説明

半導体装置の製造方法

【課題】デバイス特性の向上を図るとともにさらなる微細化に対応可能な半導体装置の製造方法を得ること。
【解決手段】半導体基板11上にゲート絶縁膜16を形成する工程と、前記ゲート絶縁膜16上にゲート電極17を形成する工程と、前記半導体基板11の表層の前記ゲート絶縁膜16およびゲート電極17の周辺領域に、チャネル領域を規定するように所定の間隔を隔てて一対のソース・ドレイン拡散層14を形成する工程と、前記ゲート電極17の表層および前記一対のソース・ドレイン拡散層14の表層にシリサイド層15、18を形成する工程と、前記シリサイド層15、18の形成後に、前記半導体基板11を減圧下において450℃以下の温度範囲で窒素含有ガス雰囲気中およびシリコン含有ガス雰囲気中に個別に暴露して半導体基板11上にライナー膜22を形成する工程と、を含む。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、半導体装置の製造方法に関するものであり、特に、ゲート電極の表層やソース・ドレイン拡散層の表層にシリサイド層を備えてなり、デバイス特性の向上を図るとともにさらなる微細化に対応可能な半導体装置の製造方法に関するものである。
【背景技術】
【0002】
従来の一般的なMOS(Metal Oxide Semiconductor)トランジスタに、ポリシリコンからなるゲート電極の表層やソース・ドレイン拡散層の表層にシリサイド層を形成したものがある。このシリサイド層は、デバイス特性、すなわちデバイス動作速度の向上のためにゲート電極の表層やソース・ドレイン拡散層の表層に形成されるものであり、このようなシリサイド層を形成して低抵抗化を図った構造は一般にサリサイド構造と呼ばれている。
【0003】
また、上記の構成の上部にはたとえば酸化膜からなる層間絶縁膜を有し、ソース・ドレイン拡散層の表層に形成されたシリサイド層に導通するコンタクトを該層間絶縁膜中に備える。このコンタクトを形成するためにRIEを用いて層間絶縁膜中にコンタクトホールを形成するが、このときコンタクトホールの形成位置に位置ずれが生じた場合には、同じ酸化膜からなる素子分離をエッチングしてしまう場合が生じ、確実な素子分離が阻害される。
【0004】
そこで、素子分離が削られることを防止するために、シリサイド層が形成された後の半導体基板上に層間絶縁膜や素子分離と異なる材料、たとえば窒化シリコン(Si34)からなるライナー膜を形成し、その上に層間絶縁膜を形成している。
【0005】
また、このライナー膜(Si34)をゲート構造上に形成することで、該ゲート構造に応力を与え、デバイス特性の向上を図ることができる。このようなライナー膜(Si34)は熱CVD法により形成されるが、該ライナー膜(Si34)を形成するためには最低でも600℃程度の温度で熱処理が行われる。
【発明の開示】
【発明が解決しようとする課題】
【0006】
ところで、上記のシリサイド層としては一般にコバルトシリサイド(CoSi)が用いられているが、MOSトランジスタのさらなる微細化に対応するため、より電気抵抗の低い材料であるニッケルシリサイド(NiSi)の適用が検討されている。
【0007】
しかしながら、上述したようにニッケルシリサイド(NiSi)は耐熱性が低いため、600℃程度の温度で熱処理を行った場合には凝集して抵抗が上昇してしまい、低抵抗化が図れないという問題がある。
【0008】
また、ライナー膜(Si34)の形成について具体的に説明すると、シリコンウエハを600℃〜750℃程度の温度のプロセスチャンバに設置し、該プロセスチャンバ内に反応性シリコン含有ガスと反応性窒素含有ガスとを同時に導入して気相中で反応させる。そして、その反応物であるSi34をシリコンウエハに堆積させる。このとき、安全上の問題等から一般的に減圧下でその反応を行うため気相反応は温度依存性が大きく、低温では極端に反応が遅くなる。このため、工業的には600℃以下の温度での気相反応によるSi34の成膜は不可能であった。
【0009】
したがって、コバルトシリサイド(CoSi)よりも電気抵抗の低いニッケルシリサイド(NiSi)を用いてデバイス動作速度の向上を図るとともに、MOSトランジスタのさらなる微細化を実現する半導体装置の製造方法は未だ確立されていないのが現状である。
【0010】
本発明は、上記に鑑みてなされたものであって、デバイス特性の向上を図るとともにさらなる微細化に対応可能な半導体装置の製造方法を得ることを目的とする。
【課題を解決するための手段】
【0011】
上述した課題を解決し、目的を達成するために、本発明にかかる半導体装置の製造方法は、半導体基板上にゲート絶縁膜を形成するゲート絶縁膜形成工程と、ゲート絶縁膜上にゲート電極を形成するゲート電極形成工程と、半導体基板の表層のゲート絶縁膜およびゲート電極の周辺領域に、チャネル領域を規定するように所定の間隔を隔てて一対のソース・ドレイン拡散層を形成するソース・ドレイン拡散層形成工程と、ゲート電極の表層および一対のソース・ドレイン拡散層の表層にシリサイド層を形成するシリサイド層形成工程と、シリサイド層の形成後に、半導体基板を減圧下において450℃以下の温度範囲で窒素含有ガス雰囲気中およびシリコン含有ガス雰囲気中に個別に暴露して半導体基板上にライナー膜を形成するライナー膜形成工程と、を含むことを特徴とする。
【発明の効果】
【0012】
この発明によれば、減圧下において450℃以下の温度範囲で窒素含有ガス雰囲気中およびシリコン含有ガス雰囲気中に個別に暴露して半導体基板上にライナー膜を形成するため、シリサイド層に悪影響を与えることなく、ライナー膜を確実に形成することが可能である。したがって、この発明によれば、デバイス特性の向上を図るとともにさらなる微細化に対応可能な半導体装置を作製することができる、という効果を奏する。
【発明を実施するための最良の形態】
【0013】
以下に、本発明にかかる半導体装置の製造方法の実施の形態を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。
【0014】
実施の形態1.
図1−1は、本発明の実施の形態1にかかる半導体装置(トランジスタ)の構成を示す断面図である。また、図1−2は、本実施の形態にかかる半導体装置のゲート構造を説明する断面図であり、図1−1におけるゲート構造周辺部を拡大して示す図である。
【0015】
図1−1に示すように本実施の形態にかかる半導体装置においては、半導体基板11の表層に、各素子を分離するための素子分離であるSTI素子分離12と、該STI素子分離12間の領域であってトランジスタ素子が形成される活性領域にチャネル領域13を規定するように互いに距離を隔てて形成されたソース・ドレイン拡散層14と、該ソース・ドレイン拡散層14の表層部に互いに距離を隔てて形成されたシリサイド層15と、を有している。ここで、シリサイド層15は、ニッケルシリサイド(NiSi)からなる。
【0016】
また、半導体基板11上のソース・ドレイン拡散層14上および該ソース・ドレイン拡散層14に挟まれた領域上には、図1−2に示すように半導体基板11側からたとえば酸化膜からなるゲート絶縁膜16、ポリシリコン電極17と、該ポリシリコン電極の表層がシリサイド化されたメタル電極18(シリサイド層)とからなるゲート電極19がこの順で積層された積層構造を有するゲート構造21が形成されている。
【0017】
また、ゲート構造21の外側、すなわち側面には、2層からなるサイドウォールスペーサ20a、20bが形成されている。ここで、サイドウォールスペーサ20aは、たとえばシリコン酸化膜からなり、サイドウォールスペーサ20bは、シリコン窒化膜からなる。そして、STI素子分離12上、ソース・ドレイン拡散層14上、シリサイド層15上、サイドウォールスペーサ20a、20b上およびゲート電極19上には、これらを覆うようにシリコン窒化膜(Si34)からなるライナー膜22が形成されている。
【0018】
また、半導体基板11上にはゲート構造21およびSTI素子分離12を覆う層間絶縁膜23が形成されている。そして、層間絶縁膜23には、導電性材料からなり層間絶縁膜23の上面からシリサイド層15まで達してソース・ドレイン拡散層14に導通するコンタクト24が形成され、さらに該層間絶縁膜23上にはコンタクト24と導通する配線層25が形成されている。
【0019】
上記のような構成を有する本実施の形態にかかる半導体装置においては、上述したようにSTI素子分離12上、ソース・ドレイン拡散層14上、シリサイド層15上、サイドウォールスペーサ20a、20b上およびゲート電極19上に、これらを覆うようにシリコン窒化膜(Si34)からなるライナー膜22が形成されている。そしてこのライナー膜22は、所定の方向を向いた応力を有する。その結果、この半導体装置においては、該ライナー膜22よりゲート構造に対して所定の方向の応力が与えられ、デバイス特性の向上が図られている。したがって、本実施の形態にかかる半導体装置においては、デバイス特性の良好な高品質の半導体装置が実現されている。
【0020】
また、本実施の形態にかかる半導体装置においては、ゲート電極19の表層およびソース・ドレイン拡散層14の表層にシリサイド層15およびメタル電極18(シリサイド層)が形成されている。これにより、デバイス特性、すなわちデバイス動作速度の向上が図られている。さらに、本実施の形態にかかる半導体装置においては、シリサイド層15として、より電気抵抗の低い材料であるニッケルシリサイド(NiSi)が用いられている。これにより、MOSトランジスタのさらなる微細化に対応が可能とされている。
【0021】
したがって、本実施の形態にかかる半導体装置においては、電気抵抗の低抵抗化およびゲート構造に対する応力の印加によりデバイス特性の向上を図るとともにさらなる微細化に対応可能な半導体装置が実現されている。
【0022】
つぎに、図1−1および図1−2に示す本実施の形態にかかる半導体装置の製造方法について図面を参照しながら説明する。図2は本実施の形態にかかる半導体装置の製造方法を説明するためのフローチャートである。図2に示すように、本実施の形態にかかる半導体装置の製造方法は、素子分離形成工程(S101)と、ゲート絶縁膜形成工程(S102)と、ゲート電極形成工程(S103)と、ソース・ドレイン拡散層形成工程(S104)と、シリサイド層形成工程(S105)と、ライナー膜形成工程(S106)と、層間絶縁膜形成工程(S107)と、コンタクト・配線層形成工程(S108)と、を含むものである。以下、図3−1〜図3−7を参照しながら、本実施の形態にかかる半導体装置の製造方法について説明する。図3−1〜図3−7は、本実施の形態にかかる半導体装置の製造工程を説明する断面図である。
【0023】
(素子分離形成工程)
本実施の形態にかかる半導体装置を作製するには、まず、半導体基板11を準備し、STI(shallow trench isolation)工程により、各半導体素子を分離するための素子分離であるSTI素子分離12を図3−1に示すように半導体基板11上に選択的に形成する。
【0024】
(ゲート絶縁膜形成工程、ゲート電極形成工程)
つぎに、従来公知の方法により半導体基板11上にたとえば酸化膜からなるゲート絶縁膜16とポリシリコンからなるポリシリコン電極17とを形成する。そして、従来公知の方法により図3−2に示すようにサイドウォールスペーサ20a、20bを形成する。
【0025】
(ソース・ドレイン拡散層形成工程、シリサイド層形成工程)
つぎに、図3−3に示すようにチャネル領域13を規定するように所定の間隔を隔てて一対のソース・ドレイン拡散層14を従来公知の方法により形成し、さらにシリサイド層15とメタル電極18とを形成する。これにより、図3−3に示すようにポリシリコン電極17と、該ポリシリコン電極の表層がシリサイド化されたメタル電極18(シリサイド層)とからなるゲート電極19とがこの順で積層された積層構造を有するゲート構造21が形成される。ここで、本実施の形態においては、シリサイド層15として、より電気抵抗の低い材料であるニッケルシリサイド(NiSi)を形成する。これにより、トランジスタのさらなる微細化を図ることができる。
【0026】
(ライナー膜形成工程)
つぎに、図3−4に示すようにSTI素子分離12、ソース・ドレイン拡散層14、シリサイド層15、サイドウォールスペーサ20およびゲート電極19上に、これらを覆うようにシリコン窒化膜(Si34)からなり所定の方向に応力を有するライナー膜22を形成する。このライナー膜22を形成することにより、該ライナー膜22からゲート構造に対して所定の方向の応力が与えることができ、デバイス特性の向上を図ることができる。したがって、本実施の形態にかかる半導体装置においては、デバイス特性の良好な高品質の半導体装置を作製することができる。
【0027】
ここで、本実施の形態におけるライナー膜22の形成方法について図4および図5を参照して説明する。図4は、本実施の形態におけるライナー膜22の製造工程を説明するためのフローチャートである。また、図5は、本実施の形態におけるライナー膜22の製造工程におけるサイクルを説明するための図である。
【0028】
本実施の形態におけるライナー膜22の形成方法は、図4に示すように反応性窒素含有ガス暴露工程(S201)と、反応性シリコン含有ガス暴露工程(S202)と、を有する。反応性窒素含有ガス暴露工程は、上記の図3−3に示すようにシリサイド層15を形成した半導体基板11を減圧下において450℃以下の温度範囲で反応性窒素含有ガス雰囲気中に所定の時間だけ暴露する工程である。反応性シリコン含有ガス暴露工程は、反応性窒素含有ガス雰囲気中に暴露した半導体基板11を減圧下において450℃以下の温度範囲で反応性シリコン含有ガス雰囲気中に所定の時間だけ暴露する工程である。
【0029】
そして、これらの反応性窒素含有ガス暴露工程(S201)と、反応性シリコン含有ガス暴露工程(S202)と、を1サイクルとして、該サイクルを1サイクル以上繰り返す。なお、反応性窒素含有ガスとは、450℃以下の温度範囲で反応する窒素を含有するガスである。また、反応性シリコン含有ガスとは、450℃以下の温度範囲で反応するシリコンを含有するガスである。
【0030】
具体的に説明すると、まず、反応性窒素含有ガス暴露工程においては、図5に示すように反応槽として用いるチャンバに接続した反応性窒素含有ガスバルブを開き、反応性窒素含有ガスのみをチャンバ内に導入して所定の圧力に減圧する。反応性窒素含有ガスとしては、たとえばアンモニア(NH3)ガスを用いることができる。そして、チャンバ内を300℃〜450℃の温度範囲に加熱し、上記の図3−3に示すようにシリサイド層15を形成した半導体基板11を該チャンバ内に配置して所定の時間だけ該半導体基板11を反応性窒素含有ガス雰囲気中に暴露する。
【0031】
これにより反応性窒素含有ガスが、加熱された半導体基板11のシリコンと直接反応することができる。この場合の反応は気相反応ではないため、温度依存性が小さく、450℃以下の低温でも十分に反応可能である。上記のように反応性窒素含有ガスとしてアンモニア(NH3)ガスを用いることにより、半導体基板11のシリコンと反応性窒素含有ガスとを確実に反応させることができる。
【0032】
つぎに、反応性シリコン含有ガス暴露工程に移行する。反応性シリコン含有ガス暴露工程においては、まず、チャンバ内の反応性窒素含有ガスを排出し、図5に示すように反応槽として用いるチャンバに接続した反応性シリコン含有ガスバルブを開き、該チャンバ内に反応性シリコン含有ガスを導入し、所定の圧力に減圧する。反応性シリコン含有ガスとしては、たとえばジクロルシラン(SiCl22)ガスを用いることができる。そして、チャンバ内を300℃〜450℃の温度範囲に加熱し、所定の時間だけ該半導体基板11を反応性シリコン含有ガス雰囲気中に暴露する。
【0033】
これにより反応性シリコン含有ガスが、半導体基板11上の反応性窒素含有ガスと直接反応することができる。この場合の反応も気相反応ではないため、温度依存性が小さく、450℃以下の低温でも十分に反応可能である。上記のように反応性シリコン含有ガスとしてジクロルシラン(SiCl22)ガスを用いることにより、反応性窒素含有ガスと反応性シリコン含有ガスとを確実に反応させることができる。
【0034】
この後、反応性シリコン含有ガスをチャンバから排出することにより、1サイクルが終了する。そして、このサイクルを複数回だけ繰り返すことにより所望の膜厚のシリコン窒化膜(Si34)を形成することができる。なお、2サイクル目以降の反応性窒素含有ガス暴露工程においては、先のサイクルで反応性シリコン含有ガスをチャンバから排出した後、チャンバに接続した反応性窒素含有ガスバルブを開き、該チャンバ内に反応性窒素含有ガスを導入し、所定の圧力に減圧する。そして、チャンバ内を300℃〜450℃の温度範囲に加熱し、所定の時間だけ該半導体基板11を反応性窒素含有ガス雰囲気中に暴露する。
【0035】
上記の1サイクルにより、半導体基板11上に1層のシリコン窒化膜(Si34)が形成される。1サイクルは、たとえば30秒〜60秒とされ、この1サイクルにより0.2nm〜0.3nm程度の膜厚のシリコン窒化膜(Si34)が形成される。したがって、たとえば50nmの膜厚のシリコン窒化膜(Si34)は、1時間23分〜2時間47分程度の時間で形成することが可能であり、工業的に十分な生産性を確保することができる。
【0036】
上述したように、上記の反応性窒素含有ガス暴露工程(S201)と反応性シリコン含有ガス暴露工程(S202)とは、450℃以下の温度範囲で行う。シリサイド層15およびメタル電極18(シリサイド層)であるニッケルシリサイド(NiSi)は耐熱性が低い。このため、450℃よりも高い温度でライナー膜22の形成を行った場合には、ニッケルシリサイド(NiSi)が凝集して抵抗が上昇してしまい、低抵抗化が図れず、シリサイド層としてニッケルシリサイド(NiSi)を用いる効果を得ることができないからである。したがって、上記のように450℃以下の温度範囲でライナー膜22の形成を行うことにより、シリサイド層であるニッケルシリサイド(NiSi)に悪影響を与えることなく、ニッケルシリサイド(NiSi)が低電気抵抗値を示す状態を保持したままライナー膜22を形成することができる。
【0037】
なお、上記においては、チャンバ内の温度(半導体基板の加熱温度)を300℃〜450℃の温度としているが、これは上記のガスの組み合わせにおいて良好な反応が得られる好ましい温度範囲である。したがって、チャンバ内の温度(半導体基板の加熱温度)はこれに限定されるものではなく、本発明においては、チャンバ内の温度(半導体基板の加熱温度)を450℃以下の温度とすることが重要である。
【0038】
また、上述したように、上記の反応性窒素含有ガス暴露工程(S201)と反応性シリコン含有ガス暴露工程(S202)とは、減圧下で行う。常温では反応性窒素含有ガスと反応性シリコン含有ガスとの反応が生じないためである。なお、減圧する際の圧力は、チャンバ内の温度(半導体基板の加熱温度)、1サイクルの時間、形成するシリコン窒化膜(Si34)の膜厚などの諸条件により適宜設定可能である。
【0039】
また、半導体基板11を反応性窒素含有ガス雰囲気中に暴露する暴露時間と、半導体基板11を反応性窒シリコン含有ガス雰囲気中に暴露する暴露時間と、の比率は特に限定されるものではなく、各ガスの流量、圧力などの諸条件により適宜設定可能である。
【0040】
(層間絶縁膜形成工程、コンタクト・配線層形成工程)
その後、図3−5に示すように層間絶縁膜23として酸化膜を堆積し、該層間絶縁膜23のみをエッチングして図3−6に示すように該層間絶縁膜23の表面からライナー膜22まで達するコンタクトホール24aを形成する。さらに、ライナー膜22であるシリコン窒化膜(Si34)のみをエッチングすることにより、図3−7に示すように層間絶縁膜23の表面からシリサイド層15まで達するコンタクトホール24bを形成する。
【0041】
このように、層間絶縁膜23のみをエッチングした後、ライナー膜22であるシリコン窒化膜(Si34)のみをエッチングすることにより、コンタクトホール形成の際の位置ずれが生じた場合においても素子分離12がエッチングされることが防止される。したがって、素子分離12はその機能を確実に発揮することができる。
【0042】
そして、少なくとも導電材料を含む材料により該コンタクトホール24bを埋め込んで、シリサイド層15(ソース・ドレイン拡散層14)に導通するコンタクト24を形成する。さらに、層間絶縁膜23上にコンタクト24と導通する配線層25を形成することにより、図1−1に示す本実施の形態にかかる半導体装置を作製することができる。
【0043】
上述したように、本実施の形態にかかる半導体装置の製造方法においては、反応性窒素含有ガス暴露工程(S201)と反応性シリコン含有ガス暴露工程(S202)とを1サイクルとして、このサイクルを繰り返すことによりシリコン窒化膜(Si34)からなるライナー膜22を形成する。そしてこれらの工程は450℃以下の温度範囲で行われるため、シリサイド層であるニッケルシリサイド(NiSi)に悪影響を与えることなく、ニッケルシリサイド(NiSi)が低電気抵抗値を示す状態を保持したままライナー膜22を形成することができる。したがって、本実施の形態にかかる半導体装置の製造方法においては、デバイス特性の向上を図るとともにさらなる微細化に対応可能な半導体装置を作製することができる。
【0044】
実施の形態2.
実施の形態2では、図1−1および図1−2に示した半導体装置の他の製造方法について説明する。本実施の形態にかかる半導体装置の製造方法が、上述した実施の形態1における半導体装置の製造方法と異なる点は、シリコン窒化膜(Si34)からなるライナー膜22の形成工程であるため、ここでは、ライナー膜22の形成工程について説明し、他の工程については省略する。
【0045】
ここで、本実施の形態におけるライナー膜22の形成方法について図6および図7を参照して説明する。図6は、本実施の形態におけるライナー膜22の製造工程を説明するためのフローチャートである。また、図7は、本実施の形態におけるライナー膜22の製造工程におけるサイクルを説明するための図である。
【0046】
本実施の形態におけるライナー膜22の形成方法は、図6に示すように反応性シリコン含有ガス暴露工程(S301)と、反応性窒素含有ガス暴露工程(S302)と、を有する。反応性シリコン含有ガス暴露工程は、上記の図3−3に示すようにシリサイド層15を形成した半導体基板11を減圧下において450℃以下の温度範囲で反応性シリコン含有ガス雰囲気中に所定の時間だけ暴露する工程である。反応性窒素含有ガス暴露工程は、反応性シリコン含有ガス雰囲気中に暴露した半導体基板を減圧下において450℃以下の温度範囲で反応性窒素含有ガス雰囲気中に所定の時間だけ暴露する工程である。
【0047】
そして、これらの反応性シリコン含有ガス暴露工程(S301)と、反応性窒素含有ガス暴露工程(S302)と、を1サイクルとして、該サイクルを1サイクル以上繰り返す。なお、反応性シリコン含有ガスとは、実施の形態1の場合と同様に450℃以下の温度範囲で反応するシリコンを含有するガスである。また、反応性窒素含有ガスとは、実施の形態1の場合と同様に450℃以下の温度範囲で反応する窒素を含有するガスである。
【0048】
つぎに、具体的に説明する。まず、反応性シリコン含有ガス暴露工程においては、図6に示すように反応槽として用いるチャンバに接続した反応性シリコン含有ガスバルブを開き、反応性シリコン含有ガスのみをチャンバ内に導入して所定の圧力に減圧する。反応性シリコン含有ガスとしては、たとえばジクロルシラン(SiCl22)ガスを用いることができる。そして、チャンバ内を300℃〜450℃の温度範囲に加熱し、上記の図3−3に示すようにシリサイド層15を形成した半導体基板11を該チャンバ内に配置して所定の時間だけ該半導体基板11を反応性シリコン含有ガス雰囲気中に暴露する。
【0049】
これにより反応性シリコン含有ガスが、加熱された半導体基板11上に堆積し、Si34膜を形成する下地部分にSi34が既に形成されている場合においても、後の工程での反応性シリコン含有ガスと反応性窒素含有ガスとが反応し易くなる。
【0050】
つぎに、反応性窒素含有ガス暴露工程に移行する。反応性窒素含有ガス暴露工程においては、まず、チャンバ内の反応性シリコン含有ガスを排出し、図5に示すように反応槽として用いるチャンバに接続した反応性窒素含有ガスバルブを開き、該チャンバ内に反応性窒素含有ガスを導入し、所定の圧力に減圧する。反応性窒素含有ガスとしては、たとえばアンモニア(NH3)ガスを用いることができる。そして、チャンバ内を300℃〜450℃の温度範囲に加熱し、所定の時間だけ該半導体基板11を反応性窒素含有ガス雰囲気中に暴露する。
【0051】
これにより反応性窒素含有ガスが、半導体基板11上の反応性シリコン含有ガスと直接反応することができる。この場合の反応は気相反応ではないため、温度依存性が小さく、450℃以下の低温でも十分に反応可能である。上記のように反応性窒素含有ガスとしてアンモニア(NH3)ガスを用いることにより、反応性シリコン含有ガスと反応性窒素含有ガスとを確実に反応させることができる。
【0052】
この後、反応性窒素含有ガスをチャンバから排出することにより、1サイクルが終了する。そして、このサイクルを複数回だけ繰り返すことにより所望の膜厚のシリコン窒化膜(Si34)を形成することができる。なお、2サイクル目以降の反応性シリコン含有ガス暴露工程においては、先のサイクルで反応性窒素含有ガスをチャンバから排出した後、チャンバに接続した反応性シリコン含有ガスバルブを開き、該チャンバ内に反応性シリコン含有ガスを導入し、所定の圧力に減圧する。そして、チャンバ内を300℃〜450℃の温度範囲に加熱し、所定の時間だけ該半導体基板11を反応性シリコン含有ガス雰囲気中に暴露する。
【0053】
上記の1サイクルにより、半導体基板11上に1層のシリコン窒化膜(Si34)が形成される。1サイクルは、たとえば30秒〜60秒とされ、この1サイクルにより0.2nm〜0.3nm程度の膜厚のシリコン窒化膜(Si34)が形成される。したがって、たとえば50nmの膜厚のシリコン窒化膜(Si34)は、1時間23分〜2時間47分程度の時間で形成することが可能であり、工業的に十分な生産性を確保することができる。
【0054】
上述したように、上記の反応性シリコン含有ガス暴露工程(S301)と反応性窒素含有ガス暴露工程(S302)とは、450℃以下の温度範囲で行う。シリサイド層15およびメタル電極18(シリサイド層)であるニッケルシリサイド(NiSi)は耐熱性が低い。このため、450℃よりも高い温度でライナー膜22の形成を行った場合には、ニッケルシリサイド(NiSi)が凝集して抵抗が上昇してしまい、低抵抗化が図れず、シリサイド層としてニッケルシリサイド(NiSi)を用いる効果を得ることができないからである。したがって、上記のように450℃以下の温度範囲でライナー膜22の形成を行うことにより、シリサイド層であるニッケルシリサイド(NiSi)に悪影響を与えることなく、ニッケルシリサイド(NiSi)が低電気抵抗値を示す状態を保持したままライナー膜22を形成することができる。
【0055】
なお、上記においては、チャンバ内の温度(半導体基板の加熱温度)を300℃〜450℃の温度としているが、これも実施の形態1の場合と同様に上記のガスの組み合わせにおいて良好な反応が得られる好ましい温度範囲である。したがって、チャンバ内の温度(半導体基板の加熱温度)はこれに限定されるものではなく、本発明においては、チャンバ内の温度(半導体基板の加熱温度)を450℃以下の温度とすることが重要である。
【0056】
また、上述したように、反応性シリコン含有ガス暴露工程(S301)と上記の反応性窒素含有ガス暴露工程(S302)とは、実施の形態1の場合と同様に減圧下で行う。本実施の形態においても、常温では反応性シリコン含有ガスと反応性窒素含有ガスとの反応が生じないためである。なお、減圧する際の圧力は、チャンバ内の温度(半導体基板の加熱温度)、1サイクルの時間、形成するシリコン窒化膜(Si34)の膜厚などの諸条件により適宜設定可能である。
【0057】
また、半導体基板11を反応性窒シリコン含有ガス雰囲気中に暴露する暴露時間と、半導体基板11を反応性窒素含有ガス雰囲気中に暴露する暴露時間と、の比率は、実施の形態1の場合と同様に特に限定されるものではなく、各ガスの流量、圧力などの諸条件により適宜設定可能である。
【0058】
上述したように、本実施の形態にかかる半導体装置の製造方法においては、反応性シリコン含有ガス暴露工程(S301)と反応性窒素含有ガス暴露工程(S302)とを1サイクルとして、このサイクルを繰り返すことによりシリコン窒化膜(Si34)からなるライナー膜22を形成する。そしてこれらの工程は450℃以下の温度範囲で行われるため、実施の形態1の場合と同様にシリサイド層であるニッケルシリサイド(NiSi)に悪影響を与えることなく、ニッケルシリサイド(NiSi)が低電気抵抗値を示す状態を保持したままライナー膜22を形成することができる。したがって、本実施の形態にかかる半導体装置の製造方法においても、実施の形態1の場合と同様にデバイス特性の向上を図るとともにさらなる微細化に対応可能な半導体装置を作製することができる。
【0059】
実施の形態3.
実施の形態3では、図1−1および図1−2に示した半導体装置の他の製造方法について説明する。本実施の形態にかかる半導体装置の製造方法が、上述した実施の形態1における半導体装置の製造方法と異なる点は、シリコン窒化膜(Si34)からなるライナー膜22の形成工程であるため、ここでは、ライナー膜22の形成工程について説明し、他の工程については省略する。
【0060】
本実施の形態においては、ライナー膜形成工程において、反応性窒素含有ガスとしてアンモニア(NH3)ガスの代わりにプラズマで励起したアンモニア(NH3)ガスを用いる。
【0061】
具体的に説明すると、まず、反応性窒素含有ガス暴露工程において、図5に示すように反応槽として用いるチャンバに接続した反応性窒素含有ガスバルブを開き、反応性窒素含有ガスのみをチャンバ内に導入して所定の圧力に減圧する。ここで、反応性窒素含有ガスとして、プラズマで励起したアンモニア(NH3)ガスを導入する。そして、チャンバ内を300℃〜450℃の温度範囲に加熱し、上記の図3−3に示すようにシリサイド層15を形成した半導体基板11を該チャンバ内に配置して所定の時間だけ該半導体基板11を反応性窒素含有ガス雰囲気中に暴露する。
【0062】
これにより反応性窒素含有ガスが、加熱された半導体基板11のシリコンと直接反応することができる。この場合の反応は気相反応ではないため、温度依存性が小さく、450℃以下の低温でも十分に反応可能である。上記のように反応性窒素含有ガスとしてプラズマで励起したアンモニア(NH3)ガスを用いることにより、半導体基板11のシリコンと反応性窒素含有ガスとをより確実に反応させることができる。すなわち、反応性窒素含有ガスとしてプラズマで励起したアンモニア(NH3)ガスを用いることにより、反応性が向上するため、反応速度を同じ条件とした場合には、より低温で反応させることができる。また、チャンバ内の温度(半導体基板の加熱温度)を同じ条件とした場合には、より早い反応速度で反応させることができる。
【0063】
つぎに、反応性シリコン含有ガス暴露工程に移行する。反応性シリコン含有ガス暴露工程においては、まず、チャンバ内の反応性窒素含有ガスを排出し、図5に示すように反応槽として用いるチャンバに接続した反応性シリコン含有ガスバルブを開き、該チャンバ内に反応性シリコン含有ガスを導入し、所定の圧力に減圧する。反応性シリコン含有ガスとしては、たとえばジクロルシラン(SiCl22)ガスを用いることができる。そして、チャンバ内を300℃〜450℃の温度範囲に加熱し、所定の時間だけ該半導体基板11を反応性シリコン含有ガス雰囲気中に暴露する。
【0064】
これにより反応性シリコン含有ガスが、半導体基板11上の反応性窒素含有ガスと直接反応することができる。この場合の反応も気相反応ではないため、温度依存性が小さく、450℃以下の低温でも十分に反応可能である。上記のように反応性シリコン含有ガスとしてジクロルシラン(SiCl22)ガスを用いることにより、反応性窒素含有ガスと反応性シリコン含有ガスとを確実に反応させることができる。
【0065】
この後、反応性シリコン含有ガスをチャンバから排出することにより、1サイクルが終了する。そして、このサイクルを複数回だけ繰り返すことにより所望の膜厚のシリコン窒化膜(Si34)を形成することができる。なお、2サイクル目以降の反応性窒素含有ガス暴露工程においては、先のサイクルで反応性シリコン含有ガスをチャンバから排出した後、チャンバに接続した反応性窒素含有ガスバルブを開き、該チャンバ内に反応性窒素含有ガスを導入し、所定の圧力に減圧する。そして、チャンバ内を300℃〜450℃の温度範囲に加熱し、所定の時間だけ該半導体基板11を反応性窒素含有ガス雰囲気中に暴露する。
【産業上の利用可能性】
【0066】
以上のように、本発明にかかる半導体装置の製造方法は、電気抵抗の低抵抗化によりデバイス動作速度の向上を図るとともにさらなる微細化に対応可能な半導体装置の製造に有用であり、特に、シリサイド層として、より電気抵抗の低い材料であるニッケルシリサイド(NiSi)を適用した半導体装置の製造に適している。
【図面の簡単な説明】
【0067】
【図1−1】本発明の実施の形態1にかかる半導体装置の構成を示す断面図である。
【図1−2】実施の形態1にかかる半導体装置のゲート構造を説明する断面図であり、図1−1におけるゲート構造周辺部を拡大して示す図である。
【図2】実施の形態1にかかる半導体装置の製造方法を説明するためのフローチャートである。
【図3−1】実施の形態1にかかる半導体装置の製造工程を説明するための断面図である。
【図3−2】実施の形態1にかかる半導体装置の製造工程を説明するための断面図である。
【図3−3】実施の形態1にかかる半導体装置の製造工程を説明するための断面図である。
【図3−4】実施の形態1にかかる半導体装置の製造工程を説明するための断面図である。
【図3−5】実施の形態1にかかる半導体装置の製造工程を説明するための断面図である。
【図3−6】実施の形態1にかかる半導体装置の製造工程を説明するための断面図である。
【図3−7】実施の形態1にかかる半導体装置の製造工程を説明するための断面図である。
【図4】実施の形態1におけるライナー膜の製造工程を説明するためのフローチャートである。
【図5】実施の形態1におけるライナー膜の製造工程におけるサイクルを説明するための図である。
【図6】実施の形態2におけるライナー膜の製造工程を説明するためのフローチャートである。
【図7】実施の形態2におけるライナー膜の製造工程におけるサイクルを説明するための図である。
【符号の説明】
【0068】
11 半導体基板
12 素子分離
13 チャネル領域
14 ソース・ドレイン拡散層
15 シリサイド層
16 ゲート絶縁膜
17 ポリシリコン電極
18 メタル電極
19 ゲート電極
20a サイドウォールスペーサ
20b サイドウォールスペーサ
21 ゲート構造
22 ライナー膜
23 層間絶縁膜
24 コンタクト
24a コンタクトホール
24b コンタクトホール
25 配線層

【特許請求の範囲】
【請求項1】
半導体基板上にゲート絶縁膜を形成するゲート絶縁膜形成工程と、
前記ゲート絶縁膜上にゲート電極を形成するゲート電極形成工程と、
前記半導体基板の表層の前記ゲート絶縁膜およびゲート電極の周辺領域に、チャネル領域を規定するように所定の間隔を隔てて一対のソース・ドレイン拡散層を形成するソース・ドレイン拡散層形成工程と、
前記ゲート電極の表層および前記一対のソース・ドレイン拡散層の表層にシリサイド層を形成するシリサイド層形成工程と、
前記シリサイド層の形成後に、前記半導体基板を減圧下において450℃以下の温度範囲で窒素含有ガス雰囲気中およびシリコン含有ガス雰囲気中に個別に暴露して半導体基板上にライナー膜を形成するライナー膜形成工程と、
を含むことを特徴とする半導体装置の製造方法。
【請求項2】
前記ライナー膜形成工程は、
前記半導体基板を減圧下において450℃以下の温度範囲で窒素含有ガス雰囲気中に所定の時間だけ暴露する窒素含有ガス暴露工程と、
前記窒素含有ガス雰囲気中に暴露した半導体基板を減圧下において450℃以下の温度範囲でシリコン含有ガス雰囲気中に所定の時間だけ暴露するシリコン含有ガス暴露工程と、
を1サイクルとして、該サイクルを1サイクル以上繰り返すこと
を特徴とする請求項1に記載の半導体装置の製造方法。
【請求項3】
前記ライナー膜形成工程は、
前記半導体基板を減圧下において450℃以下の温度範囲でシリコン含有ガス雰囲気中に所定の時間だけ暴露するシリコン含有ガス暴露工程と、
前記シリコン含有ガス雰囲気中に暴露した半導体基板を減圧下において450℃以下の温度範囲で窒素含有ガス雰囲気中に所定の時間だけ暴露する窒素含有ガス暴露工程と、
を1サイクルとして、該サイクルを1サイクル以上繰り返すこと
を特徴とする請求項1に記載の半導体装置の製造方法。
【請求項4】
前記窒素含有ガスとしてアンモニアガスを用いること
を特徴とする請求項1に記載の半導体装置の製造方法。
【請求項5】
前記窒素含有ガスとしてプラズマで励起したアンモニアガスを用いること
を特徴とする請求項4に記載の半導体装置の製造方法。
【請求項6】
前記シリコン含有ガスとしてジクロルシランガスを用いること
を特徴とする請求項1に記載の半導体装置の製造方法。

【図1−1】
image rotate

【図1−2】
image rotate

【図2】
image rotate

【図3−1】
image rotate

【図3−2】
image rotate

【図3−3】
image rotate

【図3−4】
image rotate

【図3−5】
image rotate

【図3−6】
image rotate

【図3−7】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate


【公開番号】特開2007−19330(P2007−19330A)
【公開日】平成19年1月25日(2007.1.25)
【国際特許分類】
【出願番号】特願2005−200553(P2005−200553)
【出願日】平成17年7月8日(2005.7.8)
【出願人】(503121103)株式会社ルネサステクノロジ (4,790)
【Fターム(参考)】