説明

ウエーハの計測装置およびレーザー加工機

【課題】ウエーハの厚みや上面高さを確実に計測することができる計測装置およびこの計測装置を装備したレーザー加工機を提供する。
【解決手段】レーザー光線を集光しチャックテーブルに保持されたウエーハに照射する集光器と、照射されたレーザー光線の反射光受光手段と、集光器によるレーザー光線の集光点変更手段と、集光点変更手段からの変更信号と受光手段からの信号に基いてウエーハの厚みを測定する制御手段を具備し、制御手段は集光点変更手段を構成する一対のミラーの2つの設置角度の差とウエーハの厚みとの関係を設定した厚み制御マップを備え、一対のミラーの設置角度を変更する角度調整アクチュエータによって設置角度を変更しつつ受光手段から2つの強い光量のピークを検出し、2つの強い光量のピークを入力したときの設置角度検出センサーの検出信号に基いて設置角度の差を求め、設置角度差を厚み制御マップと照合してウエーハの厚みを求める。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、レーザー加工機等のウエーハの加工機に装備されるチャックテーブルに保持された半導体ウエーハ等のウエーハの厚みや上面高さを計測するウエーハの計測装置およびレーザー加工機に関する。
【背景技術】
【0002】
半導体デバイス製造工程においては、略円板形状である半導体ウエーハの表面に格子状に配列されたストリートと呼ばれる分割予定ラインによって複数の領域が区画され、この区画された領域にIC、LSI等のデバイスを形成する。そして、半導体ウエーハをストリートに沿って切断することによりデバイスが形成された領域を分割して個々の半導体チップを製造している。
【0003】
装置の小型化、高機能化を図るため、複数の半導体チップを積層し、積層された半導体チップの電極を接続するモジュール構造が実用化されている。このモジュール構造は、半導体ウエーハの表面におけるボンディングパッドと呼ばれる電極が形成された位置に裏面からボンディングパッドに達する孔(ビアホール)を形成し、このビアホールにボンディングパッドと接続するアルミニウム等の導電性材料を埋め込む構成である。(例えば、特許文献1参照。)
【特許文献1】特開2003−163323号公報
【0004】
上述した半導体ウエーハに設けられるビアホールは、ドリルによって形成されている。しかるに、半導体ウエーハに設けられるビアホールは直径が100〜300μmと小さく、ドリルによる穿孔では生産性が悪いという問題がある。
【0005】
上記問題を解消するために、被加工物を保持するチャックテーブルとレーザー光線照射手段との相対的な加工送り量を検出する加工送り量検出手段と、被加工物に形成する細孔のX,Y座標値を記憶する記憶手段と、記憶手段に記憶された細孔のX,Y座標値と加工送り量検出手段からの検出信号に基づいてレーザー光線照射手段を制御する制御手段とを具備し、被加工物に形成する細孔のX,Y座標値がレーザー光線照射手段の集光器の直下に達したらレーザー光線を照射するようにしたレーザー加工装置が提案されている。(例えば、特許文献2参照。)
【特許文献2】特開2006−247674号公報
【0006】
また、上述した半導体ウエーハ等をストリートに沿って分割する方法として、ウエーハに対して透過性を有する波長のパルスレーザー光線を用い、分割すべき領域の内部に集光点を合わせてパルスレーザー光線を照射するレーザー加工方法も試みられている。このレーザー加工方法を用いた分割方法は、ウエーハの裏面側から内部に集光点を合わせて被加工物に対して透過性を有する赤外光領域のパルスレーザー光線を照射し、ウエーハの内部にストリートに沿って変質層を連続的に形成し、この変質層が形成されることによって強度が低下したストリートに沿って外力を加えることにより、ウエーハをストリートに沿って分割するものである。(例えば、特許文献3参照。)
【特許文献3】特許第3408805号公報
【発明の開示】
【発明が解決しようとする課題】
【0007】
上述した半導体ウエーハの裏面からパルスレーザー光線を照射してビアホールを形成する形成方法においては、半導体ウエーハの表面に形成されたボンディングパッドに穴を開けないように寸止めしなければならず、このためには、半導体ウエーハの厚みに対応した所定パルス数のパルスレーザー光線を照射する必要がある。しかるに、半導体ウエーハの厚みにはバラツキがあり、従って各ボンディングパッドが位置する半導体ウエーハの厚み確認することが重要である。
また、上述したようにウエーハに対して透過性を有する波長のパルスレーザー光線を用い、分割すべき領域の内部に集光点を合わせてパルスレーザー光線を照射することにより、半導体ウエーハの内部にストリートに沿って変質層を形成するレーザー加工方法においては、半導体ウエーハ等の内部の所定深さに均一に変質層を形成することが望ましい。しかるに、半導体ウエーハにはウネリがあり、その厚さにバラツキがあると、レーザー光線を照射する際に屈折率の関係で所定の深さに均一に変質層を形成することができない。従って、半導体ウエーハ等の内部の所定深さに均一に変質層を形成するためには、予めレーザー光線を照射する領域の凹凸を検出し、その凹凸にレーザー光線照射手段を追随させて加工する必要がある。
【0008】
本発明は上記事実に鑑みてなされたものであり、その主たる技術的課題は、ウエーハの加工機に装備されるチャックテーブルに保持された半導体ウエーハ等のウエーハの厚みや上面高さを確実に計測することができるウエーハの計測装置およびウエーハの計測装置を装備したレーザー加工機を提供することである。
【課題を解決するための手段】
【0009】
上記主たる技術課題を解決するため、本発明によれば、ウエーハを保持するチャックテーブルに保持されたウエーハの厚みを測定するウエーハの計測装置であって、
ウエーハに対して透過するとともに反射する波長を有するレーザー光線を照射するレーザー光線発振器と、
該レーザー光線発振器から発振されたレーザー光線を集光し該チャックテーブルに保持されたウエーハに照射する集光器と、
該チャックテーブルに保持されたウエーハに照射されたレーザー光線の反射光を受光する受光手段と、
該集光器によって集光されるレーザー光線の集光点を変更する集光点変更手段と、
該集光点変更手段からの変更信号と該受光手段からの受光信号に基いてウエーハの厚みを測定する制御手段と、を具備し、
該集光点変更手段は、所定の間隔をもって互いに平行に反射面を対向して配設された一対のミラーと、該一対のミラーの設置角度を調整する角度調整アクチュエータと、該一対のミラーの設置角度を検出し検出信号を該制御手段に出力するする設置角度検出センサーとからなる光路長変更ミラー手段を具備しており、
該制御手段は、該一対のミラーの2つの該設置角度の差とウエーハの厚みとの関係を設定した厚み制御マップを格納するメモリを備え、該角度調整アクチュエータによって該一対のミラーの設置角度を変更しつつ該受光手段からの受光信号に基いて2つの強い光量のピークを検出し、該2つの強い光量のピークを入力したときの該設置角度検出センサーからの検出信号に基いて該一対のミラーの2つの該設置角度の差を求め、該設置角度差を該厚み制御マップと照合してウエーハの厚みを求める、
ことを特徴とするウエーハの計測装置が提供される。
【0010】
また、本発明によれば、ウエーハを保持するチャックテーブルと、該チャックテーブルに保持されたウエーハに加工用のレーザー光線を照射する加工用レーザー光線照射手段と、を具備するレーザー加工機であって、上記ウエーハの厚みを測定する計測装置が配設されており、該計測装置は該チャックテーブルに保持されたウエーハの厚みを計測する、ことを特徴とするレーザー加工機が提供される。
【0011】
更に、本発明によれば、ウエーハを保持するチャックテーブルに保持されたウエーハの上面高さを測定するウエーハの計測装置であって、
レーザー光線を照射するレーザー光線発振器と、
該レーザー光線発振器から発振されたレーザー光線を集光し該チャックテーブルに保持されたウエーハに照射する集光器と、
該チャックテーブルに保持されたウエーハに照射されたレーザー光線の反射光を受光する受光手段と、
該集光器によって集光されるレーザー光線の集光点を変更する集光点変更手段と、
該集光点変更手段からの変更信号と該受光手段からの受光信号に基いてウエーハの高さを測定する制御手段と、を具備し、
該集光点変更手段は、所定の間隔をもって互いに平行に反射面を対向して配設された一対のミラーと、該一対のミラーの設置角度を調整する角度調整アクチュエータと、該一対のミラーの設置角度を検出し検出信号を該制御手段に出力するする設置角度検出センサーとからなる光路長変更ミラー手段を具備しており、
該制御手段は、該一対のミラーの該設置角度と該チャックテーブルに保持されたウエーハの上面高さとの関係を設定した高さ制御マップを格納するメモリを備え、該角度調整アクチュエータによって該一対のミラーの設置角度を変更しつつ該受光手段からの受光信号に基いて強い光量のピークを検出し、該強い光量のピークを入力したときの該設置角度検出センサーからの検出信号に基いて該一対のミラーの2つの該設置角度を求め、該設置角度を該高さ制御マップと照合してチャックテーブルに保持されたウエーハの上面高さを求める、
ことを特徴とするウエーハの計測装置が提供される。
【0012】
また、本発明によれば、ウエーハを保持するチャックテーブルと、該チャックテーブルに保持されたウエーハに加工用レーザー光線を照射するレーザー光線照射手段と、を具備するレーザー加工機であって、上記ウエーハの上面高さ測定する計測装置が配設されており、該計測装置は該チャックテーブルに保持されたウエーハの上面高さを計測する、ことを特徴とするレーザー加工機が提供される。
【0013】
上記集光点変更手段は、上記光路長変更ミラー手段に導かれるレーザー光線を非平行の光線に生成する非平行光線生成レンズと、光路長変更ミラー手段を通過したレーザー光線を光路長変更ミラー手段に向けて垂直に全反射する全反射ミラーを備えている。
また、上記受光手段は、反射光の一部が通過する直径のピンホールを備えたマスクと、該マスクを通過した反射光を受光するホトディテクタとからなっている。
また、上記計測装置のレーザー光線発振器から発振されるレーザー光線は、連続波レーザー光線であることが望ましい。
【発明の効果】
【0014】
本発明においては、集光点変更手段を構成する光路長変更ミラー手段の一対のミラーの設置角度を変更することによってウエーハに照射されるレーザー光線の集光点位置を変更し、ウエーハの上面と下面に集光点が位置したときの反射光の光量の2つのピークに基いて一対のミラーの設置角度を求め、この設置角度差を厚み制御マップと照合してウエーハの厚みを求めるので、ウエーハの加工部の厚みを正確に検出することができる。従って、ウエーハの加工部には厚みに対応した適正な加工を施すことができる。
【発明を実施するための最良の形態】
【0015】
以下、本発明に従って構成されたウエーハの計測装置およびレーザー加工機の好適な実施形態について、添付図面を参照して詳細に説明する。
【0016】
図1には、本発明に従って構成されたレーザー加工機の斜視図が示されている。図1に示すレーザー加工装置は、静止基台2と、該静止基台2に矢印Xで示す加工送り方向(X軸方向)に移動可能に配設され被加工物を保持するチャックテーブル機構3と、静止基台2に上記矢印Xで示す加工送り方向(X軸方向)と直角な矢印Yで示す割り出し送り方向(Y軸方向)に移動可能に配設されたレーザー光線照射ユニット支持機構4と、該レーザー光線ユニット支持機構4に矢印Zで示す方向(Z軸方向)に移動可能に配設された加工用レーザー光線照射ユニット5と、ウエーハの計測装置を構成する計測用レーザー光線照射ユニット6とを具備している。この加工用レーザー光線照射ユニット5と計測用レーザー光線照射ユニット6は、共通のユニットホルダ44に装着される。
【0017】
上記チャックテーブル機構3は、静止基台2上に矢印Xで示す加工送り方向(X軸方向)に沿って平行に配設された一対の案内レール31、31と、該案内レール31、31上に矢印Xで示す加工送り方向(X軸方向)に移動可能に配設された第一の滑動ブロック32と、該第1の滑動ブロック32上に矢印Yで示す割り出し送り方向(Y軸方向)に移動可能に配設された第2の滑動ブロック33と、該第2の滑動ブロック33上に円筒部材34によって支持されたカバーテーブル35と、被加工物保持手段としてのチャックテーブル36を具備している。このチャックテーブル36は多孔性材料から形成された吸着チャック361を具備しており、吸着チャック361上(保持面)に被加工物である半導体ウエーハを図示しない吸引手段によって保持するようになっている。このように構成されたチャックテーブル36は、円筒部材34内に配設された図示しないパルスモータによって回転せしめられる。なお、チャックテーブル36には、後述する環状のフレームを固定するためのクランプ362が配設されている。
【0018】
上記第1の滑動ブロック32は、その下面に上記一対の案内レール31、31と嵌合する一対の被案内溝321、321が設けられているとともに、その上面に矢印Yで示す割り出し送り方向(Y軸方向)に沿って平行に形成された一対の案内レール322、322が設けられている。このように構成された第1の滑動ブロック32は、被案内溝321、321が一対の案内レール31、31に嵌合することにより、一対の案内レール31、31に沿って矢印Xで示す加工送り方向(X軸方向)に移動可能に構成される。図示の実施形態におけるチャックテーブル機構3は、第1の滑動ブロック32を一対の案内レール31、31に沿って矢印Xで示す加工送り方向(X軸方向)に移動させるための加工送り手段37を具備している。加工送り手段37は、上記一対の案内レール31と31の間に平行に配設された雄ネジロッド371と、該雄ネジロッド371を回転駆動するためのパルスモータ372等の駆動源を含んでいる。雄ネジロッド371は、その一端が上記静止基台2に固定された軸受ブロック373に回転自在に支持されており、その他端が上記パルスモータ372の出力軸に伝動連結されている。なお、雄ネジロッド371は、第1の滑動ブロック32の中央部下面に突出して設けられた図示しない雌ネジブロックに形成された貫通雌ネジ穴に螺合されている。従って、パルスモータ372によって雄ネジロッド371を正転および逆転駆動することにより、第一の滑動ブロック32は案内レール31、31に沿って矢印Xで示す加工送り方向(X軸方向)に移動せしめられる。
【0019】
図示の実施形態におけるレーザー加工機は、上記チャックテーブル36の加工送り量を検出するための加工送り量検出手段374を備えている。加工送り量検出手段374は、案内レール31に沿って配設されたリニアスケール374aと、第1の滑動ブロック32に配設され第1の滑動ブロック32とともにリニアスケール374aに沿って移動する読み取りヘッド374bとからなっている。この送り量検出手段374の読み取りヘッド374bは、図示に実施形態においては1μm毎に1パルスのパルス信号を後述する制御手段に送る。そして後述する制御手段は、入力したパルス信号をカウントすることにより、チャックテーブル36の加工送り量を検出する。なお、上記加工送り手段37の駆動源としてパルスモータ372を用いた場合には、パルスモータ372に駆動信号を出力する後述する制御手段の駆動パルスをカウントすることにより、チャックテーブル36の加工送り量を検出することもできる。また、上記加工送り手段37の駆動源としてサーボモータを用いた場合には、サーボモータの回転数を検出するロータリーエンコーダが出力するパルス信号を後述する制御手段に送り、制御手段が入力したパルス信号をカウントすることにより、チャックテーブル36の加工送り量を検出することもできる。
【0020】
上記第2の滑動ブロック33は、その下面に上記第1の滑動ブロック32の上面に設けられた一対の案内レール322、322と嵌合する一対の被案内溝331、331が設けられており、この被案内溝331、331を一対の案内レール322、322に嵌合することにより、矢印Yで示す割り出し送り方向(Y軸方向)に移動可能に構成される。図示の実施形態におけるチャックテーブル機構3は、第2の滑動ブロック33を第1の滑動ブロック32に設けられた一対の案内レール322、322に沿って矢印Yで示す割り出し送り方向(Y軸方向)に移動させるための第1の割り出し送り手段38を具備している。第1の割り出し送り手段38は、上記一対の案内レール322と322の間に平行に配設された雄ネジロッド381と、該雄ネジロッド381を回転駆動するためのパルスモータ382等の駆動源を含んでいる。雄ネジロッド381は、その一端が上記第1の滑動ブロック32の上面に固定された軸受ブロック383に回転自在に支持されており、その他端が上記パルスモータ382の出力軸に伝動連結されている。なお、雄ネジロッド381は、第2の滑動ブロック33の中央部下面に突出して設けられた図示しない雌ネジブロックに形成された貫通雌ネジ穴に螺合されている。従って、パルスモータ382によって雄ネジロッド381を正転および逆転駆動することにより、第2の滑動ブロック33は案内レール322、322に沿って矢印Yで示す割り出し送り方向(Y軸方向)に移動せしめられる。
【0021】
図示の実施形態におけるレーザー加工機は、上記第2の滑動ブロック33の割り出し加工送り量を検出するための割り出し送り量検出手段384を備えている。割り出し送り量検出手段384は、案内レール322に沿って配設されたリニアスケール384aと、第2の滑動ブロック33に配設され第2の滑動ブロック33とともにリニアスケール384aに沿って移動する読み取りヘッド384bとからなっている。この送り量検出手段384の読み取りヘッド384bは、図示に実施形態においては1μm毎に1パルスのパルス信号を後述する制御手段に送る。そして後述する制御手段は、入力したパルス信号をカウントすることにより、チャックテーブル36の割り出し送り量を検出する。なお、上記割り出し送り手段38の駆動源としてパルスモータ382を用いた場合には、パルスモータ382に駆動信号を出力する後述する制御手段の駆動パルスをカウントすることにより、チャックテーブル36の割り出し送り量を検出することもできる。また、上記第1の割り出し送り手段38の駆動源としてサーボモータを用いた場合には、サーボモータの回転数を検出するロータリーエンコーダが出力するパルス信号を後述する制御手段に送り、制御手段が入力したパルス信号をカウントすることにより、チャックテーブル36の割り出し送り量を検出することもできる。
【0022】
上記レーザー光線照射ユニット支持機構4は、静止基台2上に矢印Yで示す割り出し送り方向(Y軸方向)に沿って平行に配設された一対の案内レール41、41と、該案内レール41、41上に矢印Yで示す方向に移動可能に配設された可動支持基台42を具備している。この可動支持基台42は、案内レール41、41上に移動可能に配設された移動支持部421と、該移動支持部421に取り付けられた装着部422とからなっている。装着部422は、一側面に矢印Zで示す方向(Z軸方向)に延びる一対の案内レール423、423が平行に設けられている。図示の実施形態におけるレーザー光線照射ユニット支持機構4は、可動支持基台42を一対の案内レール41、41に沿って矢印Yで示す割り出し送り方向(Y軸方向)に移動させるための第2の割り出し送り手段43を具備している。第2の割り出し送り手段43は、上記一対の案内レール41、41の間に平行に配設された雄ネジロッド431と、該雄ねじロッド431を回転駆動するためのパルスモータ432等の駆動源を含んでいる。雄ネジロッド431は、その一端が上記静止基台2に固定された図示しない軸受ブロックに回転自在に支持されており、その他端が上記パルスモータ432の出力軸に伝動連結されている。なお、雄ネジロッド431は、可動支持基台42を構成する移動支持部421の中央部下面に突出して設けられた図示しない雌ネジブロックに形成された雌ネジ穴に螺合されている。このため、パルスモータ432によって雄ネジロッド431を正転および逆転駆動することにより、可動支持基台42は案内レール41、41に沿って矢印Yで示す割り出し送り方向(Y軸方向)に移動せしめられる。
【0023】
上記加工用レーザー光線照射ユニット5と計測用レーザー光線照射ユニット6が装着された共通のユニットホルダ44は、上記可動支持基台42の装着部422に設けられた一対の案内レール423、423に摺動可能に嵌合する一対の被案内溝441、441が設けられており、この被案内溝441、441を上記案内レール423、423に嵌合することにより、矢印Zで示す方向(Z軸方向)に移動可能に支持される。
【0024】
図示の実施形態におけるレーザー加工装置は、ユニットホルダ44を一対の案内レール423、423に沿って矢印Zで示す方向(Z軸方向)に移動させるための移動手段53を具備している。移動手段は、一対の案内レール423、423の間に配設された雄ネジロッド(図示せず)と、該雄ネジロッドを回転駆動するためのパルスモータ442等の駆動源を含んでおり、パルスモータ442によって図示しない雄ネジロッドを正転および逆転駆動することにより、加工用レーザー光線照射ユニット5と計測用レーザー光線照射ユニット6が装着されたユニットホルダ44を案内レール423、423に沿って矢印Zで示す方向(Z軸方向)に移動せしめる。なお、図示の実施形態においてはパルスモータ532を正転駆動することにより加工用レーザー光線照射ユニット5と計測用レーザー光線照射ユニット6を上方に移動し、パルスモータ532を逆転駆動することにより加工用レーザー光線照射ユニット5と計測用レーザー光線照射ユニット6を下方に移動するようになっている。
【0025】
図示の実施形態における加工用レーザー光線照射ユニット5は、上記ユニットホルダ44に固定され実質上水平に延出する円筒形状のケーシング51を含んでいる。また、加工用レーザー光線照射ユニット5は、図2に示すようにケーシング51内に配設されたパルスレーザー光線発振手段52および出力調整手段53と、上記ケーシング51の先端に装着された集光器54を具備している。上記パルスレーザー光線発振手段52は、YAGレーザー発振器或いはYVO4レーザー発振器からなるパルスレーザー光線発振器521と、これに付設された繰り返し周波数設定手段522とから構成されている。
【0026】
上記加工用レーザー光線照射ユニット5を構成するケーシング51の前端部には、撮像手段7が配設されている。この撮像手段7は、可視光線によって撮像する通常の撮像素子(CCD)の外に、被加工物に赤外線を照射する赤外線照明手段と、該赤外線照明手段によって照射された赤外線を捕らえる光学系と、該光学系によって捕らえられた赤外線に対応した電気信号を出力する撮像素子(赤外線CCD)等で構成されており、撮像した画像信号を後述する制御手段に送る。
【0027】
次に、ウエーハの計測装置を構成する計測用レーザー光線照射ユニット6について、図1および図3を参照して説明する。
図示の実施形態における計測用レーザー光線照射ユニット6は、上記ユニットホルダ44に固定され実質上水平に延出する円筒形状のケーシング61を含んでいる。また、計測用レーザー光線照射ユニット6は、図3に示すようにケーシング61内に配設されたレーザー光線発振器62と、該レーザー光線発振器62から発振されたレーザー光線を集光し上記チャックテーブル36に保持された被加工物Wに照射する集光レンズ631を備えた集光器63を具備している。レーザー光線発振器62は、図示の実施形態においてはシリコンウエーハに対して透過するとともに反射する1064nmの波長を有する連続波レーザー光線を照射する。集光器63は、図1に示すように上記ケーシング51の先端に装着される。
【0028】
図3を参照して説明を続けると、計測用レーザー光線照射ユニット6は、レーザー光線発振器62から発振されたレーザー光線を集光する集光器63の集光点を変更する集光点変更手段64と、チャックテーブル36に保持された半導体ウエーハ10に照射されたレーザー光線の反射光を受光する受光手段65と、レーザー光線発振器62と集光点変更手段64との間に配設された第1のハーフミラー66と、該第1のハーフミラー66を介して集光器63に導くレーザー光線の一部を上記受光手段65に導く第2のハーフミラー67を具備している。上記レーザー光線発振器62は、波長が1064nmで出力が例えば10mWの連続波レーザー光線を発振する。上記集光点変更手段64は、図示の実施形態においてはレーザー光線発振器62から発振され第1のハーフミラー66を介して導かれたレーザー光線を非平行の光線に生成する凸レンズからなる非平行生成レンズ641と、レーザー光線発振器62から集光器63までの光路長を変更する光路長変更ミラー手段642と、該光路長変更ミラー手段642を介して導かれたレーザー光線を該光路長変更ミラー手段642に向けて全反射する全反射ミラー643とからなっている。
【0029】
光路長変更ミラー手段642は、図4に示すように所定の間隔をもって互いに平行に反射面を対向して配設された一対のミラー642a、642bと、該一対のミラー642a、642bの設置角度を調整する角度調整アクチュエータ642cと、該一対のミラー642a、642bの設置角度を検出する設置角度検出センサー642dとからなっている。このような光路長変更ミラー手段642としては、印加される振動周期で一対のミラー642a、642bの設置角度を変化させるガルバノスキャナーを用いることが望ましい。設置角度検出センサー642dは、図示の実施形態においては角度調整アクチュエータ642cに装着されたロータリーエンコーダからなり、検出信号を後述する制御手段に送る。このように構成された光路長変更ミラー手段642は、一対のミラー642a、642bを図3において1点鎖線から2点鎖線で示すように設置角度を変更することにより、レーザー光線の光路長を変更することができる。上記受光手段65は、上記第2のハーフミラー67によって分光された反射光の一部が通過する直径が10μmのピンホール651aを備えたマスク65aと、該マスク65aを通過した反射光を受光するホトディテクタ65bとからなっており、ホトディテクタ65bは受光した光量に対応した電圧信号を後述する制御手段に送る。
【0030】
上述した計測用レーザー光線照射ユニット6の作用について説明する。
上記レーザー光線発振器62から発振された連続波のレーザー光線は、図3において実線で示すように第1のハーフミラー66を所定の割合で透過し、非平行生成レンズ641によって非平行の光線に生成され、光路長変更ミラー手段642の一対のミラー642a、642bを通過した後、全反射ミラー643に到達する。全反射ミラー643に到達したレーザー光線は、全反射ミラー643によって垂直に全反射し光路長変更ミラー手段642の一対のミラー642b、642aを逆走して非平行生成レンズ641を通して第1のハーフミラー66に到達する。第1のハーフミラー66に到達したレーザー光線は、所定の割合で集光器63に向けて反射し、第2のハーフミラー67を所定の割合で透過し、集光器63の集光レンズ631によって集光されてチャックテーブル36に保持された被加工物Wに照射される。被加工物Wに照射されたレーザー光線の反射光は、図3において点線で示すように集光レンズ631を介して第2のハーフミラー67に達し、第2のハーフミラー67によって所定の割合で受光手段65に向けて反射する。受光手段65に向けて反射されたレーザー光線の反射光は、マスク65aのピンホール651aを通してホトディテクタ65bに達する。
【0031】
ここで、上記レーザー光線発振器62から発振されるレーザー光線の集光レンズ631による集光点について説明する。
上記非平行生成レンズ641の焦点距離をf1、集光レンズ631の焦点距離をf2、非平行生成レンズ641と集光レンズ631との間の光路長をL、非平行生成レンズ641から全反射ミラー643までの光路長をm1(光路長変更ミラー手段642によって変化する)、集光レンズ631から集光点Pまでの光路長をm2とすると、レンズの公式により、
(1)m1<f1およびm1>f1のとき

(2)m1=f1のとき
m2=f2
の関係がある。従って、光路長変更ミラー手段642の一対のミラー642a、642bの設置角度を変更し非平行生成レンズ641から全反射ミラー643までの光路長m1を変更することにより、集光レンズ631から集光点Pまでの光路長m2を変更することができる。
【0032】
また、集光レンズ631からチャックテーブル36に保持された半導体ウエーハ10の上面までの距離をd、集光レンズ631からマスク67aまでの光路長をnとすると、

になる位置にマスク65aを配置する。
【0033】
ここで、集光レンズ631によって集光されたレーザー光線の集光点Pの位置とホトディテクタ65bによって受光される反射光の光量について、図5および図6を参照して説明する。
図5において実線は、集光レンズ631によって集光されたレーザー光線の集光点Pが被加工物Wの上面に位置する状態を示す。このようにレーザー光線の集光点Pが被加工物Wの上面に位置する場合には、反射光はマスク65a部で集光されるため、全ての反射光がピンホール651aを通過してホトディテクタ65bに受光される。従って、ホトディテクタ65bによって受光される光量は最大値となる。一方、図5において点線で示すように集光レンズ631によって集光されたレーザー光線の集光点Pが被加工物Wの上面と下面の間に位置する場合には、被加工物Wの上面での反射面積が大きいため、反射光は反射光はマスク65a部で集光されない。従って、ピンホール651aを通過する反射光は一部となり、ホトディテクタ65bによって受光される光量は減少する。
【0034】
また、図6において実線は、集光レンズ631によって集光されたレーザー光線の集光点Pが被加工物Wの下面に位置する状態を示す。このようにレーザー光線の集光点Pが被加工物Wの下面に位置する場合には、反射光はマスク65a部で集光されるため、全ての反射光がピンホール651aを通過してホトディテクタ65bに受光される。従って、ホトディテクタ65bによって受光される光量は最大値となる。一方、図6において点線で示すように集光レンズ631によって集光されたレーザー光線の集光点Pが被加工物Wの下面より下側に位置する場合には、被加工物Wの上面での反射面積が大きいため、反射光は反射光はマスク65a部で集光されない。従って、ピンホール651aを通過する反射光は一部となり、ホトディテクタ65bによって受光される光量は減少する。
【0035】
従って、光路長変更ミラー手段642の一対のミラー642a、642bの設置角度を変更して、集光レンズ631によって集光されるレーザー光線の集光点Pを被加工物Wの上側から下側に移動すると、ホトディテクタ65bは集光点Pが被加工物Wの上面と下面に位置するとき受光量がピークとなり図7に示すような検出信号を出力する。即ち、図7は横軸が一対のミラー642a、642bの設置角度を表し、縦軸がホトディテクタ65bの出力電圧(V)を表す。そして、図7に示すような検出信号を入力した後述する制御手段は、
レーザー光線の集光点Pが被加工物Wの上面と下面に位置するときの2つのピーク時における一対のミラー642a、642bの設置角度差を求め、この設置角度差に基いて被加工物Wの厚みを求める。
【0036】
即ち、後述する制御手段は、図8に示すように上記2つのピーク時における一対のミラー642a、642bの設置角度差に対応する被加工物Wの厚みとの関係を設定した厚み制御マップを備えており、この厚み制御マップを参照して上記一対のミラー642a、642bの設置角度差に対応した厚みを求める。図8は、シリコンウエーハについて上記設置角度差に対する厚みとの関係を実験によって求めたものである。なお図8に示す厚み制御マップおいて、実線は集光レンズ631のNA値が0.35の場合を表し、1点鎖線は集光レンズ631のNA値が0.4の場合を表し、2点鎖線は集光レンズ631のNA値が0.45の場合を表している。このようにして設定された制御マップは、後述する制御手段のメモリに格納される。
【0037】
図1に戻って説明を続けると、図示の実施形態におけるレーザー加工装置は、制御手段8を具備している。制御手段8はコンピュータによって構成されており、制御プログラムに従って演算処理する中央処理装置(CPU)81と、制御プログラム等を格納するリードオンリメモリ(ROM)82と、演算結果等を格納する読み書き可能なランダムアクセスメモリ(RAM)83と、カウンター84と、入力インターフェース85および出力インターフェース86とを備えている。制御手段8の入力インターフェース85には、上記加工送り量検出手段374、割り出し送り量検出手段384、設置角度検出センサー642d、ホトディテクタ65bおよび撮像手段7等からの検出信号が入力される。そして、制御手段8の出力インターフェース86からは、上記パルスモータ372、パルスモータ382、パルスモータ432、パルスモータ532、加工用パルスレーザー光線発振手段5、計測用レーザー光線照射ユニット6等に制御信号を出力する。なお、上記ランダムアクセスメモリ(RAM)83は、上述した図8に示す制御マップを格納する第1の記憶領域83a、後述する被加工物の設計値のデータを記憶する第2の記憶領域83bや他の記憶領域を備えている。
【0038】
図示の実施形態におけるレーザー加工機は以上のように構成されており、以下その作用について説明する。
図9にはレーザー加工される被加工物としての半導体ウエーハ10の平面図が示されている。図9に示す半導体ウエーハ10は、シリコンウエーハからなっており、その表面10aに格子状に配列された複数のストリート101によって複数の領域が区画され、この区画された領域にIC、LSI等のデバイス102がそれぞれ形成されている。この各デバイス102は、全て同一の構成をしている。デバイス102の表面にはそれぞれ図10に示すように複数のボンディングパッド103(103a〜103j)が形成されている。なお、図示の実施形態においては、103aと103f、103bと103g、103cと103h、103dと103i、103eと103jは、X方向位置が同一である。この複数のボンディングパッド103(103a〜103j)部にそれぞれ裏面10bからボンディングパッド103に達する加工穴(ビアホール)が形成される。各デバイス102におけるボンディングパッド103(103a〜103j)のX方向(図10おいて左右方向)の間隔A、および各デバイス102に形成されたボンディングパッド103におけるストリート101を挟んでX方向(図10において左右方向)に隣接するボンディングパッド即ちボンディングパッド103eとボンディングパッド103aとの間隔Bは、図示の実施形態においては同一間隔に設定されている。また、各デバイス102におけるボンディングパッド103(103a〜103j)のY方向(図10において上下方向)の間隔C、および各デバイス102に形成されたボンディングパッド103におけるストリート101を挟んでY方向(図9において上下方向)に隣接するボンディングパッド即ちボンディングパッド103fとボンディングパッド103aおよびボンディングパッド103jとボンディングパッド103eとの間隔Dは、図示の実施形態においては同一間隔に設定されている。このように構成された半導体ウエーハ10について、図9に示す各行E1・・・・Enおよび各列F1・・・・Fnに配設されたデバイス102の個数と上記各間隔A,B,C,Dは、その設計値のデータが上記ランダムアクセスメモリ(RAM)83の第2に記憶領域83bに格納されている。
【0039】
上述したレーザー加工機を用い、上記半導体ウエーハ10に形成された各デバイス102のボンディングパッド103(103a〜103j)部に加工孔(ビアホール)を形成するレーザー加工の実施形態について説明する。
上記のように構成された半導体ウエーハ10は、図11に示すように環状のフレーム11に装着されたポリオレフィン等の合成樹脂シートからなる保護テープ12に表面10aを貼着する。従って、半導体ウエーハ10は、裏面10bが上側となる。このようにして環状のフレーム11に保護テープ12を介して支持された半導体ウエーハ10は、図1に示すレーザー加工機のチャックテーブル36上に保護テープ12側を載置する。そして、図示しない吸引手段を作動することにより半導体ウエーハ10は、保護テープ12を介してチャックテーブル36上に吸引保持される。また、環状のフレーム11は、クランプ362によって固定される。
【0040】
上述したように半導体ウエーハ10を吸引保持したチャックテーブル36は、加工送り手段37によって撮像手段7の直下に位置付けられる。チャックテーブル36が撮像手段7の直下に位置付けられると、チャックテーブル36上の半導体ウエーハ10は、図12に示す座標位置に位置付けられた状態となる。この状態で、チャックテーブル36に保持された半導体ウエーハ10に形成されている格子状のストリート101がX軸方向とY軸方向に平行に配設されているか否かのアライメント作業を実施する。即ち、撮像手段7によってチャックテーブル36に保持された半導体ウエーハ10を撮像し、パターンマッチング等の画像処理を実行してアライメント作業を行う。このとき、半導体ウエーハ10のストリート101が形成されている表面10aは下側に位置しているが、撮像手段7が上述したように赤外線照明手段と赤外線を捕らえる光学系および赤外線に対応した電気信号を出力する撮像素子(赤外線CCD)等で構成された撮像手段を備えているので、半導体ウエーハ10の裏面10bから透かしてストリート101を撮像することができる。
【0041】
次に、チャックテーブル36を移動して、半導体ウエーハ10に形成されたデバイス102における最上位の行E1の図12において最左端のデバイス102を撮像手段7の直下に位置付ける。そして、更にデバイス102に形成されたボンディングパッド103(103a〜103j)における図12において左上のボンディングパッド103aを撮像手段7の直下に位置付ける。この状態で撮像手段7がボンディングパッド103aを検出したならばその座標値(a1)を第1の加工送り開始位置座標値として制御手段8に送る。そして、制御手段8は、この座標値(a1)を第1の加工送り開始位置座標値としてランダムアクセスメモリ(RAM)83に格納する(加工送り開始位置検出工程)。
【0042】
このようにして図12において最上位の行E1のデバイス102における第1の加工送り開始位置座標値(a1)を検出したならば、チャックテーブル36をストリート101の間隔だけY軸方向に割り出し送りするとともにX軸方向に移動して、図12において最上位から2番目の行E2における最左端のデバイス102を撮像手段7の直下に位置付ける。そして、更にデバイス102に形成されたボンディングパッド103(103a〜103j)における図12において左上のボンディングパッド103aを撮像手段11の直下に位置付ける。この状態で撮像手段7がボンディングパッド103aを検出したならばその座標値(a2)を第2の加工送り開始位置座標値として制御手段8に送る。そして、制御手段8は、この座標値(a2)を第2の加工送り開始位置座標値としてランダムアクセスメモリ(RAM)83に格納する。以後、制御手段8は、上述した割り出し送りと加工送り開始位置検出工程を図12において最下位の行Enまで繰り返し実行し、各行に形成されたデバイス302の加工送り開始位置座標値(a3〜an)を検出して、これをランダムアクセスメモリ(RAM)83に格納する。
【0043】
次に、半導体ウエーハ10の各デバイス102に形成された各ボンディングパッド103(103a〜103j)部の厚みを検出する厚み検出工程を実施する。厚み検出工程は、先ず加工送り手段37を作動しチャックテーブル36を移動して、上記ランダムアクセスメモリ(RAM)83に格納されている第1の加工送り開始位置座標値(a1)を計測用レーザー光線照射ユニット6の集光器63の直下に位置付ける。そして制御手段8は、計測用レーザー光線照射ユニット6を上述したように制御して半導体ウエーハ10の厚みを検出し、この検出値を第1の加工送り開始位置座標値(a1)の半導体ウエーハ10の厚みとしてランダムアクセスメモリ(RAM)83に格納する。ここで、半導体ウエーハ10の厚みを求める手順について図7および図8を参照して説明する。即ち、制御手段8は、図7に示すホトディテクタ65bの出力電圧(V)を入力したならば、2つのピーク時における一対のミラー642a、642bの設置角度差を求める。図7に示す例においては、集光レンズ631のNA値が0.35であり、レーザー光線の集光点Pが半導体ウエーハ10の上面に位置するときの一対のミラー642a、642bの設置角度が46.9度で、レーザー光線の集光点Pが半導体ウエーハ10の下面に位置するときの一対のミラー642a、642bの設置角度が49.6度であるから、2つのピーク時における一対のミラー642a、642bの設置角度差(49.6度−46.9度)は2.7度である。このようにして2つのピーク時における一対のミラー642a、642bの設置角度差を求めたならば、制御手段8は図8に示す厚み制御マップにおける実線で示す集光レンズ631のNA値が0.35のデータと照合する。即ち、2つのピーク時における一対のミラー642a、642bの設置角度差が2.7度であるから、図8に示す厚み制御マップにおける実線で示す集光レンズ631のNA値が0.35のデータと照合すると、半導体ウエーハ10の厚みは55μmとなる。このようにして、第1の加工送り開始位置座標値(a1)の厚み検出工程を実施したならば、制御手段8は加工送り手段37を作動しチャックテーブル36を上記間隔Aだけ移動して、ボンディングパッド103bに対応する位置を計測用レーザー光線照射ユニット6の集光器63の直下に位置付け、上述した厚み検出工程を実施し、その検出値をランダムアクセスメモリ(RAM)83に格納する。このようにして、半導体ウエーハ10に形成された全てのボンディングパッド103に対応する位置に対して厚み検出工程を実施し、その検出値をランダムアクセスメモリ(RAM)83に格納する。
【0044】
次に、半導体ウエーハ10の各デバイス102に形成された各ボンディングパッド103(103a〜103j)部にレーザー加工孔(ビアホール)を穿孔する穿孔工程を実施する。穿孔工程は、先ず加工送り手段37を作動しチャックテーブル36を移動して、上記ランダムアクセスメモリ(RAM)103に格納されている第1の加工送り開始位置座標値(a1)を、加工用レーザー光線照射ユニット5のレーザー光線照射手段52の集光器54の直下に位置付ける。このように第1の加工送り開始位置座標値(a1)が集光器54の直下に位置付けられた状態が図13に示す状態である。図13に示す状態から制御手段8は、加工用レーザー光線照射ユニット5のパルスレーザー光線発振手段52を制御して集光器54から加工用パルスレーザー光線を照射する。
【0045】
上記穿孔工程における加工条件の一例について説明する。
光源 :LD励起QスイッチNd:YVO4パルスレーザー
波長 :355nm
エネルギー密度 :30J/cm2
集光スポット径 :φ70μm
このような加工条件によって穿孔工程を実施すると、シリコンウエーハにはパルスレーザー光線の1パルス当たり深さが2μm程度のレーザー加工孔を形成することができる。従って、上記厚み検出工程において検出された加工部の厚みが54μmであればパルスレーザー光線を27パルス照射し、加工部の厚みが58μmであればパルスレーザー光線を29パルス照射することにより、図14に示すようにボンディングパッド103に達するレーザー加工孔110を形成することができる。
【0046】
上述したようにして、第1の加工送り開始位置座標値(a1)に穿孔工程を実施したならば、加工送り手段37を作動しチャックテーブル36を上記間隔Aだけ移動してボンディングパッド103bに対応する位置をレーザー光線照射手段52の集光器54の直下に位置付ける。そして、上記厚み検出工程において検出された加工部の厚みに対応して上記穿孔工程を実施する。このように半導体ウエーハ10に形成された全てのボンディングパッド103に対応する位置をレーザー光線照射手段52の集光器54の直下に位置付け上記穿孔工程を実施することにより、半導体ウエーハ10には、裏面10bから各ボンディングパッド103に達するレーザー加工孔110を形成することができる。
【0047】
次に、ウエーハの計測装置の他の実施形態について、図15および図16を参照して説明する。
図15および図16に示す実施形態は、チャックテーブルに保持された被加工物の上面の高さ位置を検出するウエーハの計測装置である。図15および図16に示す実施形態は、上記図3に示す計測用レーザー光線照射ユニット6の構成は実質的に同一であるが、上記制御手段8のランダムアクセスメモリ(RAM)83に格納する制御マップが相違する。この実施形態において用いる制御マップは、図15に示すように上記一対のミラー642a、642bの設置角度に対応した被加工物Wの高さ位置を示している。図15に示す高さ制御マップは、上記一対のミラー642a、642bの設置角度が45度のとき、上記図3に示す計測用レーザー光線照射ユニット6の集光レンズ631によって集光されるレーザー光線の集光点Pがチャックテーブル36の上面である保持面に位置付けられるように設定し、チャックテーブル36に異なる厚みの複数の被加工物Wを保持し、それぞれの被加工物Wの上面に集光点Pが位置したときの一対のミラー642a、642bの設置角度を実験的に求めたものである。図15に示す高さ制御マップおいて、実線は集光レンズ631のNA値が0.35の場合を表し、1点鎖線は集光レンズ631のNA値が0.4の場合を表し、2点鎖線は集光レンズ631のNA値が0.45の場合を表している。なお、この実施形態においては、計測用レーザー光線照射ユニット6から照射されるレーザー光線は、被加工物に対して透過するとともに反射する波長である必要ななく、被加工物に対して反射する波長のレーザー光線であればよい。
【0048】
上述したウエーハの計測装置である計測用レーザー光線照射ユニット6を用いて、図16に示すように、チャックテーブル36に保持された半導体ウエーハ10のストリート101に沿って上面の高さ位置を検出するには、チャックテーブル36を作動して半導体ウエーハ10を所定間隔毎に集光器63の直下に位置付け、集光器63からレーザー光線を照射し半導体ウエーハ10の上面で反射した光を上述したようにホトディテクタ65bによって受光する。そして制御手段8は、一対のミラー642a、642bの設置角度を変更しホトディテクタ65bによって受光された反射光の光量がピークになったときの一対のミラー642a、642bの設置角度を検出し、この検出した設置角度を図15に示す高さ制御マップと照合して、検出した設置角度に対する半導体ウエーハ10の高さ位置を求め、この高さ位置をランダムアクセスメモリ(RAM)83に格納する。このように半導体ウエーハ10のストリート101に沿って所定間隔毎に高さ位置を検出することにより、半導体ウエーハ10のストリート101に沿ったウネリの状態を検出することができる。従って、加工用レーザー光線照射ユニット5のパルスレーザー光線発振手段52を制御し、集光器54から照射されるシリコンウエーハに対して透過性を有する波長の加工用パルスレーザー光線の集光点を半導体ウエーハ10の内部に位置付けストリート101に沿って照射する際に、上述したように検出した半導体ウエーハ10の高さ位置に対応して加工用パルスレーザー光線の集光点の高さ位置を制御することにより、半導体ウエーハ10の内部における上面と平行な位置に変質層を形成することができる。
【0049】
以上本発明を図示の実施形態に基いて説明したが、本発明は実施形態のみに限定されるものではなく、本発明の趣旨の範囲で種々の変形は可能である。例えば、上述した実施形態においては加工用レーザー光線照射ユニット5と計測用レーザー光線照射ユニット6にそれぞれレーザー光線発振器を装備した例を示したが、例えば加工用レーザー光線照射ユニット5のレーザー光線発振器62から発振されるレーザー光線の出力を出力調整手段53によって例えば10mWに調整して計測用レーザー光線照射ユニット6のレーザー光線として用いてもよい。
【図面の簡単な説明】
【0050】
【図1】本発明によって構成されたレーザー加工機の斜視図。
【図2】図1に示すレーザー加工機に装備される加工用レーザー光線照射ユニットのブロック構成図。
【図3】図1に示すレーザー加工機に装備される計測用レーザー光線照射ユニットのブロック構成図。
【図4】図3に示す計測用レーザー光線照射ユニットを構成する光路長変更ミラー手段の斜視図。
【図5】図3に示す計測用レーザー光線照射ユニットのレーザー光線の集光点が被加工物の上面に位置付けられたときの受光手段が反射光を受光する状態を示す説明図。
【図6】図3に示す計測用レーザー光線照射ユニットのレーザー光線の集光点が被加工物の下面に位置付けられたときの受光手段が反射光を受光する状態を示す説明図。
【図7】図3に示す計測用レーザー光線照射ユニットを構成する受光手段のホトディテクタの出力値と光路長変更ミラー手段の設置角度との関係を示す説明図。
【図8】図1に示すレーザー加工機に装備される制御手段のメモリに格納される厚み制御マップを示す図。
【図9】図1に示すレーザー加工機によって加工されるウエーハとしての半導体ウエーハの斜視図。
【図10】図9に示す半導体ウエーハの一部を拡大して示す平面図。
【図11】図9に示す半導体ウエーハを環状のフレームに装着された保護テープの表面に貼着した状態を示す斜視図。
【図12】図9に示す半導体ウエーハが図1に示すレーザー加工装置のチャックテーブルの所定位置に保持された状態における座標位置との関係を示す説明図。
【図13】図1に示すレーザー加工機によって図9に示す半導体ウエーハにレーザー加工孔を形成する穿孔工程の説明図。
【図14】図13に示す穿孔工程によってレーザー加工孔が形成された半導体ウエーハの要部拡大断面図。
【図15】図1に示すレーザー加工機に装備される制御手段のメモリに格納される高さ制御マップを示す図。
【図16】図3に示す計測用レーザー光線照射ユニットを用いてチャックテーブルに保持された半導体ウエーハの上面高さを検出する状態を示す説明図。
【符号の説明】
【0051】
2:静止基台
3:チャックテーブル機構
31:案内レール
36:チャックテーブル
37:加工送り手段
374:加工送り量検出手段
38:第1の割り出し送り手段
4:レーザー光線照射ユニット支持機構
41:案内レール
42:可動支持基台
43:第2の割り出し送り手段
433:割り出し送り量検出手段
5:加工用レーザー光線照射ユニット
51:ユニットホルダ
52:パルスレーザー光線発振手段
53:出力調整手段
54:集光器
6:計測用レーザー光線照射ユニット
61:ユニットホルダ
62:レーザー光線発振器
63:集光器
64:集光点変更手段
65:受光手段
66:第1のハーフミラー
67:第2のハーフミラー
641:非平行生成レンズ
642:光路長変更ミラー手段
643:全反射ミラー
7:撮像手段
8:制御手段
10:半導体ウエーハ
11:環状のフレーム
12:保護テープ

【特許請求の範囲】
【請求項1】
ウエーハを保持するチャックテーブルに保持されたウエーハの厚みを測定するウエーハの計測装置であって、
ウエーハに対して透過するとともに反射する波長を有するレーザー光線を照射するレーザー光線発振器と、
該レーザー光線発振器から発振されたレーザー光線を集光し該チャックテーブルに保持されたウエーハに照射する集光器と、
該チャックテーブルに保持されたウエーハに照射されたレーザー光線の反射光を受光する受光手段と、
該集光器によって集光されるレーザー光線の集光点を変更する集光点変更手段と、
該集光点変更手段からの変更信号と該受光手段からの受光信号に基いてウエーハの厚みを測定する制御手段と、を具備し、
該集光点変更手段は、所定の間隔をもって互いに平行に反射面を対向して配設された一対のミラーと、該一対のミラーの設置角度を調整する角度調整アクチュエータと、該一対のミラーの設置角度を検出し検出信号を該制御手段に出力するする設置角度検出センサーとからなる光路長変更ミラー手段を具備しており、
該制御手段は、該一対のミラーの2つの該設置角度の差とウエーハの厚みとの関係を設定した厚み制御マップを格納するメモリを備え、該角度調整アクチュエータによって該一対のミラーの設置角度を変更しつつ該受光手段からの受光信号に基いて2つの強い光量のピークを検出し、該2つの強い光量のピークを入力したときの該設置角度検出センサーからの検出信号に基いて該一対のミラーの2つの該設置角度の差を求め、該設置角度差を該厚み制御マップと照合してウエーハの厚みを求める、
ことを特徴とするウエーハの計測装置。
【請求項2】
該集光点変更手段は、該光路長変更ミラー手段に導かれるレーザー光線を非平行の光線に生成する非平行光線生成レンズと、該光路長変更ミラー手段を通過したレーザー光線を該光路長変更ミラー手段に向けて垂直に全反射する全反射ミラーを備えている、請求項1記載のウエーハの計測装置。
【請求項3】
該受光手段は、反射光の一部が通過する直径のピンホールを備えたマスクと、該マスクを通過した反射光を受光するホトディテクタとからなっている、請求項1又は2記載のウエーハの計測装置。
【請求項4】
該レーザー光線発振器から発振されるレーザー光線は、連続波レーザー光線である、請求項1から3のいずれかに記載のウエーハの計測装置。
【請求項5】
ウエーハを保持するチャックテーブルと、該チャックテーブルに保持されたウエーハに加工用のレーザー光線を照射する加工用レーザー光線照射手段と、を具備するレーザー加工機であって、請求項1記載のウエーハの計測装置が配設されており、該計測装置は該チャックテーブルに保持されたウエーハの厚みを計測する、
ことを特徴とするレーザー加工機。
【請求項6】
ウエーハを保持するチャックテーブルに保持されたウエーハの上面高さを測定するウエーハの計測装置であって、
レーザー光線を照射するレーザー光線発振器と、
該レーザー光線発振器から発振されたレーザー光線を集光し該チャックテーブルに保持されたウエーハに照射する集光器と、
該チャックテーブルに保持されたウエーハに照射されたレーザー光線の反射光を受光する受光手段と、
該集光器によって集光されるレーザー光線の集光点を変更する集光点変更手段と、
該集光点変更手段からの変更信号と該受光手段からの受光信号に基いてウエーハの高さを測定する制御手段と、を具備し、
該集光点変更手段は、所定の間隔をもって互いに平行に反射面を対向して配設された一対のミラーと、該一対のミラーの設置角度を調整する角度調整アクチュエータと、該一対のミラーの設置角度を検出し検出信号を該制御手段に出力するする設置角度検出センサーとからなる光路長変更ミラー手段を具備しており、
該制御手段は、該一対のミラーの該設置角度と該チャックテーブルに保持されたウエーハの上面高さとの関係を設定した高さ制御マップを格納するメモリを備え、該角度調整アクチュエータによって該一対のミラーの設置角度を変更しつつ該受光手段からの受光信号に基いて強い光量のピークを検出し、該強い光量のピークを入力したときの該設置角度検出センサーからの検出信号に基いて該一対のミラーの2つの該設置角度を求め、該設置角度を該高さ制御マップと照合してチャックテーブルに保持されたウエーハの上面高さを求める、
ことを特徴とするウエーハの計測装置。
【請求項7】
該集光点変更手段は、該光路長変更ミラー手段に導かれるレーザー光線を非平行の光線に生成する非平行光線生成レンズと、該光路長変更ミラー手段を通過したレーザー光線を該光路長変更ミラー手段に向けて垂直に全反射する全反射ミラーを備えている、請求項6記載のウエーハの計測装置。
【請求項8】
該受光手段は、反射光の一部が通過する直径のピンホールを備えたマスクと、該マスクを通過した反射光を受光するホトディテクタとからなっている、請求項6又は7記載のウエーハの計測装置。
【請求項9】
該レーザー光線発振器から発振されるレーザー光線は、連続波レーザー光線である、請求項6から8のいずれかに記載のウエーハの計測装置。
【請求項10】
ウエーハを保持するチャックテーブルと、該チャックテーブルに保持されたウエーハに加工用レーザー光線を照射するレーザー光線照射手段と、を具備するレーザー加工機であって、請求項6記載のウエーハの計測装置が配設されており、該計測装置は該チャックテーブルに保持されたウエーハの上面高さを計測する、
ことを特徴とするレーザー加工機

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate

【図14】
image rotate

【図15】
image rotate

【図16】
image rotate


【公開番号】特開2008−159616(P2008−159616A)
【公開日】平成20年7月10日(2008.7.10)
【国際特許分類】
【出願番号】特願2006−343185(P2006−343185)
【出願日】平成18年12月20日(2006.12.20)
【出願人】(000134051)株式会社ディスコ (2,397)
【Fターム(参考)】