説明

AlGaN結晶層の形成方法

【課題】表面平坦性の優れたAlGaN結晶層を作製する方法を提供する。
【解決手段】C面サファイア単結晶基材1aの上にMOCVD法によってAlNからなる表面層1bをエピタキシャル形成した後、該積層体を1300℃以上の温度で加熱することで、面内圧縮応力が作用してなる、実質的に原子レベルで平坦な表面層が形成されてなるテンプレート基板を得る。該テンプレート基板上に、MOCVD法によって、1000℃よりも高い形成温度で、AlxGa1-xN(0≦x≦1)なる組成式で表されるIII族窒化物からなる第1単位層2aとAlyGa1-yN(0≦y≦1かつy≠x)なる組成式で表されるIII族窒化物からなる第2単位層2bとを交互に繰り返し積層することによって、超格子構造を有するようにAlGaN層2を形成する。これにより、表面が実質的に原子レベルで平坦なAlGaN層を形成することができる。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、テンプレート基板上へのAlGaN結晶層の形成技術に関する。
【背景技術】
【0002】
III族窒化物からなる結晶層をエピタキシャル形成する際の下地基板として利用可能なテンプレート基板(エピタキシャル基板)を得る技術が公知である(例えば、特許文献1参照)。
【0003】
一方、Al組成比の高いAlxGa1-xN(x≧0.4)を用いて発光層やn型およびp型導電層を形成することで、紫外域に発光波長を有するダイオード構造型の発光素子が得られることも公知である(例えば、非特許文献1参照)。
【0004】
【特許文献1】特開2006−332570号公報
【非特許文献1】"III-Nitride UV devices", M.Asif Khan, M.Shatalov, H.P.Maruska, H.M. Wang, and E. Kuokstis, Jpn. J. Appl. Phys., vol.44, No.10, 2005, pp.7191-7206"
【発明の開示】
【発明が解決しようとする課題】
【0005】
非特許文献1に開示されているような深紫外域に発光波長を有する発光素子を作製するためには、サファイアやSiCの単結晶基材の上に、Al組成比の高いAlxGa1-xN(x≧0.4)からなる複数の結晶層を基板上に積層形成することが必要となる。特性の良好な発光素子を得るためには、係る積層形成が良好になされることが必要であり、そのためには、各結晶層の表面平坦性が良好であることが求められる。
【0006】
特許文献1には、単結晶基材の上に例えばAlNなどのIII族窒化物からなる結晶層を表面層として形成した後、該結晶層の形成温度よりも高い温度での熱処理を行うことで、該結晶層の表面平坦性が改善されたテンプレート基板が得られることが開示されている。しかしながら、係るAlNからなる表面層が形成されてなるテンプレート基板を用いて、AlGaN層を形成した場合、得られたAlGaN層は良好な結晶性を有するものの、必ずしも表面平坦性が良好ではないことが、本発明の発明者によって確認されている。
【0007】
また、非特許文献1には、クラックの発生を防止するため、Al組成比の高いAlGaN層の形成に先立って、多層バッファ層を形成する態様が開示されているが、この場合も、良好な表面平坦性を有する結晶層を得ることが出来ない点は同様である。
【0008】
本発明は、上記課題に鑑みてなされたものであり、表面平坦性の優れた、Al組成比の高いAlGaN結晶層を作製する方法を提供することを目的とする。
【課題を解決するための手段】
【0009】
上記課題を解決するため、請求項1の発明は、所定の単結晶基材上に実質的に原子レベルで平坦な表面を有するAlN層を形成することによってテンプレート基板を作製するAlN層形成工程と、前記加熱工程の後に前記AlN層の上にAlGaN層を形成するAlGaN層形成工程と、を備え、前記AlGaN層形成工程においては、1000℃よりも高い形成温度で、AlxGa1-xN(0≦x≦1)なる組成式で表されるIII族窒化物からなる第1単位層とAlyGa1-yN(0≦y≦1かつy≠x)なる組成式で表されるIII族窒化物からなる第2単位層とを交互に繰り返し積層することによって、超格子構造を有するように前記AlGaN層を形成する、ことを特徴とする。
【0010】
請求項2の発明は、請求項1に記載のAlGaN結晶層の形成方法であって、前記AlGaN層形成工程においては、前記第1単位層と前記第2単位層を、格子緩和が生じない範囲内の厚みで形成する、ことを特徴とする。
【0011】
請求項3の発明は、請求項1または請求項2に記載のAlGaN結晶層の形成方法であって、前記AlN層形成工程が、前記単結晶基材の上にAlNからなる結晶層をエピタキシャル形成する形成工程と、前記1300℃以上の加熱温度で前記結晶層を加熱する加熱工程と、含み、前記加熱工程によって得られる、面内圧縮応力が作用してなるとともに実質的に原子レベルで平坦な表面を有する前記結晶層を前記AlN層とする、ことを特徴とする。
【0012】
請求項4の発明は、請求項1ないし請求項3のいずれかに記載のAlGaN結晶層の形成方法であって、前記AlGaN層形成工程における前記AlGaN層の形成温度が1100℃よりも低い、ことを特徴とする。
【0013】
請求項5の発明は、請求項4に記載のAlGaN結晶層の形成方法であって、前記AlGaN層形成工程における前記AlGaN層の形成温度が1025℃以上1075℃以下である、ことを特徴とする。
【0014】
請求項6の発明は、請求項5に記載のAlGaN結晶層の形成方法であって、前記AlGaN層形成工程における前記AlGaN層の形成温度が1040℃以上1060℃以下である、ことを特徴とする。
【0015】
請求項7の発明は、請求項1ないし請求項6のいずれかに記載のAlGaN結晶層の形成方法であって、前記AlGaN層形成工程においては、所定のドーパントをドープしつつ前記第1単位層と前記第2単位層とを交互に繰り返し積層することによって、導電性を有するように前記AlGaN層を形成する、ことを特徴とする。
【0016】
請求項8の発明は、請求項1ないし請求項7のいずれかに記載のAlGaN結晶層の形成方法であって、前記第1単位層をAlxGa1-xN(0.5<x≦1)なる組成式で表されるIII族窒化物にて形成し、前記第2単位層をAlyGa1-yN(0.5≦y<1かつy<x)なる組成式で表されるIII族窒化物にて形成する、ことを特徴とする。
【0017】
請求項9の発明は、請求項8に記載のAlGaN結晶層の形成方法であって、前記第1単位層をAlNにて形成する、ことを特徴とする。
【発明の効果】
【0018】
請求項1ないし請求項9の発明によれば、表面が実質的に原子レベルで平坦なAlGaN層を得ることができる。
【0019】
特に、請求項2の発明によれば、第1単位層と第2単位層とをコヒーレント成長させつつAlGaN層を形成することができるので、テンプレート基板のAlN層の面内格子定数と略同一の面内格子定数を有し、かつ、表面が実質的に原子レベルで平坦なAlGaN層を得ることができる。
【0020】
特に、請求項3の発明によれば、クラックの発生が抑制されるので、表面が実質的に原子レベルで平坦なAlGaN層をより確実に得ることができる。
【発明を実施するための最良の形態】
【0021】
<概要>
図1は、本発明の実施の形態に係る方法を用いることによって作製される積層体10の断面模式図である。積層体10は、発光デバイスや受光デバイスなどの種々のデバイスにおいてその構成部分となる構造体を、簡略化して示したものである。
【0022】
本実施の形態に係る方法は、実質的に原子レベルで平坦な表面を有する下地基板であるテンプレート基板1の上に、AlGaNからなる結晶層(以下、AlGaN層)2を優れた表面平坦性を有するように形成する方法である。本実施の形態においては、下地基板であるテンプレート基板1の上に、AlGaN層2を超格子構造を有するように設けることで、係る表面平坦性の優れたAlGaN層2の形成を実現する。なお、図示の都合上、図1における各層の厚みの比率および縦横の比率は、実際の比率を反映したものではない。
【0023】
<テンプレート基板>
本実施の形態においては、テンプレート基板1として、所定の単結晶からなる基材1aの上に、AlNからなる表面層1bが形成された構造を有するものを用いる。ただし、このことは、係る構造以外のテンプレート基板の使用を排除するものではなく、テンプレート基板1の表面層1bと同等の表面層を有する、つまりは転位密度が表面層1bと同程度あるいはさらに小さく、かつ表面平坦性についても表面層1bと同程度あるいはさらに良好である表面層を有するテンプレート基板を用いる態様であってもよい。
【0024】
基材1aは、一般的には、その上に形成する表面層1bの組成や構造、あるいはさらにその上に結晶層の形成手法に応じて適宜に選択される。例えば、SiC(炭化ケイ素)やサファイアなどの基板を用いる。あるいは、ZnO、LiAlO2、LiGaO2、MgAl24、(LaSr)(AlTa)O3、NdGaO3、MgOといった各種酸化物材料、Si、Geといった各種IV族単結晶、SiGeといった各種IV−IV族化合物、GaAs、AlN、GaN、AlGaNといった各種III−V族化合物およびZrB2といった各種ホウ化物の単結晶から適宜選択して用いてもよい。基材1aの厚みには特段の材質上の制限はないが、取り扱いの便宜上、数百μm〜数mmの厚みのものが好適である。
【0025】
紫外域での光デバイス用途の場合には、動作波長の光に対し透明な材料を用いることが望ましく、III族窒化物の結晶構造との相性から鑑みると、基材1aとしてはサファイアが最も好適である。また、高出力の光デバイスや、放熱性が必要な電子デバイスなどを用途とする場合には、高い熱伝導率を持つSiCが最も好適である。薄膜形成等の加熱処理温度の設定温度によっては、高温で分解しない材料を用いることが必要になる。
【0026】
本実施の形態においては、C面サファイアを基材1aとして用いる場合を例に説明するが、上述のように、基材1aはこれに限られるものではない。
【0027】
表面層1bは、一般的には、例えばMOCVD法、MBE法、HVPE法(ハイドライドを用いた気相エピタキシャル成長法)、スパッタ法、基材の窒化処理などの公知の成膜手法によって形成された、III族窒化物結晶からなるエピタキシャル膜である。ここでいうIII族窒化物結晶とは、BxAlyGazIn1-x-y-zN(x,y,z≧0)の組成で表され、ウルツ鉱構造あるいは閃亜鉛鉱構造を有する結晶である。MOCVD法には、PALE法(パルス原子層エピタキシ法;Pulsed Atomic Layer Epitaxy)、プラズマアシスト法やレーザーアシスト法などが併用できる。MBE法に関しても、同様の技術を併用可能である。MOCVD法あるいはMBE法といった成長方法は、製造条件を高精度に制御することができるので、高品質な結晶を成長させることに適している。一方、HVPE法は、原料を一時に多量に供給できるため、短時間で厚膜を成長させることに適している。表面層1bを形成する際に、これらの方法を組み合わせて形成することも可能である。
【0028】
表面層1bの厚みは、特に限定されるものではなく、最終的に利用されるデバイス構造あるいは使用形態に最適な膜厚を選択すればよい。例えば、数nm〜数mm程度の膜厚が想定されるが、数μm程度の厚みに形成するのが好適な一例である。また、表面層1bの組成は層内において均一である必要はなく、例えば、傾斜組成にしたり、異なる組成の応力緩和層を挿入したりすることも可能である。
【0029】
また、表面層1b内には、表面層1bを形成する際に不可避的に含まれてしまうH、C、O、Si、遷移金属等の不純物が存在する場合もあるし、導電率制御のために意図的に導入される、Si、Ge、Be、Mg、Zn、Cdといった不純物を含むこともできる。
【0030】
本実施の形態においては、MOCVD法を用いて、AlNからなる表面層1bを形成する場合を例に説明する。形成方法の詳細については後述するが、基材1aの上に、MOCVD法によって基板温度1100℃以上でAlNからなる単結晶層を表面層1bとして形成することによって得られたテンプレート基板1を加熱処理したものを、AlGaN層2の形成の際に下地基板として用いるものとする。
【0031】
係る加熱処理は、単結晶である基材1aの結晶配列の規則性を利用して、その上に形成された表面層1bの結晶品質の改善を行うものである。そのため、基材1aとして用いる材料は、結晶品質の改善のために行う熱処理の温度帯で分解、融解しないもの、あるいは、表面層1bを形成するIII族窒化物結晶と強く反応しないものが望ましい。熱処理中に基材1aの結晶配列に乱れが生じるのを回避する必要があるからである。従って、熱処理の際、基材1aと表面層1bとの界面において両者の反応生成物が顕著に形成されないことが望ましい。反応生成物が顕著に形成されないとは、具体的には、熱処理後の両者の界面に反応生成物が全く存在しないか、あるいは存在したとしてもその厚みがせいぜい表面層1bの膜厚の1/10以下であることを意味する。この膜厚を超えると、反応生成物の存在により、表面層1bの表面平坦性が損なわれる可能性があるからである。よって、熱処理により基材1aと表面層1bとの界面において全体的にあるいは局所的に極薄の反応生成物が生成されることは、本発明からは除外されない。転位の低減等のためのバッファ層的な役割を果たすなど、こうした極薄の反応生成物が存在した方がむしろ好ましい場合もある。係る観点からは、融点の高いサファイア、MgO、SiCが、基材1aの材料として望ましい。
【0032】
また、この加熱処理は、特に転位の低減や表面におけるピットの解消に対して有効である。例えば、転位密度は、おおよそ1/2以下にまで減少する。特に、刃状転位を効果的に合体消失させることができる。後述するように、本実施の形態に係る方法によって表面平坦性の良好なAlGaN層2を形成する上においては、表面層1bの転位はできるだけ低減されていることが望ましいので、テンプレート基板1に対する加熱処理は、この点を鑑みても有効な処理である。
【0033】
加熱処理後のテンプレート基板1の表面(つまりは表面層1bの表面)は、肉眼視では鏡面であってクラックも確認されず、AFM(原子間力顕微鏡)にて測定した5μm□の領域での表面粗さraが数nm程度という、実質的に原子レベルで平坦であるといえる程度の優れた表面平坦性を有する。
【0034】
なお、加熱処理後の表面層1bにおいては、無応力の理想的な状態に比してAlNの面内格子定数が小さくなっていることが、すなわち、面内圧縮応力が作用していることが、確認されている。従って、AlGaN層2は、係る面内圧縮応力の存在下で形成されることになるが、この面内圧縮応力は、AlGaN層2にクラックが生じることを抑制するように作用する。このような応力状態にあるテンプレート基板1を用いることで、クラックを有しないAlGaN層2の形成がより確実に行えることになる。ただし、このことによって、表面層1bの組成はAlNに限定されるわけではない。表面平坦性、転位密度、応力状態について、AlNにて形成した場合と同程度あるいはより優れた特性を有するように表面層1bを形成できるのであれば、他の物質を用いて表面層1bが形成される態様であってもよい。
【0035】
<AlGaN層>
AlGaN層2は、AlxGa1-xN(0≦x≦1)なる組成式で表されるIII族窒化物からなる第1単位層2aと、AlyGa1-yN(0≦y≦1)なる組成式で表されるIII族窒化物からなる第2単位層2bとが交互に繰り返し積層された超格子構造を有してなる。
【0036】
第1単位層2aと第2単位層2bの組成は、AlGaN層2に求められる機能に応じて適宜に定められてよい。例えば、紫外領域に発光波長を有する発光素子の機能層としてAlGaN層2を形成する場合には、第1単位層2aをAlxGa1-xN(0.5<x≦1)なる組成式で表されるIII族窒化物にて形成し、第2単位層2bをAlyGa1-yN(0.5≦y<1かつy<x)なる組成式で表されるIII族窒化物にて形成するのが好ましい。
【0037】
係るAlGaN層2は、MOCVD法によって、テンプレート基板1の上に形成される。なお、第1単位層2aと第2単位層2bの厚みは、第1単位層2aと第2単位層2aにおいて格子緩和が生じない範囲内の厚みで形成するようにするのが好ましい。これは、換言すれば、第1単位層と第2単位層とをコヒーレント成長させつつAlGaN層を形成するということである。このようにすることで、表面層1bの面内格子定数と略同一の面内格子定数を有し、かつ、表面が実質的に原子レベルで平坦なAlGaN層2を得ることができる。また、両層の繰り返し層数については、AlGaN層2に対し求められる機能に応じて適宜に定められてよい。例えば数nm〜十数nm程度の厚みを有する第1単位層2aと第2単位層2bを数十層〜数百層ずつ積層して数μm程度の総膜厚を有するAlGaN層2を形成するのが好適な一例である。
【0038】
AlGaN層2を形成する際の形成温度は、1000℃より高い温度とするのが好ましい。これにより、良好な表面平坦性を有するAlGaN層2が形成される。例えば、肉眼視では鏡面であってクラックは確認されず、AFM(原子間力顕微鏡)にて測定した5μm□の領域での表面粗さraが数nm程度という、優れた表面平坦性を有するAlGaN層2が形成可能である。ただし、1025℃より低い形成温度でAlGaN層2を形成した場合には、AlGaN層2の表面にピットが形成されることが確認されている。形成温度を1025℃以上とした場合には、ピットがほとんど確認されることのない、さらに良好な表面平坦性を有するAlGaN層2が形成される。
【0039】
なお、形成温度を1100℃以上とすると、表面粗さが劣化することから、形成温度は1100℃より低くすることが好ましい。
【0040】
AlGaN層2は、P型やN型の導電型を有するように、適宜にアクセプタ元素やドナー元素がドープされていてもよい。なお、AlGaN層2にSiをドーパントとしてドープすることによってN型の導電型を有するようにする場合も、形成温度は1100℃未満とすることが好ましい。係る場合に、良好な導電性を有するようにAlGaN層2が形成される。また、このような導電性を有するAlGaN層2について、より高い導電性能を必要とする場合は、1025℃以上1060℃以下とするのがより好適である。
【0041】
<AlGaN層の形成プロセス>
次に、上述のような良好な表面平坦性を有するAlGaN層の形成までのプロセスについて説明する。ここでは、C面サファイア単結晶が基材1aとして用いられ、表面層1bとしてAlN層が形成されたテンプレート基板1を用いる場合について説明する。
【0042】
まず、テンプレート基板1を得る。テンプレート基板1の作製は、公知の手法によって実現可能である。例えば、基材1aとして数百μm程度のC面サファイア単結晶を用意し、これを、MOCVD装置の所定位置に載置して1100℃以上の温度に加熱し、TMA(トリメチルアルミニウム)とアンモニアガスとを所定の流量比でキャリアガスである水素ガスともども供給することによって、AlN層を数μm程度の厚みに形成する。なお、以下の説明においては、温度は基材1aの温度を表すものとする。
【0043】
その後、公知の熱処理炉で、係る基材1aとAlN層との積層体を1500℃以上の温度に加熱する加熱処理を行う。MOCVD装置中で加熱する態様であってもよい。加熱処理により、面内圧縮応力が作用するとともに実質的に原子レベルで平坦な表面を有する表面層1bが形成される。これにより、テンプレート基板1が得られたことになる。
【0044】
なお、加熱処理は、基材1aの融点を超えない温度範囲で、あるいは、基材1aと表面層1bとの反応生成物の生成が顕著に起こらない温度範囲つまりは過度な反応による表面層1bの結晶品質の劣化が生じない温度範囲で行うことが望ましい。ここでは、基材1aとしてC面サファイアを用い、表面層1bをAlNにて形成することから、両者の界面にγ−ALONが顕著に形成されない温度範囲で熱処理を行うことが好ましい。γ−ALONが顕著に形成されてしまうと、表面層1bの表面粗さが大きくなり、表面平坦性の良好なAlGaN層2を形成することが困難となってしまうからである。
【0045】
加熱処理中の雰囲気に関しては、AlNの分解を防ぐためにも窒素元素を含有する雰囲気であるのが望ましい。例えば、窒素ガス、アンモニアガスを含む雰囲気を用いることができる。熱処理時の圧力条件に関しては、減圧から加圧までどの圧力で行ってもAlN層の結晶品質が改善されることが、確認されている。
【0046】
この加熱処理されたテンプレート基板1の上に、AlGaN層2を形成する。
【0047】
まず、テンプレート基板1をMOCVD装置の所定位置に載置し、水素ガスのみを供給しつつ1000℃〜1100℃程度の温度に加熱して、数分間維持した後、さらに水素ガスとアンモニアガスとを供給して数分間維持する。係る昇温処理は、テンプレート基板1の表面に形成されている表面酸化膜を除去する目的で行う。
【0048】
その後、テンプレート基板1の温度を1000℃より高い所定の温度に維持した上で、超格子構造を有するAlGaN層2を形成する。
【0049】
具体的には、それぞれ数nm〜十数nmの厚みを有するAlxGa1-xN(0≦x≦1)なる組成式で表されるIII族窒化物からなる第1単位層2aとAlyGa1-yN(0≦y≦1、y≠x)なる組成式で表されるIII族窒化物からなる第2単位層2bとを数十〜数百層ずつ、繰り返し交互に積層する。それぞれの層の形成は、水素ガスをキャリアガスとし、TMA(トリメチルアルミニウム)とTMG(トリメチルガリウム)とを、それぞれの層の組成に応じた所定の流量で供給するとともに、それらの流量に見合う流量のアンモニアガスを供給することで実現される。
【0050】
例えば、第1単位層2aとしてAlN層を形成し、第2単位層2bとしてAl0.6Ga0.4N層を形成する場合であれば、前者についてはTMAを11μmol/min.の流量で供給し、後者についてはTMAを11μmol/min.の流量で供給するとともにTMGを16μmol/min.の流量で供給すればよい。
【0051】
このようにして形成された、AlGaN層2においては、その表面が鏡面であってクラックも確認されず、表面粗さraが数nm程度という優れた表面平坦性を有する。
【0052】
ここで、AlGaN層2が超格子構造を有することが良好な表面平坦性を有するうえで有効であることを、超格子構造を有さない場合との対比において説明する。図2は、AlGaN層2の形成過程の模式図である。また、図3は、比較のために示す、テンプレート基板1にAlGaNからなる結晶層を連続的に(超格子構造ではないように)形成する場合の模式図である。
【0053】
テンプレート基板1を1000℃よりも高い所定の形成温度に加熱したうえで、まずテンプレート基板1の上にAlxGa1-xN(0≦x≦1)なる組成式で表されるIII族窒化物からなる第1単位層2aを形成するとき、テンプレート基板1の表面は実質的に原子レベルで平坦でかつ低転位であるので、その核3aは不均一に生成する(図2(a))。超格子構造を構成する第1単位層2aはせいせい数nm〜十数nm程度の厚みに形成されるのみであるので、第1単位層2aの形成は、テンプレート基板1の表面は完全に被覆するものの核3aの成長が十分なものとなる前に終了する(図2(b))。よって、第1単位層2aの表面はテンプレート基板1と同程度に良好な平坦性を有している。
【0054】
引き続いてこの第1単位層2aの上にはAlyGa1-yN(0≦y≦1、y≠x)なる組成式で表されるIII族窒化物からなる第2単位層2bが形成される。このときも同様に、核3bは不均一に形成され(図2(c))、第2単位層2bの形成は、第1単位層2aの表面は完全に被覆するものの核3bの成長が十分なものとなる前に終了する(図2(d))。以降は、このような第1単位層2aと第2単位層2bとの形成が繰り返されるので、結果として、表面平坦性の良好なAlGaN層2が形成されることになる。
【0055】
一方、図3に例示するように、1000℃よりも高い形成温度に加熱したテンプレート基板1の上に、AlxGa1-xN(0≦x≦1)なる組成式で表されるIII族窒化物からなる結晶層102を、超格子構造を有するAlGaN層2の全体の厚みと同程度にまで連続的に形成する場合を考える。この場合、形成開始時には核103が不均一に生成する(図3(a))のは、図2(a)に示した本実施の形態の場合と同様である。しかし、その後も形成を続けると、核103が初期に形成された部分における成長速度とそうでない部分における成長速度とに違いが生じる(図3(b))。結果として、得られた結晶層102は、本実施の形態のように超格子構造を形成する場合のAlGaN層2に比べて著しく大きな表面凹凸を有する結晶層102しか得られないことになる(図3(c))。
【0056】
以上、説明したように、本実施の形態によれば、実質的に原子レベルで平坦な表面層が形成されてなるテンプレート基板の上に、1000℃よりも高い形成温度で超格子構造を有するようにAlGaN層を形成することで、表面平坦性の優れたAlGaN層を形成することができる。これにより、例えば、Al組成比の高いAlGaN層を機能層として有する素子を好適に作製することが可能となる。
【実施例】
【0057】
本実施例では、以下に説明するNo.1〜No.10の10ヶの試料を作成し、その表面を観察した。図4は、No.1〜No.10の試料についての作製条件と、得られたAlGaN層の表面の観察状態を一覧にして示す図である。
【0058】
(No.1)
テンプレート基板の上に、超格子構造を有するAlGaN層を形成し、その表面を観察した。
【0059】
テンプレート基板は、厚み400μmの単結晶C面サファイアを基材として用意し、その上にMOCVD装置を用いて1μmの厚みのAlN層をエピタキシャル成長させることにより得た。係るテンプレート基板に対し、窒素中1500℃での加熱処理を行った。そして、加熱処理後の表面層には面内圧縮応力が印加されていることを確認した。
【0060】
加熱処理後のテンプレート基板をMOCVD装置の所定位置に載置し、水素ガスのみを供給しつつ1050℃に加熱して、6分間維持した後、さらに水素ガスとアンモニアガスとを供給して5分間維持した。係る熱処理時間は30分とした。これにより、テンプレート基板の表面に形成されている表面酸化膜を除去した。
【0061】
その後、温度を1000℃に保ち、水素ガスをキャリアガスとしつつ、TMAを11μmol/min.の流量で供給するとともに、アンモニアガスを所定の流量で供給することで、第1単位層としてのAlN層を10nmの厚みに形成した。
【0062】
引き続き、TMAを11μmol/min.の流量で供給し、かつTMGを16μmol/min.の流量で供給するとともに、アンモニアガスを所定の流量で供給することで、第2単位層としてのAl0.6Ga0.4N層を10nmの厚みに形成した。
【0063】
これら第1単位層と第2単位層の形成を75回繰り返すことによって、層膜厚が1.5μmの、超格子構造を有するAlGaN層を形成した。
【0064】
(No.2)
AlGaN層の形成温度を1025℃とした他は、No.1と同様の手順でテンプレート基板の上にAlGaN層を形成した。
【0065】
(No.3)
AlGaN層の形成温度を1050℃とした他は、No.1と同様の手順でテンプレート基板の上にAlGaN層を形成した。
【0066】
(No.4)
AlGaN層の形成温度を1075℃とした他は、No.1と同様の手順でテンプレート基板の上にAlGaN層を形成した。
【0067】
(No.5)
AlGaN層を連続的に(超格子構造を有さないように)形成した他は、No.3と同様の手順でテンプレート基板の上にAlGaN層を形成した。
【0068】
AlGaN層は、水素ガスをキャリアガスとしつつ、TMAを11μmol/min.の流量で供給し、かつTMGを16μmol/min.の流量で供給するとともに、アンモニアガスを所定の流量で供給することで、Al0.6Ga0.4N層を1.8μmの厚みに形成することで得た。
【0069】
(No.6)
テンプレート基板に対する加熱処理を省略した他は、No.3と同様の手順でテンプレート基板の上にAlGaN層を形成した。
【0070】
(No.1〜No.6の比較)
図4に示すように、No.2、No.3、およびNo.4の試料については、表面は鏡面であり、クラックおよびピットも観察されず、表面粗さraも2nm以下であって、実質的に原子レベルで平坦な表面を有するAlGaN層が形成されていることが確認された。
【0071】
一方、No.5の試料では、クラックが確認されないものの、表面には六角柱状の凹凸が確認された。No.2ないしNo.4と対比すると、熱処理したテンプレート基板の上に、超格子構造を有するように形成することが、表面平坦性の良好なAlGaN層を形成するためには好適であるといえる。
【0072】
一方、No.1の試料では、表面は鏡面であり、クラックも観察されず、表面粗さraも2nmであったが、ピットが存在することが確認された。No.2ないしNo.4と対比すると、良好な表面平坦性を有するAlGaN層を形成するには、形成温度を1000℃よりも高くすることが有効であるといえる。
【0073】
また、No.6の試料では、表面は鏡面であるものの、クラックが生じていることが確認された。No.2ないしNo.4と対比すると、加熱処理によって表面層に面内圧縮応力が作用させることは、クラック抑制の観点から有効であるといえる。
【0074】
(No.7)
AlGaN層の形成の際に、SiH4を所定の供給量でさらに供給することで、SiがドープされたN型の導電型を有する領域を形成するようにした他は、No.1と同様の手順でAlGaN層を形成した。
【0075】
得られたAlGaN層の表面状態は、No.1の試料と同様であった。また、シート抵抗を測定したところ、310Ω/□であった。
【0076】
(No.8)
AlGaN層の形成の際に、SiH4を所定の供給量でさらに供給することで、SiがドープされたN型の導電型を有する領域を形成するようにした他は、No.2と同様の手順でAlGaN層を形成した。
【0077】
得られたAlGaN層の表面状態は、No.2の試料と同様であった。また、シート抵抗を測定したところ、80Ω/□であった。
【0078】
(No.9)
AlGaN層の形成の際に、SiH4を所定の供給量でさらに供給することで、SiがドープされたN型の導電型を有する領域を形成するようにした他は、No.3と同様の手順でAlGaN層を形成した。
【0079】
得られたAlGaN層の表面状態は、No.3の試料と同様であった。また、シート抵抗を測定したところ、90Ω/□であった。
【0080】
(No.10)
AlGaN層の形成の際に、SiH4を所定の供給量でさらに供給することで、SiがドープされたN型の導電型を有する領域を形成するようにした他は、No.4と同様の手順でAlGaN層を形成した。
【0081】
得られたAlGaN層の表面状態は、No.4の試料と同様であった。また、シート抵抗を測定したところ、226Ω/□であった。
【0082】
すなわち、No.7およびNo.10の試料のAlGaN層については、No.8およびNo.9の試料と同程度の良好な表面平坦性を有するものの、導電性能は劣ることが確認された。
【図面の簡単な説明】
【0083】
【図1】積層体10の断面模式図である。
【図2】AlGaN層2の形成過程の模式図である。
【図3】テンプレート基板1にAlGaNからなる結晶層を連続的に形成する場合の模式図である。
【図4】実施例に係る各試料の作製条件と、得られたAlGaN層の表面の観察状態を一覧にして示す図である。
【符号の説明】
【0084】
1 テンプレート基板
1a 基材
1b 表面層
2 AlGaN層
2a 第1単位層
2b 第2単位層
3a、3b 核
10 積層体

【特許請求の範囲】
【請求項1】
所定の単結晶基材上に実質的に原子レベルで平坦な表面を有するAlN層を形成することによってテンプレート基板を作製するAlN層形成工程と、
前記AlN層の上にAlGaN層を形成するAlGaN層形成工程と、
を備え、
前記AlGaN層形成工程においては、1000℃よりも高い形成温度で、AlxGa1-xN(0≦x≦1)なる組成式で表されるIII族窒化物からなる第1単位層とAlyGa1-yN(0≦y≦1かつy≠x)なる組成式で表されるIII族窒化物からなる第2単位層とを交互に繰り返し積層することによって、超格子構造を有するように前記AlGaN層を形成する、
ことを特徴とするAlGaN結晶層の形成方法。
【請求項2】
請求項1に記載のAlGaN結晶層の形成方法であって、
前記AlGaN層形成工程においては、前記第1単位層と前記第2単位層を、格子緩和が生じない範囲内の厚みで形成する、
ことを特徴とするAlGaN結晶層の形成方法。
【請求項3】
請求項1または請求項2に記載のAlGaN結晶層の形成方法であって、
前記AlN層形成工程が、
前記単結晶基材の上にAlNからなる結晶層をエピタキシャル形成する形成工程と、
1500℃以上の加熱温度で前記結晶層を加熱する加熱工程と、
含み、
前記加熱工程によって得られる、面内圧縮応力が作用してなるとともに実質的に原子レベルで平坦な表面を有する前記結晶層を前記AlN層とする、
ことを特徴とするAlGaN結晶層の形成方法。
【請求項4】
請求項1ないし請求項3のいずれかに記載のAlGaN結晶層の形成方法であって、
前記AlGaN層形成工程における前記AlGaN層の形成温度が1100℃よりも低い、
ことを特徴とするAlGaN結晶層の形成方法。
【請求項5】
請求項4に記載のAlGaN結晶層の形成方法であって、
前記AlGaN層形成工程における前記AlGaN層の形成温度が1025℃以上1075℃以下である、
ことを特徴とするAlGaN結晶層の形成方法。
【請求項6】
請求項5に記載のAlGaN結晶層の形成方法であって、
前記AlGaN層形成工程における前記AlGaN層の形成温度が1040℃以上1060℃以下である、
ことを特徴とするAlGaN結晶層の形成方法。
【請求項7】
請求項1ないし請求項6のいずれかに記載のAlGaN結晶層の形成方法であって、
前記AlGaN層形成工程においては、所定のドーパントをドープしつつ前記第1単位層と前記第2単位層とを交互に繰り返し積層することによって、導電性を有するように前記AlGaN層を形成する、
ことを特徴とするAlGaN結晶層の形成方法。
【請求項8】
請求項1ないし請求項7のいずれかに記載のAlGaN結晶層の形成方法であって、
前記第1単位層をAlxGa1-xN(0.5<x≦1)なる組成式で表されるIII族窒化物にて形成し、前記第2単位層をAlyGa1-yN(0.5≦y<1かつy<x)なる組成式で表されるIII族窒化物にて形成する、
ことを特徴とするAlGaN結晶層の形成方法。
【請求項9】
請求項8に記載のAlGaN結晶層の形成方法であって、
前記第1単位層をAlNにて形成する、
ことを特徴とするAlGaN結晶層の形成方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate


【公開番号】特開2008−251643(P2008−251643A)
【公開日】平成20年10月16日(2008.10.16)
【国際特許分類】
【出願番号】特願2007−88219(P2007−88219)
【出願日】平成19年3月29日(2007.3.29)
【出願人】(000004064)日本碍子株式会社 (2,325)
【Fターム(参考)】