説明

薄膜トランジスタアレイ基板、及びその製造方法、並びに液晶表示装置

【課題】液晶分子を駆動するための画素電極と共通電極が、平面視上、重畳領域を有するTFTアレイ基板において、製造工程の短縮化を実現する。
【解決手段】本発明に係るTFTアレイ基板は、ドレイン領域10Dから延在される画素電極11を備える島状の結晶性半導体層3と、結晶性半導体層3の上層に形成されたゲート絶縁膜21と、ゲート絶縁膜上21であって、チャネル領域10Cと対向配置されるゲート電極12と、ゲート電極12より上層に配置され、絶縁層25に形成されたコンタクトホールCHを介してソース領域10Sと電気的に接続されたソース電極13と、絶縁層25より上層に形成され、画素電極11と重畳する領域を有する共通電極14とを備える。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、薄膜トランジスタアレイ基板、及びその製造方法に関する。また、前記薄膜トランジスタアレイ基板が搭載された液晶表示装置に関する。
【背景技術】
【0002】
液晶表示装置は、薄型パネルの一つであり低消費電力や小型軽量といったメリットを活かして、パーソナルコンピュータや携帯情報端末機器のモニタ等において広く用いられている。また、TV用途としても広く用いられ、従来のブラウン管に取って代わろうとしている。
【0003】
近年の液晶表示装置の主流は、複数の表示信号配線と複数の走査信号配線が格子状に配置され、表示信号配線と走査信号配線とで囲まれた画素領域内にスイッチング素子として薄膜トランジスタ(以下、「TFT」(Thin Film Transistor)とも云う)が形成されたアクティブマトリクス型のものである。表示装置の用途や要求性能に応じて、TFTの構造や材料が適宜選択されている。TFTの構造としては、ボトムゲート型(逆スタガ型)やトップゲート型(スタガ型)等のMOS(Metal Oxide Semiconductor)構造が多く採用されている。TFTを構成する半導体膜としては、非晶質シリコン膜や多結晶シリコン(ポリシリコン)膜等がある。
【0004】
チャネル活性層として多結晶シリコン膜を用いたTFTは、電子移動度が高い。多結晶シリコン膜を活用することにより、アクティブマトリクス型の表示装置の飛躍的な高性能化が進んでいる。多結晶シリコン膜を用いたTFTを表示装置周辺の回路形成に使用することにより、IC及びIC装着基板の使用を削減することができる。これにより、表示装置の構成を簡略化して小型化を実現し、かつ信頼性を高めることが可能となる。
【0005】
一方、近年のマルチメディア産業の発展により、高画質の画像表示装置への要求が強くなっている。従来の液晶駆動方式であるTN(Twisted Nematic)モードは、基板に垂直な縦電界を印加し、電圧の印加状況に応じて液晶分子を基板面に対して立ち上がらせたり、倒したりすることにより表示状態を変化させる方式であり、その原理上、視野角特性が悪い。IPS(In-Plane Switching)モードは、基板に平行な横電界を印加することによって、基板に平行な面内において液晶分子を動かしてオンとオフの表示状態を変化させる方式であり、視野角による液晶層の位相差であるリタデーション変化が小さく、視野角特性が広いので、市場に広く受け入れられている。
【0006】
近時においては、IPSモードをさらに改良したFFS(Fringe Field Switching)モードが開発されている(例えば、特許文献1〜4)。FFSモードも、主として基板に平行な横電界を印加することによって液晶分子を動かす方式であり、視野角特性に優れる。FFSモードのIPSモードとの相違点は、以下の点である。すなわち、IPSモードにおいては、セルギャップや電極幅よりも、液晶を駆動するための画素電極と共通電極間の距離が大きいのに対し、FFSモードにおいては、セルギャップや電極幅よりも、前記画素電極及び共通電極間の距離が小さい点において相違する。また、IPSモードは、画素電極と共通電極が平面視上、重ならないように配置されているのに対し、FFSモードでは画素電極の上方に絶縁層を介して共通電極が重畳するように配置されている点において相違する。
【0007】
IPSモードにおいては、平面視上、画素電極と共通電極の間に位置する液晶分子は駆動されるのに対し、其々の電極の上方に位置する液晶分子はほとんど駆動されない。このため、其々の電極上は表示に寄与することができず、高開口率化の妨げとなっている。一方、FFSモードの場合、其々の電極間に位置する液晶分子は勿論のこと、各電極の上方に位置する液晶分子も駆動することができる。このため、各電極をインジウム錫酸化物(ITO:Indium Tin Oxide)等の透明性導電膜により形成すれば、電極の部分も表示に寄与させることができる。従って、同様な画素サイズのIPSモードの液晶表示パネルに比して、FFSモードの方が高開口率化を図ることができる。
【0008】
特許文献4には、ボトムゲート型のTFTを有するFFSモードの液晶表示装置が開示されている。同文献に記載のTFTアレイ基板は、ゲート電極、ゲート絶縁膜、島状の半導体層をこの順に形成した後に、板状の画素電極を形成することが提案されている。そして、さらに、画素電極の上層に絶縁層を形成し、その上層に柵状の共通電極層を形成することが提案されている。
【先行技術文献】
【特許文献】
【0009】
【特許文献1】特開2000−356786号公報
【特許文献2】特開2007−178737号公報
【特許文献3】特開2007−178907号公報
【特許文献4】特開2001−83540号公報 第10段落〜第13段落
【発明の概要】
【発明が解決しようとする課題】
【0010】
しかしながら、FFSモードの液晶表示装置は、その構造ゆえ、絶縁層を介して2種類の透明性導電膜を2層形成する必要があり、従来のTNモードあるいはIPSモードの液晶表示装置に比して、マスク工数が増える。従って、生産性の低下や、製造コストが増大してしまうという問題がある。
【0011】
本発明は、上記背景に鑑みてなされたものであり、その目的とするところは、液晶分子を駆動するための画素電極と共通電極が、平面視上、重畳領域を有するTFTアレイ基板において、製造工程の短縮化を実現することである。
【課題を解決するための手段】
【0012】
本発明に係るTFTアレイ基板は、液晶表示装置に搭載されるTFTアレイ基板であって、チャネル領域、前記チャネル領域を挟むソース領域及びドレイン領域、さらに前記ドレイン領域から延在される画素電極を備える島状の結晶性半導体層と、前記結晶性半導体層の上層に形成されるゲート絶縁膜と、前記ゲート絶縁膜上であって、前記チャネル領域と対向配置されるゲート電極と、前記ゲート電極より上層に配置され、絶縁層に形成されたコンタクトホールを介して前記ソース領域と電気的に接続されるソース電極と、前記絶縁層より上層に形成され、前記画素電極と、平面視上、重畳する領域を有する共通電極と
を備えるものである。
【発明の効果】
【0013】
本発明によれば、液晶分子を駆動するための画素電極と共通電極が、平面視上、重畳領域を有するTFTアレイ基板において、製造工程の短縮化を実現することができるという優れた効果を有する。
【図面の簡単な説明】
【0014】
【図1】実施形態1に係るTFTアレイ基板の構成を示す模式的な部分拡大平面図。
【図2】図1のII−II切断部断面図。
【図3】実施形態1に係るTFTアレイ基板の模式的平面図。
【図4】(a)〜(c)実施形態1に係るTFTアレイ基板の製造工程断面図。
【図5】(d)〜(e)実施形態1に係るTFTアレイ基板の製造工程断面図。
【図6】実施形態2に係るTFTアレイ基板の構成を示す模式的平面図。
【図7】図6のVII−VII切断部断面図。
【図8】比較例に係るTFTアレイ基板の構成を示す模式的平面図。
【図9】図8のIX−IX切断部断面図。
【発明を実施するための形態】
【0015】
以下、本発明を適用した実施形態の一例について説明する。なお、以降の図における各部材のサイズや比率は、説明の便宜上のものであり、実際のものとは異なる。
【0016】
[実施形態1]
本実施形態1に係る液晶表示装置には、スイッチング素子としてトップゲート型のMOS構造の薄膜トランジスタ(TFT)を有するアクティブマトリクス型のTFTアレイ基板が搭載されている。液晶表示装置は、FFSモードであり、ここでは透過型の液晶表示装置について説明する。
【0017】
図1は、本実施形態1に係る液晶表示装置に搭載されるTFTアレイ基板を部分拡大した模式的平面図であり、図2は、図1のII−II切断部断面図である。なお、説明の便宜上、図1において、ゲート絶縁膜、絶縁層(第1層間絶縁膜、第2層間絶縁膜)、共通電極等の図示を省略する。その一方、図1において、共通電極のパターン開口部を明確にする観点から、同開口部の位置を図示する。以降の平面図においても同様とする。
【0018】
本実施形態1に係るTFTアレイ基板100は、図1及び図2に示すように、絶縁性基板1、下地膜2、結晶性半導体層3、ソース領域10S,チャネル領域10C,ドレイン領域10D、画素電極11、ゲート電極12、ソース電極13、共通電極14、ゲート絶縁膜21、絶縁層として機能する第1層間絶縁膜22、同じく絶縁層として機能する第2層間絶縁膜23、コンタクトホールCH等を備える。なお、第1層間絶縁膜22、第2層間絶縁膜23を総称して絶縁層25とも云う。
【0019】
絶縁性基板1は、ガラス基板や石英基板などの透過性を有する基板により構成することができる。下地膜2は、絶縁性基板1の一主面上に形成されている。下地膜2としては、例えば、透過性絶縁膜であるシリコン窒化膜(SiN膜)やシリコン酸化膜(SiO膜)の積層構造を用いることができる。下地膜2は2層構造に限られず、単層構造又は3層以上の多層構造であってもよい。
【0020】
結晶性半導体層3は、下地膜2の上層に島状に形成されている(図1参照)。なお、本明細書において「結晶性半導体層」とは、多結晶半導体層、及び単結晶半導体層等の結晶性構造を有する半導体層を総称するものとする。本実施形態1においては、結晶性半導体層3として、多結晶シリコン(ポリシリコン)膜を適用した。単結晶シリコン膜も好適に適用することができる。多結晶シリコン膜は、非晶質シリコン膜を成膜し、これにレーザ光を照射することにより得ることができる。
【0021】
島状の結晶性半導体層3には、チャネル領域10C、及びチャネル領域10Cを挟むソース領域10S及びドレイン領域10D、並びにドレイン領域10Dから延在された画素電極11が形成されている。換言すると、結晶性半導体層3をTFT50の能動素子として利用するのみならず、画素電極11としても利用する。
【0022】
ゲート絶縁膜21は、結晶性半導体層3、下地膜2を被覆するように形成されている。ゲート絶縁膜21は、単層構造としてもよいし、複数層からなる積層構造としてもよい。ゲート絶縁膜21の被覆性を良好にするためには、図2に示すように、結晶性半導体層3の端部をテーパ形状とすることが好ましい。これにより、絶縁破壊等の不良を十分抑制して、TFT50の信頼性向上を図ることができる。
【0023】
ゲート電極12は、ゲート絶縁膜21の上層に形成されている。ゲート電極12の形成位置は、結晶性半導体層3のうちのチャネル領域10Cと対向配置される位置である。ゲート電極12と同一のレイヤには、ゲート配線(走査信号配線)12Lが、ゲート電極12と一体的に同一材料により形成されている。ゲート配線12Lは、図1中のY方向に延在されており、図1中のX方向に複数、互いに平行に配設されている。ゲート電極12は、ゲート配線12Lから結晶性半導体層3の上部まで延設された領域であり、ゲート配線12Lを介して、ゲート電極12にゲート信号が入力されるように構成されている。
【0024】
第1層間絶縁膜22は、ゲート電極12、及びゲート絶縁膜21を被覆するように形成されている。ゲート絶縁膜21及び第1層間絶縁膜22には、第1層間絶縁膜22の表面からソース領域10Sの表面まで貫通するコンタクトホールCHが形成されている。
【0025】
ソース電極13は、第1層間絶縁膜22上に形成されている。ソース電極13の形成位置は、第1層間絶縁膜22に形成されたコンタクトホールCHの上層であり、ソース電極13は、このコンタクトホールCHを介してソース領域10Sと電気的に接続されている。以上のような構成により、TFT50が形成されている。
【0026】
ソース電極13と同一レイヤには、ソース配線(表示信号配線)13Lが、ソース電極13と一体的に同一材料により形成されている。ソース配線13Lは、図1中のX方向に延在され、図1中のY方向に複数、互いに平行に配設されている。すなわち、ソース配線13Lは、第1層間絶縁膜22を介して、ゲート配線12Lと互いに直交する方向に配設されている。ゲート配線12L及びソース配線13Lで囲まれた領域には、TFT50と、画素領域51が設けられている。なお、図1においては、TFT50の配置位置が、画素領域51とは別の領域に設けられている例を説明しているが、画素領域内にTFTが一部、又は全部設けられている構成でもよい。
【0027】
画素領域51の各々には、図1に示すように、画素電極11が概ね全面に設けられている。画素電極11は、スイッチング素子としてのTFT50に接続されている。具体的には、結晶性半導体層3のドレイン領域10Dと画素電極11が一体的に形成されていることで、TFT50に画素電極11が接続されている。これにより、TFT50がオンすると、ソース配線13Lに供給される表示信号が画素電極11に書き込まれることになる。
【0028】
第2層間絶縁膜23は、ソース電極13、第1層間絶縁膜22等を被覆するように形成されている。第2層間絶縁膜23の材料としては、特に限定されるものではなく、例えば、シリコン窒化膜、有機系材料からなる有機系樹脂膜、若しくはこれらの積層膜などを用いることができる。
【0029】
共通電極14は、第2層間絶縁膜23上に形成されている。共通電極14の材料は、ITO(Indium Tin Oxide)、IZO(Indium Zinc Oxide)等の透明な導電材で形成されている。共通電極14のパターンは、図1及び図2に示すように、開口部OP1〜OP5を有するように形成されている。画素領域51において、共通電極14は、第1層間絶縁膜22及び第2層間絶縁膜23を介して画素電極13と対向配置される。共通電極14の開口部OP2〜OP5は、ソース配線13Lと概ね平行な方向に延在される幅細の開口部からなる。言い換えると、開口部OP2〜OP5により、共通電極14は、画素領域51において、ソース配線13Lと平行に延在された細幅の分岐部と、分岐部の両端部にて其々の分岐部が互いに接続される細幅の連結部を備える。連結部を設けることにより、断線の確率を低減することができる。一方、開口部OP1は、TFT50の上層に設けられている。
【0030】
図3に、TFTアレイ基板100の模式的平面図を示す。図3中の表示領域60は、画素領域51が形成されている領域である。表示領域60の外側には額縁領域61が形成されている。額縁領域61には、ゲート配線12Lと接続されるゲート駆動回路62、ソース配線13Lと接続されるソース駆動回路63等が形成されている。ゲート駆動回路62やソース駆動回路63からは、配線(不図示)が端子(不図示)まで延設され、端子を介して配線基板64に接続されている。
【0031】
ゲート駆動回路62やソース駆動回路63に、上記TFT50の構成を適用することにより、以下の効果を得ることができる。まず、非晶質半導体層を結晶性半導体層とすることにより、膜中の欠陥準位を減らし、電界効果移動度(μ)を高めることができる。また、半導体層として非晶質半導体層のみからなるTFTに比して、長時間動作時のVthシフト量を小さくすることができる。その結果、TFT性能向上と信頼性向上を実現することができる。また、ゲート駆動回路62やソース駆動回路63を絶縁性基板1上に画素領域のTFTと同時に形成することが可能となるので、ICチップの部品点数を減らすことが可能となる。すなわち、軽量化、減量化、さらには小型化の実現が期待できる。
【0032】
本実施形態1に係るTFTアレイ基板100は、上記のような構成を備えている。そして、本実施形態1に係る液晶表示装置においては、さらに、以下の部材を備える。すなわち、共通電極14の上層に、パッシベーション膜(不図示)や、液晶分子の配向を制御するための配向膜(不図示)が形成される。また、絶縁性基板1の他の面上には、偏光板や光学補償フィルムなどからなる光学フィルムが配設されている。
【0033】
上記のように構成されたTFTアレイ基板100は、液晶表示装置の液晶表示パネルにおいて、カラーフィルタ基板(不図示)と所定のギャップを持って対向配置されている。TFTアレイ基板100とカラーフィルタ基板の間隙には、液晶層が挟持されている。カラーフィルタ基板は、透明な絶縁性基板の一面上に、遮光膜、カラーフィルタ膜等を備える。また、カラーフィルタ基板の他の面上には、偏光板や光学補償フィルム等の光学フィルムを備える。
【0034】
上記のような構成の液晶表示装置は、ゲート配線12Lに所定の電圧が供給されることによりTFT50がオンし、ソース配線13Lに供給された表示信号を画素電極11に書き込む。そして、画素電極11と共通電極14との間に電位差が生じ、それによって電界が発生する。この電界は、液晶層を構成する液晶分子(不図示)に作用し、液晶分子を主として基板に水平な面内で回転させる。
【0035】
次に、上記のように構成された薄膜トランジスタの製造方法について説明する。図4及び図5は、TFTアレイ基板100の製造方法を説明するための製造工程図である。まず、絶縁性基板1上に下地膜2を形成する。本実施形態1においては、絶縁性基板1上にCVD(Chemical Vapor Deposition)法により、第1下地膜としてSiN膜を成膜し、その上に第2下地膜としてSiO膜を成膜した。SiN膜の膜厚は、例えば、40〜60nm、SiO膜の膜厚は例えば、180〜220nmとする。なお、これらの下地膜は、主にガラス基板からのNaなどの可動イオンが半導体層へ拡散することを防止する目的で設けたものであるので、上記膜構成、膜厚に限定されるものではない。また、下地膜を設けなくてもよい。
【0036】
次に、下地膜2の上層に非晶質半導体層3AをプラズマCVD法により形成する。本実施形態1においては、非晶質半導体として非晶質シリコン膜(アモルファスシリコン膜)を用いた。非晶質シリコン膜は、例えば、その膜厚が50〜70nmとなるように成膜する。これら下地膜2及び非晶質半導体層3Aは、同一装置あるいは同一チャンバ内にて連続的に成膜することが好ましい。これにより、大気雰囲気中に存在するB(ホウ素)などの汚染物質が各膜の界面に取り込まれることを防止することができる。
【0037】
なお、非晶質半導体層3Aの成膜後に、高温中でアニールを行うことが好ましい。これは、CVD法によって成膜した非晶質半導体層3Aの膜中に、多量に含有された水素を低減するためである。本実施形態1では、窒素雰囲気の低真空状態で保持したチャンバ内を480℃程度に加熱し、非晶質半導体層3Aを成膜した基板を45分間保持した。このような処理により、非晶質半導体層3Aを結晶化する際に、温度が上昇しても水素の急激な脱離が起こらない。そして、非晶質半導体層3A表面の荒れを抑制することが可能となる。以上の工程により、図4(a)に示す構成となる。
【0038】
続いて、非晶質半導体層3A表面に形成された自然酸化膜をフッ酸などでエッチング除去する。その後、非晶質半導体層3Aに対して窒素などのガスを吹き付けながら、非晶質半導体層3Aの上からレーザアニール等を行う。レーザ光は、所定の光学系を通して線状のビーム形状に変換された後、非晶質半導体層3Aに照射される。これにより、非晶質半導体層3Aを溶融、冷却、固化し、多結晶半導体層3を得る。
【0039】
本実施形態1では、レーザ光としてYAGレーザの第2高調波(発振波長:532nm)を用いた。YAGレーザの第2高調波の代わりに、エキシマレーザを用いることもできる。非晶質半導体層3Aに窒素を吹き付けながらレーザ光照射を行うことにより、結晶粒界部分に発生する隆起高さを抑制することができる。本実施形態1においては、結晶表面の平均粗さRaを3nm以下にまで小さくしている。非晶質半導体層3Aにレーザ光を照射することにより、非晶質シリコン膜を溶融、冷却、固化し、結晶性半導体層3が形成される。本実施形態1においては、非晶質シリコン膜を多結晶シリコン膜に変換する。なお、多結晶シリコン膜に代えて、単結晶シリコン膜であってもよい。
【0040】
続いて、多結晶半導体層3を島状にパターン形成するために、感光性樹脂であるレジストをスピンコート等により塗布する。塗布したレジスト膜は、露光・現像等の一連の写真製版法により所望の形状にパターニングする(不図示)。その後、レジストパターンをマスクとして、CFとOを混合したガスを用いたドライエッチング法により、結晶性半導体層3を島状に形成する。エッチングに用いられるガスにOが混合されているため、写真製版法によって形成したレジストを後退させながらエッチングすることが可能となる。従って、結晶性半導体層3の端部をテーパ形状とすることができる。以上の工程により、図4(b)に示す構成となる。
【0041】
次に、洗浄処理を行い、結晶性半導体層3の上の基板表面全体を覆うようにゲート絶縁膜21を成膜する。本実施形態1においては、バッファードフッ酸(BHF:Buffered Hydrogen Fluoride)を用いて洗浄処理を行った。ゲート絶縁膜21としては、SiN膜、SiO膜等を用いることができる。本実施形態1では、ゲート絶縁膜21として、SiO膜を用い、CVD法によって70〜100nmの膜厚に成膜した。本実施形態1によれば、結晶性半導体層3の端部をテーパ形状としているので、ゲート絶縁膜21の被覆性が高く、初期故障を大幅に低減することが可能となる。以上の工程により、図4(c)に示す構成となる。
【0042】
次に、ゲート電極12、ゲート配線12L(図1参照)を形成するための第1メタル膜を成膜する。この第1メタル膜は、例えば、Mo、Cr、W、Taやこれらを主成分とする合金膜を好適に用いることができる。本実施形態1では、膜厚200〜400nmのMo膜を、DCマグネトロンを用いたスパッタリング法により形成した。そして、公知の写真製版法を用いて、所望の形状にパターニングし、ゲート電極12、ゲート配線12L等を形成する。ゲート電極12等のエッチングには、燐酸と硝酸を混合した薬液を用いたウエットエッチング法により行った。以上の工程により、図5(d)に示す構成となる。
【0043】
次に、形成したゲート電極12をマスクとして、結晶性半導体層3のソース領域10S、ドレイン領域10D、画素電極11となるドレイン延在領域に不純物元素を導入する。導入する不純物元素としては、P(燐)、B(ホウ素)、As(砒素)を用いることができる。PやAsを導入すればn型(NMOS:negative channel Metal Oxide Semiconductor)のTFTを得ることができ、Bを導入すればp型(PMOS:positive channel Metal Oxide Semiconductor)のTFTを得ることができる。また、ゲート電極12の加工をn型TFT用ゲート電極とp型TFT用ゲート電極の2回に分けて行えば、n型とp型のTFTを同一基板上に作り分けることができる。PやBの不純物元素の導入は、イオンドーピング法を用いて行った。
【0044】
以上の工程により、セルフアラインによりソース領域10S、ドレイン領域10D、画素電極11が形成され、図5(e)に示す構成となる。なお、TFT50の信頼性向上のために、LDD(Lightly Doped Drain)構造としてもよい。また、イオンドーピング法に代えて、イオン注入法を用いてもよい。
【0045】
次に、ゲート電極12上に、基板表面全体を覆うように、第1層間絶縁膜22を成膜する。本実施形態1では、第1層間絶縁膜22として、膜厚500〜1200nmのシリコン酸化(SiO)膜をプラズマCVD法によりを成膜した。シリコン酸化膜に代えてシリコン窒化膜を用いてもよい。成膜後、窒素雰囲気中で400℃以上に加熱したアニール炉に1時間程度保持した。これにより、結晶性半導体層3のソース・ドレイン領域に導入した不純物元素がさらに活性化する。
【0046】
次に、第1層間絶縁膜22の表面からソース領域10Sの表面まで貫通するコンタクトホールCHを形成する。本実施形態1では、コンタクトホールCHのエッチングは、CHFとArの混合ガスを用いたドライエッチング法により行った。
【0047】
次に、ソース電極13、及びソース配線13L(図1参照)等を形成するための第2メタル膜を成膜する。この第2メタル膜の材料としては、Alや、Alを主成分とする合金膜、若しくはMo、Cr、W、Al、Taやこれらを主成分とする合金膜を好適に用いることができる。単層構造の他、これらを積層させた多層構造としてもよい。本実施形態1では、Mo/Al/Moの3層構造とした。Al膜の膜厚は、200〜400nm、Mo膜の膜厚は、50〜200nmとし、DCマグネトロンを用いたスパッタリング法により形成した。
【0048】
次いで、第2メタル膜を公知の写真製版法を用いて所望の形状にパターニングして、ソース電極13、ソース配線13L等を形成する。本実施形態1では、これらを形成する手段として、SFとOの混合ガス及びClとArの混合ガスを用いたドライエッチング法を用いた。ドライエッチング法に代えてウエットエッチング法を用いてもよい。以上の工程により、ソース領域10Sに接続されるソース電極13が形成される。これにより、図5(f)に示す構造となる。
【0049】
その後、ソース電極13上に、基板表面全体を覆うように、第2層間絶縁膜23を成膜する。第2層間絶縁膜23の材料としては、本実施形態1においては有機系樹脂膜を用いた。次に、第2層間絶縁膜23の表面から第2メタル膜の表面まで貫通するコンタクトホール(不図示)を形成する。本実施形態1では、ドライエッチング法により行った。なお、有機系樹脂膜に感光性が付与されたものを適用してもよい。この場合には、有機系樹脂膜に露光、現像処理を行うことにより、エッチング工程やレジスト除去工程を経ずにパターン形成することができる。
【0050】
コンタクトホール(不図示)を形成後、第2層間絶縁膜23上に共通電極14を形成するための透明性導電膜を成膜する。透明性導電膜としては、例えば、酸化インジウムを主成分とするITOやIZO等を適用することができる。本実施形態1では、DCマグネトロンを用いたスパッタリング法によりITO膜を形成した。膜厚は、例えば50〜200nm程度とすることができる。透明性導電膜は、コンタクトホールを覆うようにパターニングされる。以上の工程等を経て、図2に示すようなTFTアレイ基板100が製造される。
【0051】
本実施形態1に係るTFTアレイ基板100は、液晶表示装置に搭載するので、上記工程にさらに追加で、パッシベーション膜(不図示)を成膜し、配向膜(不図示)を形成する。配向膜には、所望の方向にラビング処理を施す。また、TFTアレイ基板100の他面上には、偏光板等の光学フィルムを配設する。
【0052】
(比較例)
ここで、比較例について検討する。比較例に係るTFTアレイ基板は、以下の点を除く基本的な構成、及び動作は、実施形態1と同様である。すなわち、実施形態1においては、画素電極11を結晶性半導体層3により形成していたのに対し、比較例においては、画素電極を透明性導電膜により形成している点において相違する。また、実施形態1においては、画素電極11とドレイン領域10Dが一体的に形成されていたのに対し、比較例においては、画素電極は、ドレイン領域10Dより上層のレイヤに形成され、かつドレイン領域10Dと画素電極11にドレイン電極を介して接続されている点において相違する。また、実施形態1においては、ゲート電極12と共通電極14の間に、第1層間絶縁膜22及び第2層間絶縁膜23の2層を配設していたのに対し、比較例においては、ゲート電極12と共通電極14の間に、第1層間絶縁膜〜第3層間絶縁膜と3層配設している点において相違する。以下、実施形態1との相違点を中心に説明する。
【0053】
図8は、比較例に係る液晶表示装置に搭載されるTFTアレイ基板200を部分拡大した模式的平面図であり、図9は、図8のIX−IX切断部断面図である。なお、説明の便宜上、図8において、説明の便宜上、ドレイン電極の位置を点線で図示する。
【0054】
比較例に係るTFTアレイ基板200は、図8及び図9に示すように、絶縁性基板101、下地膜102、結晶性半導体層103、画素電極111、ゲート電極112、ソース電極113、共通電極114、ドレイン電極115、ゲート絶縁膜121、絶縁層として機能する第1層間絶縁膜122、第2層間絶縁膜123、第3層間絶縁膜124、コンタクトホールCH等を備える。
【0055】
比較例に係る結晶性半導体層103は、下地膜102の上層に島状に形成されている。ここで、島状の結晶性半導体層103は、チャネル領域110C、及びチャネル領域10Cを挟むソース領域110S及びドレイン領域110Dからなる。結晶性半導体層103の上層には、ゲート絶縁膜121が形成されている。そして、ゲート絶縁膜121を介してチャネル領域110Cと対向配置されるように、ゲート絶縁膜121の上層にゲート電極112が形成されている。
【0056】
第1層間絶縁膜122は、ゲート電極112及びゲート絶縁膜121を被覆するように形成される。そして、第1層間絶縁膜122の上層に形成されるソース電極113は、第1層間絶縁膜122の表面からソース領域110Sの表面まで貫通するコンタクトホールCHaを介して、ソース領域110Sと電気的に接続されている。同様にして、ソース電極113と同一レイヤに構成されるドレイン電極115は、第1層間絶縁膜122の表面からドレイン領域110Dの表面まで貫通するコンタクトホールCHbを介して、ドレイン領域110Dと電気的に接続されている。
【0057】
ソース電極113、ドレイン電極115の上層には、これらを被覆するように第2層間絶縁膜123が形成されている。第2層間絶縁膜123の上層には、透明性導電膜から構成される画素電極111が形成されている。画素電極111は、ドレイン電極115と第2層間絶縁膜123に形成されたコンタクトホールCHcを介して接続されている。
【0058】
画素電極111の上層には、これを被覆するように第3層間絶縁膜124が形成されている。そして、その上層には、共通電極114が形成されている。共通電極114には、開口部OP101〜OP105が設けられている。比較例に係るTFTアレイ基板200は、以上のような構成となっている。
【0059】
比較例に係るTFTアレイ基板200によれば、層間絶縁膜を1層余分に積層するのみならず、画素電極111の層を新たに設ける必要がある。このため、製造プロセスが大幅に増えてしまい、生産性の低下、及び製造コストの増大を招来する。
【0060】
上記特許文献4に開示されたボトムゲート型のTFTアレイ基板においては、ゲート電極、ゲート絶縁膜、島状の半導体層をこの順に形成した後に、板状の画素電極を形成する。そして、さらに、画素電極の上層に絶縁層を形成し、その上層に柵状の共通電極層を形成する。画素電極と島状の半導体層は、ドレイン電極を介して接続する必要がある。
【0061】
本実施形態1によれば、結晶性半導体層3をTFT50の能動素子として利用するのみならず、画素電極11としても利用している。しかも、画素電極11をドレイン領域10Dから延在する領域に設ける構成を採用した。これにより、ドレイン電極を介してドレイン領域10Dと画素電極11を接続する構成を採用する必要がなく、構成を簡便化することができる。その結果、製造プロセスを大幅に短縮することができる。そして、生産性に優れ、製造コストの削減を図ったTFTアレイ基板を提供することができる。
【0062】
しかも、能動素子として多結晶半導体層を適用することにより、電子移動度を高めることができる。多結晶半導体層を用いたTFTを液晶表示装置周辺の回路形成にも使用することにより、IC及びIC装着基板の使用を削減することができる。これにより、液晶表示装置の構成を簡略化して小型化を実現し、かつ信頼性を高めることが可能となる。
【0063】
また、FFSモードを採用しているので、広視野角、高輝度、高開口率化を実現することができる。従って、広視野角、高輝度、及び高集積化を図りつつ、製造工程の短縮化が可能な液晶表示装置を提供することができる。
【0064】
また、多結晶半導体層の端部をテーパ形状としているので、多結晶半導体層上に成膜するゲート絶縁膜が良好に被覆され、絶縁破壊などの不良を十分に抑制することができる。さらに、本実施形態1においては、結晶性シリコン膜をYAGレーザによりレーザアニール処理を行っているので、ポリシリコンの透過率を向上させることができるという優れた効果を有する。
【0065】
[実施形態2]
次に、上記実施形態とは異なる構造のTFTアレイ基板の一例について説明する。なお、以降の説明において、上記実施形態1と同一の要素部材は同一の符号を付し、適宜その説明を省略する。
【0066】
本実施形態2に係るTFTアレイ基板は、以下の点を除く基本的な構成、及び動作は、上記実施形態1と同様である。すなわち、上記実施形態1においては、画素領域51において、画素電極11と共通電極14は、第1層間絶縁膜22及び第2層間絶縁膜23を介して対向配置されていたが、本実施形態2においては、画素領域において、画素電極と共通電極は、第1層間絶縁膜を介して対向配置されている点において相違する。
【0067】
図6は、本実施形態2に係る液晶表示装置に搭載されるTFTアレイ基板101aを部分拡大した模式的平面図であり、図7は、図6のVII−VII切断部断面図である。
【0068】
本実施形態2に係るTFTアレイ基板100aにおいては、画素領域51に形成される共通電極14aは、図7に示すように、画素電極11と第1層間絶縁膜22のみを介して対向配置されている。言い換えると、第2層間絶縁膜23aは、画素領域51に相当する位置に略同一形状の開口部OP6が設けられている(図6、6参照)。この開口部OP6は、第2層間絶縁膜23aにコンタクトホールを設ける際に同時に形成することができる。従って、新たな製造工程を追加する必要がない。また、第2層間絶縁膜23aに開口部OP6を設ける以外、上記実施形態1と同様の方法により製造することができる。
【0069】
共通電極14aは、上記実施形態1と概ね同一位置に形成されている。言い換えると、共通電極14aは、画素領域51においては、第1層間絶縁膜22の直上層に形成されている。一方、TFT50の上層等においては、第2層間絶縁膜23aの直上層に形成されている。開口部OP6において、共通電極14aは、図7に示すように、第2層間絶縁膜23aの上層から側面を被覆し、さらに第1層間絶縁膜22まで延在されるようにパターンを形成してもよい。
【0070】
本実施形態2によれば、上記実施形態1と同様の効果を得ることができる。しかも、画素領域51において、第2層間絶縁膜23aを除去して開口部OP6を形成しているので、両電極間の電界を高めることができる。その結果、ソース配線13L(図1参照)から供給される電圧を低く抑えることが可能となる。従って、より表示性能の高い液晶表示装置を提供することができる。
【0071】
なお、上記実施形態1及び2においては、透過型の液晶表示装置について述べたが、本発明を反射型や半透過型液晶表示装置にも適用してもよい。反射型や半透過型液晶表示装置においても、生産性を高め、製造コストを削減する効果を得ることができる。反射型、若しくは半透過型とする場合には、例えば、多結晶半導体層の画素電極11の直上層に反射性導電膜を成膜すればよい。また、共通電極は、透明性導電膜に限定されるものではなく、反射型等においてはメタル膜等の反射性導電膜、若しくは反射性導電膜と透明性導電膜の積層構造等を好適に適用することができる。また、多結晶半導体層を得る方法として非晶質半導体層にレーザ光を照射する方法について述べたが、本発明の趣旨を逸脱しない範囲において、他の方法により多結晶半導体層を得てもよい。また、結晶性半導体層の半導体層として、シリコンを用いる例について説明したが、これに限定されるものではない。
【0072】
また、額縁領域61に形成されたゲート駆動回路62、ソース駆動回路63のTFTを、表示領域60のTFT50と同一のもの同一の製造工程にて製造する例について述べたが、用途やニーズに応じて適宜変更することができる。また、共通電極14の形状や画素電極11の形状は、上記実施形態の形状に限定されるものではなく、FFSモードで駆動が可能な範囲において、適宜変更することが可能である。さらに、上記実施形態1に係るTFTアレイ基板の製造方法は、一例であって、本発明の趣旨を逸脱しない範囲において種々の変形が可能である。
【符号の説明】
【0073】
1 絶縁性基板
2 下地膜
3 結晶性半導体層
10S ソース領域
10C チャネル領域
10D ドレイン領域
11 画素電極
12 ゲート電極
12L ゲート配線
13 ソース電極
13L ソース配線
14 共通電極
21 ゲート絶縁膜
22 第1層間絶縁膜
23 第2層間絶縁膜
25 絶縁層
50 TFT
51 画素領域
OP 開口部
CH コンタクトホール

【特許請求の範囲】
【請求項1】
チャネル領域、前記チャネル領域を挟むソース領域及びドレイン領域、さらに前記ドレイン領域から延在される画素電極を備える島状の結晶性半導体層と、
前記結晶性半導体層の上層に形成されるゲート絶縁膜と、
前記ゲート絶縁膜上であって、前記チャネル領域と対向配置されるゲート電極と、
前記ゲート電極より上層に配置され、絶縁層に形成されたコンタクトホールを介して前記ソース領域と電気的に接続されるソース電極と、
前記絶縁層より上層に形成され、前記画素電極と、平面視上、重畳する領域を有する共通電極と
を備える薄膜トランジスタアレイ基板。
【請求項2】
前記結晶性半導体層は、多結晶シリコン膜、又は単結晶シリコン膜であることを特徴とする請求項1に記載の薄膜トランジスタアレイ基板。
【請求項3】
前記絶縁層は、第1層間絶縁膜と第2層間絶縁膜を備え、
前記第2層間絶縁膜は、有機系材料により構成されたものであることを特徴とする請求項1又は2に記載の薄膜トランジスタアレイ基板。
【請求項4】
前記絶縁層は、第1層間絶縁膜と第2層間絶縁膜を備え、
前記画素電極と前記共通電極は、前記第1層間絶縁膜を介して対向配置されていることを特徴とする請求項1〜3に記載の薄膜トランジスタアレイ基板。
【請求項5】
請求項1〜4のいずれか1項に記載の薄膜トランジスタアレイ基板が搭載された液晶表示装置。
【請求項6】
基板上に、チャネル領域、当該チャネル領域を挟むソース領域、及びドレイン領域、さらに前記ドレイン領域から延在される画素電極を有する島状の結晶性半導体層を形成し、
前記結晶性半導体層上にゲート絶縁膜を形成し、
前記ゲート絶縁膜上にゲート電極を形成し、
前記ゲート電極より上層に第1層間絶縁膜を形成し、
前記第1層間絶縁膜から、前記ソース領域が露出するようにコンタクトホールを形成し、
前記第1層間絶縁膜の上層に、前記コンタクトホールを介して前記ソース領域と電気的に接続されるソース電極を形成し、
前記ソース電極の上層に第2層間絶縁膜を形成した後に、前記画素電極と、平面視上、重畳する領域を有する共通電極を形成する薄膜トランジスタアレイ基板の製造方法。
【請求項7】
前記結晶性半導体層は、結晶性シリコン膜、又は単結晶シリコン膜であることを特徴とする請求項6に記載の薄膜トランジスタアレイ基板の製造方法。
【請求項8】
前記結晶性半導体層は、非晶質半導体層を成膜後、YAGレーザによりアニールすることにより形成されたものであることを特徴とする請求項6又は7に記載の薄膜トランジスタアレイ基板の製造方法。
【請求項9】
画素領域において、前記画素電極と前記共通電極が前記第1層間絶縁膜を介して対向配置されるように、当該領域の前記第2層間絶縁膜を除去することを特徴とする請求項6〜8のいずれか1項に記載の薄膜トランジスタアレイ基板の製造方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate


【公開番号】特開2010−243741(P2010−243741A)
【公開日】平成22年10月28日(2010.10.28)
【国際特許分類】
【出願番号】特願2009−91665(P2009−91665)
【出願日】平成21年4月6日(2009.4.6)
【出願人】(000006013)三菱電機株式会社 (33,312)
【Fターム(参考)】