム、チタン酸マグネシウム、アルミナ、MgO、ステアタイト、BaTi、BaTiO、BaTi4+CaZrO3、BaSrCaZrTiO3、Ba(TiZr)O3、PMN−PTやPFN−PFWなどのキャパシター材料、PbNb26、Pb0.5Be0.5Nb26、PbTiO3、BaTiO3、PZT、0.855PZT−95PT−0.5BT、0.873PZT−0.97PT−0.3BT、PLZTなどの圧電材料が含まれる。
【0027】
前記シリコンウエハとしては、n型或はp型にドーピングされたシリコンウエハ、イントリンシックシリコンウエハ等の全てが含まれ、また、シリコンウエハの表面に酸化シリコン層や各種薄膜が堆積されたシリコンウエハも含まれ、シリコンウエハのほか、ゲルマニウム、シリコン−ゲルマニウム、ガリウム−ヒ素、アルミニウム−ガリウム−インジウム、窒素−リン−ヒ素−アンチモンがよく用いられている。さらに、InP(インジウム燐)、InGaAs、GaInNAs、LT、LN、ZnO(酸化亜鉛)やCdTe(カドミウムテルル)、ZnSe(セレン化亜鉛) などの汎用の半導体ウエハも含まれる。
【0028】
前記金属としては、W、Mo、Pt、Fe、Ni、Auといった単一元素金属、インコネル、モネル、ニモニック、炭素銅、Fe−Ni系インバー合金、スーパーインバー合金、といった合金等が含まれる。また、これら金属に、他の金属層、セラミック層を付加してなる多層金属板も含まれる。この場合、付加層との全体のCTEが低ければ、主金属層にCu、Alなども用いられる。付加金属層として使用される金属としては、ポリイミドフィルムとの密着性を強固にするもの、拡散がないこと、耐薬品性や耐熱性が良いこと等の特性を有するものであれば限定されるものではないが、クロム、ニッケル、TiN、Mo含有Cuが好適な例として挙げられる。
【0029】
前記支持体の平面部分は、充分に平坦である事が望ましい。具体的には、表面粗さのP−V値が50nm以下、より好ましくは20nm以下、さらに好ましくは5nm以下である。これより粗いと、ポリイミドフィルムと支持体との剥離強度が不充分となる虞がある。
【0030】
<ポリイミドフィルム>
本発明におけるポリイミドフィルムは、芳香族ジアミン類を主成分とするジアミン類と、芳香族テトラカルボン酸類を主成分とするテトラカルボン酸類との反応によって得られるフィルムである。具体的には、ポリイミドフィルムは、溶媒中でジアミン類とテトラカルボン酸類とを少なくとも反応させて得られるポリアミド酸(ポリイミド前駆体)溶液を、ポリイミドフィルム作製用支持体(ここで言う支持体は、本発明の積層体の構成部材として上述した「支持体」とは異なる)に塗布、乾燥してグリーンフィルム(「前駆体フィルム」または「ポリアミド酸フィルム」ともいう)となし、さらにポリイミドフィルム作製用支持体上で、あるいは該支持体から剥がした状態でグリーンフィルムを高温熱処理して脱水閉環反応を行わせることによって得られる。
【0031】
ポリアミド酸を構成するジアミン類は、耐熱性の観点から、芳香族ジアミン類を主成分とする。具体的には、芳香族ジアミン類は、全ジアミン類の80質量%以上が好ましく、より好ましくは90質量%以上、さらに好ましくは95質量%以上、最も好ましくは100質量%である。また本発明においては、全ての芳香族ジアミン類のうちの70モル%以上が、ベンゾオキサゾール構造を有する芳香族ジアミンであることが重要である。このように特定構造を有するジアミンを所定量使用することにより、剛直な分子は高度に配向することになり、高い耐熱性とともに、高弾性率、低熱収縮性、低線膨張係数を備えたポリイミドフィルムを得ることができる。
【0032】
ベンゾオキサゾール構造を有する芳香族ジアミンの分子構造は特に限定されるものではないが、具体的には以下のものが挙げられる。ベンゾオキサゾール構造を有する芳香族ジアミンは、単独で用いてもよいし二種以上を併用してもよい。
【0033】
【化1】

【0034】
【化2】

【0035】
【化3】

【0036】
【化4】

【0037】
【化5】

【0038】
【化6】

【0039】
【化7】

【0040】
【化8】

【0041】
【化9】

【0042】
【化10】

【0043】
【化11】

【0044】
【化12】

【0045】
【化13】

【0046】
これらの中でも、合成のし易さの観点から、アミノ(アミノフェニル)ベンゾオキサゾールの各異性体が好ましく、5−アミノ−2−(p−アミノフェニル)ベンゾオキサゾールがより好ましい。ここで、「各異性体」とは、アミノ(アミノフェニル)ベンゾオキサゾールが有する2つアミノ基の結合位置(配位位置)が異なるものを意味する(例えば、上記5−アミノ−2−(p−アミノフェニル)ベンゾオキサゾールと、6−アミノ−2−(p−アミノフェニル)ベンゾオキサゾールと、5−アミノ−2−(m−アミノフェニル)ベンゾオキサゾールと、6−アミノ−2−(m−アミノフェニル)ベンゾオキサゾールとが異性体に相当する)。
【0047】
全芳香族ジアミン類に占めるベンゾオキサゾール構造を有する芳香族ジアミンの割合は、上述したように70モル%以上であるが、好ましくは75モル%以上、より好ましくは80モル%以上、さらに好ましくは85モル%以上である。
【0048】
芳香族ジアミン類としては、前記ベンゾオキサゾール構造を有する芳香族ジアミンのほかに、全芳香族ジアミン類の30モル%以下の範囲であれば、例えば下記に例示されるようなその他の芳香族ジアミンを併用することができる。その他の芳香族ジアミンは、単独で用いてもよいし二種以上を併用してもよい。
その他の芳香族ジアミンとしては、例えば、2,2’−ジメチル−4,4’−ジアミノビフェニル、ビスアニリン、1,4−ビス(4−アミノ−2−トリフルオロメチルフェノキシ)ベンゼン、2,2’−ジトリフルオロメチル−4,4’−ジアミノビフェニル、4,4’−ビス(4−アミノフェノキシ)ビフェニル、4,4’−ビス(3−アミノフェノキシ)ビフェニル、ビス[4−(3−アミノフェノキシ)フェニル]ケトン、ビス[4−(3−アミノフェノキシ)フェニル]スルフィド、ビス[4−(3−アミノフェノキシ)フェニル]スルホン、2,2−ビス[4−(3−アミノフェノキシ)フェニル]プロパン、2,2−ビス[4−(3−アミノフェノキシ)フェニル]−1,1,1,3,3,3−ヘキサフルオロプロパン、m−フェニレンジアミン、o−フェニレンジアミン、p−フェニレンジアミン、m−アミノベンジルアミン、p−アミノベンジルアミン、3,3’−ジアミノジフェニルエーテル、3,4’−ジアミノジフェニルエーテル、4,4’−ジアミノジフェニルエーテル、3,3’−ジアミノジフェニルスルフィド、3,3’−ジアミノジフェニルスルホキシド、3,4’−ジアミノジフェニルスルホキシド、4,4’−ジアミノジフェニルスルホキシド、3,3’−ジアミノジフェニルスルホン、3,4’−ジアミノジフェニルスルホン、4,4’−ジアミノジフェニルスルホン、3,3’−ジアミノベンゾフェノン、3,4’−ジアミノベンゾフェノン、4,4’−ジアミノベンゾフェノン、3,3’−ジアミノジフェニルメタン、3,4’−ジアミノジフェニルメタン、4,4’−ジアミノジフェニルメタン、ビス[4−(4−アミノフェノキシ)フェニル]メタン、1,1−ビス[4−(4−アミノフェノキシ)フェニル]エタン、1,2−ビス[4−(4−アミノフェノキシ)フェニル]エタン、1,1−ビス[4−(4−アミノフェノキシ)フェニル]プロパン、1,2−ビス[4−(4−アミノフェノキシ)フェニル]プロパン、1,3−ビス[4−(4−アミノフェノキシ)フェニル]プロパン、2,2−ビス[4−(4−アミノフェノキシ)フェニル]プロパン、1,1−ビス[4−(4−アミノフェノキシ)フェニル]ブタン、1,3−ビス[4−(4−アミノフェノキシ)フェニル]ブタン、1,4−ビス[4−(4−アミノフェノキシ)フェニル]ブタン、2,2−ビス[4−(4−アミノフェノキシ)フェニル]ブタン、2,3−ビス[4−(4−アミノフェノキシ)フェニル]ブタン、2−[4−(4−アミノフェノキシ)フェニル]−2−[4−(4−アミノフェノキシ)−3−メチルフェニル]プロパン、2,2−ビス[4−(4−アミノフェノキシ)−3−メチルフェニル]プロパン、2−[4−(4−アミノフェノキシ)フェニル]−2−[4−(4−アミノフェノキシ)−3,5−ジメチルフェニル]プロパン、2,2−ビス[4−(4−アミノフェノキシ)−3,5−ジメチルフェニル]プロパン、2,2−ビス[4−(4−アミノフェノキシ)フェニル]−1,1,1,3,3,3−ヘキサフルオロプロパン、1,4−ビス(3−アミノフェノキシ)ベンゼン、1,3−ビス(3−アミノフェノキシ)ベンゼン、1,4−ビス(4−アミノフェノキシ)ベンゼン、4,4’−ビス(4−アミノフェノキシ)ビフェニル、ビス[4−(4−アミノフェノキシ)フェニル]ケトン、ビス[4−(4−アミノフェノキシ)フェニル]スルフィド、ビス[4−(4−アミノフェノキシ)フェニル]スルホキシド、ビス[4−(4−アミノフェノキシ)フェニル]スルホン、ビス[4−(3−アミノフェノキシ)フェニル]エーテル、ビス[4−(4−アミノフェノキシ)フェニル]エーテル、1,3−ビス[4−(4−アミノフェノキシ)ベンゾイル]ベンゼン、1,3−ビス[4−(3−アミノフェノキシ)ベンゾイル]ベンゼン、1,4−ビス[4−(3−アミノフェノキシ)ベンゾイル]ベンゼン、4,4’−ビス[(3−アミノフェノキシ)ベンゾイル]ベンゼン、1,1−ビス[4−(3−アミノフェノキシ)フェニル]プロパン、1,3−ビス[4−(3−アミノフェノキシ)フェニル]プロパン、3,4’−ジアミノジフェニルスルフィド、2,2−ビス[3−(3−アミノフェノキシ)フェニル]−1,1,1,3,3,3−ヘキサフルオロプロパン、ビス[4−(3−アミノフェノキシ)フェニル]メタン、1,1−ビス[4−(3−アミノフェノキシ)フェニル]エタン、1,2−ビス[4−(3−アミノフェノキシ)フェニル]エタン、ビス[4−(3−アミノフェノキシ)フェニル]スルホキシド、4,4’−ビス[3−(4−アミノフェノキシ)ベンゾイル]ジフェニルエーテル、4,4’−ビス[3−(3−アミノフェノキシ)ベンゾイル]ジフェニルエーテル、4,4’−ビス[4−(4−アミノ−α,α−ジメチルベンジル)フェノキシ]ベンゾフェノン、4,4’−ビス[4−(4−アミノ−α,α−ジメチルベンジル)フェノキシ]ジフェニルスルホン、ビス[4−{4−(4−アミノフェノキシ)フェノキシ}フェニル]スルホン、1,4−ビス[4−(4−アミノフェノキシ)フェノキシ−α,α−ジメチルベンジル]ベンゼン、1,3−ビス[4−(4−アミノフェノキシ)フェノキシ−α,α−ジメチルベンジル]ベンゼン、1,3−ビス[4−(4−アミノ−6−トリフルオロメチルフェノキシ)−α,α−ジメチルベンジル]ベンゼン、1,3−ビス[4−(4−アミノ−6−フルオロフェノキシ)−α,α−ジメチルベンジル]ベンゼン、1,3−ビス[4−(4−アミノ−6−メチルフェノキシ)−α,α−ジメチルベンジル]ベンゼン、1,3−ビス[4−(4−アミノ−6−シアノフェノキシ)−α,α−ジメチルベンジル]ベンゼン、3,3’−ジアミノ−4,4’−ジフェノキシベンゾフェノン、4,4’−ジアミノ−5,5’−ジフェノキシベンゾフェノン、3,4’−ジアミノ−4,5’−ジフェノキシベンゾフェノン、3,3’−ジアミノ−4−フェノキシベンゾフェノン、4,4’−ジアミノ−5−フェノキシベンゾフェノン、3,4’−ジアミノ−4−フェノキシベンゾフェノン、3,4’−ジアミノ−5’−フェノキシベンゾフェノン、3,3’−ジアミノ−4,4’−ジビフェノキシベンゾフェノン、4,4’−ジアミノ−5,5’−ジビフェノキシベンゾフェノン、3,4’−ジアミノ−4,5’−ジビフェノキシベンゾフェノン、3,3’−ジアミノ−4−ビフェノキシベンゾフェノン、4,4’−ジアミノ−5−ビフェノキシベンゾフェノン、3,4’−ジアミノ−4−ビフェノキシベンゾフェノン、3,4’−ジアミノ−5’−ビフェノキシベンゾフェノン、1,3−ビス(3−アミノ−4−フェノキシベンゾイル)ベンゼン、1,4−ビス(3−アミノ−4−フェノキシベンゾイル)ベンゼン、1,3−ビス(4−アミノ−5−フェノキシベンゾイル)ベンゼン、1,4−ビス(4−アミノ−5−フェノキシベンゾイル)ベンゼン、1,3−ビス(3−アミノ−4−ビフェノキシベンゾイル)ベンゼン、1,4−ビス(3−アミノ−4−ビフェノキシベンゾイル)ベンゼン、1,3−ビス(4−アミノ−5−ビフェノキシベンゾイル)ベンゼン、1,4−ビス(4−アミノ−5−ビフェノキシベンゾイル)ベンゼン、2,6−ビス[4−(4−アミノ−α,α−ジメチルベンジル)フェノキシ]ベンゾニトリル、および上記芳香族ジアミンの芳香環上の水素原子の一部もしくは全てが、ハロゲン原子、炭素数1〜3のアルキル基またはアルコキシル基、シアノ基、またはアルキル基またはアルコキシル基の水素原子の一部もしくは全部がハロゲン原子で置換された炭素数1〜3のハロゲン化アルキル基またはアルコキシル基で置換された芳香族ジアミン等が挙げられる。
【0049】
ポリアミド酸を構成するジアミン類としては、上述した芳香族ジアミン類のほかに、例えば、1,2−ジアミノエタン、1,4−ジアミノブタン、1,5−ジアミノペンタン、1,6−ジアミノヘキサン、1,8−ジアミノオクタン等の脂肪族ジアミン類や、1,4−ジアミノシクロヘキサン、4,4’−メチレンビス(2,6−ジメチルシクロヘキシルアミン)等の脂環式ジアミン類を用いてもよい。ただし、この場合、芳香族ジアミン類以外のジアミンの合計量は、全ジアミン類の20質量%以下が好ましく、より好ましくは10質量%以下、さらに好ましくは5質量%以下である。
【0050】
ポリアミド酸を構成するテトラカルボン酸類としては、ポリイミド合成に通常用いられる芳香族テトラカルボン酸類(その酸無水物を含む)、脂肪族テトラカルボン酸類(その酸無水物を含む)、脂環族テトラカルボン酸類(その酸無水物を含む)を用いることができるが、耐熱性の観点から、前記芳香族テトラカルボン酸類を主成分とする。具体的には、芳香族テトラカルボン酸類は、全テトラカルボン酸類の80質量%以上が好ましく、より好ましくは90質量%以上、さらに好ましくは95質量%以上、最も好ましくは100質量%である。またテトラカルボン酸類が酸無水物である場合、分子内に無水物構造は1個であってもよいし2個であってもよいが、好ましくは2個の無水物構造を有するもの(二無水物)がよい。テトラカルボン酸類は単独で用いてもよいし、二種以上を併用してもよい。
【0051】
芳香族テトラカルボン酸類としては、特に限定されないが、ピロメリット酸残基(すなわちピロメリット酸由来の構造を有するもの)であることが好ましく、その酸無水物であることがより好ましい。具体的には、以下に例示のものが好ましい芳香族テトラカルボン酸として挙げられる。
【0052】
【化14】

【0053】
【化15】

【0054】
【化16】

【0055】
【化17】

【0056】
【化18】

【0057】
【化19】

【0058】
脂肪族テトラカルボン酸類または脂環式テトラカルボンとしては、特に限定されないが、酸無水物であることが好ましい。具体的には、例えば、シクロブタンテトラカルボン酸二無水物、1,2,4,5−シクロヘキサンテトラカルボン酸二無水物、3,3’,4,4’−ビシクロヘキシルテトラカルボン酸二無水物等が挙げられる。これら芳香族テトラカルボン酸類以外のテトラカルボン酸類(すなわち脂肪族テトラカルボン酸類および脂環式テトラカルボン酸類)の合計量は、全テトラカルボン酸類の20質量%以下が好ましく、より好ましくは10質量%以下、さらに好ましくは5質量%以下である。
【0059】
なお、本発明におけるポリイミドフィルムは、上述したように、ジアミン類とテトラカルボン酸類との反応によって得られるフィルムであるが、本発明の効果を損なわない範囲において、例えばシクロヘキサン−1,2,4−トリカルボン酸無水物等のトリカルボン酸類を含んで構成されていてもよい。この場合、トリカルボン酸類の含有量は、テトラカルボン酸類およびトリカルボン酸類の合計量100質量部に対して10質量部以下が好ましく、より好ましくは5質量部以下、さらに好ましくは1質量部以下である。
【0060】
ジアミン類とテトラカルボン酸類とを反応(重合)させてポリアミド酸を得る際に用いる溶媒は、原料となるモノマーおよび生成するポリアミド酸のいずれをも溶解するものであれば特に限定されないが、極性有機溶媒が好ましく、例えば、N−メチル−2−ピロリドン、N−アセチル−2−ピロリドン、N,N−ジメチルホルムアミド、N,N−ジエチルホルムアミド、N,N−ジメチルアセトアミド、ジメチルスルホキシド、ヘキサメチルホスホリックアミド、エチルセロソルブアセテート、ジエチレングリコールジメチルエーテル、スルホラン、ハロゲン化フェノール類等が挙げられる。これらの溶媒は、単独で用いてもよいし二種以上を併用して用いてもよい。これら溶媒の使用量は、原料となるモノマーを溶解するのに十分な量であればよく、具体的な使用量としては、反応液(モノマーを溶解した溶液)に占める全モノマーの量が、通常5〜40質量%、好ましくは10〜30質量%となるような量が挙げられる。
【0061】
ポリアミド酸を得るための重合反応(以下、単に「重合反応」ともいう)の条件は、従来公知の条件を適用すればよく、例えば、有機溶媒中、0〜80℃の温度範囲で、10分〜30時間連続して撹拌および/または混合することが挙げられる。必要により重合反応を分割して行ったり、反応温度を上下させてもかまわない。モノマーの添加順序には特に制限はないが、ジアミン類の溶液中にテトラカルボン酸類を添加するのが好ましい。
【0062】
また重合反応中に真空脱泡することも、良質なポリアミド酸溶液を製造するのに有効である。さらに重合反応の前にジアミン類に少量の末端封止剤を添加して重合を制御してもよい。末端封止剤としては、ジカルボン酸無水物、トリカルボン酸無水物、アニリン誘導体などが挙げられる。これらの中でも具体的には、無水フタル酸、無水マレイン酸、4−エチニル無水フタル酸、4−フェニルエチニル無水フタル酸、エチニルアニリンが好ましく、特に好ましくは無水マレイン酸がよい。末端封止剤を使用する場合の使用量は、ジアミン類1モルに対して、好ましくは0.001〜1.0モルである。
【0063】
重合反応によって得られるポリアミド酸溶液に占めるポリアミド酸の質量は、好ましくは5〜40質量%、より好ましくは10〜30質量%である。前記ポリアミド酸溶液の粘度は、送液の安定性の点から、ブルックフィールド粘度計による測定(25℃)において、10〜2000Pa・sであることが好ましく、より好ましくは100〜1000Pa・sである。
【0064】
重合反応によって得られるポリアミド酸溶液には、さらにポリイミドフィルムの性能向上を目的として、消泡剤、レベリング剤、難燃剤などの各種添加物を加えてもよい。これらの添加方法、添加時期は特に限定されるものではない。
【0065】
重合反応により得られるポリアミド酸溶液からポリイミドフィルムを形成するには、ポリアミド酸溶液をポリイミドフィルム作製用支持体上に塗布して乾燥することによりグリーンフィルム(自己支持性の前駆体フィルム)を得、次いでグリーンフィルムを熱処理に供することでイミド化反応させる方法が採用できる。支持体へのポリアミド酸溶液の塗布は、例えば、スピンコート、ドクターブレード、アプリケーター、コンマコーター、スクリーン印刷法、スリットコート、リバースコート、ディップコート等のほか、スリット付き口金からの流延、押出機による押出し等を含むが、これらに限られず、従来公知の溶液の塗布手段を適宜用いることができる。ポリアミド酸溶液の塗布量は、所望するポリイミドフィルムの膜厚に応じて適宜設定すればよい。塗布したポリアミド酸溶液を乾燥する際の加熱温度は、50℃〜120℃が好ましく、80℃〜100℃がさらに好ましい。乾燥時間は5分〜3時間が好ましく、15分〜2時間がさらに好ましい。乾燥後のグリーンフィルム中の残溶媒量は25〜50質量%が好ましく、35〜45質量%がさらに好ましい。グリーンフィルムを熱処理する際の温度は、例えば150〜550℃が好ましく、より好ましくは280〜520℃である。熱処理時間は、0.05〜10時間が望ましい。
【0066】
ポリイミドフィルムは、ガラス転移温度が250℃以上、好ましくは300℃以上、さらに好ましくは350℃以上であり、あるいは500℃以下の領域においてガラス転移点が観測されないことが好ましい。本発明におけるガラス転移温度は、示差熱分析(DSC)により求めるものである。
【0067】
ポリイミドフィルムの30℃から300℃の間の平均の線膨張係数は、好ましくは、−5ppm/℃〜+20ppm/℃であり、より好ましくは−5ppm/℃〜+15ppm/℃であり、さらに好ましくは1ppm/℃〜+10ppm/℃である。この範囲から外れると、支持体との線膨張係数の差が大きくなる為、熱を加えるプロセス中にポリイミドフィルムと無機物からなる支持体が剥がれ易くなる虞がある。なお、金属やセラミックスではこの線膨張係数は温度範囲で変化がない事が多いが、ポリイミドフィルムでは温度範囲で線膨張係数(CTE)が変化する事がある。したがって、測定下限を0℃、30℃、50℃といったものに置き換えてもよく、測定上限を200℃、300℃、400℃に置き換えることも可能である。例えば、本発明においてはポリイミドフィルムの線膨張係数は30℃から300℃の間の平均の値を用いているが、用途によって注目する温度範囲は変わり、高温でのプロセスを考慮して、30℃から400℃の範囲を調べる場合、100℃から400℃の範囲の場合もあり、リフロープロセスを念頭において、50℃から280℃の範囲を調べる場合、使用温度範囲として−50℃から150℃の範囲を重視する場合もありえる。
【0068】
本発明におけるポリイミドフィルムの引張弾性率は、フィルムの流れ方向、幅方向ともに、2GPa以上であることが好ましく、より好ましくは3GPa以上、さらに好ましくは6GPa以上であり、12GPa以下であることが好ましく、より好ましくは10GPa以下、さらに好ましくは9GPa以下である。引張弾性率が低すぎると、貼付け時に伸びが生じることへの工夫が必要となるので好ましくなく、引張弾性率が前記範囲よりも高いポリイミドフィルムを製造することは現実的に難しい。なお、フィルムの引張弾性率は、例えば実施例で後述する方法で測定することができる。
【0069】
本発明におけるポリイミドフィルムの厚さは、特に限定されるものではないが、1μm〜200μmが好ましく、さらに好ましくは3μm〜60μmである。これらのポリイミドフィルムの厚さ斑も20%以下であることが好ましい。ポリイミドフィルムの厚さが1μm未満では、厚さの制御が困難であり、また支持体から剥離しにくくなる虞があり、200μmを超えると、支持体から剥がす際に、ポリイミドフィルムの折れ曲がりなどが起こる虞がある。前記範囲の厚さを持ったポリイミドフィルムを使用することで、センサーなどの素子の高性能化や電子部品の軽小短薄化に大きく貢献できる。
【0070】
ポリイミドフィルムは、その製造時において幅が300mm以上、長さが10m以上の長尺ポリイミドフィルムとして巻き取られた形態で得られるものが好ましく、巻取りコアに巻き取られたロール状ポリイミドフィルムの形態のものがより好ましい。
【0071】
ポリイミドフィルムにおいては、ハンドリング性および生産性を確保する為、フィルムを構成するポリイミド中に滑材(粒子)を添加・含有させて、ポリイミドフィルム表面に微細な凹凸を付与して滑り性を確保することが好ましい。
前記滑材(粒子)とは、無機物からなる微粒子であり、金属、金属酸化物、金属窒化物、金属炭素化物、金属酸塩、リン酸塩、炭酸塩、タルク、マイカ、クレイ、その他粘土鉱物、等からなる粒子を用いることができる。好ましくは、酸化珪素、リン酸カルシウム、リン酸水素カルシウム、リン酸二水素カルシウム、ピロリン酸カルシウム、ヒドロキシアパタイト、炭酸カルシウム、ガラスフィラーなどの金属酸化物、リン酸塩、炭酸塩を用いることができる。滑材は1種のみであってもよいし、2種以上であってもよい。
【0072】
前記滑材(粒子)の体積平均粒子径は、通常0.001〜10μmであり、好ましくは0.03〜2.5μm、より好ましくは0.05〜0.7μm、さらに好ましくは0.05〜0.3μmである。かかる体積平均粒子径は光散乱法で得られる測定値を基準とする。粒子径が下限より小さいとポリイミドフィルムの工業的生産が困難となり、また上限を超えると表面の凹凸が大きくなりすぎて貼り付け強度が弱くなり、実用上の支障が出る虞がある。
【0073】
前記滑材の添加量は、ポリアミド酸溶液中のポリマー固形分に対する添加量として、0.05〜50質量%であり、好ましくは0.1〜3質量%、より好ましくは0.20〜1.0質量%である。滑材の添加量が少なすぎると滑材添加の効果が期待し難く、滑り性の確保がそれほどなくポリイミドフィルム製造に支障をきたす場合があり、多すぎると、フィルムの表面凹凸が大きくなり過ぎて、滑り性の確保が見られても平滑性の低下を招いたり、ポリイミドフィルムの破断強度や破断伸度の低下を招いたり、CTEの上昇を招くなどの課題を招く虞がある。
【0074】
ポリイミドフィルムに滑材(粒子)を添加・含有させる場合、滑材が均一に分散した単層のポリイミドフィルムとしてもよいが、例えば、一方の面が滑材を含有させたポリイミドフィルムで構成され、他方の面が滑材を含有しないか含有していても滑材含有量が少量であるポリイミドフィルムで構成された多層のポリイミドフィルムとしてもよい。このような多層ポリイミドのフィルムにおいては、一方の層(フィルム)表面に微細な凹凸が付与されて該層(フィルム)で滑り性を確保することができ、良好なハンドリング性や生産性を確保できる。以下、かかる多層のポリイミドフィルムの製造について説明する。
【0075】
多層のポリイミドフィルムは、例えば、ポリアミド酸溶液(ポリイミドの前駆体溶液)として、滑材(好ましくは平均粒子径0.05〜2.5μm程度)をポリアミド酸溶液中のポリマー固形分に対して0.05質量%〜50質量%(好ましくは0.1〜3質量%、より好ましくは0.20〜1.0質量%)含有したものと、滑材を含有しないか又はその含有量が少量(好ましくはポリアミド酸溶液中のポリマー固形分に対して0.3質量%以下、より好ましくは0.01質量%以下)である2つのポリアミド酸溶液を用いて製造することが好ましい。
多層ポリイミドフィルムの多層化(積層)方法は、両層の密着に問題が生じなければ、特に限定されるものではなく、かつ接着剤層などを介することなく密着するものであればよい。例えば、i)一方のポリイミドフィルムを作製後、このポリイミドフィルム上に他方のポリアミド酸溶液を連続的に塗布してイミド化する方法、ii)一方のポリアミド酸溶液を流延しポリアミド酸フィルムを作製後このポリアミド酸フィルム上に他方のポリアミド酸溶液を連続的に塗布した後、イミド化する方法、iii)共押し出しによる方法、iv)滑材を含有しないか又はその含有量が少量であるポリアミド酸溶液で形成したフィルムの上に、滑材を多く含有するポリアミド酸溶液をスプレーコート、Tダイ塗工などで塗布してイミド化する方法などが挙げられる。好ましくは、上記i)や上記ii)の方法がよい。
【0076】
多層のポリイミドフィルムにおける各層の厚さの比率は、特に限定されないが、滑材を多く含有するポリアミド酸溶液で形成されたフィルム(層)を(a)層、滑材を含有しないか又はその含有量が少量であるポリアミド酸溶液で形成されたフィルム(層)を(b)層とすると、(a)層/(b)層は0.05〜0.95が好ましい。(a)層/(b)層が0.95を超えると(b)層の平滑性が失われがちとなり、一方0.05未満の場合、表面特性の改良効果が不足し易滑性が失われることがある。
【0077】
前記ポリイミドフィルムには、少なくとも前記支持体に対向させる面に、プラズマ処理を施しておくことが重要である。プラズマ処理を施すことにより、ポリイミドフィルム表面は官能基が存在する状態(いわゆる活性化した状態)に改質され、支持体に対する良好な接着が可能になる。
【0078】
プラズマ処理は、特に限定されるものではないが、真空中でのRFプラズマ処理、マイクロ波プラズマ処理、マイクロ波ECRプラズマ処理、大気圧プラズマ処理、コロナ処理などがあり、フッ素を含むガス処理、イオン源を使ったイオン打ち込み処理、PBII法を使った処理、フレーム処理、イトロ処理なども含める。これらの中でも真空中でのRFプラズマ処理、マイクロ波プラズマ処理、大気圧プラズマ処理が好ましい。
【0079】
プラズマ処理の適当な条件としては、酸素プラズマ、CF4、C26などフッ素を含むプラズマなど化学的にエッチング効果が高いことが知られるプラズマ、或はArプラズマのように物理的なエネルギーをポリイミド表面に与えて物理的にエッチングする効果の高いプラズマによる処理が望ましい。また、CO2、H2、N2などプラズマ、およびこれらの混合気体や、さらに水蒸気を付加することも好ましい。短時間での処理を目指す場合、プラズマのエネルギー密度が高く、プラズマ中のイオンの持つ運動エネルギーが高いもの、活性種の数密度が高いプラズマが望ましい。この観点からは、マイクロ波プラズマ処理、マイクロ波ECRプラズマ処理、高いエネルギーのイオンを打ち込みやすいイオン源によるプラズマ照射、PBII法なども望ましい。
【0080】
プラズマ処理の持つ効果としては、上述した表面官能基の付加、およびこれに伴う接触角の変化、接着性の向上、表面汚染の除去などのほか、デスミアと呼ばれる、加工に伴う不規則形状物の除去などの表面のエッチング効果がある。特に高分子とセラミックではエッチングされやすさが全く異なる為、セラミックに比べて結合エネルギーの低い高分子のみが選択的にエッチングされることになる。このため、エッチング作用のあるガス種や放電条件では、選択的に高分子のみがエッチングされて滑材(粒子、フィラーともいう)を露出させるという作用も生じる。
【0081】
なお、前記プラズマ処理以外にフィルム表面のエッチング作用を得られる手段として、薬液を併用した場合も含めたパッドによる研磨、ブラシ研磨、薬液をしみこませたスポンジによる研磨、研磨パッド中に研磨粒子を入れたものによる研磨、サンドブラスト、ウェットブラストなどが挙げられ、これら手段をプラズマ処理とともに採用してもよい。
【0082】
前記プラズマ処理は、ポリイミドフィルムの片面のみに施してもよいし、両面に施してもよい。片面にプラズマ処理を行う場合、並行平板型電極でのプラズマ処理で片側の電極上にポリイミドフィルムを接して置くことにより、ポリイミドフィルムの電極と接していない側の面のみにプラズマ処理を施すことができる。また2枚の電極間の空間に電気的に浮かせる状態でポリイミドフィルムを置くようにすれば、両面にプラズマ処理が行える。また、ポリイミドフィルムの片面に保護フィルムを貼った状態でプラズマ処理を行うことで片面処理が可能となる。なお保護フィルムとしては粘着剤付のPETフィルムやオレフィンフィルムなどが使用できる。
【0083】
前記プラズマ処理を施したポリイミドフィルムには、プラズマ処理の後に酸処理を施すことが好ましい。滑材(粒子)を含有したポリイミドフィルム表面では、滑材は表面付近で凸形状を形成していても、その表面にはごく薄いポリイミド層が存在する。ポリイミドは酸に対する耐性が強い為、極薄い層でもポリイミドが滑材表面にあると、酸処理を施した際に酸は滑材表面と直接接することはなく酸によって侵食されないが、プラズマ処理によるエッチング効果により選択的に高分子(ポリイミド)のみがエッチングされた後では、酸は滑材表面と直接接するため、適切な酸の種類を選んで酸処理を行えば、ごく短時間で滑材のみの溶解除去を行うことができ、クレーターが形成される。
このクレーターは、プラズマ処理によってポリイミドフィルム表面から露出した滑材が酸によって溶出された残部と考えられ、単なる凹みではなく、その縁部が盛り上がった状態の窪みである。参考として、図4に、クレーター部を示すAFM像を、図5に、図4に示すクレーター部の直線部分における断面像を、図6に、クレーター部を含むAFM像(10μm四方)を示す。クレーターの縁部分は、中に滑材粒子が内包された状態の突起に比較して柔らかく、ポリイミドフィルムと支持体とを加圧密着させる際に比較的弱い力で変形する。滑材を内包した突起は変形しがたく、ポリイミドフィルムと支持体との密着を阻害するが、滑材部分をこのようなクレーター様の形状にすることにより、ポリイミドフィルムと支持体との密着性が高まり、ポリイミドフィルムと支持体との剥離強度をより向上させることができる。
【0084】
前記酸処理は、酸を含む薬液中にプラズマ処理を施したポリイミドフィルムを浸漬するか、もしくはプラズマ処理を施したポリイミドフィルムに該薬液を塗布またはスプレーすることにより行うことができる、このとき超音波洗浄などを併用しても良い。またポリイミドフィルムの片面に保護フィルムを貼った状態で酸処理を行うことで片面のみの酸処理も可能となる。保護フィルムとしては粘着剤付のPETフィルムやオレフィンフィルムなどが使用できる。
【0085】
前記酸処理に用いる酸としては、滑材のみをエッチングできるものであればよく、例えば、HF、BHF等が好ましく挙げられ、これらは通常水溶液として用いられる。これは、HF水溶液やBHF水溶液にはSiO2やガラスを溶解する作用が有ることが一般に知られており、半導体業界では頻繁に使われているからである。例えば、HFのSiO2溶解効率は良く研究されており、10質量%のHF水溶液のSiO2エッチングレートは常温で12Å/sec程度であることが知られており、80nm程度のSiO2滑材は1分程度の薬液との接触で充分に処理できる事になる。このような知見、使用実績から、HF水溶液やBHF水溶液による酸処理を行う場合には、SiO2を滑材とすることが好ましいが、勿論、滑材種類はSiO2に限られたものではない。
薬液中の酸濃度は、20質量%以下が好ましく、より好ましくは3〜10質量%である。薬液中の酸濃度が薄すぎるとエッチング時間がかかり生産性が落ち、濃すぎるとエッチング時間が早すぎて必要以上に薬液に曝すことになる。
【0086】
ポリイミドフィルム(原反)にプラズマ処理と酸処理を加える工程は、処理の効率化の点からはロールツーロールで行うことが好ましい。プラズマ処理を行なったポリイミドフィルムロールにも滑材が存在するので、ロールとしてのハンドリング性はプラズマ処理前と同等である。また、ロールでプラズマ処理を行った後、カットシートにしてから酸処理を行うことも、簡便な実施が可能となる点で有用である。
【0087】
以上のようにプラズマ処理および酸処理を施したポリイミドフィルムの表面形態は、その一面を後述するAFM法で観察したときに、直径10〜500nmのクレーターを100μm2当り2〜100個有していることが好ましく、他の一面のRaは0.3nm〜0.95nmであることが好ましく、これにより、接着性が向上し、支持体との接着剤なしでの接合・積層により適した平滑度合いが付与された面を有するものとなる。
【0088】
片面に直径10〜500nmのクレーターを100μm2当り2〜100個有しているポリイミドフィルムは、支持体との接着剤なしでの接合積層において、より適正な剥離強度を有するものとなる。好ましくは、クレーターの数は100μm2当り5〜30個であり、クレーターの直径は30〜100nmである。クレーターの直径が10nmに満たない場合は、接着性向上効果が小さくなり、500nmを超える場合は、過度なエッチングをすることとなり、ポリイミドフィルム強度に悪影響を及ぼしたり、接着性向上にも効果が現れにくくなる。クレーターの数が2個に満たない場合は、接着性向上効果が小さくなり、100個を超える場合は、ポリイミドフィルム強度に悪影響を及ぼしかつ接着性向上にも効果が現れにくくなる。
【0089】
ポリイミドフィルムの他の一面のRaが0.3nm〜0.95nmの平滑面であることは、精緻な電気回路や半導体デバイスを作製するうえで特に好ましく、例えばRaが2.0nmを超える場合には、必要な平滑度合いを有さないことになり、その上に形成された金属箔膜などに接着性、平滑性などの点で悪影響を及ぼすことがある。このような表面が平滑なポリイミドフィルムは、ポリイミド形成用ポリアミド酸溶液(ポリイミド前駆体溶液)として、滑材を添加したものと、添加しないか極めて少量のみ添加したものとを併用使用することで製造することができ、ポリイミドフィルム作製時のロール巻き取り性や適宜のすべり性も付与されポリイミドフィルム製造も容易となる。
【0090】
<パターン化処理>
本発明の積層体の製造方法においては、前記支持体と前記ポリイミドフィルムとが対向する面の少なくとも一方に、カップリング剤を用いて、接着剥離強度は異なり表面粗さは略同一である良好接着部分と易剥離部分とを形成するパターン化処理を施す。すなわち、本発明におけるパターン化処理とは、カップリング剤処理により形成される厚さ数nmから数10nmというごく薄いカップリング処理層において、接着剥離強度が高い良好接着部分と、接着剥離強度が低い易剥離部分との2通りの領域を意図したパターンで形成することである。そしてこの良好接着部分と易剥離部分とは、表面粗さは略同一である。
パターン化処理の手段としては、カップリング剤処理を施してカップリング処理層を形成し、次いでカップリング処理層の一部に不活性化処理を施して所定のパターンを形成することにより行うことが好ましい。これにより、支持体とポリイミドフィルムの間の剥離強度(接着剥離強度)が強い部分と弱い部分を意図的に作り出すことができる。なお、カップリング処理層を不活性化処理するとは、物理的にカップリング処理層を部分的に除去する(いわゆるエッチングする)こと、物理的にカップリング処理層を微視的にマスキングすること、カップリング処理層を化学的に変性することを包含する。
【0091】
(カップリング剤処理)
本発明においてカップリング剤とは、支持体とポリイミドフィルムとの間に物理的ないし化学的に介在し、両者間の接着力を高める作用を有する化合物を意味し、一般的にはシラン系カップリング剤、リン系カップリング剤、チタネート系カップリング剤等として知られている化合物を含む。
【0092】
カップリング剤は、特に限定されるものではないが、特に、アミノ基あるいはエポキシ基を持ったシランカップリング剤が好ましい。シランカップリング剤の好ましい具体例としては、N−2−(アミノエチル)−3−アミノプロピルメチルジメトキシシラン、N−2−(アミノエチル)−3−アミノプロピルトリメトキシシラン、N−2−(アミノエチル)−3−アミノプロピルトリエトキシシラン、3−アミノプロピルトリメトキシシラン、3−アミノプロピルトリエトキシシラン、3−トリエトキシシリル−N−(1,3−ジメチル−ブチリデン)プロピルアミン、2−(3,4−エポキシシクロへキシル)エチルトリメトキシシラン、3−グリシドキシプロピルトリメトキシシラン、3−グリシドキシプロピルメチルジエトキシシラン、3−グリシドキシプロピルトリエトキシシラン、ビニルトリクロルシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、2−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン、3−グリシドキシプロピルトリメトキシシラン、3−グリシドキシプロピルメチルジエトキシシラン、3−グリシドキシプロピルトリエトキシシラン、p−スチリルトリメトキシシラン、3−メタクリロキシプロピルメチルジメトキシシラン、3−メタクリロキシプロピルトリメトキシシラン、3−メタクリロキシプロピルメチルジエトキシシラン、3−メタクリロキシプロピルトリエトキシシラン、3−アクリロキシプロピルトリメトキシシラン、N−フェニル−3−アミノプロピルトリメトキシシラン、N−(ビニルベンジル)−2−アミノエチル−3−アミノプロピルトリメトキシシラン塩酸塩、3−ウレイドプロピルトリエトキシシラン、3−クロロプロピルトリメトキシシラン、3−メルカプトプロピルメチルジメトキシシラン、3−メルカプトプロピルトリメトキシシラン、ビス(トリエトキシシリルプロピル)テトラスルフィド、3−イソシアネートプロピルトリエトキシシラン、トリス−(3−トリメトキシシリルプロピル)イソシアヌレート、クロロメチルフェネチルトリメトキシシラン、クロロメチルトリメトキシシラン、アミノフェニルトリメトキシシラン、アミノフェネチルトリメトキシシラン、アミノフェニルアミノメチルフェネチルトリメトキシシランなどが挙げられる。
【0093】
本発明で用いることのできるカップリング剤としては、上記のほかに、例えば、1−メルカプト−2−プロパノール、3−メルカプトプロピオン酸メチル、3−メルカプト−2−ブタノール、3−メルカプトプロピオン酸ブチル、3−(ジメトキシメチルシリル)−1−プロパンチオール、4−(6−メルカプトヘキサロイル)ベンジルアルコール、11−アミノ−1−ウンデセンチオール、11−メルカプトウンデシルホスホン酸、11−メルカプトウンデシルトリフルオロ酢酸、2,2’−(エチレンジオキシ)ジエタンチオール、11−メルカプトウンデシルトリ(エチレングリコール)、(1−メルカプトウンデイック−11−イル)テトラ(エチレングリコール)、1−(メチルカルボキシ)ウンデック−11−イル)ヘキサ(エチレングリコール)、ヒドロキシウンデシルジスルフィド、カルボキシウンデシルジスルフィド、ヒドロキシヘキサドデシルジスルフィド、カルボキシヘキサデシルジスルフィド、テトラキス(2−エチルヘキシルオキシ)チタン、チタンジオクチロキシビス(オクチレングリコレート)、ジルコニウムトリブトキシモノアセチルアセトネート、ジルコニウムモノブトキシアセチルアセトネートビス(エチルアセトアセテート)、ジルコニウムトリブトキシモノステアレート、アセトアルコキシアルミニウムジイソプロピレート、n−プロピルトリメトキシシラン、ブチルトリクロロシラン、2−シアノエチルトリエトキシシラン、シクロヘキシルトリクロロシラン、デシルトリクロロシラン、ジアセトキシジメチルシラン、ジエトキシジメチルシラン、ジメトキシジメチルシラン、ジメトキシジフェニルシラン、ジメトキシメチルフェニルシラン、ドデシルリクロロシラン、ドデシルトリメトキシラン、エチルトリクロロシラン、ヘキシルトリメトキシシラン、オクタデシルトリエトキシシラン、オクタデシルトリメトキシシラン、n−オクチルトリクロロシラン、n−オクチルトリエトキシシラン、n−オクチルトリメトキシシラン、トリエトキシエチルシラン、トリエトキシメチルシラン、トリメトキシメチルシラン、トリメトキシフェニルシラン、ペンチルトリエトキシシラン、ペンチルトリクロロシラン、トリアセトキシメチルシラン、トリクロロヘキシルシラン、トリクロロメチルシラン、トリクロロオクタデシルシラン、トリクロロプロピルシラン、トリクロロテトラデシルシラン、トリメトキシプロピルシラン、アリルトリクロロシラン、アリルトリエトキシシラン、アリルトリメトキシシラン、ジエトキシメチルビニルシラン、ジメトキシメチルビニルシラン、トリクロロビニルシラン、トリエトキシビニルシラン、ビニルトリス(2−メトキシエトキシ)シラン、トリクロロ−2−シアノエチルシラン、ジエトキシ(3−グリシジルオキシプロピル)メチルシラン、3−グリシジルオキシプロピル(ジメトキシ)メチルシラン、3−グリシジルオキシプロピルトリメトキシシラン、2,3−ブタンジチオール、1−ブタンチオール、2−ブタンチオール、シクロヘキサンチオール、シクロペンタンチオール、1−デカンチオール、1−ドデカンチオール、3−メルカプトプロピオン酸−2−エチルヘキシル、3−メルカプトプロピオン酸エチル、1−ヘプタンチオール、1−ヘキサデカンチオール、ヘキシルメルカプタン、イソアミルメルカプタン、イソブチルメルカプタン、3−メルカプトプロピオン酸、3−メルカプトプロピオン酸−3−メトキシブチル、2−メチル−1−ブタンチオール、1−オクタデカンチオール、1−オクタンチオール、1−ペンタデカンチオール、1−ペンタンチオール、1−プロパンチオール、1−テトラデカンチオール、1−ウンデカンチオール、1−(12−メルカプトドデシル)イミダゾール、1−(11−メルカプトウンデシル)イミダゾール、1−(10−メルカプトデシル)イミダゾール、1−(16−メルカプトヘキサデシル)イミダゾール、1−(17−メルカプトヘプタデシル)イミダゾール、1−(15−メルカプト)ドデカン酸、1−(11−メルカプト)ウンデカン酸、1−(10−メルカプト)デカン酸などを使用することもできる。
【0094】
特に好ましいカップリング剤としては、N−2−(アミノエチル)−3−アミノプロピルメチルジメトキシシラン、N−2−(アミノエチル)−3−アミノプロピルトリメトキシシラン、N−2−(アミノエチル)−3−アミノプロピルトリエトキシシラン、3−アミノプロピルトリメトキシシラン、3−アミノプロピルトリエトキシシラン、3−トリエトキシシリル−N−(1,3−ジメチル−ブチリデン)プロピルアミン、2−(3,4−エポキシシクロへキシル)エチルトリメトキシシラン、3−グリシドキシプロピルトリメトキシシラン、3−グリシドキシプロピルメチルジエトキシシラン、3−グリシドキシプロピルトリエトキシシラン、アミノフェニルトリメトキシシラン、アミノフェネチルトリメトキシシラン、アミノフェニルアミノメチルフェネチルトリメトキシシランなどが挙げられる。プロセスで特に高い耐熱性が要求される場合、Siとアミノ基の間を芳香族基でつないだものが望ましい。
【0095】
カップリング剤処理を施してカップリング処理層を形成する方法としては、カップリング剤を直接もしくは溶剤などで希釈して、支持体および/またはポリイミドフィルムに塗布乾燥し熱処理する方法、カップリング剤そのものもしくは溶剤などで希釈した溶液中に支持体および/またはポリイミドフィルムを浸漬した後に乾燥し熱処理する方法、ポリイミドフィルム作製時に添加し、ポリイミドフィルム作製と同時にカップリング剤処理する方法等を採用することができる。
カップリング剤もしくはその希釈液の塗布方法としては、従来公知の塗布方法を採用すればよい。また例えば、インクジェットによりカップリング剤もしくはその希釈液を全面印刷する方法、その他の既存の印刷手法を利用する方法を採用してもよい。カップリング剤の塗布量(付着量または含有量)は、形成されるカップリング処理層の膜厚が後述する厚さになるよう適宜設定すればよい。熱処理の際の条件は、50〜250℃が好ましく、より好ましくは75〜165℃、さらに好ましくは95〜155℃程度の温度で、好ましくは30秒以上、より好ましくは2分以上、さらに好ましくは5分以上、加熱すればよい。加熱温度が高すぎると、カップリング剤の分解ないし不活性化が生じる場合があり、低すぎると定着が不十分となる。また加熱時間が長すぎても同様の問題が生じる場合があり、加熱時間の上限は好ましくは5時間、さらに好ましくは2時間程度である。なお、カップリング剤処理を行う際には、処理中のpHが性能に大きく影響する事が知られているので、適宜pHを調整することが望ましい。
【0096】
(不活性化処理)
カップリング処理層の一部を選択的に不活性化処理して所定のパターンを形成する手段としては、所定のパターンに応じた部分をマスクで一時的に被覆ないし遮蔽したうえで全面にエッチング等を施し、その後マスクを取り去るようにしてもよいし、可能であれば直描方式で所定のパターンに応じてエッチング等を行うようにしてもよい。マスクとしては、一般的にレジスト、フォトマスク、メタルマスクなどとして使われている物をエッチング方法に応じて適宜選択して用いればよい。
【0097】
パターン形状は、積層するデバイスの種類等に応じて適宜設定すればよく、特に限定されない。一例を挙げると図3に示す通りであり、図3の(1)に示すように、積層体の外周部のみに良好接着部分10が配置され、積層体の内部に易剥離部分20が配置されているパターンや、図3の(2)に示すように、積層体の外周部とともに内部にも線状に良好接着部分10が配置されたパターンが挙げられる。
【0098】
前記不活性化処理としては、ブラスト処理、真空プラズマ処理、大気圧プラズマ処理、コロナ処理、活性放射線照射処理、活性ガス処理および薬液処理からなる群より選択される少なくとも1種を行うことが好ましい。
【0099】
前記ブラスト処理とは、平均粒子径が0.1〜1000μmの粒子を、気体ないし液体と共に対象物に吹き付ける処理を云う。本発明では、可能な範囲で平均粒子径が小さい粒子を用いたブラスト処理を使用することが好ましい。
前記真空プラズマ処理とは、減圧されたガス中での放電によって生じるプラズマ中に対象物を曝露するか、ないしは、同放電によって生じたイオンを対象物に衝突させる処理を云う。ガスとしては、ネオン、アルゴン、窒素、酸素、フッ化炭素、二酸化炭素、水素等の単独、ないし混合ガスを用いることができる。
前記大気圧プラズマ処理とは、概ね大気圧雰囲気下におかれた気体中で生じる放電によって生じるプラズマ中に対象物を曝露するか、ないしは、同放電によって生じたイオンを対象物に衝突させる処理を云う。気体としてはネオン、アルゴン、窒素、酸素、二酸化炭素、水素等の単独ないし混合ガスを用いることができる。
【0100】
前記コロナ処理とは概ね大気圧雰囲気下におかれた気体中で生じるコロナ放電雰囲気に対象物を曝露するか、ないしは、同放電によって生じたイオンを対象物に衝突させる処理を云う。
前記活性放射線照射処理とは、電子線、アルファ線、X線、ベータ線、赤外線、可視光線、紫外線、レーザー光などの放射線を照射する処理を云う。なお、レーザー光照射処理を行う場合には、特に直描方式で処理を行うことが容易になる。なおこの場合、可視光レーザーであっても、一般の可視光線と比較して遙かに大きなエネルギーを有するため、本発明では活性放射線の一種として扱うことができる。
前記活性ガス処理とは、カップリング処理層に化学的ないし物理的変化を生じせしめる活性を有する気体、例えばハロゲンガス、ハロゲン化水素ガス、オゾン、高濃度の酸素ガス、アンモニア、有機アルカリ、有機酸などのガスに対象物を曝露する処理を云う。
前記薬液処理とは、カップリング処理層に化学的ないし物理的変化を生じせしめる活性を有する液体、例えばアルカリ溶液、酸溶液、還元剤溶液、酸化剤溶液、などの液体、ないし溶液に対象物を曝露する処理を云う。
【0101】
特に、生産性の観点からは、前記不活性化処理としては、活性放射線とマスクを組み合わせた方法を、または大気圧プラズマ処理とマスクを組み合わせた方法が好ましく用いられる。活性放射線処理としては経済性、安全性の観点から、紫外線照射処理、すなわちUV照射処理が好ましい。またUV照射処理であれば、支持体としてUV透過性を有するものを選択することにより、支持体にカップリング剤処理を行った後、該処理を行った面とは逆の面から、直接描画ないしマスクを介してUV照射を行うこともできる。以上のことから、本発明においては、UV照射により不活性化処理を行うことが好ましく、以下詳細に説明する。
【0102】
本発明におけるUV照射処理とは、400nm以下の波長の紫外線(UV光)を発生する装置中に、カップリング剤処理を施したポリイミドフィルムおよび/または支持体を入れてUV照射する処理であり、UV光波長は、好ましくは260nm以下であり、さらに好ましくは200nm以下の短波長であるのがよい。かかる短波長のUV光を酸素が存在する環境下で照射すると、試料(カップリング処理層)にUV光のエネルギーが加わるとともに、試料近傍に励起状態にある活性な酸素やオゾンが発生することとなり、本発明の不活性化処理をより効果的に行うことができる。ただし170nm以下の波長では、酸素によるUV光の吸収が著しいため、カップリング処理層にUV光を到達させるための考慮が必要となる。完全に酸素の無い雰囲気での照射では、活性酸素やオゾンによる表面改質(不活性化)の効果が現れないため、UV光が通過しつつ、活性酸素やオゾンも到達するような工夫を要する。例えば、窒素雰囲気中にUV光源を置き、石英ガラスを透過させてUV光を当てるといった装置上の工夫により、石英ガラスからカップリング処理層までの距離を短くして、UV光の吸収を抑えるといった工夫のほか、雰囲気を通常の大気ではなく酸素量をコントロールしたものとしてUV光の酸素吸収をコントロールする方法、UV光源、カップリング処理層間の気体の流れを制御することなども、UV光の透過とオゾンの発生量を制御する方法として有効である。
【0103】
UV光の照射強度は、少なくとも150nm〜400nmの波長範囲に感度のピークを持つ紫外線光量計を用いて測定した際に5mW/cm2以上が好ましく、200mW/cm2以下が支持体の変質防止のため望ましい。UV光の照射時間は、0.1分以上、30分以下が好ましく、より好ましくは0.5分以上、さらに好ましくは1分以上、特に好ましくは2分以上であり、より好ましくは10分以下、さらに好ましくは5分以下、特に好ましくは4分以下である。UV光の照射時間が長くなると、生産性が低下する虞があり、逆に短すぎると、より高強度の光源が必要となったり、照射時間のコントロールに精度が要求されることになるので、好ましくない。積算光量に換算すると、30mJ/cm2〜360000mJ/cm2が好ましく、より好ましくは300mJ/cm2〜120000mJ/cm2であり、さらに好ましくは600mJ/cm2〜60000mJ/cm2である。
【0104】
UV照射処理時のパターン形成は、光を照射する部分と、照射しない部分を意図的に作ることによって行う。パターンを形成する方法としてはUV光を遮蔽する部分と遮蔽しない部分を作るか、UV光をスキャンさせる方法などが挙げられる。パターンの端部を明確にするためには、UV光を遮断するとともにマスクで支持体を覆うことが有効である。また、UVレーザーの平行光線によってスキャンすることも有効である。
【0105】
UV照射処理に使える光源としては、特に制限はないが、例えば、エキシマランプ、低圧水銀ランプ、高圧水銀ランプ、Xeエキシマレーザー、ArFエキシマレーザー、KrFエキシマレーザー、Xeランプ、XeClエキシマレーザー、XeFエキシマレーザー、Arレーザー、D2ランプなどが挙げられる。中でも、エキシマランプ、低圧水銀ランプ、Xeエキシマレーザー、ArFエキシマレーザー、KrFエキシマレーザーなどが好ましい。
【0106】
以上のように不活性化処理されたカップリング処理層には、不活性化(エッチング)されているか否かによって、支持体とポリイミドフィルムとの剥離強度が強い部分である良好接着部分と、支持体とポリイミドフィルムとの剥離強度が弱い部分である易剥離部分とからなるパターンが形成される。例えば、後述の実施例1〜4、実施例6〜15に例示するように、γ−アミノプロピルトリメトキシシランをガラスに塗布した場合は、UV未照射部が剥離強度の強い良好接着部分となり、UV照射によってアミノ基を壊してしまうことで剥離強度が弱まり、UV照射部が易剥離部分となる。これは、後述の測定例1〜5に示すように、UV照射によって窒素(N)元素のAtomic percentは下がり、続いて炭素(C)も減ることから、アミノ基、プロピルが壊れていることが示唆されることから推察できる。他方、例えばn−プロピルトリメトキシシランのように官能基のないカップリング剤により支持体にカップリング処理層を形成した場合には、逆に、UV照射していない部分が易剥離部分となり、UV光を照射してプロピル部分を壊してしまうことによって良好接着部分が形成される。支持体としてはガラスを基板とすることが工業的に有利であり、この場合、UV照射によって剥離強度を低下させることがより実用的であるが、用途、使用基板、必要とする剥離強度によっては、UV光照射部分を良好接着部分とすることも考えられる。
【0107】
<加圧加熱処理>
本発明の積層体の製造方法においては、前記エッチングの後、前記支持体と前記ポリイミドフィルムとを重ね合わせて加圧加熱処理する。これにより、支持体とポリイミドフィルムとを接着させることができる。
また一般に、支持体とポリイミドフィルムとの積層体を得る方法としては、支持体の上にポリイミドワニス(上述したポリアミド酸溶液)を直接塗布しイミド化させて製膜する方法も考えられるが、本発明では、ポリイミドをフィルム化した後、支持体に積層する。これは、ポリアミド酸溶液を支持体上で加熱してイミド化すると、例えば、支持体にもよるが同心円状の膜厚分布ができやすくなったり、ポリイミドフィルムの表と裏の状態(熱の伝わり方等)が異なるために反りや支持体からの浮きがあるフィルムになりやすいのに対して、予めフィルム化しておけば、これらの問題を回避できるからである。さらに、支持体にフィルムを重ね合わせるようにすることで、後述する加圧加熱処理を行い得る範囲において、重ね合わせる前にフィルムにデバイス(回路等)を形成しておくことも可能になる。
【0108】
加圧加熱処理は、例えば、大気圧雰囲気下あるいは真空中で、プレス、ラミネート、ロールラミネート等を、加熱しながら行えばよい。またフレキシブルなバッグに入れた状態で加圧加熱する方法も応用できる。生産性の向上や、高い生産性によりもたらされる低加工コスト化の観点からは、大気雰囲気下でのプレスまたはロールラミネートが好ましく、特にロールを用いて行う方法(ロールラミネート等)が好ましい。
【0109】
加圧加熱処理の際の圧力としては、1MPa〜20MPaが好ましく、さらに好ましくは3MPa〜10MPaである。圧力が高すぎると、支持体を破損する虞があり、圧力が低すぎると、密着しない部分が生じ、接着が不充分になる場合がある。加圧加熱処理の際の温度としては、150℃〜400℃、さらに好ましくは250℃〜350℃である。温度が高すぎると、ポリイミドフィルムにダメージを与える虞があり、温度が低すぎると、密着力が弱くなる傾向がある。
また加圧加熱処理は、上述のように大気圧雰囲気中で行うこともできるが、全面の安定した剥離強度を得る為には、真空下で行うことが好ましい。このとき真空度は、通常の油回転ポンプによる真空度で充分であり、10Torr以下程度あれば充分である。
加圧加熱処理に使用することができる装置としては、真空中でのプレスを行うには、例えば井元製作所製の「11FD」等を使用でき、真空中でのロール式のフィルムラミネーターあるいは真空にした後に薄いゴム膜によりガラス全面に一度に圧力を加えるフィルムラミネーター等の真空ラミネートを行うには、例えば名機製作所製の「MVLP」等を使用できる。
【0110】
前記加圧加熱処理は加圧プロセスと加熱プロセスとに分離して行うことが可能である。この場合、まず、比較的低温(例えば120℃未満、より好ましくは95℃以下の温度)でポリイミドフィルムと支持体とを加圧(好ましくは0.2〜50MPa程度)して両者の密着確保し、その後、低圧(好ましくは0.2MPa未満、より好ましくは0.1MPa以下)もしくは常圧にて比較的高温(例えば120℃以上、より好ましくは120〜250℃、さらに好ましくは150〜230℃)で加熱することにより、密着界面の化学反応が促進されてポリイミドフィルムと支持体とを積層できる。
【0111】
<応用>
本発明の積層体の製造方法においては、応用例として、必要に応じて、積層体中のポリイミドフィルムまたは積層体全体の膜厚方向に貫通する孔部分を設けることにより、非ポリイミド部分を設けてもよい。該部分としては、特に限定はされるものではないが、好ましくは、Cu、Al、Ag、Auなどの金属を主たる成分としている金属で充填されているもの、機械式のドリルやレーザー穴あけによって形成された空孔、および、空孔の壁面に金属膜がスパッタリングや無電解めっきシード層形成などにより形成されているもの等が挙げられる。
【0112】
(積層体)
本発明の積層体は、支持体とポリイミドフィルムとがカップリング処理層を介して積層されてなる積層体であり、前記支持体と前記ポリイミドフィルムとの間の剥離強度が異なる良好接着部分と易剥離部分とを有しており、該良好接着部分と該易剥離部分とが所定のパターンを形成している。これにより、デバイス作製時の高温プロセスにおいても剥がれることなく、しかもポリイミドフィルム上にデバイスを作製した後には容易に支持体からポリイミドフィルムを剥離することができる積層体となる。本発明の積層体は、本発明の積層体の製造方法により得ることができ、支持体、ポリイミドフィルム、カップリング処理層等の詳細については、上述した通りである。
【0113】
本発明における良好接着部分とは、UV光照射の有無によって表面の性質を変えることによって、支持体とポリイミドフィルムの剥離強度が強い部分を指す。本発明における易剥離部分とは、UV光照射の有無によって表面の性質を変えることによって、無機物からなる基板とポリイミドフィルムの剥離強度が弱い部分を指す。
【0114】
本発明において、支持体とポリイミドフィルムとの間の180度剥離強度は、この上に積層するデバイスの種類やプロセスに応じて適宜設定すればよく、特に制限されないが、少なくとも、前記易剥離部分の180度剥離強度は、良好接着部分の180度剥離強度の1/2以下であることが好ましく、より好ましくは、1/5以下である。一般論としては、良好接着部分の180度剥離強度は、0.5N/cm以上、5N/cm以下であることが好ましく、より好ましくは0.8N/cm以上、2N/cm以下である。前記易剥離部分の180度剥離強度は、0.01N/cm以上、0.40N/cm以下であることが好ましく、より好ましくは0.01N/cm以上、0.2N/cm以下である。ここで易剥離部分の180度剥離強度の下限は、ポリイミドフィルムの曲げエネルギーなども加味された値となっている。本発明における180度剥離強度は、実施例で後述する方法で測定することができる。また、実施例で後述する耐熱剥離強度、耐酸剥離強度および耐アルカリ剥離強度についても、それぞれ0.5N/cm以上、5N/cm以下であることが望ましいが、プロセスによってこの要請の数字は変わることがありえる。
【0115】
本発明の積層体においては、支持体とポリイミドフィルムとの間には、従来のように接着剤層等は介在せず、介在するのは、例えばカップリング剤に由来するSiを10質量%以上多く含むもののみである。そして支持体とポリイミドフィルムとの中間層であるカップリング処理層は非常に薄くできるので、加熱中の脱ガス成分が少なく、ウェットプロセスにおいても溶出しにくく、仮に溶出が起きても微量にとどまるという効果が得られる。またカップリング処理層は、通常、耐熱性がある酸化ケイ素成分が多く、400℃程度の温度での耐熱性が得られる。
【0116】
本発明の積層体におけるカップリング処理層の膜厚は、本発明における支持体、ポリイミドフィルムもしくは一般的な接着剤や粘着剤と比較しても極めて薄く、機械設計的な観点からは無視される程度の厚さであり、原理的には最低限、単分子層オーダーの厚さがあれば十分である。一般には400nm未満(0.4μm未満)であり、200nm以下(0.2μm以下)が好ましく、さらに実用上は100nm以下(0.1μm以下)が好ましく、より好ましくは50nm以下、さらに好ましくは10nm以下である。極力カップリング剤が少ないことを望むプロセスでは、5nm以下も可能である。ただし、1nm未満では、剥離強度が低下するか、部分的に付かない部分が出る虞があるため、1nm以上が好ましい。なお、カップリング処理層の膜厚は、エリプソメトリー法または塗布時のカップリング剤溶液の濃度と塗布量から計算して求めることができる。
【0117】
(デバイス構造体の製造方法)
本発明のデバイス構造体の製造方法は、支持体とポリイミドフィルムとを有する本発明の積層体を用いて、基材であるポリイミドフィルム上にデバイスが形成されてなる構造体を製造する方法である。
本発明のデバイス構造体の製造方法においては、本発明の積層体のポリイミドフィルム上にデバイスを形成した後、前記積層体の易剥離部分のポリイミドフィルムに切り込みを入れて該ポリイミドフィルムを前記支持体から剥離する。
【0118】
前記積層体の易剥離部分のポリイミドフィルムに切り込みを入れる方法としては、刃物などの切削具によってポリイミドフィルムを切断する方法や、レーザーと積層体を相対的にスキャンさせることによりポリイミドフィルムを切断する方法、ウォータージェットと積層体を相対的にスキャンさせることによりポリイミドフィルムを切断する方法、半導体チップのダイシング装置により若干ガラス層まで切り込みつつポリイミドフィルムを切断する方法などがあるが、特に方法は限定されるものではない。例えば、上述した方法を採用するにあたり、切削具に超音波を重畳させたり、往復動作や上下動作などを付け加えて切削性能を向上させる等の手法を適宜採用することもできる。
【0119】
前記積層体の易剥離部分のポリイミドフィルムに切り込みを入れるにあたり、切り込みを入れる位置は、少なくとも易剥離部分の一部を含んでいればよく、基本的にはパターンに従って切断するのが通常である。ただし、正確にパターンに従い良好接着部分と易剥離部分の境で切断しようとすると誤差も生じることから、パターンより若干易剥離部分側に切り込むことが生産性を上げる点で好ましい。また、剥離させるまでに勝手に剥離してしまうことを防ぐうえでは、該パターンより若干良好接着部分に切り込む生産方式もありえる。更には、良好接着部分の巾を狭く設定するようにすれば、剥離時に良好接着部分に残存するポリイミドフィルムを減らすことができ、フィルムの利用効率が向上し、該積層体面積に対するデバイス面積が多くなり、生産性が向上する。更には、積層体の外周部の一部に易剥離部分を設けるようにしておき、該外周部を切断位置として、実際には切り込みを入れずに剥がす方式も、本発明の極端な一形式となりえる。
【0120】
ポリイミドフィルムを支持体から剥離する方法としては、特に制限されないが、ピンセットなどで端から捲る方法、デバイス付きのポリイミドフィルムの切り込み部分の1辺に粘着テープを貼着させた後にそのテープ部分から捲る方法、デバイス付きのポリイミドフィルムの切り込み部分の1辺を真空吸着した後にその部分から捲る方法等が採用できる。なお、剥離の際に、デバイス付きのポリイミドフィルムの切り込み部分に曲率が小さい曲がりが生じると、その部分のデバイスに応力が加わることになりデバイスを破壊する虞があるため、極力曲率の大きな状態で剥がすことが望ましい。例えば、曲率の大きなロールに巻き取りながら捲るか、あるいは曲率の大きなロールが剥離部分に位置するような構成の機械を使って捲ることが望ましい。
【0121】
なお、本発明のデバイス構造体(デバイス付きのポリイミドフィルム)は、最終製品とするまでに補強部材を固定しておくことができる。この場合、支持体から剥離した後に補強部材を固定してもよいが、補強部材を固定させた後にポリイミドフィルムに切り込みを入れて支持体から剥離するか、もしくはポリイミドフィルムに切り込みを入れた後に該切り込み部分に補強部材を固定させ、その後剥離することが好ましい。剥離する前に補強部材を固定させる場合には、ポリイミドフィルムおよび補強部材の弾性率や膜厚を考慮することにより、デバイス部分に極力応力が加わりにくい構成とすることが可能となる。例えば、本発明の積層体の易剥離部分のみに補強部材として粘着剤付きPETフィルムを貼り付けておき、この粘着剤付きPETフィルムが貼りついた状態で易剥離部分に切り込みを入れてデバイス付きのポリイミドフィルムを剥がすようにしてもよいし、本発明の積層体全体に補強部材として粘着剤付きPETフィルムを貼り付けておき、該積層体の易剥離部分に切り込みを入れて粘着剤付きPETフィルムが貼りついた状態でデバイス付きのポリイミドフィルムを剥がすようにしてもよい。
【0122】
剥離する前に補強部材を固定させる場合には、補強部材としては、高分子フィルム、極薄ガラス、SUSなどが好ましく用いられる。高分子フィルムには、デバイスの軽量性が保たれる利点があり、さらに透明性、各種加工性、割れ難さも利点として挙げられる。極薄ガラスには、ガスバリア性、対薬品安定性、透明性が得られるという利点がある。SUSには、電気的にシールドできる点、割れ難さといった利点がある。なお、高分子フィルムとしては、既に高温を必要とするプロセスを通過した後であるため、耐熱性の制約は少なく、さまざまな高分子フィルムを選択しうる。これら補強部材の固定は、接着あるいは粘着により行うことができる。
【0123】
本発明において、基材であるポリイミドフィルム上にデバイスを形成する方法は、従来公知の方法に従い適宜行えばよい。
本発明におけるデバイスとしては、特に制限はなく、例えば、電子回路用配線のみ、電気抵抗のほか、コイル、コンデンサーといった受動デバイス、半導体素子などを含む能動デバイス、およびそれらを組み合わせてなる電子回路システムがある。半導体素子としては、太陽電池、薄膜トランジスター、MEMS素子、センサー、論理回路等が挙げられる。
【0124】
例えば、本発明の積層体を使用したフィルム状太陽電池は、本発明の積層体のポリイミドフィルムを基材とし、該基材上に半導体からなる光電変換層を含む積層体Xが形成されてなる。この積層体Xは、太陽光のエネルギーを電気エネルギーに変換する光電変換層を必須の構成として有し、通常、得られた電気エネルギーを取出すための電極層などをさらに有するものである。
以下、フィルム状太陽電池を構成するよう形成される上記積層体Xの典型例として、光電変換層を一対の電極層で挟んでなる積層構造を説明する。しかし、光電変換層を何層か積み重ねた構成なども、PVDやCVDでの作製ならば、本発明の太陽電池といえる。勿論、積層体Xの積層構造は、以下に記載される態様に限定されず、従来技術の太陽電池が有する積層体の構成を適宜参照してよく、保護層や公知補助手段を付加してもよいものである。
【0125】
前記一対の電極層における一方の電極層(以下、裏面電極層とも記載する)は、好ましくは、ポリイミドフィルム基材の一主面上に形成される。裏面電極層は従来公知の方法、例えばCVD(ケミカル・ベーパー・デポジション)法やスパッタ法によって導電性無機材料を積層することによって得られる。導電性無機材料としては、Al、Au、Ag、Cu、Ni、ステンレス鋼などの金属薄膜や、In23、SnO2、ZnO、Cd2SnO4、ITO(In23にSnを添加したもの)などの酸化物半導体系の導電材料などが挙げられる。好ましくは、裏面電極層は金属薄膜であるのがよい。裏面電極層の厚さは特に限定はなく、通常、30〜1000nm程度である。また、一部の電極引き出しで、Agペーストといった真空を利用しない膜形成法を採用してもよい。
【0126】
太陽光のエネルギーを電気エネルギーに変換する光電変換層は、半導体からなる層であり、I族元素とIII族元素とVI族元素とからなる化合物半導体薄膜(カルコパイライト構造半導体薄膜)であるCuInSe2(CIS)膜、またはこれにGaを固溶したCu(In,Ga)Se2(CIGS)膜(以下、両者をまとめてCIS系膜ともいう)、シリコン系半導体からなる層である。シリコン系半導体には、薄膜シリコン層、無定形シリコン層、多結晶シリコン層などが挙げられる。光電変換層は、異なる半導体からなる複数の層を有する積層体であってもよい。また、色素を用いた光電変換層であってもよい。さらに導電性ポリマーやフラーレンなどの有機化合物よる有機薄膜半導体を用いるものでもよい。
【0127】
薄膜シリコン層は、プラズマCVD法、熱CVD法、スパッタリング法、クラスタイオンビーム法、蒸着法などによって得られるシリコン層である。
無定形シリコン層は、実質的に結晶性をもたないシリコンからなる層である。実質的に結晶性をもたないことは、X線を照射しても回折ピークを与えないことによって確かめることができる。無定形シリコン層を得る手段は公知であり、そのような手段には、例えば、プラズマCVD法や熱CVD法などが含まれる。
多結晶シリコン層は、シリコンからなる微小結晶の集合体からなる層である。上述の無定形シリコン層とは、X線の照射により回折ピークを与えることによって区別される。多結晶シリコン層を得る手段は公知であり、そのような手段には、無定形シリコンを熱処理する手段などが含まれる。
光電変換層は、シリコン系半導体層に限られず、例えば、厚膜半導体層であってもよい。厚膜半導体層とは、酸化チタン、酸化亜鉛、ヨウ化銅などのペーストから形成される半導体層である。
【0128】
半導体材料を光電変換層として構成する手段としては、公知の方法を適宜採用すればよい。例えば、200〜500℃の温度下で、SiH4にフォスフィン(PH3)を添加したガス中で高周波プラズマ放電を行うことにより約20nmのa−Si(n層)を形成し、続いてSiH4ガスのみで約500nmのa−Si(i層)を形成し、続いてSiH4にジボラン(B26)を添加して約10nmのp−Si(p層)を形成することができる。
【0129】
光電変換層を挟む一対の電極層のうち、ポリイミドフィルム基材とは反対側に設けられる電極層(以下、集電電極層ともいう)は、導電フィラーとバインダー樹脂を含む導電性ペーストを固めてなる電極層であってもよいし、透明電極層であってもよい。透明電極層としては、In23、SnO2、ZnO、Cd2SnO4、ITO(In23にSnを添加したもの)などの酸化物半導体系の材料を好ましく用いることができる。
かくして、本発明の好適な態様例である、透明電極/p型a−Si/i型a−Si/n型a−Si/金属電極/ポリイミドフィルムの順で積層されてなるフィルム状太陽電池が得られる。また、p層をa−Si、n層を多結晶シリコンとして、両者の間に薄いアンドープa−Si層を挿入した構造にしてもよい。特に、a−Si/多結晶シリコン系のハイブリッド型にすると、太陽光スペクトルに対する感度が改善される。太陽電池の作製においては、上記構成に加えて、反射防止層、表面保護層などを付加せしめてもよい。
【0130】
前記薄膜トランジスター(TFT)は、トランジスターを構成する半導体層および素子を構成する絶縁膜、電極、保護絶縁膜などが、薄膜を堆積させて作製されているものをいう。通常シリコンウエハのシリコンを半導体層として使用するものとは区別する。通常薄膜を真空蒸着などのPVD(物理的蒸着)、プラズマCVDなどのCVD(化学的蒸着)といった真空を利用する手法によって作製する。このため、シリコンウエハのように単結晶ではないものを含む。Siを使っても、微結晶シリコンTFT、高温ポリシリコンTFT、低温ポリシリコンTFT、そして酸化物半導体TFT、有機半導体TFTなどを含む。
【0131】
前記MEMS素子とは、MEMS技術を利用して作製した物を意味し、インクジェットプリンターヘッド、走査型プローブ顕微鏡用プローブ、LSIプローバー用コンタクタ、マスクレス露光用光空間変調器、光集積化素子、赤外線センサー、流量センサー、加速度センサー、MEMSジャイロセンサー、RF MEMS スイッチ、体内・体外血圧センサーそして、グレーティングライトバルブ、デジタルマイクロミラーデバイスなどを使ったビデオプロジェクターなどを含む。
【0132】
前記センサーとしては、ストレインゲージ(ひずみゲージ)、ロードセル、半導体圧力センサー、光センサー、光電素子、フォトダイオード、磁気センサー、接触式温度センサー、サーミスタ温度センサー、抵抗測温体温度センサー、熱電対温度センサー、非接触式温度センサー、放射温度計、マイクロフォン、イオン濃度センサー、ガス濃度センサー、変位センサー、ポテンショメータ、差動トランス変位センサー、回転角センサー、リニアエンコーダ、タコジェネレータ、ロータリエンコーダ、光位置センサー(PSD)、超音波距離計、静電容量変位計、レーザードップラー振動速度計、レーザードップラー流速計、ジャイロセンサー、加速度センサー、地震センサー、一次元画像・リニアイメージセンサー、二次元画像・CCDイメージセンサー、CMOSイメージセンサー、液・漏液センサー(リークセンサー)、液検知センサー(レベルセンサー)、硬度センサー、電場センサー、電流センサー、電圧センサー、電力センサー、赤外線センサー、放射線センサー、湿度センサー、においセンサー、流量センサー、傾斜センサー、振動センサー、時間センサー、およびこれらのセンサーを複合した複合センサーや、これらのセンサーで検出した値から何らかの計算式に基づき別の物理量や感性値などを出力するセンサーなどを含む。
【0133】
前記論理回路としては、NAND、ORを基本とした論理回路および、クロックにより、同期が取られたものも含む。
【0134】
以上に詳述した本発明の積層体の製造方法および本発明のデバイス構造体の製造方法について、各々の一実施態様を図面を用いて説明すると、図1、図2に示す通りである。
図1は、本発明の積層体の製造方法の一実施態様を示す模式図であり、(1)はガラス基板1を示し、(2)はガラス基板1上にカップリング剤を塗布乾燥してカップリング処理層2を形成した段階を示し、(3)はUV光遮断マスク3を設置した後にUV光を照射した段階を示し、(4)はUV光を照射後に、UV光遮断マスク3を除去した段階を示している。ここでカップリング処理層2のうちUV露光部はUV照射部5となり、残りの部分はUV未照射部4となっている。(5)はポリイミドフィルム6を貼り付けした段階を示し、(6)はUV照射部上のポリイミドフィルム7に切り込みを入れガラス基板1から剥離した段階を示す。
図2は、本発明のデバイス構造体の製造方法の一実施態様を示す模式図であり、(1)はガラス基板1を示し、(2)はガラス基板1上にカップリング剤を塗布乾燥してカップリング処理層2を形成した段階を示し、(3)はUV光遮断マスク3を設置した後にUV光を照射した段階を示し、(4)はUV光を照射後に、UV光遮断マスク3を除去した段階を示している。ここでカップリング処理層2のうちUV露光部はUV照射部5となり、残りの部分はUV未照射部4となっている。(5)はポリイミドフィルム6を貼り付けし、その後にUV照射部上のポリイミドフィルム7表面へデバイス8を作製した段階を示し、(6)はUV照射部上のポリイミドフィルム7に切り込みを入れガラス基板1から剥離した段階を示す。
【実施例】
【0135】
以下、実施例及び比較例を示して本発明をより具体的に説明するが、本発明は以下の実施例によって限定されるものではない。なお、以下の実施例における物性の評価方法は下記の通りである。
【0136】
<ポリイミドフィルムなどの厚さ>
ポリイミドフィルムおよびこれを構成する各層(a層、b層)の厚さは、マイクロメーター(ファインリューフ社製「ミリトロン1245D」)を用いて測定した。
【0137】
<ポリイミドフィルムの引張弾性率、引張強度および引張破断伸度>
測定対象とするポリイミドフィルムから、流れ方向(MD方向)及び幅方向(TD方向)がそれぞれ100mm×10mmである短冊状の試験片を切り出し、引張試験機(島津製作所社製「オートグラフ(登録商標);機種名AG−5000A」)を用い、引張速度50mm/分、チャック間距離40mmの条件で、MD方向、TD方向それぞれについて、引張弾性率、引張強度および引張破断伸度を測定した。
【0138】
<ポリイミドフィルムの線膨張係数(CTE)>
測定対象とするポリイミドフィルムの流れ方向(MD方向)および幅方向(TD方向)について、下記条件にて伸縮率を測定し、15℃の間隔(30℃〜45℃、45℃〜60℃、…)での伸縮率/温度を測定し、この測定を300℃まで行って、全測定値の平均値を線膨張係数(CTE)として算出した。
機器名 ; MACサイエンス社製「TMA4000S」
試料長さ ; 20mm
試料幅 ; 2mm
昇温開始温度 ; 25℃
昇温終了温度 ; 400℃
昇温速度 ; 5℃/分
雰囲気 ; アルゴン
初荷重 ; 34.5g/mm2
【0139】
<ポリイミドフィルムの評価:滑り性>
ポリイミドフィルム2枚を、異なる面同士で重ね合わせ(すなわち、同じ面同士ではなく、フィルムロールとして巻いた場合の巻き外面と巻き内面とを重ね合わせ)、重ねたポリイミドフィルムを親指と人差し指で挟み、軽く摺り合わせたときに、ポリイミドフィルムとポリイミドフィルムが滑る場合を「○」、滑らない場合を「×」と評価した。なお、巻き外面同士あるいは巻き内面同士では滑らない場合もあるが、これは評価項目とはしない。また滑り性を評価する際には、ポリイミドフィルムの片面の保護フィルムは取り除くこととした。
【0140】
<ポリイミドフィルムの評価:ロール巻取り性>
長尺状のポリイミドフィルムを巻取りロ−ル(心棒の外径:15cm)に2m/分の速度で巻取る際に、皺が生じず円滑に巻取りが可能である場合を「○」、部分的に皺が発生する場合を「△」、皺が発生したり、ロ−ルに巻きついて円滑に巻取りができない場合を「×」と評価した。
【0141】
<ポリイミドフィルムの評価:反り度>
得られたポリイミドフィルムから、50mm×50mmの正方形を切り出し、フィルム試験片とした。フィルム試験片を切り出すに際しては、正方形の各辺がフィルムの長手方向および幅方向と一致するようにし、かつ正方形の中心がフィルムの幅方向において(a)中央、(b)左端から全幅長の1/3に当たる点、(c)右端から全幅長の1/3に当たる点、に位置するように、3箇所から切り出した。
上記フィルム試験片(a)〜(c)をそれぞれ平面上に凹状となるように静置し、四隅の平面からの距離(h1、h2、h3、h4:単位mm)を測定して、その平均値を反り量(mm)とした。この反り量を試験片の各頂点から中心までの距離(35.36mm)で除して百分率(%)で表わしたもの(100×(反り量(mm))/35.36)を反り度(%)とし、フィルム試験片(a)〜(c)の反り度を平均して求めた。
【0142】
<ポリイミドフィルムの評価:カール度>
ポリイミドフィルムの反り度の測定に用いたのと同様のフィルム試験片(a)〜(c)に250℃のドライオーブンにて30分間熱処理を施し、その後、熱処理後のフィルムについて上記と同様に反り度を測定し、熱処理後のフィルムの反り度(%)をカール度とした。
【0143】
<ポリイミドフィルム表面のクレーター数およびクレーター直径>
以下のAFM法により測定した。すなわち、ポリイミドフィルム表面のクレーター数の計測は、表面物性評価機能付走査型プローブ顕微鏡(エスアイアイ・ナノテクノロジー株式会社製「SPA300/nanonavi」)を用いて行った。計測はDFMモードで行い、カンチレバーはエスアイアイ・ナノテクノロジー株式会社製「DF3」又は「DF20」を使用し、スキャナーはエスアイアイ・ナノテクノロジー株式会社製「FS−20A」を使用し、走査範囲は10μm四方とし、測定分解能は1024×512ピクセルとした。計測像について装置付属のソフトウエアで二次傾き補正を行った後、クレーター部を観測した。図7に示すように、クレーターは平坦部から盛り上がった凸状部の中心が窪んだ形状をしている。よって、盛り上がりの最大高さの位置における断面の直径(最大高さ間の距離)をクレーター部の直径とした(図7において、(1)は、ポリイミドフィルムの凹凸の高さを色の濃淡で表した図(白が高い位置、黒が低い位置)であり、(2)は、(1)の白線部のポリイミドフィルムの凹凸の断面表示例であり、(3)はクレーター部の直径を示す)。そして任意の3個のクレーター部について計測を行ってクレーター部の直径を求め、それらの平均値を採用した。
【0144】
クレーター数は、得られた10μm四方の計測像(AFM像)を画像処理ソフト「ImageJ」にて粒子解析することにより測定した。なお「ImageJ」はアメリカ国立衛生研究所(NIH)で開発されたオープンソースでパブリックドメインの画像処理ソフトウェアである。詳しくは、まず、ある閾値によってそれより位置の高い部分と低い部分の2つに分別する2値化操作を行った(図8の(2)、(3)参照)。このとき閾値としては、AFM像の高さ方向の情報について分布の最大点を基準に、そこから使用した滑材の粒径の12%高い位置(滑材直径が80nmの場合10nm高い位置)を閾値とした。この2値化により白黒のみの画像(図8の(3)参照)を得、この中の円環形状の部分の数を画像処理によって求めた。すなわち、円環形状の認識は、取り囲まれた円環内を塗りつぶす操作を行い、円環内を塗りつぶした画像(図8の(4)参照)と塗りつぶさない画像を反転したもの(図8の(5)参照)との画像論理積(図8の(6)参照)を求めることで、円環内のみが抽出できる(図8において、(1)は、ポリイミドフィルムの凹凸の高さを色の濃淡で表した図(白が高い位置、黒が低い位置)であり、(2)は、(1)の白線部のポリイミドフィルムの凹凸の断面表示例(直線は閾値)であり、(3)は閾値にて2値化した例であり、(4)は、円環部を塗りつぶした例であり、(5)は、(3)を反転した例であり、(6)は、(4)と(5)の論理積である)。この操作で得た画像論理積の画像から直径が10〜500nmのクレーターを数えてクレーター数を算出した。そして任意の3箇所について計測を行ってクレーター数を求め、それらの平均値を採用した。
【0145】
<ポリイミドフィルム表面のRa値および支持体表面の表面粗さRa>
ポリイミドフィルム表面のRa値および支持体表面(カップリング処理層表面)の表面粗さRa(表面形態)の計測は、表面物性評価機能付走査型プローブ顕微鏡(エスアイアイ・ナノテクノロジー株式会社製「SPA300/nanonavi」)を用いて行った。計測はDFMモードで行い、カンチレバーはエスアイアイ・ナノテクノロジー株式会社製「DF3」又は「DF20」を使用し、スキャナーはエスアイアイ・ナノテクノロジー株式会社製「FS−20A」を使用し、走査範囲は10μm四方とし、測定分解能は512×512ピクセルとした。計測像について装置付属のソフトウエアで二次傾き補正を行った後、測定に伴うノイズが含まれる場合には適宜その他の平坦化処理(例えばフラット処理)を使用し、装置付属のソフトウエアでRa値を算出した。任意の3箇所について計測を行ってRa値を求め、それらの平均値を採用した。
【0146】
<ガラス転移点温度>
DSC示差熱分析装置を用いて、室温から500℃までの範囲での構造変化に起因する吸放熱の有無からポリイミドフィルムのガラス転移点温度を求めた。いずれのポリイミドフィルムにおいてもガラス転移点温度は観察されなかった。
【0147】
<カップリング処理層の厚さ>
カップリング処理層(SC層)の厚さ(nm)は、洗浄したSiウエハ上に形成したカップリング処理層の膜厚について、エリプソメトリー法にて、分光エリプソメータ(Photal社製「FE−5000」)を用いて下記の条件で測定した。なお、支持体としてガラスを用いた場合には、別途、洗浄したSiウエハ上に各実施例、比較例と同様の方法でカップリング剤を塗布乾燥させて得たサンプルを用いた。
反射角度範囲 ; 45°から80°
波長範囲 ; 250nmから800nm
波長分解能 ; 1.25nm
スポット径 ; 1mm
tanΨ ; 測定精度±0.01
cosΔ ; 測定精度±0.01
測定 ; 方式回転検光子法
偏向子角度 ; 45°
入射角度 ; 70°固定
検光子 ; 11.25°刻みで0〜360°
波長 ; 250nm〜800nm
非線形最小2乗法によるフィッティングで膜厚を算出した。このとき、モデルとしては、Air/薄膜/Siのモデルで、
n=C3/λ4+C2/λ2+C1
k=C6/λ4+C5/λ2+C4
の式で波長依存C1〜C6を求めた。
【0148】
<剥離強度>
剥離強度(180度剥離強度)は、JIS C6471に記載の180度剥離法に従い、下記条件で測定した。なお、この測定に供するサンプルには、100mm×1000mmの支持体(ガラス)に対してポリイミドフィルムのサイズを110mm×2000mmに設計することにより片側にポリイミドフィルムの未接着部分を設け、この部分を“つかみしろ”とした。
装置名 ; 島津製作所社製「オートグラフ(登録商標)AG−IS」
測定温度 ; 室温
剥離速度 ; 50mm/分
雰囲気 ; 大気
測定サンプル幅 ; 1cm
【0149】
(1)UV未照射部の剥離強度
UV未照射部の剥離強度の測定には、UV照射を行わないこと以外は各実施例・比較例と同様にして別途作製した積層体を用いた。
(2)UV照射部の剥離強度
UV照射部の剥離強度の測定は、UV照射を行った積層体のUV照射部について行った。
(3)耐熱剥離強度
耐熱剥離強度の測定は、積層体(UV照射を行った積層体)を窒素雰囲気としたマッフル炉に入れ、これを昇温速度10℃/分で400℃まで加熱し、そのまま400℃で1時間保持した後、マッフル炉の扉を開放して大気中で放冷することにより得たサンプルを用いて行った。
(4)耐酸性剥離強度
耐酸性剥離強度の測定は、積層体(UV照射を行った積層体)を18質量%の塩酸溶液中に室温(23℃)にて30分間浸漬し、3回水洗した後に風乾することにより得たサンプルを用いて行った。
(5)耐アルカリ性剥離強度
耐アルカリ性剥離強度の測定は、積層体(UV照射を行った積層体)を2.38質量%の水酸化テトラメチルアンモニウム(TMAH)水溶液(室温(23℃))中に30分間浸漬し、3回水洗した後に風乾することにより得たサンプルを用いて行った。
【0150】
<剥離後のフィルム反り度>
積層体のUV照射部に切り込みを入れてポリイミドフィルムを支持体から剥離し、剥離したポリイミドフィルムの中央部分から50mm×50mmの正方形を切り出してフィルム試験片とし、該試験片の反り度(%)を上記ポリイミドフィルムの反り度と同様にして測定し、剥離後のフィルム反り度とした。
【0151】
<滑材粒径>
製造例で用いた滑材(無機粒子)について、溶媒(ジメチルアセトアミド)に分散させた分散体の状態で、堀場製作所社製のレーザー散乱式粒度分布計「LB−500」を用いて粒子径分布を求め、体積平均粒子径を算出した。
【0152】
<表面組成比>
表面組成比は、X線光電子分光分析(ESCA)にて測定した。測定は、アルバック・ファイ社製「ESCA5801MC」を用いて下記の条件で行った。測定に際しては、まず全元素スキャンを行って他の元素の有無を確認した後に、存在する元素のナロースキャンを行って存在比率を測定した。なお、測定に供する試料は、予備排気を十分に行った後に測定室に投入するようにしており、イオン照射等により測定前にサンプル表面を削り取るといった操作は行っていない。
励起X線:Mg、Kα線
光電子脱出角度:45°
分析径:φ800μm
パスエネルギー:29.35eV(ナロースキャン)、187.75eV(全元素スキャン)
ステップ:0.125eV(ナロースキャン)、1.6eV(全元素スキャン)
分析元素:C,O,N,Si,全元素
真空度:1×10‐8Torr以下
【0153】
〔製造例1〜3〕
(ポリアミド酸溶液A1〜A3の調製)
窒素導入管、温度計、攪拌棒を備えた反応容器内を窒素置換した後、5−アミノ−2−(p−アミノフェニル)ベンゾオキサゾール223質量部と、N,N−ジメチルアセトアミド4416質量部とを加えて完全に溶解させ、次いで、ピロメリット酸二無水物217質量部とともに、滑材としてコロイダルシリカをジメチルアセトアミドに分散してなる分散体(日産化学工業社製「スノーテックス(登録商標)DMAC−ST30」)とをシリカ(滑材)が表1記載の添加量(ポリアミド酸溶液中のポリマー固形分総量に対する質量%)になるように加え、25℃の反応温度で24時間攪拌して、褐色で粘稠なポリアミド酸溶液A1〜A3を得た。
【0154】
【表1】

【0155】
〔製造例4〜5〕
(ポリアミド酸溶液B1〜B2の調製)
窒素導入管、温度計、攪拌棒を備えた反応容器内を窒素置換した後、3,3',4,4'−ビフェニルテトラカルボン酸二無水物398質量部と、パラフェニレンジアミン147質量部とを、4600質量部のN、N−ジメチルアセトアミドに溶解させて加え、滑材としてコロイダルシリカをジメチルアセトアミドに分散してなる分散体(日産化学工業製「スノーテックス(登録商標)DMAC−ST30」)をシリカが表2記載の添加量(ポリアミド酸溶液中のポリマー固形分総量に対する質量%)になるように加え、25℃の反応温度で24時間攪拌して、褐色で粘稠なポリアミド酸溶液B1〜B2を得た。
【0156】
【表2】

【0157】
《フィルム作製例1》
ポリアミド酸溶液A1を、製膜支持体としてのポリエチレンテレフタレート(PET)製フィルム(東洋紡績株式会社製「A−4100」)の無滑材面上に、最終膜厚(最終的にポリイミド膜となったときの膜厚)が表3に示す「(b層)の厚さ」となるように、コンマコーターを用いてコーティングし、110℃にて5分間乾燥した後、PET製フィルムとともに(PET製フィルムから剥がさずに)単層ポリアミド酸フィルムを巻き取った。
製膜支持体のPET製フィルムとともに巻き取られた単層ポリアミド酸フィルムを製膜機の巻きだし部に取り付け、ポリアミド酸溶液A3を、最終膜厚(最終的にポリイミド膜となったときの膜厚)が表3に示す「(a層)の厚さ」となるように、コンマコーターを用いて単層ポリアミド酸フィルム面にコーティングし、110℃にて20分間乾燥して、製膜支持体のPET製フィルム上に2層構成の多層ポリアミド酸フィルムを得た。
【0158】
次に、得られた2層構成の多層ポリアミド酸フィルムを製膜支持体のPET製フィルムから剥離し、3つの熱処理ゾーンを有するピンテンターに通し、一段目150℃×2分、2段目220℃×2分、3段目475℃×4分間の熱処理を行い、500mm幅にスリットして、多層構造のポリイミドフィルム1を得た。なお、熱処理後、剥離可能な非ポリイミド保護フィルムとして、片面に微粘着層を備えたPETフィルム(保護フィルムA)を得られたポリイミドフィルムの両面にラミネートしてから巻き取った。得られたポリイミドフィルムの特性を表3に示す。
なお、前記保護フィルムAは、フィルム表面への異物付着や傷付き等を防止する目的で貼着しているものであり、比較的低温でロールトゥロールにて搬送する際や、人手によるハンドリングを行う際には、保護フィルムAは貼着した状態で操作を行った。しかしながら、例えば130℃を超える条件下でプレスやラミネートなどを行う際、または、ポリイミドフィルム表面に直接各処理を施す際には、かかる保護フィルムAを剥がした後に各操作を行った。
【0159】
《フィルム作製例2》
ポリアミド酸溶液A1、A3の塗布量を、それぞれ最終膜厚(最終的にポリイミド膜となったときの膜厚)が表3に示す「(a層)の厚さ」または「(b層)の厚さ」(各溶液で形成する層の厚さ)となるように変更したこと以外は、フィルム作製例1と同様にして、ポリイミドフィルム2を得た。得られたポリイミドフィルムの特性を表3に示す。
【0160】
《フィルム作製例3》
ポリアミド酸溶液A1とA3の塗布順番を入れ替える(すなわち、b層をポリアミド酸溶液A3で形成し、a層をポリアミド酸溶液A1で形成する)とともに、ポリアミド酸溶液A1、A3の塗布量を、それぞれ最終膜厚(最終的にポリイミド膜となったときの膜厚)が表3に示す「(a層)の厚さ」または「(b層)の厚さ」(各溶液で形成する層の厚さ)となるように変更したこと以外は、フィルム作製例1と同様にして、ポリイミドフィルム3を得た。得られたポリイミドフィルムの特性を表3に示す。
【0161】
《フィルム作製例4》
ポリアミド酸溶液A1、A3の塗布量を、それぞれ最終膜厚(最終的にポリイミド膜となったときの膜厚)が表3に示す「(a層)の厚さ」または「(b層)の厚さ」(各溶液で形成する層の厚さ)となるように変更したこと以外は、フィルム作製例1と同様にして、ポリイミドフィルム4を得た。得られたポリイミドフィルムの特性を表3に示す。
【0162】
《フィルム作製例5》
ポリアミド酸溶液A3を塗布しない(すなわち、a層を形成しない)ようにし、ポリアミド酸溶液A1の塗布量を最終膜厚(最終的にポリイミド膜となったときの膜厚)が表4に示す「(b層)の厚さ」となるように変更したこと以外は、フィルム作製例1と同様にして、ポリイミドフィルム5を得た。得られたポリイミドフィルムの特性を表4に示す。
【0163】
《フィルム作製例6》
ポリアミド酸溶液A3を塗布しない(すなわち、a層を形成しない)ようにし、ポリアミド酸溶液A1をA2に変更し、ポリアミド酸溶液A2の塗布量を最終膜厚(最終的にポリイミド膜となったときの膜厚)が表4に示す「(b層)の厚さ」となるように変更したこと以外は、フィルム作製例1と同様にして、ポリイミドフィルム6を得た。得られたポリイミドフィルムの特性を表4に示す。
【0164】
《フィルム作製例7》
ポリアミド酸溶液A1をB1に変更し、ポリアミド酸溶液A3をB2に変更するとともに、ポリアミド酸溶液B1、B2の塗布量を、それぞれ最終膜厚(最終的にポリイミド膜となったときの膜厚)が表4に示す「(a層)の厚さ」または「(b層)の厚さ」(各溶液で形成する層の厚さ)となるように変更したこと以外は、フィルム作製例1と同様にして、ポリイミドフィルム7を得た。得られたポリイミドフィルムの特性を表4に示す。
【0165】
【表3】

【0166】
【表4】

【0167】
《フィルム処理例1〜4》
フィルム1〜4に対し、各ポリイミドフィルムの滑材を含有していないポリイミド側(ポリアミド酸溶液A3で形成された層側)の面に真空プラズマ処理を施した。真空プラズマ処理としては、平行平板型の電極を使ったRIEモード、RFプラズマによる処理を採用し、真空チャンバー内にO2ガスを導入し、13.56MHzの高周波電力を導入するようにし、処理時間は3分間とした。得られた処理後の各ポリイミドフィルムの特性を表5に示す。なお、ここで得られた処理後の各ポリイミドフィルムには、酸処理(HF処理)を施していないので、クレーターは観察されなかった。
【0168】
《フィルム処理例5〜7》
フィルム3〜5に対し、各ポリイミドフィルムの両面に真空プラズマ処理を施し、続いて両面に酸処理した後、風乾し、110℃のホットプレート上に1時間載置することにより脱水処理を行った。真空プラズマ処理としては、平行平板型の電極を使ったRIEモード、RFプラズマによる処理を採用し、真空チャンバー内にO2ガスを導入し、13.54MHzの高周波電力を導入するようにし、処理時間は3分間とした。続く酸処理は、10質量%のHF水溶液中に1分間浸漬した後、洗浄し、乾燥することにより行った。得られた処理後の各ポリイミドフィルムの特性を表6に示す。
【0169】
《フィルム処理例8、9》
フィルム6、7に対し、上記フィルム処理例1と同様にして真空プラズマ処理を施した。このとき、真空プラズマ処理は、フィルム6の場合、滑材を含有する面(ポリアミド酸溶液A2で形成された面)に施し、フィルム7の場合、滑材を含有していないポリイミド側(ポリアミド酸溶液B2で形成された層側)の面に施した。得られた処理後の各ポリイミドフィルムの特性を表6に示す。なお、ここで得られた処理後の各ポリイミドフィルムには、酸処理(HF処理)を施していないので、クレーターは観察されなかった。
【0170】
《フィルム処理例10》
フィルム6の両面(いずれもポリアミド酸溶液A2で形成された面)に、真空プラズマ処理および酸処理をプラズマ処理を施したこと以外は、上記フィルム処理例5と同様にして、真空プラズマ処理、酸処理、風乾および脱水処理を施した。得られた処理後の各ポリイミドフィルムの特性を表7に示す。
【0171】
【表5】

【0172】
【表6】

【0173】
【表7】

【0174】
(実施例1〜4)
窒素置換したグローブボックス内で窒素ガスを流しながら、シランカップリング剤(SC剤)である3−アミノプロピルトリメトキシシランをイソプロピルアルコールによって0.5質量%に希釈した後、無機物からなる支持体(基板)として予め別途洗浄(純水による超音波洗浄5min、エタノールによる超音波洗浄5min、純水による超音波洗浄5min)しておいたガラス(コーニング社製「コーニングEAGLE XG」;100mm×100mm×0.7mm厚)をスピンコーターに設置して、イソプロピルアルコールを滴下して1000rpmにて液の振り切りと乾燥を行い、引き続き、上記のカップリング剤希釈液を回転中央部に滴下して、まず500rpmにて回転させ、次いで15秒かけて2500rpmまで回転させ、次いで15秒間2500rpmにて回転させ、次いで15秒かけて回転を止めることにより、全面を濡らした後に乾燥状態とした。これをクリーンベンチ内に載置した105℃に加熱したホットプレート上で1分間加熱して、厚さ8nmのカップリング処理層を備えたカップリング剤処理済支持体を得た。
【0175】
次に、上記で得たカップリング処理層を備えた支持体のカップリング処理層面に、70mm×70mm(□70mm)のパターンに切り抜いたポリイミドフィルムをマスクとして載置し、積層体(ガラス)の周辺15mmずつを残して70mm×70mm(□70mm)の範囲内にUV照射処理を行った。
なお、UV照射は、ランテクニカルサービス株式会社製のUV/O3洗浄改質装置(「SKB1102N−01」)とUVランプ(「SE−1103G05」)とを用い、該UVランプから3cm程度離れた距離から4分間行った。照射時にはUV/O洗浄改質装置内には特別な気体は入れず、UV照射は、大気雰囲気、室温で行った。なお、UVランプは185nm(不活性化処理を促進するオゾンを発生させうる短波長)と254nmの波長の輝線を出しており、このとき照度は20mW/cm2程度(照度計(「ORC UV−M03AUV」)にて254nmの波長で測定)であった。
【0176】
次に、UV照射処理後の支持体のカップリング剤処理・UV照射処理面と、フィルム処理例1〜4で得られた処理後のポリイミドフィルムの各処理面(本実施例1〜4ではポリアミド酸溶液A3で形成された層側の面)とが対向するように重ね合わせ、これを150℃のロールラミ機を用い、前後に同じ厚さのガラス板を置くことでラミネート時にロールがガラスの段差で動かないようにしておいてラミネートした後、大気圧中、300℃で10MPaの圧力にて10分間プレスすることにより加圧加熱処理を行い、本発明の積層体を得た。
得られた積層体の評価結果を表8に示す。
別途、上記で得たカップリング処理層を備えた支持体のカップリング剤処理面と、フィルム処理例1〜4で得られた処理後のポリイミドフィルムの各処理面(本実施例1〜4ではポリアミド酸溶液A3で形成された層側の面)とが対向するように重ね合わせ、上記と同様の加圧加熱処理(ロールを用いたラミネートおよび大気圧中でのプレス)を行い、UV未照射部の剥離強度測定用サンプルを作製した。
なお、加熱加圧処理を、ロータリーポンプにて10+2Pa以下の真空度とし300℃で10MPaの圧力にて10分間真空プレスすることにより加圧加熱処理を行った場合にも、評価結果はほぼ同等であった
【0177】
(実施例5)
無機物からなる支持体(基板)として、厚さ0.725mmのシリコンウエハ(Siウエハ)を用いたこと以外は、実施例2と同様にして、本発明の積層体を得た。
得られた積層体の評価結果を表8に示す。
なお、この実施例2以外の各実施例(実施例1、3、4)についても、無機物からなる支持体としてガラスの代わりにシリコンウエハを使用する以外は同様に行って積層体を得たが、得られた積層体の評価結果はいずれも、それぞれガラスを支持体とした時とほぼ同一であった。
【0178】
(実施例6〜8)
支持体と重ね合わせるフィルム処理後のポリイミドフィルムとして処理例5〜7で得られた処理後ポリイミドフィルムを用い、カップリング剤処理済ガラスのカップリング剤処理面と、各処理後ポリイミドフィルムの各処理面(本実施例6〜8ではポリアミド酸溶液A1で形成された層側の面)とが対向するように重ね合わせたこと以外、実施例1と同様にして、本発明の積層体を得た。
得られた積層体の評価結果を表9に示す。
なお、実施例6〜8につき、無機物からなる支持体としてガラスの代わりにシリコンウエハを使用する以外は同様に行って積層体を得たが、得られた積層体の評価結果はいずれも、それぞれガラスを支持体とした時とほぼ同一であった。
【0179】
(実施例9)
カップリング剤としてn−プロピルトリメトキシシラン(n−PS)を用いたこと、および、UV照射処理の処理領域を、UV照射部分をガラスの周辺15mmずつとしたこと以外は、実施例2と同様にして、本発明の積層体を得た。
得られた積層体の評価結果を表9に示す。
なお、支持体と重ね合わせるフィルム処理後のポリイミドフィルムとして、処理例5で得られた処理後ポリイミドフィルムを用い該フィルムのポリアミド酸溶液A3で形成された層側の面(プラズマ処理のみを施した面)をガラスに重ね合わせるか、または、処理例10で得られた処理後ポリイミドフィルムを用い該フィルムのポリアミド酸溶液A2で形成された面(プラズマ処理および酸処理を施した面)をガラスに重ね合わせるようにしたこと以外は同様に行って積層体を得たが、得られた積層体の評価結果はいずれも該実施例9とほぼ同一であった。
【0180】
(実施例10、11)
UV照射処理に代えて、オゾンガスによる活性ガス処理を行ったこと以外は、実施例2または実施例3と同様にして、本発明の積層体を得た。
なお、オゾンによる活性ガス処理は、住友精密工業株式会社製の「PSAオゾナイザー」を用いて、オゾン濃度は120mg/L(標準条件)、オゾンガス流量は2slm、オゾンガス吐出口の内径はφ3.7cm、オゾンガス吐出口とサンプルとの距離は8cmとし、体積が4Lの反応容器にて5分間、オゾンガスを吹き付けることにより行った。排気は、O分解器を通過させて、ポンプで排気した。
得られた積層体の評価結果を表10に示す。ただし、表10において本実施例10、11の「UV照射部剥離強度」および「UV未照射部剥離強度」は、それぞれ「オゾンガス吹き付け部剥離強度」および「オゾンガス未吹き付け部剥離強度」と読み替えるものとする。
なお、支持体と重ね合わせるフィルム処理後のポリイミドフィルムとして、処理例5で得られた処理後ポリイミドフィルムを用い該フィルムのポリアミド酸溶液A3で形成された層側の面(プラズマ処理のみを施した面)をガラスに重ね合わせるか、または、処理例10で得られた処理後ポリイミドフィルムを用い該フィルムのポリアミド酸溶液A2で形成された面(プラズマ処理および酸処理を施した面)をガラスに重ね合わせるようにしたこと以外は同様に行って積層体を得たが、得られた積層体の評価結果はいずれも該実施例10または11とほぼ同一であった。
【0181】
【表8】

【0182】
【表9】

【0183】
【表10】

【0184】
(比較例1〜3)
フィルム作製例1、2、7で得られたフィルムNO.1、2、7の各フィルム(プラズマ処理を施していないポリイミドフィルム)を使用し、それぞれ滑材が入っていない側をガラスに対向するよう重ね合わせたこと以外、実施例1と同様にして、比較用の積層体を得た。
得られた積層体の評価結果を表11に示す。なお、表中「測定不能」は、処理ないし測定途中でポリイミドフィルムが剥がれてしまった場合をさす。
【0185】
(比較例4〜5)
支持体にカップリング剤処理を施さないこと、および支持体と重ね合わせるフィルム処理後のポリイミドフィルムとして処理例2または処理例9で得られた処理後ポリイミドフィルムを用いたこと以外は、実施例1と同様にして、比較用の積層体を得た。
得られた積層体の評価結果を表11に示す。なお、表中「測定不能」は、処理ないし測定途中でポリイミドフィルムが剥がれてしまった場合をさす。
【0186】
(比較例6〜7)
カップリング剤処理は施すがUV照射処理を行わずに得た支持体を用いたこと、および支持体と重ね合わせるフィルム処理後のポリイミドフィルムとして処理例2または処理例9で得られた処理後ポリイミドフィルムを用いたこと以外は、実施例1と同様にして、比較用の積層体を得た。
得られた積層体の評価結果を表12に示す。なお、表中「測定不能」は、処理ないし測定途中でポリイミドフィルムが剥がれてしまった場合をさす。
この積層体について、ポリイミドフィルムに切り込みを入れ、該フィルムを支持体から剥がそうとしたが、上手く剥がすことができず、無理に剥がそうとしたらフィルムが破れてしまった。
【0187】
(比較例8、9)
支持体として、実施例1と同様のガラスに対しその周辺15mmずつを残した70mm×70mm(□70mm)の範囲内にサンドブラストを施したものを用いた以外は、実施例2、11と同様にして、比較用の積層体を得た。
得られた積層体の評価結果を表12に示す。なお、表中「測定不能」は、処理ないし測定途中でポリイミドフィルムが剥がれてしまった場合をさす。
また得られた積層体は、サンドブラストを施した部分におけるポリイミドフィルムの表面にサンドブラストの形状に沿った窪み(凸凹)が生じたものとなり、ポリイミドフィルムの平面性が著しく損なわれ、デバイスの作製に用いることが難しい積層体となった。
【0188】
【表11】

【0189】
【表12】

【0190】
(比較例10)
ガラス(コーニング社製「コーニングEAGLE XG」;100mm×100mm×0.7mm厚)の中央部に直径80mmの円形のPETフィルム製保護フィルムを貼り付けた状態でスピンコーターに設置し、実施例1と同じシランカップリング剤を回転中央部に滴下させて500rpmにて回転させ、次いで2000rpmにて回転させることにより支持体全面を濡らした状態として塗布した後に、乾燥状態とした。これをクリーンベンチ内に載置した110℃に加熱したホットプレート上で1分間加熱した後に保護フィルムを剥離し、周囲にのみシランカップリング剤が塗布されたガラス基板を得た。
次いで、シランカップリング剤塗布面に、フィルム処理例1で得られた処理後のポリイミドフィルムの処理面を重ね、ロータリーポンプにて10+2Pa以下の真空度とし300℃で10MPaの圧力にて10分間真空プレスすることにより加圧加熱処理を行い、比較用の積層体を得た。ここでUV照射は行っていない。
得られた積層体のシランカップリング剤処理部分の接着強度は実施例1のUV未照射部分と同等の2.1N/cmであった。ガラス基板中央部のシランカップリング剤未塗布部分については全く接着していなかった。またこの積層体の耐熱剥離強度試験を行ったところ、積層体の中央部分のフィルム/ガラス間が大きく膨んだ。また、耐酸性剥離強度試験、耐アルカリ性剥離強度試験についても同様にフィルム/ガラス間にフクレが生じた。
【0191】
(測定例1〜5)
支持体(基板)としてSiウエハを50mm×50mm(□50mm)に切断したものを5枚用意し、これを十分に洗浄した後に、実施例1と同様にして、シランカップリング剤を塗布した後に110℃のホットプレートで加熱して、厚さ11nmのカップリング処理層を形成した。次いで、このカップリング処理層の面に、UV照射時間を変更したこと以外は実施例1と同じ条件でUV照射を行い、得られた各サンプルの表面組成比を測定した。結果を表13に示す。なお、窒素表面組成比率は、UV照射前(測定例1)の窒素Atomic percentを100%として、UV照射後の窒素のAtomic percent(%)の値をパーセント表示したものである。
【0192】
【表13】

【0193】
(応用例1)
実施例1〜11および比較例1〜10で得られた各積層体を、開口部を有するステンレス製の枠を被せてスパッタリング装置内の基板ホルダーに固定した。基板ホルダーと積層体の支持体とを密着するように固定して、基板ホルダー内に冷媒を流すことによって、積層体のフィルムの温度を設定できるようにし、積層体のフィルムの温度を2℃に設定した。まず、フィルム表面にプラズマ処理を施した。プラズマ処理条件は、アルゴンガス中で、周波数13.56MHz、出力200W、ガス圧1×10−3Torrの条件とし、処理時の温度は2℃、処理時間は2分間とした。次いで、周波数13.56MHz、出力450W、ガス圧3×10−3Torrの条件で、ニッケル−クロム(クロム10質量%)合金のターゲットを用いて、アルゴン雰囲気下にてDCマグネトロンスパッタリング法により、1nm/秒のレートで厚さ11nmのニッケル−クロム合金被膜(下地層)を形成した。次いで、基板のスパッタ面の裏面を、3℃に温度コントロールした冷媒を中に流した基板ホルダーのSUSプレートと接する状態とすることで、積層体のフィルムの温度を2℃に設定し、スパッタリングを行った。そして、10nm/秒のレートで銅を蒸着させ、厚さ0.22μmの銅薄膜を形成した。このようにして、各積層体から下地金属薄膜形成フィルム付きの積層板を得た。なお、銅およびNiCr層の厚さは蛍光X線法によって確認した。
【0194】
次に、各フィルムからの下地金属薄膜形成フィルム付きの積層板をCu製の枠に固定し、硫酸銅めっき浴を用い、電解めっき液(硫酸銅80g/l、硫酸210g/l、HCl、光沢剤少量)に浸漬し、電気を1.5Adm2流すことにより、厚さ4μmの厚付け銅メッキ層(厚付け層)を形成した。引き続き120℃で10分間熱処理して乾燥し、金属化ポリイミドフィルム・支持体積層体を得た。
【0195】
得られた各金属化ポリイミドフィルム・支持体積層体に対して、フォトレジスト(シプレー社製「FR−200」)を塗布乾燥した後に、ガラスフォトマスクで密着露光し、さらに1.2質量%KOH水溶液にて現像した。次に、HClおよび過酸化水素を含む塩化第二銅のエッチングラインで、40℃、2kgf/cm2のスプレー圧でエッチングし、ライン/スペース=20μm/20μmのライン列をテストパターンとして形成した。次いで、0.5μm厚に無電解スズメッキを施した後、125℃で1時間のアニール処理を行った。そして、形成したパターンを光学顕微鏡で観察し、だれ、パターン残り、パターン剥がれなどの有無を評価した。
【0196】
各実施例のポリイミドフィルム積層体を用いた場合には、だれ、パターン残り、パターン剥がれなどの無い良好なパターンが得られた。また、この後、さらに窒素置換したマッフル炉内で昇温速度10℃/分で400℃まで昇温した後、400℃で1時間保持し、その後自然降温させても、膨れ、剥がれなど発生することは無かった。
これに対して、各比較例のポリイミドフィルム積層体を用いた場合はいずれも、フィルム剥がれが生じて、良好なパターンが得られなかった。
【0197】
以上の応用例1の結果から、本発明の製造方法により、支持体とポリイミドフィルムとの剥離強度が適正に調整された積層体は、金属化などの各工程に耐え得るものであり、その後のパターン作製においても良好なパターンを形成し得ることが確認できた。
【0198】
(応用例2)
本発明のデバイス構造体の一例である表示装置(表示用パネル)の作製例として、TFT基板を作製した。図9(a)にはTFT基板の概略断面図を、図9(b)にはその上面図をそれぞれ示す。
まず実施例1で得られた本発明の積層体を基板101とし、該積層体のポリイミドフィルム面のUV照射領域(ポリイミドフィルム作製時にUV照射処理を施した領域)の上に、Al(アルミニウム)102を200nmスパッタにてパターン化して蒸着させ、ゲート配線バスライン111、ゲート電極(図示せず)及びゲート配線109を形成した。この時点では、各ゲート配線109はゲート配線バスライン111に接続しておき、このゲート配線バスライン111は、陽極化成時に電源供給ラインとして使用することとした。次いでフォトレジストを3μm塗布しフォトエッチングプロセスにより、TFTの部分(領域A)と配線交差部(領域B)をレジスト除去した。この状態で、基板全体101を化成液(3%酒石酸溶液をエチレングリコールで希釈し、アンモニア水を添加して、PH7.0に調整した液)に浸し、ゲート配線バスライン111に+72Vの電圧を30分間加えることにより、領域A、BにおけるAlのうち70nmをAl23に変化させ、100nm程度のAl23膜(陽極化成膜)103を形成した。レジストを除去した後、大気中、200℃で1時間加熱を行うことにより、Al23膜103のリーク電流の低減を図った。次いでこのAl23膜103の上に、プラズマCVD法によって300nmの第一窒化シリコン104を製膜し、引き続き、100nmの水素化非晶質シリコン(a−Si)105、200nmの第二窒化シリコン106を製膜した。このとき基板101の温度は380℃とした。その後、第二窒化シリコン106をパターン化して、TFTのチャネル上を配線交差部のみとした。次いで、2%程度のリンをドープした非晶質シリコンn層107を50nm堆積させた後、パターン化して、TFTのソース・ドレイン部のみに残した。このとき水素化非晶質シリコン(a−Si)105も同時に除去した。次に、100nmのCr(クロム)と500nmのAl(アルミニウム)をスパッタリングにて堆積してCr・Al層108を形成した後、パターン化して、信号線110、TFTのドレイン、ソース電線(図示せず)などを形成した。ここで、先に形成したゲート配線バスライン111は除去して、各々のゲート配線109を分離した。その後、透明電極112として100nmのITOをスパッタリングにて形成して画素電極、端子等を形成し、最後に、プラズマCVDにて窒化シリコンを1μm程度堆積させ、フォトエッチングプロセスによって端子部上の窒化シリコンを除去した。
以上のようにして、本発明の積層体のポリイミドフィルム面のUV照射領域の上にデバイス(TFT)を搭載した後、これを保護するためにポリイミドフィルム面のUV照射領域を覆うように保護フィルム(ポリエステルフィルム)を貼り付けておき、その後、UV照射領域とUV未照射領域との境界線に切り込みを入れ、ポリイミドフィルムのTFT部分(デバイス搭載部分)を支持体から剥離して、TFT基板を得た。剥離に際しては、ポリイミドフィルムが破れたり、TFT部分が破損したりすることなく、良好に剥離できた。
次に、上記で得たカップリング処理層を備えた支持体のカップリング処理層面に、70mm×70mm(□70mm)のパターンに切り抜いたポリイミドフィルムをマスクとして載置し、積層体(ガラス)の周辺15mmずつを残して70mm×70mm(□70mm)の範囲内にUV照射処理を行った。
【0199】
また本発明のデバイス構造体の一例である表示装置(表示用パネル)の作製例として、有機EL素子使用表示装置を作製した。図10には有機EL素子使用表示装置の概略断面図を示す。
まず実施例1で得られた本発明の積層体を基板201とし、該積層体のポリイミドフィルム面のUV照射領域(ポリイミドフィルム作製時にUV照射処理を施した領域)の上に、画素電極として第一電極202をモリブデンによりスパッタリング法にて形成した後、この第一電極202上に発光層203を形成した。発光層203は、第一電極202上に隔壁205を形成した後、発光物質としてドープ処理していないポリ(パラ−フェニレンビニレン)を含む有機層をスクリーン印刷法にて印刷することにより形成した。このとき膜乾燥時の最高到達温度は180℃であった。次いで、発光層203上に第二電極204としてITOをスパッタリングし、その後、保護膜206としてフッ素樹脂層をコーティングした。以上の作製プロセスの中で基板(積層体)に付与された熱の最高到達温度は350℃であった。その後、応用例2と同様に、UV照射領域とUV未照射領域との境界線に切り込みを入れ、ポリイミドフィルムの発光部搭載部分(デバイス搭載部分)を支持体から剥離して、有機EL素子使用表示装置(自発光型表示装置)を得た。剥離に際しては、ポリイミドフィルムが破れたり、発光部が破損したりすることなく、良好に剥離できた。
上記の実施例1の積層体を用いた有機EL素子使用表示装置にピークトゥピークで60V、1000Hzの交番電圧を印可したところ、鮮やかな緑色に発光した。
また他の実施例の積層体を用いた有機EL素子使用表示装置についても、それぞれ上記と同様にして作製し、上記と同様に電圧を印加したところ、いずれも良好な発光が得られた。これに対し、各比較例の積層体を用いた有機EL素子使用表示装置を上記と同様にして作製し、上記と同様に電圧を印加したところ、十分な発光が得られなかった。これは、表示装置作製のプロセス中に負荷された熱によって、積層体のポリイミドフィルムの平面維持性が損なわれ、導電層、特に透明導電層がダメージを受けたためと推察される。
【産業上の利用可能性】
【0200】
本発明の製造方法で得られる積層体は、デバイスを積層した際に易剥離部分のポリイミドフィルムを切り抜くことにより、容易に支持体から剥離することができる。しかも、これら積層体は、金属化などの工程にも耐え得るものであり、その後のパターン作製においても良好なパターンを得ることができる。したがって、本発明の積層体は、極小薄のポリイミドフィルム上のデバイス構造体などの製造過程に有効に使用でき、極薄の絶縁性、耐熱性、寸法安定性に優れた高分子フィルム上に、精度よく回路やデバイス形成ができる。それ故に、センサー、表示デバイス、プローブ、集積回路、およびこれらの複合デバイス、アモルファスSi薄膜太陽電池、SeやCIGS系化合物半導体薄膜太陽電池基板およびこれらを使った太陽電池などのデバイス構造体の製造に有用であり、産業界への寄与は大きい。
【符号の説明】
【0201】
1:ガラス基板
2:カップリング処理層
3:UV光遮断マスク
4:カップリング処理層UV未照射部
5:カップリング処理層UV照射部
6:ポリイミドフィルム
7:カップリング処理層UV照射部上のポリイミドフィルム
8:デバイス
10:良好接着部分
20:易剥離部分
101:積層体(基板)
102:Al
103:陽極化成膜(Al23
104:第一窒化シリコン
105:水素化非晶質シリコン
106:第二窒化シリコン
107:非晶質シリコンn層
108:Cr・Al層
109:ゲート配線
110:信号線
111:ゲート配線バスライン
112:透明電極
201:積層体(基板)
202:第一電極
203:発光層
204:第二電極
205:隔壁
206:保護膜

【特許請求の範囲】
【請求項1】
少なくとも支持体とポリイミドフィルムとから構成されてなる積層体の製造方法であって、
前記ポリイミドフィルムとして、少なくとも前記支持体に対向させる面にプラズマ処理が施されたフィルムを用い、
前記支持体と前記ポリイミドフィルムとが対向する面の少なくとも一方に、カップリング剤を用いて、接着剥離強度は異なり表面粗さは略同一である良好接着部分と易剥離部分とを形成するパターン化処理を施し、その後、前記支持体と前記ポリイミドフィルムとを重ね合わせて加圧加熱処理することとし、
前記ポリイミドフィルムは、芳香族ジアミン類を主成分とするジアミン類と、芳香族テトラカルボン酸類を主成分とするテトラカルボン酸類との反応によって得られるフィルムであり、前記芳香族ジアミン類のうち70モル%以上がベンゾオキサゾール構造を有する芳香族ジアミンであることを特徴とする積層体の製造方法。
【請求項2】
前記パターン化処理は、カップリング剤処理を施してカップリング処理層を形成し、次いでカップリング処理層の一部に不活性化処理を施して所定のパターンを形成することにより行う請求項1に記載の積層体の製造方法。
【請求項3】
前記不活性化処理として、ブラスト処理、真空プラズマ処理、大気圧プラズマ処理、コロナ処理、活性放射線照射処理、活性ガス処理および薬液処理からなる群より選択される少なくとも1種を行う請求項2に記載の積層体の製造方法。
【請求項4】
前記不活性化処理として、少なくともUV照射処理を行う請求項3に記載の積層体の製造方法。
【請求項5】
前記加圧加熱処理はロールを用いて大気圧雰囲気下で行う請求項1〜4のいずれかに記載の積層体の製造方法。
【請求項6】
前記加圧加熱処理は加圧プロセスと加熱プロセスとに分離して行い、120℃未満の温度で加圧した後に、低圧もしくは常圧にて120℃以上の温度で加熱する請求項1〜5のいずれかに記載の積層体の製造方法。
【請求項7】
前記ポリイミドフィルムとして、前記プラズマ処理の後に酸処理を施したフィルムを用いる請求項1〜6のいずれかに記載の積層体の製造方法。
【請求項8】
支持体とポリイミドフィルムとがカップリング処理層を介して積層されてなる積層体であって、前記支持体と前記ポリイミドフィルムとの間の剥離強度が異なる良好接着部分と易剥離部分とを有しており、該良好接着部分と該易剥離部分とが所定のパターンを形成していることを特徴とする積層体。
【請求項9】
前記易剥離部分における支持体とポリイミドフィルムとの間の180度剥離強度が、前記良好接着部分における支持体とポリイミドフィルムとの間の180度剥離強度の1/2以下である請求項8に記載の積層体。
【請求項10】
ポリイミドフィルム上にデバイスが形成されてなる構造体を製造する方法であって、支持体とポリイミドフィルムとを有する請求項8または9に記載の積層体を用いることとし、該積層体のポリイミドフィルム上にデバイスを形成した後、前記積層体の易剥離部分のポリイミドフィルムに切り込みを入れて該ポリイミドフィルムを前記支持体から剥離することを特徴とするデバイス構造体の製造方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図9】
image rotate

【図10】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate


【公開番号】特開2013−10342(P2013−10342A)
【公開日】平成25年1月17日(2013.1.17)
【国際特許分類】
【出願番号】特願2011−260537(P2011−260537)
【出願日】平成23年11月29日(2011.11.29)
【出願人】(000003160)東洋紡株式会社 (3,622)
【Fターム(参考)】