説明

車両の制御装置

【課題】駆動源の頻繁な切換が抑制される車両の制御装置を提供する。
【解決手段】可変気筒エンジン10とMG1とから成る駆動力源の切換に際して時間的ヒステリシスT1 が設けられているので、可変気筒エンジン10の気筒切換や可変気筒エンジン10とMG1との間の切換の頻度が抑制され、運転性が高められる。例えば、可変気筒エンジン10の全気筒運転状態が判定されてからの経過時間tELが予め設定された運転時間T1 を超えない間は全気筒領域が拡大された駆動力源マップが用いられて全気筒運転状態が継続され、その経過時間tELが予め設定された運転時間T1 を超えると駆動力源基本マップ(A)または(B)が用いられるので、アクセルペダルの戻し操作に応答して全気筒運転から部分気筒運転或いはMG1による走行へ切り換えられ、可変気筒エンジン10の全気筒運転状態から部分気筒運転或いはMG1による走行へのビジー切換が少なくされる。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、可変気筒エンジンと電動モータ或いはモータジェネレータとを駆動力源として走行させられる車両の制御装置に関し、特に、駆動力源の頻繁な切換を抑制し、燃費を改善し、駆動力を確保する技術に関するものである。
【背景技術】
【0002】
駆動輪に連結される動力伝達機構にエンジンおよび電動モータを連結した車両用ハイブリッド駆動装置が知られている。たとえば、特許文献1に記載された装置がそれである。これによれば、すべての気筒を運転する全気筒運転と一部の気筒を作動させ他の気筒を休止する部分気筒運転(休筒運転)とに切換可能な可変気筒エンジンが用いられている。
【特許文献1】特開平11−350995号公報
【発明の開示】
【発明が解決しようとする課題】
【0003】
しかしながら、上記のように、可変気筒エンジンおよび電動モータが車両の駆動源として用いられると、可変気筒エンジンと電動モータとの間の切換、可変気筒エンジンにおける全気筒運転と部分気筒運転との間の切換など、駆動源の切換が頻繁となるというおそれがあった。
【0004】
本発明は以上の事情を背景として為されたものであり、その目的とするところは、駆動源の頻繁な切換が抑制される車両の制御装置を提供することにある。
【課題を解決するための手段】
【0005】
すなわち、請求項1に係る発明の要旨とするところは、可変気筒エンジンと電動機と自動変速部とを備え、走行状態に基づいて前記電動機のみを駆動力源とする電動モータ作動領域と、一部の気筒で作動する前記可変気筒エンジンまたは前記電動機および該可変気筒エンジンを駆動力源とする部分気筒作動領域と、全部の気筒で作動する前記可変気筒エンジンまたは前記電動機およびその可変気筒エンジンを駆動力源とする全気筒作動領域とのいずれかが選択される車両の制御装置において、前記可変気筒エンジンを駆動源とするエンジン運転走行中に、前記電動機から出力されるトルク状態に基づいて前記可変気筒エンジンの可変気筒切換領域を設定することにある。
【発明の効果】
【0006】
請求項1に係る発明によれば、前記可変気筒エンジンを駆動源とするエンジン運転走行中に、電動機から出力されるトルク状態に基づいて前記可変気筒エンジンの可変気筒切換領域が設定されるので、車両の燃費が改善される。
【0007】
ここで、好適には、前記電動機の出力トルクが予め設定された値以下であるか否かに基づいてその電動機のアシスト量が少ない状態であるか否かを判定するアシスト量判定手段と、そのアシスト量判定手段により電動機のアシスト量が少ない状態であると判定された場合には、判定されない場合に比較して、予め記憶された複数種類の駆動力源マップから部分気筒領域が相対的に小さい駆動力源マップに設定変更する駆動力源マップ設定手段がさらに設けられる。このようにすれば、電動機のアシスト量が少ない状態では、アシスト量が多い場合に比較して、部分気筒領域が相対的に小さく全気筒領域が相対的に大きくされた駆動力源マップに変更されるので、電動機のアシスト量が多くなるほど部分気筒領域が相対的に大きくされて、車両の燃費が改善される。
【0008】
また、好適には、前記電動機の電源は燃料電池である。このようにすれば、車両に搭載される可変気筒エンジンの燃料を改質するなどによって燃料電池から継続的に電力が電動機へ供給され得る利点がある。
【0009】
また、請求項2に係る発明の要旨とするところは、可変気筒エンジンと電動機と自動変速部とを備え、走行状態に基づいて前記電動機のみを駆動力源とする電動モータ作動領域と、一部の気筒で作動する前記可変気筒エンジンまたは前記電動機およびその可変気筒エンジンを駆動力源とする部分気筒作動領域と、全部の気筒で作動する前記可変気筒エンジンまたは前記電動機およびその可変気筒エンジンを駆動力源とする全気筒作動領域とのいずれかが選択される車両の制御装置において、前記可変気筒エンジンを駆動源とするエンジン運転走行中に、その可変気筒エンジンの出力トルク振動に対する前記電動機による制振可能性に基づいて前記可変気筒エンジンの可変気筒切換領域を設定することにある。
【0010】
請求項2に係る発明によれば、前記可変気筒エンジンを駆動源とするエンジン運転走行中に、可変気筒エンジンの出力トルク振動に対する電動機による制振可能性すなわち制振の程度に基づいてその可変気筒エンジンの可変気筒切換領域が設定されるので、車両の燃費が改善される。たとえば、電動機による制振可能性の大きい場合には可変気筒切換領域が広く設定されるので、可変気筒エンジンの部分気筒運転領域が拡大されて、車両の燃費が改善される。
【0011】
ここで、好適には、前記電動機による制振可能性の低い場合には、可変気筒切換領域のうちトルク振動が問題となる低車速側が少なくなるように設定される。このようにすれば、電動機による制振可能性の低い場合は全気筒作動状態とされて、トルク振動が好適に解消される。
【0012】
また、好適には、前記電動機による制振可能性の低い場合には、可変気筒切換領域のうちトルク振動が問題となる低アクセル開度側が少なくなるように設定される。このようにすれば、電動機による制振可能性の低い場合は全気筒作動状態とされて、トルク振動が好適に解消される。
【0013】
また、好適には、前記可変気筒エンジンは、所定数の気筒をそれぞれ有する1対のバンクを備えたものである一方、その可変気筒エンジンが片バンク作動であるときの出力トルク振動を電動機により制振することが可能であるか否かを判定する片バンク制振可能判定手段と、その片バンク制振可能判定手段により片バンク作動であるときの出力トルク振動を電動機により制振することが可能であると判定された場合には部分気筒領域が相対的に拡大された駆動力源マップを設定し、上記片バンク制振可能判定手段により片バンク作動であるときの出力トルク振動を電動機により制振することが可能でないと判定された場合には部分気筒領域が相対的に縮小された駆動力源マップを設定する駆動力源マップ設定手段とが設けられる。このようにすれば、可変気筒エンジンの片バンク作動であるときの出力トルク振動を電動機により制振することが可能である場合には部分気筒領域が相対的に拡大された駆動力源マップが設定されるので、広い範囲でトルク振動が好適に解消される。
【0014】
また、請求項3に係る発明の要旨とするところは、可変気筒エンジンと電動機と自動変速部とを備え、走行状態に基づいて前記電動機のみを駆動力源とする電動モータ作動領域と、一部の気筒で作動する前記可変気筒エンジンまたは前記電動機およびその可変気筒エンジンを駆動力源とする部分気筒作動領域と、全部の気筒で作動する前記可変気筒エンジンまたは前記電動機およびその可変気筒エンジンを駆動力源とする全気筒作動領域とのいずれかが選択される車両の制御装置において、前記可変気筒エンジンを駆動源とするエンジン運転走行中に、前記電動機の発電状態に基づいて前記可変気筒エンジンの可変気筒切換領域を設定することにある。
【0015】
請求項3に係る発明によれば、前記可変気筒エンジンを駆動源とするエンジン運転走行中に、発電機の発電状態に基づいて前記可変気筒エンジンの可変気筒切換領域が設定されるので、車両の駆動力が確保される。
【0016】
ここで、好適には、二次電池の充電時において、前記発電機の発電量が多くなるほど可変気筒エンジンの非作動気筒数が減少させられる。発電機の発電量が多くなるほど可変気筒エンジンの出力トルクの一部がその発電のために消費されるので、上記のようにすれば、発電機の発電量が多くなるほど非作動気筒数が減少させられるので、車両の駆動力が確保される。
【0017】
また、好適には、二次電池の充電時において、発電機の発電量が多くなるほど可変気筒切換領域の高負荷側が縮小される。このようにすれば、可変気筒切換領域の高負荷側の縮小に対応して全気筒運転領域が拡大されることにより、車両の駆動力が確保される。
【0018】
また、好適には、二次電池の充電必要状態であるか否かを判定する充電必要状態判定手段と、前記発電機の発電量が所定値以上であるか否かを判定する発電量判定手段と、その発電量判定手段により発電機の発電量が所定値以上であると判定された場合には可変気筒切換領域の高負荷側が相対的に縮小された駆動力源マップを選択するが、上記発電量判定手段により発電機の発電量が所定値より少ないと判定された場合には可変気筒切換領域の高負荷側が相対的に拡大された駆動力源マップを選択する駆動力源マップ選択手段とが設けられる。このようにすれば、発電機の発電量が所定値以上である場合には可変気筒切換領域の高負荷側が相対的に縮小された駆動力源マップが選択されるので、車両の駆動力が確保される。
【0019】
前記目的を達成するための別の発明の要旨とするところは、可変気筒エンジンと電動機とを駆動力源として走行させられる車両の制御装置において、アクセル開度の変化速度に基づいて可変気筒切換領域を設定することにある。
【0020】
このようにすれば、アクセル開度の変化速度に基づいて可変気筒エンジンの気筒切換が少なくなるように可変気筒切換領域が設定変更されるので、可変気筒エンジンの気筒切換の頻度が抑制され、運転性が高められる。
【0021】
ここで、好適には、前記可変気筒エンジンの気筒切換作動や電動機の作動を領域判定するための駆動力源マップにおいて、アクセル開度の変化速度が大きくなるほど部分気筒作動領域たとえば片バンク作動領域が小さくなるように変更する部分気筒作動領域変更手段が設けられる。このようにすれば、アクセル開度の変化速度が大きくなるほど部分気筒作動領域が小さくされるので、全気筒運転と部分気筒運転との間の切換が少なくされる。
【0022】
また、好適には、上記部分気筒作動領域変更手段は、アクセル開度の変化速度が大きくなるほど部分気筒作動領域たとえば片バンク作動領域の高負荷側の境界線を低負荷側へ移動させるものである。このようにすれば、アクセル開度の変化速度が大きくなるほど片バンク作動領域の高負荷側が縮小されてその分だけ全気筒領域が拡大されるので、全気筒運転状態が継続される確率が高くなり、全気筒運転と部分気筒運転との間の切換が少なくされる。
【0023】
また、好適には、電動機による走行中であるか否かを判定するモータ走行中判定手段と、アクセル開度の変化速度が所定値を超えたか否かを判定するアクセル開度変化速度判定手段とが設けられ、前記部分気筒作動領域変更手段は、上記モータ走行中判定手段により電動機による走行中であると判定され、且つ上記アクセル開度変化速度判定手段によりアクセル開度の変化速度が所定値を超えたと判定されたときに、部分気筒作動領域が小さくなるように変更するものである。このようにすれば、高負荷側において切換が行われ電動機による走行中にアクセルペダルの踏込操作が行われたときに、全気筒運転と部分気筒運転との間の切換が少なくされる。
【0024】
また、前記発明と主要部が共通する別の発明の要旨とするところは、可変気筒エンジンと電動機とを駆動力源として走行させられる車両の制御装置において、可変気筒切換領域をモータ走行領域よりも高車速側に設定したことにある。
【0025】
このようにすれば、可変気筒切換領域がモータ走行領域よりも高車速側に設定されていることから、急に操作され易いアクセル開度或いはスロットル開度の変化が発生したときにたとえば電動機の運転から、可変気筒エンジンの部分気筒運転、次いで可変気筒エンジンの全気筒運転へ切換られることがなく、電動機の運転から可変気筒エンジンの全気筒運転へ、或いは可変気筒エンジンの部分気筒運転からその全気筒運転への切換にとどまるので、駆動力源の頻繁な切換が抑制される。
【0026】
ここで、好適には、前記電動機の電源は燃料電池である。このようにすれば、車両に搭載される可変気筒エンジンの燃料を改質するなどによって燃料電池から継続的に電力が電動機へ供給され得る利点がある。
【発明を実施するための最良の形態】
【0027】
以下、本発明の実施例を図面を参照しつつ詳細に説明する。
【実施例】
【0028】
図1は、本発明の一実施例の制御装置が適用された車両用動力伝達装置の構成を説明する骨子図である。図において、車両の駆動力源或いは原動機としての可変気筒エンジン10の出力は、クラッチ12、トルクコンバータ14を介して自動変速機16に入力され、図示しない差動歯車装置および車軸を介して駆動輪へ伝達されるようになっている。この可変気筒エンジン10は、吸排気弁の作動や燃料供給を止めて気筒休止させる手段等を備え、エンジンの負荷状態に応じて排気量を変化させ、燃料消費量の低減を図ることを狙いとしたエンジンである。上記クラッチ12とトルクコンバータ14との間には、電動モータ或いは電動機および発電機として機能する第1モータジェネレータMG1(以下、MG1という)が配設されている。このMG1も車両の駆動力源或いは原動機として機能する。上記トルクコンバータ14は、クラッチ12に連結されたポンプ翼車20と、自動変速機16の入力軸22に連結されたタービン翼車24と、それらポンプ翼車20およびタービン翼車24の間を直結するためのロックアップクラッチ26と、一方向クラッチ28によって一方向の回転が阻止されているステータ翼車30とを備えている。なお、可変気筒エンジン10は、それを始動させる電気モータおよび発電機として選択的に機能するモータジェネレータMG2(以下、MG2という)が作動的に連結されている。
【0029】
上記自動変速機16は、ハイおよびローの2段の切り換えを行う第1変速機32と、後進変速段および前進4段の切り換えが可能な第2変速機34とを備えている。第1変速機32は、サンギヤS0、リングギヤR0、およびキャリアK0に回転可能に支持されてそれらサンギヤS0およびリングギヤR0に噛み合わされている遊星ギヤP0から成るHL遊星歯車装置36と、サンギヤS0とキャリアK0との間に設けられたクラッチC0および一方向クラッチF0と、サンギヤS0およびハウジング38間に設けられたブレーキB0とを備えている。
【0030】
第2変速機34は、サンギヤS1、リングギヤR1、およびキャリアK1に回転可能に支持されてそれらサンギヤS1およびリングギヤR1に噛み合わされている遊星ギヤP1から成る第1遊星歯車装置40と、サンギヤS2、リングギヤR2、およびキャリアK2に回転可能に支持されてそれらサンギヤS2およびリングギヤR2に噛み合わされている遊星ギヤP2から成る第2遊星歯車装置42と、サンギヤS3、リングギヤR3、およびキャリアK3に回転可能に支持されてそれらサンギヤS3およびリングギヤR3に噛み合わされている遊星ギヤP3から成る第3遊星歯車装置44とを備えている。
【0031】
上記サンギヤS1とサンギヤS2は互いに一体的に連結され、リングギヤR1とキャリアK2とキャリアK3とが一体的に連結され、そのキャリアK3は出力軸46に連結されている。また、リングギヤR2がサンギヤS3に一体的に連結されている。そして、リングギヤR2およびサンギヤS3と中間軸48との間にクラッチC1が設けられ、サンギヤS1およびサンギヤS2と中間軸48との間にクラッチC2が設けられている。また、サンギヤS1およびサンギヤS2の回転を止めるためのバンド形式のブレーキB1がハウジング38に設けられている。また、サンギヤS1およびサンギヤS2とハウジング38との間には、一方向クラッチF1およびブレーキB2が直列に設けられている。この一方向クラッチF1は、サンギヤS1およびサンギヤS2が入力軸22と反対の方向へ逆回転しようとする際に係合させられるように構成されている。
【0032】
キャリアK1とハウジング38との間にはブレーキB3が設けられており、リングギヤR3とハウジング38との間には、ブレーキB4と一方向クラッチF2とが並列に設けられている。この一方向クラッチF2は、リングギヤR3が逆回転しようとする際に係合させられるように構成されている。
【0033】
以上のように構成された自動変速機16では、例えば図2に示す作動表に従って後進1段および変速比が順次異なる前進5段の変速段のいずれかに切り換えられる。図2において「○」は係合状態を表し、空欄は解放状態を表し、「◎」はエンジンブレーキのときの係合状態を表し、「△」は動力伝達に関与しない係合を表している。この図2から明らかなように、第2変速段(2nd)から第3変速段(3rd)へのアップシフトでは、ブレーキB3を解放すると同時にブレーキB2を係合させるクラッチツークラッチ変速が行われ、ブレーキB3の解放過程で係合トルクを持たせる期間とブレーキB2の係合過程で係合トルクを持たせる期間とがオーバラップして設けられる。それ以外の変速は、1つのクラッチまたはブレーキの係合或いは解放作動だけで行われるようになっている。上記クラッチおよびブレーキは何れも油圧アクチュエータによって係合させられる油圧式摩擦係合装置である。
【0034】
前記可変気筒エンジン10は、その作動気筒数および非作動気筒数が必要に応じて変更されることが可能となるように構成されたものであり、たとえば図3に示すように、3気筒ずつから構成される左右1対のバンク10Aおよび10Bを備え、その1対のバンク10Aおよび10Bは単独で或いは同時に作動させられるようになっている。
【0035】
図3において、可変気筒エンジン10の吸気配管50には、スロットルアクチュエータ60によって操作されるスロットル弁62が設けられている。このスロットル弁62は、基本的には図示しないアクセルペダルの操作量すなわちアクセル開度θACC に対応するスロットル開度θTHとなるように制御されるが、可変気筒エンジン10の出力を調節するために変速過渡時などの種々の車両状態に応じた開度となるように制御されるようになっている。なお、上記スロットルアクチュエータ60によって操作されるスロットル弁62が設けられた吸気配管50および排気管52は、図3では1系統だけが示されているが、好適には、バンク10Aおよび10B毎に2系統設けられている。
【0036】
また、前記MG1は可変気筒エンジン10と自動変速機16との間に配置され、クラッチ12は可変気筒エンジン10とMG1との間に配置されている。上記自動変速機16の各油圧式摩擦係合装置およびロックアップクラッチ26は、電動油圧ポンプ64から発生する油圧を元圧とする油圧制御回路66により制御されるようになっている。また、可変気筒エンジン10には、スタータ電動機および発電機などとして機能する第2モータジェネレータMG2(以下、MG2という)が作動的に連結されている。そして、MG1およびMG2の電源として機能する燃料電池70および二次電池72と、それらからMG1およびMG2へ供給される電流を制御したり或いは充電のために二次電池72へ供給される電流を制御するための切換スイッチ74および76とが設けられている。この切換スイッチ74および76は、スイッチ機能を有する装置を示すものであって、たとえばインバータ機能などを有する半導体スイッチング素子などから構成され得るものである。
【0037】
図4は、前記油圧制御回路66の一部を説明する図である。図4において、シフトレバー68に対して機械的に連結されることによりそのシフトレバー68の操作に連動させられるマニアル弁76などを介してクラッチC1およびC2が油圧制御されるようになっている。また、エンジン10とトルクコンバータ14との間に直列に介挿された入力クラッチ12は、入力クラッチ制御弁77により直接的に圧制御されるようになっている。また、オイルタンク78に還流させられた作動油は電動油圧ポンプ64により圧送され、プライマリレギュレータ79によって調圧されてから各油圧機器に供給されるようになっている。
【0038】
図5は、電子制御装置80に入力される信号およびその電子制御装置80から出力される信号を例示している。たとえば、電子制御装置80には、アクセルペダルの操作量であるアクセル開度θACC を表すアクセル開度信号、自動変速機16の出力軸46の回転速度NOUT に対応する車速信号、エンジン回転速度NE を表す信号、吸気配管50内の過給圧PINを表す信号、空燃比A/Fを表す信号、シフトレバーの操作位置SH を表す信号などが図示しないセンサから供給されている。また、電子制御装置80からは、燃料噴射弁から可変気筒エンジン10の気筒内へ噴射される燃料の量を制御するための噴射信号、自動変速機16のギヤ段を切り換えるために油圧制御回路66内のシフト弁を駆動するシフトソレノイドを制御する信号、ロックアップクラッチ26を開閉制御するために油圧制御回路66内のロックアップコントロールソレノイドを制御する信号などが出力される。
【0039】
図6は、車両のコンソールに立設された図示しないシフトレバーの操作位置を示している。このシフトレバーは、車両の前後方向に位置するPポジション、Rポジション、Nポジション、Dおよび4ポジション、3ポジション、2およびLポジションへ択一的に操作されるとともに、Dポジションと4ポジションの間が車両の左右方向に操作されるように、また、3ポジションと2ポジションとの間、および2ポジションとLポジションとの間が斜め方向に操作されるように、その支持機構が構成されている。また、そのコンソールには、自動変速モードとマニュアル変速モードとを択一的に選択するためのモード切換スイッチ82が設けられている。
【0040】
上記電子制御装置80は、CPU、ROM、RAM、入出力インターフェースなどから成る所謂マイクロコンピュータを含んで構成されており、RAMの一時記憶機能を利用しつつROMに予め記憶されたプログラムに従って信号処理を行うことにより、可変気筒エンジン10およびMG1の作動を切り換えるために駆動力源切換制御、ロックアップクラッチ26の係合、解放、或いはスリップを実行する制御、上記自動変速機16の変速制御などを行うものである。たとえば、駆動力源切換制御では、予め記憶された図7乃至図9の駆動力源マップから選択(設定)された1つの駆動力源マップから実際の車速Vおよびアクセル開度θACC に基づいて、MG1を作動させる電動モータ作動領域A、バンク10Aおよび10Bの一方である片バンクを作動させる部分気筒作動領域B、両バンク10Aおよび10Bを共に作動させる全気筒作動領域Cのいずれかを判定し、判定された領域に対応する駆動力源すなわちMG1、可変気筒エンジン10の片バンク、可変気筒エンジン10の両バンクのいずれかを作動させる。また、変速制御では、たとえば図7乃至図9の破線に示す予め記憶されたよく知られた関係(変速線図)からアクセル開度θACC (%)および車速Vに基づいて変速判断を行い、その変速判断に対応してギヤ段が得られるように油圧制御回路66内のシフトソレノイドを制御する。
【0041】
上記図7は、燃料電池70から出力される電力によってMG1からの出力トルクによるアシスト駆動が十分に保証されている状態で用いられるものであり、片バンクで出せる可変気筒エンジン10の出力トルクにこのMG1からの出力トルクを加えた総トルクが大きくなって、片バンクが使用される部分気筒運転領域Bが最も拡大されている。可変気筒エンジン10では、両バンク作動時においてその最大トルクが出力され、片バンク時の出力トルクはその半分であるが、図7では、その半分にMG1の出力トルクを加えることにより、できるだけ高アクセル開度まで片バンク状態で継続可能とし、MG1によるトルクアシストを有効に用い、片バンクの損失低減効果により燃費を改善することを狙いとしている。この片バンクの損失低減効果は、使用する気筒数の低減によって、不使用気筒がデコンプ状態とされてそのポンプ損失効果を低減させるものであり、不使用気筒に対する燃料噴射量を単に低減するものではない。
【0042】
図8は、燃料不足や過熱などにより、燃料電池70から出力される電力によってMG1からの出力トルクによるアシスト駆動が十分に保証されない状態で用いられるものであり、片バンクを使用できる部分気筒運転領域Bがアクセル開度θACC で見て図7よりも少し狭く設定されている。エンジン停止状態でMG1単独で作動させられる電動モータ作動領域Aが図7よりも狭く設定されている。図9は、燃料不足や過熱などにより、燃料電池70から出力される電力によってMG1からの出力トルクによるアシスト駆動が全く保証されない状態で用いられるものであり、電動モータ作動領域Aが設けられず、部分気筒運転領域Bが図8よりも狭く設定されている。
【0043】
図10では、可変気筒エンジン10の片バンク作動時および両バンク作動時の出力トルク特性が実線および破線を用いて示されている。また、図10の1点鎖線により示されているように、片バンク作動時においては、その出力トルクにMG1の出力トルク(アシストトルク)を加えたものが総トルクとなるので、アクセル開度θACC に対応した総トルクを得るためにMG1の出力トルクを用いることにより片バンク状態で走行できる領域が拡大される。また、アクセル開度が所定値以下であっても片バンク走行に不都合がある場合、たとえば暖気中、定期的な左右のバンク切換ができない場合には両バンク走行が行われる。図11は、アクセル開度θACC に対する総トルク特性を説明する図である。MG1のアシストトルクにより、片バンク状態で走行できる片バンク作動領域がアクセル開度θACC に対して増加することを示している。
【0044】
図12は、上記電子制御装置80の制御機能の要部すなわち駆動力源切換制御を説明する機能ブロック線図である。図10において、部分気筒作動領域変更手段96により、アクセル開度θACC の変化速度ΔθACC に基づいて可変気筒エンジン10の気筒切換頻度が少なくなるように可変気筒切換領域すなわち部分気筒作動領域Bが設定変更されるようになっている。すなわち、図7或いは図8の駆動力源マップ(A)あるいは(B)において、アクセル開度の変化速度ΔθACC が大きくなるほど部分気筒作動領域Bすなわち片バンク作動領域が小さくなるように変更される。この変更は、アクセル開度の変化速度ΔθACC が大きくなるほど部分気筒作動領域Bの高負荷側の境界線を低負荷側へ移動させ、部分気筒作動領域Bの高負荷側領域を縮小させるものである。
【0045】
また、MG1の運転、可変気筒エンジン10の片バンク運転、可変気筒エンジン10の両バンク運転の間の駆動力源の切換に際して、時間的ヒステリシスが設けられている。たとえば、両バンク運転から他の運転へ切り換えられる場合には、両バンク運転の開始から所定時間T1 だけ経過したと経過時間判定手段102により判定されるまでは他の運転へ切り換えられることが禁止され、経過後に許可される。
【0046】
また、アクセルペダルの踏込方向と戻し方向とにおいてビジー切換抑制方法が変更されるようになっている。すなわち、アクセルペダルが踏み込まれた場合に、可変気筒エンジン10の気筒切換作動やMG1の作動を領域判定するための駆動力源マップ(A)または(B)においてアクセル開度の変化速度ΔθACC が大きくなるほど部分気筒作動領域Bが小さくなるように変更する部分気筒作動領域変更手段96が設けられている。一方、アクセルペダルが戻し操作された場合に、全気筒運転すなわち両バンク運転の開始から所定時間T1 だけ経過したと経過時間判定手段102により判定されるまでは、駆動力源マップ変更手段104が、そのときに選択されている駆動力源マップ(A)又は(B)を、部分気筒作動領域Bおよび電動モータ作動領域Aが除去されて全領域が全気筒作動領域Cとされた駆動力源マップに変更し、両バンク運転を優先的に継続させる。
【0047】
以下、さらに詳しく説明すると、図12において、モータ走行中判定手段90は、車両がMG1によって走行している状態であるか否かを判定する。アクセル踏込判定手段92は、アクセルペダルが踏込操作されているか否かを判定する。アクセル開度変化速度判定手段94は、アクセル開度θACC の変化速度Δθ(=dθACC /dt)が予め設定された判断基準値Δθ1 を超えたか否かを判定する。部分気筒作動領域変更手段96は、上記モータ走行中判定手段90により車両がMG1によって走行している状態であると判定されるか、或いは上記アクセル踏込判定手段92によりアクセルペダルが踏込操作されていると判定されている場合において、上記アクセル開度変化速度判定手段94によりアクセル開度θACC の変化速度Δθ(=dθACC /dt)が予め設定された判断基準値Δθ1 を超えたと判定される場合は、そのときに選択されている駆動力源マップ(A)又は(B)の片バンク領域すなわち部分気筒作動領域Bを駆動力源の切換頻度が少なくなるように小さく変更する。たとえば図7の駆動力源マップ(A)が選択されている場合は、図7の2点鎖線に示すように、高負荷側(高アクセル開度側)が縮小されるように部分気筒作動領域Bが設定され、図8の駆動力源マップ(B)が選択されている場合は、図8の2点鎖線に示すように、高負荷側が縮小されるように部分気筒作動領域Bが設定される。
【0048】
しかし、上記モータ走行中判定手段90により車両がMG1によって走行している状態であると判定されるか、或いは上記アクセル踏込判定手段92によりアクセルペダルが踏込操作されていると判定されていても、上記アクセル開度変化速度判定手段94によりアクセル開度θACC の変化速度Δθ(=dθACC /dt)が予め設定された判断基準値Δθ1 を超えないと判定される場合は、駆動力源基本マップ設定手段98により、そのときに選択されている駆動力源マップ(A)又は(B)の基本マップすなわち図7或いは図8の実線に示す領域から成るマップが設定される。
【0049】
全気筒運転判定手段100は、可変気筒エンジン10の全気筒が作動している運転状態であるか否か、すなわち可変気筒エンジン10の両バンク運転か否かを判定する。経過時間判定手段102は、前記アクセル踏込判定手段92によりアクセルペダルが踏込操作されていると判定されないときすなわちアクセルペダルが踏込操作されていないか戻し操作されているとき、その全気筒運転判定手段100により可変気筒エンジン10の全気筒が作動している運転状態であると判定されてからの経過時間tELが予め設定された時間T1 以上経過したか否かを判定する。前記駆動力源基本マップ設定手段98は、この経過時間判定手段102により全気筒が作動している運転状態であると判定されてからの経過時間tELが予め設定された時間T1 以上経過したと判定された場合、或いは上記全気筒運転判定手段100により可変気筒エンジン10の全気筒が作動している運転状態でないと判定される場合は、そのときに選択されている駆動力源マップ(A)又は(B)を、その基本マップすなわち図7或いは図8の実線に示す領域から成るマップに設定する。駆動力源マップ変更手段104は、経過時間判定手段102により全気筒が作動している運転状態であると判定されてからの経過時間tELが予め設定された時間T1 以上経過したと判定される前、すなわち判定される迄は、そのときに選択されている駆動力源マップ(A)又は(B)を、部分気筒作動領域Bおよび電動モータ作動領域Aが除去されて、全領域が全気筒作動領域Cとされた駆動力源マップに変更し、両バンク運転を優先的に継続させる。上記時間T1 は、可変気筒エンジン10の両バンク運転が開始後に部分気筒運転状態や電動モータ作動状態へ切換られることを所定時間阻止するための時間的ヒステリシスとなっている。
【0050】
図13は、電子制御装置80の制御作動の要部を説明するフローチャートであって、所定のサイクルタイムで繰り返し実行されるものである。ステップ(以下、ステップを省略する)SA1では、現在選択(設定)されている駆動力源マップが(A)または(B)であるか否かが判断される。このSA1の判断が否定される場合は本ルーチンが終了させられるが、肯定される場合は、前記モータ走行中判定手段90およびアクセル踏込判定手段92に対応するSA2において、MG1による走行中またはアクセルペダル踏込中であるか否かが判断される。このSA2の判断が肯定された場合は、MG1による走行中又はアクセルペダル踏込中であるので、前記アクセル開度変化速度判定手段94に対応するSA3において、アクセル開度θACC の変化速度ΔθACC が予め設定された判定値Δθ1 を超えたか否かが判断される。このSA3の判断が否定された場合は、前記駆動力源基本マップ設定手段98に対応するSA4において、図7或いは図8の実線に示す駆動力源基本マップ(A)または(B)が、SA1において判定された当初の駆動力源マップに対応して設定される。次いで、SA5では、SA4において設定された図7或いは図8に示す駆動力源基本マップ(A)または(B)から実際の車速Vおよびアクセル開度θACC に基づいて領域判定が行われ、その領域判定結果に基づいて駆動力源が切り換えられるようにするとともに、図7或いは図8の破線に示す変速線図から実際の車速Vおよびアクセル開度θACC に基づいてギヤ比γが設定され、そのギヤ比γを得るための自動変速機16の変速制御が行われるようにする。
【0051】
上記SA3の判断が肯定された場合、すなわちアクセル開度θACC の変化速度ΔθACC が予め設定された判定値Δθ1 を超えたと判断された場合は、アクセルペダルが踏み込まれて高スロットル開度領域が多用される確率が高く、また、急な加速減速が繰り返される状態、或いは運転者の性格や心理状態に由来する確率が高いと見なされるので、前記部分気筒作動領域変更手段96に対応するSA6において、そのときに選択されている駆動力源マップ(A)又は(B)の片バンク領域すなわち部分気筒作動領域Bが、駆動力源の切換頻度が少なくなるように小さく設定変更される。たとえば図7又は図8の駆動力源マップ(A)の2点鎖線に示すように部分気筒作動領域Bが設定される。そして、SA7において、SA6において設定変更された図7或いは図8に示す駆動力源マップ(A)または(B)から実際の車速Vおよびアクセル開度θACC に基づいて領域判定が行われ、その領域判定結果に基づいて駆動力源が切り換えられるようにするとともに、図7或いは図8の破線に示す変速線図から実際の車速Vおよびアクセル開度θACC に基づいてギヤ比γが設定され、そのギヤ比γを得るための自動変速機16の変速制御が行われるようにする。
【0052】
前記SA2の判断が否定された場合は、MG1による走行中ではない状態、又はアクセルペダル踏込中ではない状態すなわちアクセルペダルの戻し操作が行われる状態であるので、前記全気筒運転判定手段100に対応するSA8において、可変気筒エンジン10の全気筒作動状態すなわち両バンク作動状態であるか否かが判断される。このSA8の判断が否定される場合は、前記駆動力源基本マップ設定手段98に対応するSA11において、図7或いは図8の一点鎖線に示す駆動力源基本マップ(A)または(B)が、SA1において判定された当初の駆動力源マップに対応して設定される。
【0053】
しかし、上記SA8の判断が肯定される場合は、前記経過時間判定手段102に対応するSA9では、SA8において全気筒が作動している運転状態であると判定されてからの経過時間tELが予め設定された時間T1 以上経過したか否かが判断される。当初はこのSA9の判断が否定されるので、前記駆動力源マップ変更手段104に対応するSA10において、全気筒運転を優先的に継続させるために駆動力源マップ(A)または(B)の部分気筒領域Bが削除されることによりすべて全気筒運転領域Cとなるように変更される。
【0054】
上記SA10の実行により可変気筒エンジン10の全気筒運転が継続されるうち、SA9の判断が肯定されると、前記SA11において、図7或いは図8の一点鎖線に示す駆動力源基本マップ(A)または(B)が、SA1において判定された当初の駆動力源マップに対応して設定される。
【0055】
上述のように、本実施例によれば、アクセル開度θACC の変化速度ΔθACC に基づいて可変気筒エンジン10の気筒切換が少なくなるように、可変気筒エンジン10の気筒切換作動やMG1の作動を領域判定するための駆動力源マップ(A)または(B)の可変気筒切換領域のうちの全気筒運転領域Cおよび部分気筒運転領域Bが設定変更されるので、可変気筒エンジン10の気筒切換の頻度が抑制され、運転性が高められる。
【0056】
また、本実施例によれば、前記駆動力源マップにおいて、アクセル開度θACC の変化速度ΔθACC が大きくなるほど部分気筒作動領域Bすなわち片バンク作動領域が小さくなるように設定変更する部分気筒作動領域変更手段96(SA6)が設けられるので、可変気筒エンジン10の全気筒運転(両バンク運転)と部分気筒運転(片バンク運転)との間の切換が少なくされる。
【0057】
また、本実施例によれば、上記部分気筒作動領域変更手段96は、アクセル開度θACC の変化速度ΔθACC が大きくなるほど部分気筒作動領域Bの高負荷側の境界線(2点鎖線)を低負荷側へ移動させるものであることから、アクセル開度θACC の変化速度ΔθACC が大きくなるほど部分気筒作動領域Bの高負荷側が縮小されてその分だけ全気筒領域Cが拡大されるので、全気筒運転状態が継続される確率が高くなり、全気筒運転と部分気筒運転との間の切換が少なくされる。
【0058】
また、本実施例によれば、MG1(電動モータ)による走行中であるか否かを判定するモータ走行中判定手段90と、アクセル開度θACC の変化速度ΔθACC が所定値Δθ1 を超えたか否かを判定するアクセル開度変化速度判定手段94とが設けられ、前記部分気筒作動領域変更手段96は、上記モータ走行中判定手段90によりMG1による走行中であると判定され、且つ上記アクセル開度変化速度判定手段94によりアクセル開度θACC の変化速度ΔθACC が所定値Δθ1 を超えたと判定されたときに、部分気筒作動領域Bが小さくなるように設定変更するものであるので、高負荷側において切換が行われMG1による走行中にアクセルペダルの踏込操作が行われたときに、全気筒運転と部分気筒運転との間の切換が少なくされる。
【0059】
また、本実施例によれば、可変気筒エンジン10とMG1とから成る駆動力源の切換に際して時間的ヒステリシスT1 が設けられているので、可変気筒エンジン10の気筒切換や可変気筒エンジン10とMG1との間の切換の頻度が抑制され、運転性が高められる。
【0060】
また、本実施例によれば、可変気筒エンジン10が全気筒運転であるか否かを判定する全気筒運転判定手段100(SA8)と、その全気筒運転判定手段100により可変気筒エンジン10が全気筒運転であると判定されてからの経過時間tELが予め設定された運転時間T1 を超えたか否かを判定する経過時間判定手段102(SA9)と、その経過時間判定手段102により可変気筒エンジン10が全気筒運転であると判定されてからの経過時間tELが予め設定された運転時間T1 を超えないと判定される場合は、駆動力源マップ(A)または(B)の全気筒領域を拡大する駆動力源マップ変更手段104(SA10)と、その経過時間判定手段102により可変気筒エンジン10が全気筒運転であると判定されてからの経過時間tELが予め設定された運転時間T1 を超えたと判定される場合は、駆動力源基本マップ(A)または(B)を設定する駆動力源基本マップ設定手段98(SA11)とが設けられている。このため、全気筒運転状態が判定されてからの経過時間tELが予め設定された運転時間T1 を超えない間は全気筒領域が拡大された駆動力源マップが用いられて全気筒運転状態が継続され、その経過時間tELが予め設定された運転時間T1 を超えると駆動力源基本マップ(A)または(B)が用いられるので、アクセルペダルの戻し操作に応答して全気筒運転から部分気筒運転或いはMG1による走行へ切り換えられ、可変気筒エンジン10の全気筒運転状態から部分気筒運転或いはMG1による走行へのビジー切換が少なくされる。
【0061】
また、本実施例によれば、可変気筒エンジン10とMG1とを駆動力源として走行させられる車両の制御装置において、アクセルペダルの踏込方向と戻し方向とにおいてビジー切換抑制方法が変更されるので、アクセルペダルの踏込方向および戻し方向に適したビジー切換抑制方法が用いられて、駆動力源の頻繁な切換が低減される。
【0062】
また、本実施例によれば、アクセルペダルが踏み込まれた場合には、SA6乃至SA7のビジー切換抑制方法が採用されて、可変気筒エンジン10の気筒切換作動やMG1の作動を領域判定するための駆動力源マップ(A)または(B)においてアクセル開度θACC の変化速度ΔθACC が大きくなるほど部分気筒作動領域Bが小さくなるように変更する部分気筒作動領域変更手段96(SA7)が設けられることから、アクセルペダルの踏み込み時にアクセル開度の変化速度ΔθACC が大きくなるほど部分気筒作動領域Bが小さくされるので、全気筒運転と部分気筒運転との間の切換が少なくされる。
【0063】
図14は前記電子制御装置80の他の制御機能の要部を説明する機能ブロック線図であり、図15はその電子制御装置80の他の制御作動の要部を説明するフローチャートである。図14において、MG1(電動モータ)から出力されるトルク状態に基づいて駆動力源マップの可変気筒切換領域すなわち部分気筒作動領域Bが設定されるようになっている。すなわち、燃料電池用燃料判定手段110は、燃料電池70に供給する燃料すなわち水素或いは水素を取り出すための有機燃料が存在するか否かをその燃料の残量が所定値以上であるか否かに基づいて判定する。二次電池残量判定手段112は、二次電池72の充電残量が十分に存在するか否かがその充電残量が所定値以上であるか否かに基づいて判定する。アシスト量判定手段114は、MG1の出力トルクが予め設定された値以下であるか否かに基づいてそのMG1のアシスト量が少ない状態であるか否かを判定する。
【0064】
駆動力源マップ設定手段116は、上記燃料電池用燃料判定手段110により燃料電池70に供給する燃料が存在しないと判定され、且つ二次電池残量判定手段112により二次電池72の充電残量が十分に存在しないと判定された場合は図9の駆動力源マップ(C)を設定するが、上記燃料電池用燃料判定手段110により燃料電池70に供給する燃料が存在すると判定されるか、或いは二次電池残量判定手段112により二次電池72の充電残量が十分に存在すると判定された場合は、MG1のアシスト量が少なくなるほど部分気筒領域Bが相対的に小さい駆動力源マップを設定する。すなわち、アシスト量判定手段114によりMG1のアシスト量が少ない状態であると判定された場合には、判定されない場合に比較して、予め記憶された複数種類の駆動力源マップ(A)、(B)から部分気筒領域が相対的に小さい駆動力源マップ(B)に設定変更する。
【0065】
図15は、電子制御装置80の制御作動の要部を説明するフローチャートであって、所定のサイクルタイムで繰り返し実行されるものである。前記燃料電池用燃料判定手段110に対応するSB1では、燃料電池70に供給するための燃料が残されているか否かすなわちMG1を駆動するための燃料電池70の出力が得られる状態であるか否かが判定される。このSB1の判断が否定される場合は、前記二次電池残量判定手段112に対応するSB2において、二次電池72の充電残量が十分に存在するか否かすなわちMG1を駆動するための二次電池72の出力が得られる状態であるか否かが判断される。このSB2の判断が否定される場合は、前記駆動力源マップ設定手段116に対応するSB6において、図9の駆動力源マップ(C)が設定される。しかし、上記SB1およびSB2の判断のいずれかが肯定される場合は、前記アシスト量判定手段114に対応するSB3において、MG1のアシスト量が少ない状態であるか否かが判断される。このSB3の判断が否定される場合は図7の駆動力源マップ(A)が設定される。このようなMG1のアシストトルクが得られることが保証されている状態では、片バンクで出せるトルクにMG1のトルクを加算したものが総トルクとなるので、アクセル開度θACC に対して片バンクが使用される領域が拡大されている。
【0066】
しかし、上記SB3の判断が肯定される場合は、部分気筒作動領域Bが相対的に小さく設定されている図8の駆動力源マップ(B)が設定される。この状態では、MG1の出力トルクが上記SB4の状態よりも少ない走行状態であるので、可変気筒エンジン10を片バンクで作動させる領域Bが狭くされ、且つMG1の単独で走行する領域Aも小さくされている。
【0067】
本実施例によれば、可変気筒エンジン10とMG1とを駆動力源として走行させられる車両の制御装置において、そのMG1から出力されるトルク状態に基づいて可変気筒切換領域すなわち部分気筒作動領域Bが設定されるので、車両の燃費が改善される。
【0068】
また、本実施例によれば、MG1の出力トルクが予め設定された値以下であるか否かに基づいてそのMG1のアシスト量が少ない状態であるか否かを判定するアシスト量判定手段114と、そのアシスト量判定手段114によりMG1のアシスト量が少ない状態であると判定された場合には、判定されない場合に比較して、予め記憶された複数種類の駆動力源マップから駆動力源マップ(A)よりも部分気筒領域Bが相対的に小さい駆動力源マップ(B)に設定変更する駆動力源マップ設定手段116が設けられている。すなわち、MG1のアシスト量が少ない状態では、アシスト量が多い場合に比較して、部分気筒領域Bが相対的に小さく全気筒領域が相対的に大きくされた駆動力源マップ(B)に変更されるので、MG1のアシスト量が多くなるほど部分気筒領域Bが相対的に大きくされて、車両の燃費が改善される。
【0069】
また、本実施例によれば、MG1の電源として燃料電池70が用いられているので、車両に搭載される可変気筒エンジン10の燃料を改質するなどによって燃料電池70から継続的に電力が電動モータへ供給され得る利点がある。
【0070】
図16および図17は、本発明の他の実施例の駆動力源マップであり、図16はMG1の作動が十分に保証されている駆動力源マップ(A)を、図17はMG1の作動がある程度に保証されている駆動力源マップ(B)を示している。本実施例の駆動力源マップ(A)では、可変気筒切換領域すなわち部分気筒作動領域Bが電動モータ走行領域Aよりも高車速側に設定されている。駆動力源マップ(B)では、上記駆動力源マップ(A)のモータ走行領域Aが削除されて部分気筒作動領域Bが低速側へ拡大されている。しかし、そのモータ走行領域Aの縮小に応じて部分気筒作動領域Bが低速側へ段階的或いは連続的に拡大されるようにしてもよい。
【0071】
本実施例によれば、駆動力源マップ(A)において部分気筒作動領域Bがモータ走行領域Aに隣接してそれよりも高車速側に設定されていることから、急に操作され易いアクセル開度或いはスロットル開度の変化が発生したときにたとえばMG1の運転から、可変気筒エンジン10の部分気筒運転、次いで可変気筒エンジン10の全気筒運転へ切換られることが解消されて、MG1の運転から可変気筒エンジン10の全気筒運転へ、或いは可変気筒エンジン10の部分気筒運転から全気筒運転への切換にとどまるので、駆動力源の頻繁な切換が抑制される。
【0072】
図18は、前記電子制御装置80の他の制御機能の要部を説明する機能ブロック線図であり、図19はその電子制御装置80の他の制御作動の要部を説明するフローチャートである。図18において、可変気筒エンジン10とMG1(電動モータ)とを駆動力源として走行させられる車両の制御装置において、上記可変気筒エンジン10の出力トルク振動に対する上記MG1による制振可能性に基づいて可変気筒切換領域が設定されるようになっている。すなわち、燃料電池用燃料判定手段110は、燃料電池70に供給する燃料すなわち水素或いは水素を取り出すための有機燃料が存在するか否かをその燃料の残量が所定値以上であるか否かに基づいて判定する。二次電池残量判定手段112は、二次電池72の充電残量が十分に存在するか否かがその充電残量が所定値以上であるか否かに基づいて判定する。制振可能性判定手段124は、可変気筒エンジン10の部分気筒運転たとえば片バンク作動であるときの出力トルク振動をMG1により制振することが可能であるか否かを、燃料電池70およびMG1や制振制御システムの機能状態などに基づいて判定する。MG1による制振は、可変気筒エンジン10の出力トルクNE が特に片バンク作動によりたとえば図19の実線に示すように振動すなわち脈動したとき、破線に示すようにMG1からその出力トルクNE の振動を打ち消すように逆位相のトルクNMG1Cを発生させてその振動を相殺するものである。
【0073】
駆動力源マップ設定手段126は、上記燃料電池用燃料判定手段110により燃料電池70に供給する燃料が存在しないと判定され、且つ二次電池残量判定手段112により二次電池72の充電残量が十分に存在しないと判定された場合は図22の駆動力源マップ(C)を設定するが、上記燃料電池用燃料判定手段110により燃料電池70に供給する燃料が存在すると判定されるか、或いは二次電池残量判定手段112により二次電池72の充電残量が十分に存在すると判定された場合は、制振可能判定手段124により片バンク作動であるときの出力トルク振動をMG1により制振することが可能であると判定された場合には部分気筒領域Bが相対的に拡大された図20の駆動力源マップ(A)を設定し、上記制振可能判定手段124により片バンク作動であるときの出力トルク振動をMG1により制振することが可能でないと判定された場合には部分気筒領域が相対的に縮小された図21の駆動力源マップ(B)を設定する。
【0074】
上記図20の駆動力源マップ(A)は、燃料電池70や二次電池72の出力によってMG1の作動が十分に保証されている状態で用いられるものであり、モータ作動領域Aおよび部分気筒作動領域Bが最も広く設定されている。図21の駆動力源マップ(B)は、燃料電池70や二次電池72の出力によってMG1の作動がある程度保証されている状態、および可変気筒エンジン10の片バンク作動によりその出力トルクの振動を対策するために用いられるものであり、モータ作動領域Aおよび部分気筒作動領域Bが上記駆動力源マップ(A)に比較して狭く設定されている。特に、部分気筒作動領域Bは高負荷側だけでなく低車速側も縮小されている。図22の駆動力源マップ(C)は、燃料電池70や二次電池72の出力が得られないためにMG1の作動が保証されない状態で用いられるものであり、モータ作動領域Aおよび部分気筒作動領域Bが上記駆動力源マップ(B)に比較してさらに狭く設定されている。本実施例では、モータ作動領域Aが削除され、燃費対策のために部分気筒作動領域Bの高負荷側だけでなく、振動対策のために低車速側および低アクセル開度側がさらに縮小されている。
【0075】
図23は、電子制御装置80の制御作動の要部を説明するフローチャートであって、所定のサイクルタイムで繰り返し実行されるものである。前記燃料電池用燃料判定手段110に対応するSC1では、燃料電池70に供給するための燃料が残されているか否かすなわちMG1を駆動するための燃料電池70の出力が得られる状態であるか否かが判定される。このSC1の判断が否定される場合は、前記二次電池残量判定手段112に対応するSC2において、二次電池72の充電残量が十分に存在するか否かすなわちMG1を駆動するための二次電池72の出力が得られる状態であるか否かが判断される。このSC2の判断が否定される場合は、前記駆動力源マップ設定手段126に対応するSC6において、図22の駆動力源マップ(C)が設定される。しかし、上記SC1およびSC2の判断のいずれかが肯定される場合は、前記制振可能判定手段124に対応するSC3において、可変気筒エンジン10の片バンク作動時の出力トルクNE に対してMG1による制振が可能であるか否かが、燃料電池70およびMG1や制振制御システムの機能状態などに基づいて判断される。このSC3の判断が肯定される場合は図20の駆動力源マップ(A)が設定される。このようなMG1による制振機能が保証されている状態では、振動抑制を考慮しないで燃費だけを追求できるので、モータ作動領域Aおよび部分気筒作動領域Bが最も広い図20の駆動力源マップ(A)が用いられる。
【0076】
しかし、上記SC3の判断が否定される場合は、部分気筒作動領域Bの高負荷側および低車速側が相対的に小さく設定されている図21の駆動力源マップ(B)が設定される。この状態では、可変気筒エンジン10の出力トルクNE に含まれる脈動が上記SC4の状態よりも多い走行状態であるので、可変気筒エンジン10を片バンクで作動させる部分気筒作動領域Bのうちの振動が顕著となる低車速側および低アクセル開度側がそれぞれ狭くされている。
【0077】
本実施例によれば、可変気筒エンジン10の出力トルク振動に対するMG1による制振可能性すなわち制振の程度に基づいて図21の可変気筒切換領域(B)が設定されているので、車両の燃費が改善される。たとえば、MG1による制振可能性の大きい場合には可変気筒切換領域Bが広く設定されるので、可変気筒エンジンの部分気筒運転領域が拡大されて、車両の燃費が改善される。
【0078】
また、本実施例によれば、可変気筒エンジン10の出力トルク振動に対するMG1による制振可能性の低い場合には、可変気筒切換領域のうちトルク振動が問題となる低車速側が少なくなるように設定された図21の可変気筒切換領域(B)が用いられるので、MG1による制振可能性の低いときは低車速側において全気筒作動状態とされる領域が拡大されて、トルク振動が好適に解消される。
【0079】
また、本実施例によれば、可変気筒エンジン10の出力トルク振動に対するMG1による制振可能性の低い場合には、可変気筒切換領域のうちトルク振動が問題となる低アクセル開度側が少なくなるように設定された図21の可変気筒切換領域(B)が用いられるので、MG1による制振可能性の低い場合は低アクセル開度側においても全気筒作動状態とされる領域が拡大されて、トルク振動が好適に解消される。
【0080】
また、本実施例によれば、可変気筒エンジン10が部分気筒作動すなわち片バンク作動であるときの出力トルク振動をMG1により制振することが可能であるか否かを判定する制振可能判定手段124と、その制振可能判定手段124により片バンク作動であるときの出力トルク振動をMG1により制振することが可能であると判定された場合には部分気筒領域Bが相対的に拡大された図20の駆動力源マップ(A)を設定し、上記制振可能判定手段124により片バンク作動であるときの出力トルク振動をMG1により制振することが可能でないと判定された場合には部分気筒領域Bが相対的に縮小された図21の駆動力源マップ(B)を設定する駆動力源マップ設定手段126とが設けられていることから、可変気筒エンジン10の片バンク作動であるときの出力トルク振動をMG1により制振することが可能である場合には部分気筒領域Bが相対的に拡大された駆動力源マップ(A)が設定されるので、広い範囲でトルク振動が好適に解消される。
【0081】
図24は、前記電子制御装置80の他の制御機能の要部を説明する機能ブロック線図であり、図25はその電子制御装置80の他の制御作動の要部を説明するフローチャートである。図24において、可変気筒エンジン10とMG1(モータジェネレータ)とを駆動力源として走行させられる車両の制御装置において、MG1或いはMG2の発電状態に基づいて可変気筒切換領域が設定されるようになっている。また、二次電池72の充電時において、MG1或いはMG2の発電量が多くなるほど可変気筒エンジン10の非作動気筒数が減少させられるように駆動力源マップが設定されるようになっている。すなわち、MG1或いはMG2の発電量が多くなるほど可変気筒切換領域Bの高負荷側が縮小されるように駆動力源マップが設定されるようになっている。
【0082】
すなわち、燃料電池用燃料判定手段110は、燃料電池70に供給する燃料すなわち水素或いは水素を取り出すための有機燃料が存在するか否かをその燃料の残量が所定値以上であるか否かに基づいて判定する。二次電池残量判定手段112は、二次電池72の充電残量が十分に存在するか否かがその充電残量が所定値以上であるか否かに基づいて判定する。すなわち、二次電池残量判定手段112は、二次電池72の充電が必要でない状態であるか否かを判定する。発電量判定手段134は、上記燃料電池用燃料判定手段110により燃料電池70に供給する燃料がないと判定され、且つ上記二次電池残量判定手段112により二次電池72の充電残量が十分に存在しないと判定された場合、すなわち燃料電池70や二次電池72からの電力の供給を期待できない場合に、その二次電池72を充電するためのMG1或いはMG2の発電量が所定値以上であるか否かを判定する。駆動力源マップ設定手段136は、上記燃料電池用燃料判定手段110により燃料電池70に供給する燃料が存在すると判定され、または二次電池残量判定手段112により二次電池72の充電残量が十分に存在すると判定された場合は図7の駆動力源マップ(A)を選択して設定するが、燃料電池用燃料判定手段110により燃料電池70に供給する燃料が存在しないと判定され、且つ二次電池残量判定手段112により二次電池72の充電残量が所定量以下であると判定された場合は、上記発電量判定手段134によりMG1或いはMG2の発電量が所定値以上であると判定されると、可変気筒切換領域Bの高負荷側が相対的に縮小された図9の駆動力源マップ(C)を設定し、上記発電量判定手段134によりMG1或いはMG2の発電量が所定値より少ないと判定された場合には可変気筒切換領域Bの高負荷側が駆動力源マップ(C)よりも相対的に拡大された図8の駆動力源マップ(B)を設定する。
【0083】
図25は、電子制御装置80の制御作動の要部を説明するフローチャートであって、所定のサイクルタイムで繰り返し実行されるものである。前記燃料電池用燃料判定手段110に対応するSD1では、燃料電池70に供給するための燃料が残されているか否かすなわちMG1を駆動するための燃料電池70の出力が得られる状態であるか否かが判定される。このSD1の判断が否定される場合は、前記二次電池残量判定手段112に対応するSD2において、二次電池72の充電残量が十分に存在するか否かすなわちMG1を駆動するための二次電池72の出力が得られる状態であるか否かが判断される。このSD1およびSD2の判断の少なくとも一方が肯定される場合は、前記駆動力源マップ設定手段136に対応するSD6において、図7の駆動力源マップ(A)が設定される。しかし、上記SD1およびSD2の判断が共に否定された場合は、前記発電量判定手段134に対応するSD3において、MG1或いはMG2の発電量が所定値以上であるか否かが判断される。このSD3の判断が肯定される場合は、前記駆動力源マップ設定手段136に対応するSD4において図9の駆動力源マップ(C)が設定されるが、否定される場合は、前記駆動力源マップ設定手段136に対応するSD5において図8の駆動力源マップ(B)が設定される。
【0084】
本実施例によれば、可変気筒エンジン10とMG1とを駆動力源として走行させられる車両の制御装置において、そのMG1の発電状態に基づいて可変気筒切換領域Bが設定されるので、車両の駆動力が確保される。
【0085】
また、本実施例によれば、二次電池72の充電時において、MG1またはMG2の発電量が多くなるほど可変気筒エンジン10の非作動気筒数が減少させられる。MG1またはMG2の発電量が多くなるほど可変気筒エンジン10の出力トルクの一部がその発電のために消費されるので、このようにすれば、MG1またはMG2の発電量が多くなるほど非作動気筒数が減少させられるので、車両の駆動力が確保される。
【0086】
また、本実施例によれば、二次電池72の充電時において、MG1またはMG2の発電量が多くなるほど可変気筒切換領域Bの高負荷側が縮小されるので、可変気筒切換領域Bの高負荷側の縮小に対応して全気筒運転領域が拡大されることにより、車両の駆動力が確保される。
【0087】
また、本実施例によれば、二次電池72の充電が必要な状態であるか否かを判定する充電必要状態判定手段すなわち燃料電池用燃料判定手段110および二次電池残量判定手段112と、MG1またはMG2の発電量が所定値以上であるか否かを判定する発電量判定手段134と、その発電量判定手段134によりMG1またはMG2の発電量が所定値以上であると判定された場合には可変気筒切換領域Bの高負荷側が相対的に縮小された駆動力源マップ(C)を選択するが、上記発電量判定手段134によりMG1またはMG2の発電量が所定値より少ないと判定された場合(SD1およびSD2の判断が共に否定)には可変気筒切換領域Bの高負荷側が相対的に拡大された駆動力源マップ(B)を選択する駆動力源マップ設定手段136とが設けられることから、MG1またはMG2の発電量が所定値以上である場合には可変気筒切換領域Bの高負荷側が相対的に縮小された駆動力源マップ(C)が選択されるので、車両の駆動力が確保される。
【0088】
以上、本発明の一実施例を図面に基づいて説明したが、本発明はその他の態様においても適用される。
【0089】
たとえば、図13の実施例では、可変気筒エンジン10の全気筒作動運転から部分気筒作動運転或いは電動モータ運転(走行)への切換に際して、時間的ヒステリシスに対応する経過時間T1 が設けられていたが、部分気筒作動運転から全気筒作動運転或いは電動モータ運転へ、電動モータから部分気筒作動運転或いは全気筒作動運転への切換に際しても上記時間的ヒステリシスが設けられてもよい。
【0090】
また、前述の図15のSB3乃至SB5では、MG1によるアシスト量が所定値以下であるか否かにより、駆動力源マップ(B)または(A)が設定されるようになっていたが、MG1によるアシスト量の有無に応じて駆動力源マップ(B)または(A)が設定されるようにしてもよいし、MG1によるアシスト量が大きくなるほど駆動力源マップの部分気筒作動領域Bが連続的に拡大されるようにしてもよい。
【0091】
また、図23のSC3では、片バンク制振可能か否かに応じて駆動力源マップ(A)または(B)が設定されるように構成されていたが、片バンク制振効果が得られるほど駆動力源マップの部分気筒作動領域Bが連続的に拡大されるようにしてもよい。
【0092】
また、図25のSD3乃至SD5では、MG1或いはMG2による発電量が所定値以下であるか否かにより、駆動力源マップ(C)または(B)が設定されるようになっていたが、MG1或いはMG2による発電量の有無に応じて駆動力源マップ(C)または(B)が設定されるようにしてもよいし、MG1或いはMG2による発電量が大きくなるほど駆動力源マップの部分気筒作動領域Bが連続的に縮小されるようにしてもよい。
【0093】
また、前述の実施例の可変気筒エンジン10は、過給機を備え且つ燃料が筒内噴射されることにより軽負荷時に希薄燃焼させられるリーンバーンエンジン、過給機を備え且つスワール制御弁を有するリーンバーンエンジン、過給機を備えないリーンバーンエンジン、バルブ開閉時期可変機構を備えたエンジンなどであってもよい。
【0094】
また、前述の実施例において、自動変速機16は前進5速の有段式変速機であったが、変速比γが無段階に変化させられる無段式自動変速機であってもよい。
【0095】
以上、本発明の実施例を図面に基づいて詳細に説明したが、これはあくまでも一実施形態であり、本発明は当業者の知識に基づいて種々の変更,改良を加えた態様で実施することができる。
【図面の簡単な説明】
【0096】
【図1】本発明の一実施例の車両の制御装置が適用された車両用駆動装置の要部骨子図である。
【図2】図1の車両用駆動装置内の自動変速機において、その摩擦係合装置の作動の組み合わせとそれにより得られるギヤ段との関係を示す係合表である。
【図3】図1の車両用駆動装置を備えた車両のエンジンに関連する装備を説明する図である。
【図4】図1の車両に設けられた油圧制御回路の要部を説明する図である。
【図5】図1の車両に設けられた電子制御装置の入出力信号の要部を説明する図である。
【図6】図1の車両のコンソール付近に設けられたシフトレバーの操作位置とモード切換スイッチを説明する図である。
【図7】車速およびスロットル開度に基づいて駆動力源を切り換えるための駆動力源マップであって、燃料電池から出力される電力によってMG1からの出力トルクによるアシスト駆動が十分に保証されている状態で用いられるものである。
【図8】車速およびスロットル開度に基づいて駆動力源を切り換えるための駆動力源マップであって、燃料電池から出力される電力によってMG1からの出力トルクによるアシスト駆動が十分に保証されない状態で用いられるものである。
【図9】車速およびスロットル開度に基づいて駆動力源を切り換えるための駆動力源マップであって、燃料電池から出力される電力によってMG1からの出力トルクによるアシスト駆動が全く保証されない状態で用いられるものである。
【図10】可変気筒エンジンの片バンク作動時および両バンク作動時の出力トルク特性を示す図である。
【図11】可変気筒エンジンのアクセル開度に対する総トルク特性を示す図である。
【図12】図5の電子制御装置の制御機能の要部を説明する機能ブロック線図である。
【図13】図5の電子制御装置の制御作動の要部を説明するフローチャートであって、駆動力源マップ切換制御作動を説明する図である。
【図14】本発明の他の実施例における電子制御装置の制御機能の要部を説明する機能ブロック線図である。
【図15】図14の電子制御装置の制御作動の要部を説明するフローチャートであって、駆動力源マップ切換制御作動を説明する図である。
【図16】本発明の他の実施例において駆動力源を切り換えるために用いられる駆動力源マップを示す図であって、燃料電池から出力される電力によってMG1からの出力トルクによるアシスト駆動が十分に保証されている状態で用いられるものである。
【図17】図16の実施例において駆動力源を切り換えるために用いられる駆動力源マップを示す図であって、燃料電池から出力される電力によってMG1からの出力トルクによるアシスト駆動が保証されていない状態で用いられるものである。
【図18】本発明の他の実施例における電子制御装置の制御機能の要部を説明する機能ブロック線図である。
【図19】図18の実施例において、片バンク作動状態における可変気筒エンジンの出力トルクと、それを相殺するためにMG1から出力されるトルクとを示す図である。
【図20】図18の実施例において駆動力源を切り換えるために用いられる駆動力源マップを示す図であって、燃料電池から出力される電力によってMG1からの出力トルクによるアシスト駆動が十分に保証されている状態で用いられるものである。
【図21】図18の実施例において駆動力源を切り換えるために用いられる駆動力源マップを示す図であって、燃料電池から出力される電力によってMG1からの出力トルクによるアシスト駆動がある程度保証されている状態で用いられるものである。
【図22】図18の実施例において駆動力源を切り換えるために用いられる駆動力源マップを示す図であって、燃料電池から出力される電力によってMG1からの出力トルクによるアシスト駆動が保証されていない状態で用いられるものである。
【図23】図18の電子制御装置の制御作動の要部を説明するフローチャートであって、駆動力源マップ切換制御作動を説明する図である。
【図24】本発明の他の実施例における電子制御装置の制御機能の要部を説明する機能ブロック線図である。
【図25】図24の電子制御装置の制御作動の要部を説明するフローチャートであって、駆動力源マップ切換制御作動を説明する図である。
【符号の説明】
【0097】
10:可変気筒エンジン
80:電子制御装置

【特許請求の範囲】
【請求項1】
可変気筒エンジンと電動機と自動変速部とを備え、走行状態に基づいて前記電動機のみを駆動力源とする電動モータ作動領域と、一部の気筒で作動する前記可変気筒エンジンまたは前記電動機および該可変気筒エンジンを駆動力源とする部分気筒作動領域と、全部の気筒で作動する前記可変気筒エンジンまたは前記電動機および該可変気筒エンジンを駆動力源とする全気筒作動領域とのいずれかが選択される車両の制御装置において、
前記可変気筒エンジンを駆動源とするエンジン運転走行中に、前記電動機から出力されるトルク状態に基づいて前記可変気筒エンジンの可変気筒切換領域を設定することを特徴とする車両の制御装置。
【請求項2】
可変気筒エンジンと電動機と自動変速部とを備え、走行状態に基づいて前記電動機のみを駆動力源とする電動モータ作動領域と、一部の気筒で作動する前記可変気筒エンジンまたは前記電動機および該可変気筒エンジンを駆動力源とする部分気筒作動領域と、全部の気筒で作動する前記可変気筒エンジンまたは前記電動機および該可変気筒エンジンを駆動力源とする全気筒作動領域とのいずれかが選択される車両の制御装置において、
前記可変気筒エンジンを駆動源とするエンジン運転走行中に、該可変気筒エンジンの出力トルク振動に対する前記電動機による制振可能性に基づいて前記可変気筒エンジンの可変気筒切換領域を設定したことを特徴とする車両の制御装置。
【請求項3】
可変気筒エンジンと電動機と自動変速部とを備え、走行状態に基づいて前記電動機のみを駆動力源とする電動モータ作動領域と、一部の気筒で作動する前記可変気筒エンジンまたは前記電動機および該可変気筒エンジンを駆動力源とする部分気筒作動領域と、全部の気筒で作動する前記可変気筒エンジンまたは前記電動機および該可変気筒エンジンを駆動力源とする全気筒作動領域とのいずれかが選択される車両の制御装置において、
前記可変気筒エンジンを駆動源とするエンジン運転走行中に、前記電動機の発電状態に基づいて前記可変気筒エンジンの可変気筒切換領域を設定することを特徴とする車両の制御装置。
【請求項4】
前記電動機の出力トルクが大きくなるほど前記可変気筒切換領域を拡大することを特徴とする請求項1の車両の制御装置。
【請求項5】
前記電動機による制振可能性が少なくなるほど前記可変気筒切換領域を縮小することを特徴とする請求項2の車両の制御装置。
【請求項6】
前記電動機による発電量時には前記可変気筒切換領域を縮小することを特徴とする請求項3の車両の制御装置。
【請求項7】
前記電動機による発電量が多くなるほど前記可変気筒切換領域を縮小することを特徴とする請求項3または6の車両の制御装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate

【図14】
image rotate

【図15】
image rotate

【図16】
image rotate

【図17】
image rotate

【図18】
image rotate

【図19】
image rotate

【図20】
image rotate

【図21】
image rotate

【図22】
image rotate

【図23】
image rotate

【図24】
image rotate

【図25】
image rotate


【公開番号】特開2008−261346(P2008−261346A)
【公開日】平成20年10月30日(2008.10.30)
【国際特許分類】
【出願番号】特願2008−183246(P2008−183246)
【出願日】平成20年7月14日(2008.7.14)
【分割の表示】特願2005−272687(P2005−272687)の分割
【原出願日】平成12年8月28日(2000.8.28)
【出願人】(000003207)トヨタ自動車株式会社 (59,920)
【Fターム(参考)】