説明

固体撮像素子、その動作方法、その製造方法及びデジタルカメラ

【課題】受光量に十分に対応(ばらつきの少ない線形又は非線形)したデータを不揮発性メモリセルから読み出すことができる固体撮像装置を実現すること。
【解決手段】入射光を受け信号電荷を発生させる受光素子と、一端が受光素子に接続され、他端が検出ノードに接続された第1のトランジスタと、一端が検出ノードに接続された第2のトランジスタと、検出ノードに制御ゲート又は一端が接続された電荷蓄積層を有するメモリセルトランジスタと、を具備することを特徴とする固体撮像装置。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、固体撮像素子、その動作方法、その製造方法及びデジタルカメラに関する。
【背景技術】
【0002】
従来より、固体撮像素子として、MOS型固体撮像素子、CCD型固体撮像素子、CMOS型固体撮像素子などが知られている。
【0003】
しかし、これらの従来の固体撮像素子は、行列を順次アドレッシングして読み出しを行うため、動く被写体を撮像すると画像が流れ、完全電子シャッター機能を実現することが困難であった。
【0004】
そこで、受光素子と不揮発性半導体記憶素子とからなる画素を集積した固体撮像素子が提案されてきた(下記各特許文献参照)。
【0005】
【特許文献1】特開2002−280537号公報
【特許文献2】特開平8−288495号公報
【特許文献3】特開平2−26076号公報
【特許文献4】特開昭63−109672号公報
【発明の開示】
【発明が解決しようとする課題】
【0006】
上記各特許文献で示される固体撮像装置は、いずれも、フォトダイオードが直接不揮発性のメモリセルトランジスタに接続されていること、いずれもN型MOSトランジスタからなる不揮発性メモリセルを有していること、そのいくつかは、書き込みにトンネル電流を用いていること等から、受光量に十分に対応(ばらつきの少ない線形又は非線形)したデータを不揮発性メモリセルから読み出すことができず、その結果実用化が困難であった。また、ホットエレクトロン書き込みを用いる場合は、大容量の固体撮像装置を実現することが困難であるという問題があった。
【0007】
また、これまでに提案された各種の構成には、不揮発性半導体記憶素子としてスプリットゲート型トランジスタや局所的なトンネル酸化膜、特殊な高耐圧トランジスタを使うものがあり、特殊な製造プロセスを必要とするという問題もあった。
【0008】
さらに、これまでに提案された各種の構成は、n型のフローティングゲート型MOSトランジスタを記憶素子として用いているため、書き込み特性が十分ではなく、また、その回路構成から、各種のディスターブ耐性が低いという問題があった。
【0009】
加えて、これまでに提案された各種の構成は、少ない配線層、小さなパターンで画素を構成することが困難であった。
【課題を解決するための手段】
【0010】
上記課題を解決するため、本発明においては、入射光を受け信号電荷を発生させる受光素子と、一端が受光素子に接続され、他端が検出ノードに接続された第1のトランジスタと、一端が検出ノードに接続された第2のトランジスタと、検出ノードに制御ゲート又は一端が接続された電荷蓄積層を有するメモリセルトランジスタと、を具備することを特徴とする固体撮像装置を提供する。
【0011】
上記課題を解決するため、本発明においては、さらに、入射光を受け信号電荷を発生させる複数の受光素子と、対応する複数の受光素子にそれぞれ一端が接続され、他端が検出ノードに共通接続された複数の第1のトランジスタと、一端が検出ノードに接続された第2のトランジスタと、検出ノードに制御ゲートまたは一端が接続されたそれぞれ電荷蓄積層を有する複数のメモリセルトランジスタと、を具備することを特徴とする固体撮像装置を提供する。
【0012】
上記課題を解決するため、本発明においては、さらに、入射光を受け信号電荷を発生させる受光素子と、一端が受光素子に接続され、他端が検出ノードに接続された第1のトランジスタと、一端が検出ノードに接続された第2のトランジスタと、検出ノードに制御ゲート又は一端が接続された電荷蓄積層を有するP型のMOSトランジスタからなるメモリセルトランジスタと、を具備する固体撮像装置の動作方法において、メモリセルトランジスタのゲート電圧をVg、ウェル電圧をVsub、一端の電圧をVs、他端の電圧をVdとした場合に、Vg及びVsubをVs及びVdよりも高く設定して電荷の蓄積層への注入を行うことを特徴とする固体撮像装置の動作方法を提供する。
【0013】
上記課題を解決するため、本発明においては、さらに、行列状に配置された複数の画素を有する固体撮像装置であって、複数の画素の各々は、入射光を受け信号電荷を発生させる受光素子と、一端が受光素子に接続され、他端が検出ノードに接続された第1のトランジスタと、一端が検出ノードに接続された第2のトランジスタと、検出ノードに制御ゲート又は一端が接続された電荷蓄積層を有するメモリセルトランジスタと、を具備する固体撮像装置の動作方法において、受光素子にて発生された信号電荷に応じたデータをメモリセルトランジスタへ書き込む際には、1つ又は複数の列毎または行毎に順次書き込むことを特徴とする固体撮像装置の動作方法を提供する。
【0014】
上記課題を解決するため、本発明においては、さらに、行列状に配置された複数の画素と、各行に配置された複数のワード線、第1の信号線及び第2の信号線と、各列に配置された複数のビット線及びソース線とからなる固体撮像装置において、複数の画素の各々は、入射光を受け信号電荷を発生させる受光素子と、ゲートが第1の信号線に接続され、一端が受光素子に接続され、他端が検出ノードに接続された第1のトランジスタと、ゲートが第2の信号線に接続され、一端が検出ノードに接続され、他端がワード線に接続された第2のトランジスタと、制御ゲートが検出ノードに接続され、一端がソース線に接続され、他端がビット線に接続された電荷蓄積層を有するメモリセルトランジスタと、を具備することを特徴とする固体撮像装置を提供する。なお、第1の信号線は列方向に配置されてもよい。
【0015】
上記課題を解決するため、本発明においては、さらに、行列状に配置された複数の画素と、各行に配置された複数のワード線、第1の信号線、第2の信号線及び第3の信号線と、各列に配置された複数のビット線とからなる固体撮像装置において、複数の画素の各々は、入射光を受け信号電荷を発生させる受光素子と、ゲートが第1の信号線に接続され、一端が受光素子に接続され、他端が検出ノードに接続された第1のトランジスタと、ゲートが第2の信号線に接続され、一端が検出ノードに接続され、他端が第3の信号線に接続された第2のトランジスタと、制御ゲートがワード線接続され、一端が検出ノードに接続され、他端がビット線に接続された電荷蓄積層を有するメモリセルトランジスタと、を具備することを特徴とする固体撮像装置を提供する。なお、複数の第1の信号線、第2の信号線及び第3の信号線は列方向に配置されてもよい。
【0016】
上記課題を解決するため、本発明においては、さらに、入射光を受け信号電荷を発生させる受光素子と、信号電荷に対応した情報を記憶する電荷蓄積層を有するメモリセルトランジスタと、を具備することを特徴とする固体撮像装置の動作方法において、初期状態のメモリセルトランジスタの読み出し値と、信号電荷に応じて書き込みがなされた状態のメモリセルトランジスタの読み出し値との差を算出することを特徴とする固体撮像装置の動作方法を提供する。なお、信号電荷に応じて書き込みがなされた状態のメモリセルトランジスタを読み出した後、メモリセルトランジスタに対して消去を行って初期状態としてもよい。
【0017】
上記課題を解決するため、本発明においては、さらに、入射光を受け信号電荷を発生させる受光素子と、信号電荷に対応した情報を記憶する電荷蓄積層を有する第1のメモリセルトランジスタと、第2のメモリセルトランジスタとを具備することを特徴とする固体撮像装置の動作方法において、第2のメモリセルトランジスタを初期状態にしてこれを読み出した値と、信号電荷に応じて書き込みがなされた状態の第1のメモリセルトランジスタの読み出し値との差を算出することを特徴とする固体撮像装置の動作方法を提供する。なお、第1のメモリセルトランジスタ及び第2のメモリセルトランジスタに対して同時に消去を行い、第2のメモリセルトランジスタを初期状態にし、次いで、第1のメモリセルトランジスタに対して信号電荷に応じて書き込みをしてもよい。
【0018】
上記課題を解決するため、本発明においては、さらに、半導体基板表面の第1領域と第2領域とを区画する素子分離領域を形成し、第2領域及び素子分離領域の一部上に第1のゲート電極膜を形成し、第1領域、素子分離領域の他の一部及び第1のゲート電極膜上に第2のゲート電極膜を形成し、第1領域及び第2領域にそれぞれ第1及び第2のトランジスタを形成するように第1のゲート電極膜及び第2のゲート電極膜をパターニングし、第1領域の一部に第1のトランジスタと接続された拡散層を形成してフォトダイオードを形成することを特徴とする固体撮像装置の製造方法を提供する。
【0019】
上記課題を解決するため、本発明においては、さらに、半導体基板表面の第1領域と第2領域とを区画する素子分離領域を形成し、第1領域、第2領域及び素子分離領域上に第1のゲート電極膜を形成し、第1のゲート電極膜上に第2のゲート電極膜を形成し、第1領域及び第2領域にそれぞれ第1及び第2のトランジスタを形成するように第1のゲート電極膜及び第2のゲート電極膜をパターニングし、第1領域の一部に第1のトランジスタと接続された拡散層を形成してフォトダイオードを形成することを特徴とする固体撮像装置の製造方法を提供する。また、第1領域上の第1のゲート電極膜及び第2のゲート電極膜を電気的に接続してもよい。また、第1領域上の第1のゲート電極膜及び第2のゲート電極膜と第2領域上で接触させて電気的に接続してもよい。
【0020】
上記課題を解決するため、本発明においては、さらに、半導体基板表面の第1領域と第2領域とを区画する素子分離領域を形成し、第2領域及び素子分離領域の一部上に第1のゲート電極膜を形成し、第1領域、素子分離領域の他の一部及び第1のゲート電極膜上に第2のゲート電極膜を形成し、第1領域に第1のトランジスタを形成するように第2のゲート電極膜をパターニングし、第2領域に第2のトランジスタを形成するように第2のゲート電極膜及び第1のゲート電極膜をパターニングして、素子分離領域上に第1のゲート電極膜及び第2のゲート電極膜を残存させ、第1領域の一部に第1のトランジスタと接続された拡散層を形成してフォトダイオードを形成することを特徴とする固体撮像装置の製造を提供する。
【0021】
上記課題を解決するため、本発明においては、さらに、半導体基板と、半導体基板の表面の第1領域と第2領域とを区画する素子分離領域と、第1領域に形成され第1のゲート絶縁膜を有する第1のMOSトランジスタと、第2領域に形成され第2のゲート絶縁膜を有する第2のMOSトランジスタと、第1領域に形成され第1の第1のMOSトランジスタと接続するフォトダイオードとからなり、第1のゲート電極膜と第2のゲート電極膜とは異なる膜厚であることを特徴とする固体撮像装置を提供する。
【0022】
上記課題を解決するため、本発明においては、さらに、半導体基板と、半導体基板の表面の第1領域と第2領域とを区画する素子分離領域と、第1領域に形成され第1のゲート絶縁膜を有する第1のMOSトランジスタと、第2領域に形成され第2のゲート絶縁膜を有する第2のMOSトランジスタと、第1領域に形成され第1の第1のMOSトランジスタと接続するフォトダイオードとからなり、第1のゲート電極膜には電荷蓄積層が形成されていることを特徴とする固体撮像装置を提供する。
【発明の効果】
【0023】
本発明の代表的な効果は、受光量に十分に対応(ばらつきの少ない線形又は非線形)したデータを不揮発性メモリセルから読み出すことができる固体撮像装置を実現できることにある。
【発明を実施するための最良の形態】
【0024】
以下、図面を用いて本発明を説明する。文中で「接続」という表現を用いるときは、明示しない限り、直接的な接続のみならず、間にトランジスタ等を介した間接的な接続も含むものとする。
【0025】
図1に本発明の固体撮像素子100を示す。固体撮像素子100は、行方向に複数のワード線WL、TG線(第1の制御信号線)、RG線(第2の制御信号線)が配置されている。また、列方向に複数のビット線BL及びソース線SLが配置されている。固体撮像素子100は、行列状に配置された複数の画素1000・・・100m、1010・・・、10n0、・・・10nmを有する。
【0026】
複数の画素はいずれも、同様の内部構成を有する。画素1000は、入射光を受け信号電荷を発生させるフォトダイオードPD(受光素子)、トランジスタ12、13及びフローティングゲート(電荷蓄積層、窒化膜等でも構わない)を有するメモリセルトランジスタ14を有する。トランジスタ12は、ゲートはTG線に接続され、一端がフォトダイオードPDに、他端がFDノードに接続されている。トランジスタ13のゲートはRG線に接続され、一端がFDノードに接続され、他端がワード線WLに接続されている。メモリセルトランジスタ14は、制御ゲートがFDノードに接続され、一端がビット線BLに、他端がソース線SLに接続されている。トランジスタは何れもP型であり、後述するように、メモリセルトランジスタ14への書き込みはBack Bias assisted Band To Band(B4)方式によってなされる。
【0027】
以上の構成を有することにより、トランジスタ12により、フォトダイオードPD(受光素子)とFDノードが電気的に切り離される。また、トランジスタ14により、FDノードの電位設定及びメモリセルトランジスタ13への各種電位供給がなされる。ビット線BLとソース線SLはそれぞれ列毎に独立していることから、各種ディスターブの耐性が高まる。
【0028】
図1において一列に属するメモリセルトランジスタ14を点線が囲ったが、このメモリセルトランジスタに対する書き込みは、列毎に行う。その結果、同時に必要となる書き込み電流が小さくなる。なお、複数列でグループ化し、各グループ毎に書き込みを行っても良い。その場合、書き込み時間が短くなる。以下の説明においても同様である。
【0029】
また、ソース線SLが列毎に分離されているため、ディスターブの問題も生じない。
【0030】
図2は本発明の変形例である固体撮像素子200である。その4画素分の構成についてみると、入射光を受け信号電荷を発生させる複数のフォトダイオードPD1、PD2、PD3及びPD4と、一端がそれぞれ対応するフォトダイオードPD1、PD2、PD3及びPD4に接続され、他端が共通にFDノードに接続された複数のトランジスタ22、23、24及び25と、一端がワード線WLに接続され、他端がFDノードに接続されたトランジスタ21と、制御ゲートがFDノードに共通して接続され、それぞれ電荷蓄積領域を有する複数のメモリセルトランジスタ26、27、28及び29とから構成される。
【0031】
以上の構成を有することにより、トランジスタ21が4つのフォトダイオードPDで共用されることになり、小さな面積で画素を構成できる。書き込みについては、前述したとおり、列毎に行う。その結果、同時に必要となる書き込み電流が小さくなる。また、ソース線SLが列毎に分離されているため、ディスターブの問題も生じない。
【0032】
図3に、動作のシーケンスを示す。10Mb分の画素からなる固体撮像素子を例にとる。
【0033】
始めに、10Mbのメモリセルトランジスタを一括消去する(ステップ31)。図4に消去時に各ノードに印加される電圧を示す。メモリセルトランジスタ14の制御ゲートには−10Vが、ウェル領域には10Vが印加され、フローティングゲート中の電子がトンネルしてウェル領域に放出される。トンネル酸化膜は5nm程度であると、より低電圧化を図ることが可能となり、一方でVpp系のトランジスタ(高耐圧トランジスタ)の酸化膜厚は15nm程度必要である。また、フローティングゲート側壁に消去ゲートを設けて、低電圧化を図っても良い。
【0034】
続いて、一括消去後の初期書き込みを行う(ステップ32)。初期書き込みの方法は、列単位の書き込みを列の数(又はグループの数)だけ繰り返すことにより行う。図5に書き込み時に各ノードに印加される電圧を示す。ワード線WLに印加された5Vがトランジスタ13によってメモリセルトランジスタ14の制御ゲートに伝達される。ウェル領域には8Vが印加される。そして、ビット線BL、ソース線SLいずれも0Vにすることにより、フローティングゲートに電子がチャージされる。
【0035】
続いて、初期書き込み状態の読み出しを行う(ステップ33)。読み出しは行単位に行うところ、その詳細は後述する。
【0036】
続いて、フォトダイオードPDで発生した電荷量に応じた書き込みを行う(ステップ34)。書き込みの方法は、列単位の書き込みを列の数(又はグループの数)だけ繰り返すことにより行う。メモリセルトランジスタの制御ゲートに印加すると電圧をVg、ウェルに印加する電圧をVsub、ソース線SLに印加する電圧をVs、ビット線BLに印加する電圧をVdとした場合、Vg and Vsub > Vs and Vdの条件とする(Back Bias assisted Band To Band(B4)方式)。図6に示したとおり、電荷の注入時には、光量に依存した電圧(6.5V〜8V)がFDノードに与えられ、この電圧に応じてメモリセルトランジスタ14の電荷蓄積層に電荷が保持される。図7は各ノードに印加される電圧を示すチャートである。始めにフォトダイオードPD及びノードFDのプリチャージ(リセット)が行われる。続いて、フォトダイオードPDで発生した電荷がFDノードでセンスされ、TGが8Vになることによってトランジスタ12がオフし、その時点での電圧がFDノードに保持されることになる。次いで、ビット線BL及びソース線SLを0Vにすることによってプログラム(Program)がなされる。
【0037】
最後に、メモリセルトランジスタからの読み出しを行う。読み出しは行単位に行う。図8に示すとおり、ソース線SLをVcc(電源電圧、例えば3V)にし、ビット線BLをセンスアンプ(電流比較型の差動増幅器)に接続する(ビット線BLにはセンス電圧が印加されるのと等価である。)。そして、メモリセルトランジスタ14の制御ゲートの電位を−2Vにする。ここで、センスアンプで比較される電流源Irefを変化させると、メモリセルトランジスタ14に流れる電流量を測定することが可能である。本発明においては、トランジスタ12、13を用いること、書き込みにB4方式を用いることなどから、フォトダイオードPDの受光量にほぼ比例した電流出力を得ることが出来る。図9に、メモリセルトランジスタ14のIV特性を図示する。消去(ERS)後の初期書き込み(PGM)直後は、図の左側のグラフで示される特性であり、−2Vの電圧を制御ゲートに印加すると、図中91で示される電流量が得られる。しかし、フォトダイオードPDの受光量に応じて書き込みがなされると、図中右側のグラフで示される特性となり、−2Vの電圧を制御ゲートに印加すると図中92で示される電流量が得られる。この差93は、ほぼフォトダイオードPDの受光量に比例している。
【実施例1】
【0038】
図10〜13を用いて、本発明の第1の実施例を説明する。
【0039】
図10は、本発明の第1の実施例の平面図である。P型の半導体基板表面p−subにN型のウェルn−wellを形成し、ソース・ドレイン・チャネル・フォトダイオード等となるアクティブ領域1131、1133を素子分離領域で図10のとおり区画している。アクティブ領域1131は、フォトダイオードPDが形成されるべきフォトダイオード領域1132と、この領域から延在される領域とから構成される。これら領域の上には、ゲート絶縁膜を介して、ポリシリコンパターン1104、1105、1106が形成されている。ポリシリコンパターン1105は二層構造のパターンであり、上層に制御ゲートとなるパターン、下層にフローティングゲートとなる孤立パターンが形成されており、いずれも、アクティブ領域1133の一部上に形成され、メモリセルトランジスタ1103のフローティングゲートと制御ゲートを構成する。アクティブ領域1131から延在した領域の端部近傍には、ポリシリコンパターン1106が形成されており、トランジスタ1102のゲートを構成する。ポリシリコンパターン1104は、アクティブ領域1131から延在した領域に跨って形成されており、トランジスタ1101のゲートを構成する。これらポリシリコンパターン上には、層間絶縁膜を介して、1層金属配線からなるメタルパターン1107(ワード線)、1108(TG線)、1109(アクティブ領域1131とメモリセルトランジスタ1103の制御ゲートとの電気的接続)が形成される。さらに、これら1層金属配線上には、2層金属配線からなるメタルパターン1141(ビット線BL)、1142(ソース線SL)が形成される。
【0040】
書き込み動作は図11に示したとおりである。メモリセルトランジスタ1103に着目すると、n−wellの電圧Vsubは9V、ソース線SLの印加電圧VsはVcc(電源電圧、3V)、ビット線BLの印加電圧Vdは0V、制御ゲート(検出ノードであるFDに接続される。)の印加電圧は、受光量に応じて6.5〜8V程度となる。同時に、カラム系の全ての回路をVcc系のトランジスタ(高耐圧でないトランジスタ)で実現することが可能である。書き込み動作の直前にTG線はハイレベルとなり、トランジスタ1101は非導通となるので、検出ノードFD(制御ゲート)の電位は受光量を忠実に再現したものとなる。
【0041】
読み出し動作は図12に示したとおりである。メモリセルトランジスタ1103に着目すると、n−wellの電圧VsubはVcc、ソース線SLの印加電圧VsはVcc、ビット線BLはsense(電流比較型差動増幅器の一入力端に接続)、制御ゲート(導通状態のトランジスタ1102を介してワード線WLに印加した電圧が表れる。)の印加電圧は−2Vとなる。この結果、受光量に応じた電流がビット線に流れることになる。
【0042】
消去動作は図13に示したとおりである。メモリセルトランジスタ1103に着目すると、n−wellの電圧Vsubは10V、ソース線SLの印加電圧Vsは10V、ビット線BLの印加電圧Vdも10V、制御ゲート(導通状態のトランジスタ1102を介してワード線WLに印加した電圧が表れる。)の印加電圧は−10となる。この結果、トンネル電流によってフローティングゲートに蓄積された電荷が放出される。
【0043】
以上の構成により、受光量を読み出しデータとして忠実に再現でき、小面積の画素、少ないメタル配線層、効率的な書き込みが実現可能となる。
【実施例2】
【0044】
図14〜17を用いて、本発明の第2の実施例を説明する。
【0045】
図14は、本発明の第2の実施例の平面図である。P型の半導体基板表面p−subにN型のウェルn−wellを形成し、ソース・ドレイン・チャネル・フォトダイオード等となるアクティブ領域1401を素子分離領域で図14のとおり区画している。アクティブ領域1401は、フォトダイオードPDが形成されるべきフォトダイオード領域1402と、この領域から延在される領域1402、さらに枝分かれして延在する領域1403とからなる。これら領域の上には、ゲート絶縁膜を介して、ポリシリコンパターン1405、1406、1407が形成されている。ポリシリコンパターン1406は二層構造のパターンであり、上層に制御ゲートとなるパターン、下層にフローティングゲートとなる孤立パターンが形成されており、いずれも、アクティブ領域11403の一部上に形成され、メモリセルトランジスタ1502のフローティングゲートと制御ゲートを構成する。アクティブ領域1402から延在した領域の端部近傍には、ポリシリコンパターン1407(RST線)が形成されており、トランジスタ1503のゲートを構成する。ポリシリコンパターン1405は、アクティブ領域1402から延在した領域に跨って形成されており、トランジスタ1501のゲートを構成する。これらポリシリコンパターン上には、層間絶縁膜を介して、1層金属配線からなるメタルパターン1405(VP線、)1409(ワード線WL)、1410(TG線)が形成される。さらに、これら1層金属配線上には、2層金属配線からなるメタルパターン1411(ビット線BL)が形成される。
【0046】
書き込み動作は図15に示したとおりである。始めに、VP線を0Vにし、RSTを−2Vにしてトランジスタ1503を導通させ、同時にTG線を0Vにしてトランジスタ1501を導通させ、フォトダイオードPDの出力及び検出ノードFDを0Vにプリセットする。次いで、program動作が開始される。program時のメモリセルトランジスタ1502に着目すると、n−wellの電圧Vsubは8V、ビット線BLの印加電圧VsはVcc(電源電圧、3V)、制御ゲート(ワード線WL)の印加電圧Vgは9V、ドレイン電圧Vdは受光量に応じて0〜3V程度となる。この結果、Vg>Vsub>Vs>Vd、Vsub>0、Vd=<Vccが実現できるので効率的なB4書き込みが可能となる。同時に、カラム系の全ての回路をVcc系のトランジスタ(高耐圧でないトランジスタ)で実現することが可能である。書き込み動作の直前にTG線はハイレベルとなり、トランジスタ1101は非導通となるので、検出ノードFD(制御ゲート)の電位は受光量を忠実に再現したものとなる。
【0047】
読み出し動作は図16に示したとおりである。メモリセルトランジスタ1502に着目すると、n−wellの電圧VsubはVcc、ビット線BLはsense(電流比較型差動増幅器の一入力端に接続)、ワード線WLの印加電圧は−2V、検出ノードFDの電位VdはVccとなる。この結果、受光量に応じた電流がビット線に流れることになる。
【0048】
消去動作は図17に示したとおりである。メモリセルトランジスタ1502に着目すると、n−wellの電圧Vsubは10V、ワード線の印加電圧は−10となる。この結果、トンネル電流によってフローティングゲートに蓄積された電荷が放出される。図中Hizとあるのはハイインピーダンス状態を意味する。
【0049】
以上の構成により、受光量を読み出しデータとして忠実に再現でき、小面積の画素、少ないメタル配線層、効率的な書き込みが実現可能となる。
【実施例3】
【0050】
図18乃至21を用いて、本発明の第3の実施例を説明する。
【0051】
図18は、本発明の第3の実施例に係る固体撮像素子の回路構成図である。図19は、本発明の第3の実施例に係る固体撮像素子の動作を表す説明図である。
【0052】
図18に示すとおり、本発明の第3の実施例に係る固体撮像素子は、フォトダイオードPD、トランジスタ12、13及び不揮発性記憶素子14を備え、図1に示した固体撮像素子100と類似の回路構成をとる(但し、ビット線BLと平行に走るソース線SLの代わりにビット線と直交に走るプレート線PLが形成されている。)。トランジスタ12は、ゲートはTG線に接続され、一端がフォトダイオードPDに、他端がFDノードに接続されている。トランジスタ13のゲートはRG線に接続され、一端がFDノードに接続され、他端がワード線WLに接続されている。不揮発性記憶素子14は、制御ゲートがFDノードに接続され、一端がビット線BLに、他端がプレート線PLに接続されている。図示してはいないが、この固体撮像素子の周辺領域には、2つのバッファメモリ(ラッチを列状に配列したものをいう。)が備えられており、後述する読み出しデータを一時的に記憶できるようになっている。
【0053】
次に、図19を用いて、第3の実施例に係る固体撮像素子における不揮発性記憶素子の書込み及び読出し動作を説明する。図19は、表の列項目が左から順に不揮発性記憶素子(NVM)の露光ステップ及び読出しステップの各動作を表し、各動作における各ノードの電圧の印加条件が示されている。
【0054】
露光ステップにおいては、始めに、不揮発性記憶素子14の浮遊ゲートに蓄積された電荷の一括消去を行う。ワード線WLに−13V、RG線に−14Vを印加し、TG線、ウェル(well)領域、プレート線PL及びビット線BLをVccとすると、浮遊ゲートに蓄積された電荷が放出されて消去される。
【0055】
続いて、フォトダイオードPD及び不揮発性記憶素子14に対してPD/NVMリセットを行う。ワード線WL及びフォトダイオードPDに7V、RG線及びTG線に0Vを印加し、ウェル領域に10V、プレート線PLに0V、ビット線BLに3Vを印加すると、フォトダイオードPD及び不揮発性記憶素子14に弱い書き込みがなされ、初期状態の電荷が保持される。
【0056】
続いて、露光によるフォトダイオードからの信号電荷を不揮発性記憶素子14に書き込むNVM書込みを行う。ワード線WLに印加せず、RG線に10V、ウェル領域に10V、プレート線PLに0V、ビット線BLに3Vを印加し、露光によってフォトダイオードPDからの印加電圧が7Vから10Vに上がると、不揮発性記憶素子14に露光データの書き込みがなされる。
【0057】
次に、読出しステップの動作について説明する。NVM書込みの動作に続いて、始めに、露光データを読み出す読出し1を行う。ここで、露光データは、初期状態の電荷を含んだ状態で読み出される。ワード線WLに−5V、RG線に−6Vを印加し、TG線、ウェル領域及びプレート線PLをVccとし、ビット線BL及び/BLを0Vとすると、不揮発性記憶素子14に蓄積された電荷に応じた信号電荷がビット線BLに流れ、ビット線BLに接続されたセンスアンプ等(図示せず)により読み出される。読み出されたデータは一時的に,第1のバッファメモリ(図示せず)に蓄えられる。
【0058】
続いて、露光データを消去する前に、消去前書込を行う。ワード線WLに10V、RG線に0V、TG線に10Vを印加し、ウェル領域に10V、プレート線PLに0V、ビット線BLに3Vを印加すると、不揮発性記憶素子14に弱い書込みがなされ、不揮発性記憶素子14にほぼ一定の電荷が蓄積された状態となり、不揮発性記憶素子14の書込み特性(例えば、しきい値)のばらつきが低減される。この消去前書き込みは書き込みが不十分なセルのみに選択的に行ってもよい。
【0059】
続いて、露光データの消去を行う。ワード線WLに−13V、RG線に−14Vを印加し、TG線、ウェル(well)領域、プレート線PL及びビット線BLをVccとすると、浮遊ゲートに蓄積された電荷が放出される。
【0060】
続いて、浮遊ゲートに初期状態の電荷を記憶させるNVMリセットを行う。ワード線WLに7V、RG線に0V、TG線に10Vを印加し、ウェル領域に10V、プレート線PLに0V、ビット線BLに3Vを印加すると、不揮発性記憶素子14に弱い書き込みがなされ、初期状態の電荷が記憶される。
【0061】
続いて、初期状態を読み出す読出し2がなされる。ワード線WLに−5V、RG線に−6Vを印加し、TG線、ウェル領域及びプレート線PLをVccとすると、初期状態の信号電荷がビット線BLに流れ、ビット線BLに接続されたセンスアンプ等(図示せず)により読み出される。読み出されたデータは一時的に,第2のバッファメモリ(図示せず)に蓄えられる。
【0062】
最後に、読出し1及び読出し2により各々バッファメモリに記憶された露光データ及び初期状態の信号電荷に対応する電流量又は電圧値に応じたデータは、その差分が検出される。この検出は、第1及び第2のバッファメモリから順にデータを読み出し、その差分を計算し、第1のバッファメモリに書き戻すことで行ってもよいし、多数のデータの差分を同時に計算するハードウェアを用いて一括して差分を検出してもよい。これにより、フォトダイオードPD(受光素子)からの信号強度に対応して不揮発性記憶素子14に書き込みを行った状態と、初期状態との差分が検出される。
【0063】
さらに、図20及び図21を用いて、本発明の第3の実施例に係る固体撮像素子における不揮発性記憶素子について説明する。図20は、従来の不揮発性記憶素子の書き込み特性分布を表す説明図であり、図21は、本発明の第3の実施例に係る不揮発性記憶素子の書き込み特性分布を表す説明図である。
【0064】
図20は、横軸が不揮発性記憶素子の特性値(例えばしきい値)を表し、縦軸がその特性を有する不揮発性記憶素子の数を表しており、10M個程度の不揮発性記憶素子に対して同一の条件で書き込みを行った場合の特性分布を示している。フローティングゲート型の不揮発性記憶素子を用いる場合、一般的に書き込みによるしきい値のシフト量の平均値は数ボルトであるのに対して10M個の不揮発性記憶素子の特性ばらつきも数ボルト程度に拡がる。このような特性ばらつきを有する状態では受光素子からの信号を所望の精度で不揮発性記憶素子に記憶させる事は困難であった。
【0065】
図21に示すとおり、本発明の第3の実施例に係る不揮発性記憶素子は、弱い書込み状態を初期状態とし、これを不揮発性記憶素子ごとに書き込み状態との差分をとることで書込み特性のばらつきを約10分の1に低減することができることが確認された。即ち、この差分を取る動作により信号強度に対して10%以下の精度で信号記憶ができる。
【0066】
以上の構成により、本発明の第3の実施例に係る不揮発性記憶素子は、全画素の不揮発性記憶素子に対して弱い書き込みを行う事で初期状態を形成する動作と、露光後の信号電荷に応じて各画素の不揮発性記憶素子に対して書き込みを行う動作と、露光後の不揮発性記憶素子の状態と初期状態との差分をとる動作とを行うため、不揮発性記憶素子の書込み特性ばらつきを低減することができる。
【実施例4】
【0067】
図22及び図23を用いて、本発明の第4の実施例を説明する。
【0068】
図22は、本発明の第4の実施例に係る固体撮像素子の回路構成図である。図23は、本発明の第4の実施例に係る固体撮像素子の動作を表す説明図である。
【0069】
図22に示すとおり、本発明の第4の実施例は、第3の実施例の変形例であり、1画素あたり2つの不揮発性記憶素子を備える点において、第3の実施例と回路構成が異なる。本発明の第4の実施例に係る固体撮像素子は、フォトダイオードPD、トランジスタ12、13及び不揮発性記憶素子14a、14bを備える。トランジスタ12は、ゲートはTG線に接続され、一端がフォトダイオードPDに、他端がFDノードに接続される。トランジスタ13のゲートはRG線に接続され、一端がFDノードに接続され、他端がワード線WLに接続される。2つの不揮発性記憶素子は、露光後の信号電荷に応じて書き込みを行う動作をする露光データ記憶素子14aと、初期状態を形成する動作をする初期状態記憶素子14bの2つの不揮発性記憶素子からなる。露光データ記憶素子14aは、制御ゲートがFDノードに接続され、一端がビット線BLに、他端がプレート線PLに接続される。初期状態記憶素子14bは、制御ゲートがFDノードに接続され、一端がビット線/BLに、他端がプレート線/PLに接続される。
【0070】
次に、図23を用いて、第4の実施例に係る固体撮像素子における不揮発性記憶素子の書込み及び読出し動作を説明する。図23は、表の列項目が左から順に不揮発性記憶素子(NVM)の露光ステップ及び読出しステップの各動作を表し、各動作における各ノードの電圧の印加条件が示されている。
【0071】
まず露光ステップ時は、始めに一括消去がなされる。一括消去は、第3の実施例における一括消去動作と同様であるため、詳細な説明は省略する。
【0072】
続いて、PD/NVMリセットがなされる。ワード線WL及びフォトダイオードPDに7V、RG線にVcc、TG線に0Vを印加し、ウェル領域に10V、プレート線PL及び/PLに0V、ビット線BL及び/BLに3Vを印加すると、フォトダイオードPD、不揮発性記憶素子14a及び14bに弱い書き込みがなされ、初期状態の電荷が記憶される。
【0073】
続いて、NVM書込みがなされる。ワード線WLに印加せず、RG線に10V、ウェル領域に10V、プレート線PLに0V、プレート線/PL、ビット線BL及び/BLに3Vを印加し、露光によりフォトダイオードPDの印加電圧が7Vから10Vに上がると、露光データを記憶する不揮発性記憶素子14aのみに露光データの書き込みがなされる。
【0074】
次に、読出しがなされる。ワード線WLに−5V、RG線に−6Vを印加し、TG線、ウェル領域、プレート線PL及び/PLをVccとし、ビット線BL及び/BLを0Vとすると、不揮発性記憶素子14aに蓄積された露光データの信号電荷がビット線BLに流れ、不揮発性記憶素子14bに蓄積された初期状態の信号電荷がビット線/BLに流れる。露光データ及び初期状態の信号電荷は、ビット線BL及び/BLに接続されたセンスアンプ等(図示せず)により読み出される。
【0075】
ここで、露光データ記憶素子14aに流れる電流(又はセンスアンプ出力)と、初期状態記憶素子14bに流れる電流(又はセンスアンプ出力)とを比較しその差分をとることで、フォトダイオードPD(受光素子)からの信号強度に対応したデータをばらつき無く正確に読み出す。そして、この実施例においては、素子14a及び14bから同時に読み出しを行うことにより、バッファメモリ等を介さずに差分を計算することができる。
【0076】
引き続いて、消去前書込がなされる。ワード線WLに10V、RG線にVcc、TG線に10Vを印加し、ウェル領域に10V、プレート線PL及び/PLに0V、ビット線BL及び/BLに3Vを印加すると、浮遊ゲートに弱い書込みがなされ、これにより、次に露光ステップに進む際の最初の動作である一括消去を行う前に、不揮発性記憶素子14の書込み特性(例えば、しきい値)のばらつきを低減させておくことができる。
【0077】
以上の構成により、本発明の第4の実施例に係る固体撮像素子は、第3の実施例と同様に、不揮発性記憶素子に充分な精度で受光量に対応したデータを不揮発性記憶素子から読み出すことのできる固体撮像装置を実現できる。
【0078】
さらに、図24乃至図27を用いて、本発明の第5乃至第8の実施例に係る固体撮像素子の製造工程およびその構造について述べる。本発明の第5乃至第8の実施例に係る固体撮像素子は、いずれも1つの画素内に不揮発性記憶素子とフォトダイオードとMOS型のトランジスタをそれぞれ1つ以上含む。
【実施例5】
【0079】
図24A乃至Gは、本発明の第5の実施例に係る固体撮像素子の製造プロセスを表す概略断面図であり、トランジスタ工程までの製造プロセスを表す。
【0080】
第5の実施例に係る固体撮像素子の製造プロセスは、始めに、図24Aに示したシリコン基板10上に、Si結晶を熱酸化して薄いSiO膜を形成する(図示せず)。次に、SiN膜をCVD(Chemical Vapor Deposition)法で形成する。その上に、フォトレジストを塗布・露光・現像してパターンを形成し、それをマスクとしてSiN/SiO/Siの順にドライエッチング法によりエッチングし、トレンチ(シャロートレンチ)を形成する。SiO膜をCVD法で堆積してトレンチを完全に埋め込み、シリコン基板10の表面上に堆積しているSiO膜及びSiN膜をCMP(Chemical Mechanical Polishing)法により除去すると、トレンチのみに素子分離11が埋め込まれた分離構造(図24B)を得る。
【0081】
なお、素子分離11は、ここではSTI(Shallow Trench Isolation)分離膜を用いたが、加熱酸化により形成されたLOCOS(Local Oxidation of Silicon)膜であってもよく、その他の種類の分離酸化膜であってもよい。
【0082】
続いて、MOS型トランジスタ及び不揮発性記憶素子を形成する領域のシリコン基板に、イオン注入後アニールして、適宜、n型ウェル(n−well)またはp型ウェル(p−well)等を形成する(図示せず)。
【0083】
続いて、図示してはいないが、熱酸化等により、SiOからなる第1のゲート絶縁膜5aを成膜し、第1のゲート絶縁膜5a上に、PolySiをCVD法で堆積させ、第1のゲート電極膜17aを形成する。フォトリソグラフィ及びドライエッチングにより、図24Cに示すとおり、不揮発性記憶素子とMOSトランジスタを形成する領域の境である素子分離11上まで、第1のゲート電極膜17aと第1のゲート絶縁膜5aとが積層した構造とする。
【0084】
続いて、図24Dに示すとおり、CVD法を利用してSiOからなる第2のゲート絶縁膜5bを成膜し、第2のゲート絶縁膜5b上に、第2のゲート電極膜17bをPolySiとWSiをCVD法で堆積させて成膜する。
【0085】
続いて、図24Eに示すとおり、第2のゲート電極膜17b上に、フォトレジスト19を塗布して、MOSトランジスタ及び不揮発性記憶素子のゲートパターンを形成し、図24Fに示すとおり、第2のゲート電極膜17bと、第2のゲート絶縁膜5bとをドライエッチング法によりエッチングする。このとき、プラズマガスとしてClやHBr等のハロゲン系のガスを用いることによりPolySiからなる第2のゲート電極膜17bをエッチングし、プラズマガスとしてCF等を用いることにより、SiOからなる第2のゲート絶縁膜5bをエッチングする。
【0086】
続いて、第1のゲート電極膜17a及び第1のゲート絶縁膜5aを、ドライエッチング法によりエッチングする。このとき、プラズマガスとしてClやHBr等のハロゲン系のガスを用いることにより、第1のゲート電極膜17aをエッチングする。また、第1のゲート電極膜17aをエッチングすると同時に、シリコン基板10の表面上において、フォトレジスト19及び第1のゲート絶縁膜5aでマスクされていない素子分離11以外の領域がエッチングされる。さらに、プラズマガスとしてCF等を用いることにより、SiOからなる第1のゲート絶縁膜5aがエッチングされる。エッチング後、フォトレジスト19については、酸素プラズマ等で剥離する。
【0087】
最後に、図24Gに示すとおり、不揮発性記憶素子4のソース15及びドレイン16と、MOSトランジスタ2のドレイン16を形成するため、イオン注入を行う。このとき、P型MOSとする場合はB(ホウ素)を、N型MOSとする場合はP(リン)やAS(ヒ素)をドーパントとしてイオン注入する。さらに、図24Gに示すとおり、MOSトランジスタ2のソース部分に、フォトダイオード1を形成して接続させる。
【0088】
以上の製造プロセスにより、本発明の第5の実施例に係る固体撮像素子は形成される。しかし、前述の通り、MOSトランジスタ2のフォトダイオード1及びドレイン16は、図24Gに示すように、シリコン基板10の表面がエッチングされた部分に形成されることとなる。
【実施例6】
【0089】
そこで上記、シリコン基板をエッチングしてしまうという課題を改善すべく、次に、本発明の第6の実施例に係る固体撮像素子の製造プロセスを、図25A乃至Fを用いて説明する。
【0090】
図25A乃至Fは、各々、本発明の第6の実施例に係る固体撮像素子の製造プロセスを表す概略断面図である。
【0091】
第6の実施例に係る固体撮像素子の製造プロセスは、始めに、図25A及びBに示すとおり、シリコン基板10に、素子分離領域11を形成する。続いて、MOS型トランジスタ及び不揮発性記憶素子を形成する領域のシリコン基板10に、イオン注入後アニールして、n型ウェル(n−well)またはp型ウェル(p−well)を形成する(図示せず)。以上のプロセスは、第5の実施例に係る製造プロセスと同様であるため、詳細な説明は省略する。
【0092】
続いて、図25Cに示すとおり、CVD法により、SiOからなる第1のゲート絶縁膜5aを成膜し、第1のゲート絶縁膜5a上に、PolySiをCVD法で堆積させ、第1のゲート電極膜17aを形成する。さらに、図25Dに示すとおり、CVD法により、SiOからなる第2のゲート絶縁膜5bを成膜し、第2のゲート絶縁膜5b上に、PolySiとWSiをCVD法で堆積させ、第2のゲート電極膜17bを形成する。
【0093】
続いて、図25Eに示すとおり、フォトレジスト19でMOSトランジスタ及び不揮発性記憶素子のゲートのパターンを形成し、第2のゲート電極膜17b、第2のゲート絶縁膜5b、第1のゲート電極膜17a、及び第1のゲート絶縁膜5aをドライエッチング法によりエッチングする。フォトレジスト19については、酸素プラズマ等で剥離する。
【0094】
続いて、図25Fに示すとおり、この断面とは別の領域、例えば素子分離絶縁膜上のどこかで、MOSトランジスタ2の第1ゲート電極7a及び第2ゲート電極7bを、金属配線層等を用いて、電気的に接続させる。
【0095】
最後に、図25Fに示すとおり、不揮発性記憶素子4のソース15及びドレイン16と、MOSトランジスタ2のドレイン16を形成するため、イオン注入を行う。さらに、図25Fに示すとおり、MOSトランジスタ2のソース部分に、フォトダイオード1を形成して接続させる。
【0096】
以上の工程により、本発明の第6の実施例に係る固体撮像素子の製造プロセスは、MOS型のトランジスタを二重ゲート構造で形成し、二つのゲートを電気的に接続する事で通常のMOSトランジスタと同じ動作をする素子を実現し、シリコン基板を不必要にエッチングすることなく、一つの画素内にMOSトランジスタ及び不揮発性記憶素子を形成することができる。
【実施例7】
【0097】
次に、本発明の第7の実施例に係る固体撮像素子の製造プロセスを、図26A乃至Fを用いて説明する。
【0098】
図26A乃至Fは、各々、本発明の第7の実施例に係る固体撮像素子の製造プロセスを表す概略断面図である。
【0099】
第7の実施例に係る固体撮像素子の製造プロセスは、図26A乃至Cに示すとおり、第1のゲート電極膜17aを成膜するまでのプロセスは、第6の実施例に係る製造プロセスと同様であるため、詳細な説明は省略する。
【0100】
図26Dに示すとおり、第1のゲート電極膜17a上に、CVD法を利用してSiOからなる第2のゲート絶縁膜5bを成膜し、フォトリソグラフィ及びドライエッチングにより、第2のゲート絶縁膜5bにおける開孔部18を、MOSトランジスタのゲート電極となる領域よりも狭い領域で形成する。さらに、第2のゲート絶縁膜5b上に、PolySiとWSiをCVD法で堆積させ、第2のゲート電極膜17bを成膜する。これにより、開孔部18に第2のゲート電極膜17bが埋め込まれ、第1のゲート電極膜17aと、第2のゲート電極膜17bとが、絶縁膜開孔部18によって電気的に接続される構造となる。
【0101】
続いて、図26Eに示すとおり、フォトレジスト19を塗布して、MOSトランジスタ及び不揮発性記憶素子のゲートのパターンを形成し、第2のゲート電極膜17b、第2のゲート絶縁膜5b、第1のゲート電極膜17a、及び第1のゲート絶縁膜5aをドライエッチング法によりエッチングする。その後、フォトレジスト19については、酸素プラズマ等で剥離する。
【0102】
最後に、図26Fに示すとおり、不揮発性記憶素子4のソース15及びドレイン16と、MOSトランジスタ2のドレイン16を形成するため、イオン注入を行う。さらに、図26Fに示すとおり、MOSトランジスタ2のソース部分に、フォトダイオード1を形成して接続させる。
【0103】
以上の工程により、本発明の第7の実施例に係る製造プロセスは、MOS型のトランジスタを二重ゲート構造で形成し、二つのゲート間の絶縁膜を開孔し電気的に接続する事により通常のMOSトランジスタと同じ動作をする素子を実現し、シリコン基板を不必要にエッチングすることなく、一つの画素内に、MOSトランジスタ及び不揮発性記憶素子を形成することができる。
【実施例8】
【0104】
次に、本発明の第8の実施例に係る固体撮像素子の製造プロセスを、図27A乃至Gを用いて説明する。
【0105】
図27A乃至Gは、各々、本発明の第8の実施例に係る固体撮像素子の製造プロセスを表す概略断面図である。
【0106】
第8の実施例に係る固体撮像素子の製造プロセスは、図27A乃至Dに示すとおり、第2のゲート電極膜17bを成膜するまでのプロセスは、第5の実施例に係る製造プロセスと同様であるため、詳細な説明は省略する。
【0107】
図27Eに示すとおり、フォトレジスト19で、第1のゲート電極膜17a上に積層していない第2のゲート電極膜17b上に、MOSトランジスタのゲートパターンを形成し、第1のゲート電極膜17a上に積層している第2のゲート電極膜17bを覆うように、MOSトランジスタと不揮発性記憶素子を形成する領域の境にある素子分離11上を越えない範囲まで、フォトレジスト19を塗膜する。ドライエッチングにより、第2のゲート電極膜17bをエッチングし、エッチング後、フォトレジスト19については、酸素プラズマ等で剥離する。
【0108】
続いて、図27Fに示すとおり、フォトレジスト19で、第1のゲート電極膜17a上に積層している第2のゲート電極膜17b上に、不揮発性記憶素子のゲートパターンを形成し、MOSトランジスタを形成する領域上に、MOSトランジスタと不揮発性記憶素子を形成する領域の境にある素子分離11上を越えない範囲まで、フォトレジスト19を塗膜する。ドライエッチングにより、第2のゲート電極膜17b、第2のゲート絶縁膜5b、第1のゲート電極膜17a、及び第1のゲート絶縁膜5aをエッチングし、エッチング後、フォトレジスト19については、酸素プラズマ等で剥離する。
【0109】
最後に、図27Gに示すとおり、不揮発性記憶素子4のソース15及びドレイン16と、MOSトランジスタ2のドレイン16を形成するため、イオン注入を行う。さらに、図27Gに示すとおり、MOSトランジスタ2のソース部分に、フォトダイオード1を形成して接続させる。
【0110】
以上の工程により、本発明の第8の実施例に係る製造プロセスは、MOS型のトランジスタの二重ゲート構造形成領域と一重ゲート構造形成領域の間に一重・二重ゲート併存構造領域を設け、これにより、シリコン基板を不必要にエッチングすることなく、一つの画素内に、MOSトランジスタ及び不揮発性記憶素子を形成することができる。
【実施例9】
【0111】
さらに、本発明の第9の実施例に係る固体撮像素子の構造を、図28乃至30を用いて説明する。
【0112】
図28は、本発明の第9の実施例に係る第1の固体撮像素子を表す概略断面図である。第9の実施例に係る第1の固体撮像素子は、第1のMOSトランジスタ2及び第2のMOSトランジスタ3を有し、図28に示すとおり、第1のMOSトランジスタ2の第1のゲート絶縁膜5aが第2のMOSトランジスタ3の第2のゲート絶縁膜5bよりも厚いことを特徴とする。
【0113】
図29は、本発明の第9の実施例に係る第2の固体撮像素子を表す概略断面図である。第9の実施例に係る第2の固体撮像素子は、第1のMOSトランジスタ2及び第2のMOSトランジスタ3を有し、第2のMOSトランジスタ3は電荷蓄積層6を有し、図29に示すとおり、第1のMOSトランジスタ2の第1のゲート絶縁膜5aが第2のMOSトランジスタ3の第2のゲート絶縁膜5bよりも厚いことを特徴とする。
【0114】
図30は、本発明の第9の実施例に係る第3の固体撮像素子を表す概略断面図である。第9の実施例に係る第3の固体撮像素子は、MOSトランジスタ2及び不揮発性記憶素子4を有し、図30に示すとおり、MOSトランジスタ2の第1のゲート絶縁膜5aが不揮発性記憶素子4の第2のゲート絶縁膜5bよりも厚いことを特徴とする。
【0115】
以上の構成のとおり、本発明の第9の実施例に係る固体撮像素子においては、高い電圧を扱うMOS型トランジスタについて通常の電源電圧を扱うトランジスタより厚いゲート絶縁膜を有した構造を適用することにより、各画素内の不揮発性記憶素子に情報の書込み・消去を行う際に高電圧を用いる事ができる。
【0116】
図31〜図39に、実施例6〜9の各製造方法で形成したフォトダイオード1、MOSトランジスタ2、3を用いた固体撮像素子の回路構成を示す。図31は本発明の実施例1と同様の回路構成であり、MOSトランジスタ12及び13がMOSトランジスタ2に、メモリセル14がMOSトランジスタ3または不揮発性記憶素子4にそれぞれ対応する。図32は本発明の実施例3と同様の回路構成であり、MOSトランジスタ12及び13がMOSトランジスタ2に、メモリセル14がMOSトランジスタ3または不揮発性記憶素子4にそれぞれ対応する。図33は本発明の実施例4と同様の回路構成であり、MOSトランジスタ12及び13がMOSトランジスタ2に、メモリセル14a及び14bがMOSトランジスタ3または不揮発性記憶素子4にそれぞれ対応する。図34〜図36はそれぞれ、図31〜図33の回路のPNを反転させた回路である。図37〜図39は図31〜図33の回路のメモリセルトランジスタを除く各MOSトランジスタをn型MOSトランジスタで構成した例である。
【実施例10】
【0117】
図40は本実施例のデジタルカメラを示す概略構成ブロック図である。上記実施例1〜10で説明された固体撮像素子が用いられている。図中101がデジタルカメラ全体を表している。102は被写体像を結像するレンズ、103はレンズ102からの入射光量を調節する絞り機構、104はレンズ102から絞り機構103を通って入射した光信号を電気信号に変換する固体撮像素子、105は固体撮像素子104により光電変換された信号をサンプリングしてゲインコントロールするCDS,AGC回路、106はCDS,AGC回路105から出力されるアナログ信号をデジタル信号に変換するアナログ・デジタル変換器(以降、A/D変換器と記述)、111はA/D変換器106よりA/D変換された信号に対して所定の処理を施すカメラ信号処理回路、113は本デジタルカメラ全体を制御するマイクロコンピュータ(以降、CPUと記述)、119はカメラ信号処理回路111から出力されたデジタル信号をCPU113を介して一時的に記憶する記録装置(以降、メモリと記述)、110はカメラ信号処理回路111から出力した生の画像データをJPEGなどの圧縮アルゴリズムを用いて圧縮したり、圧縮画像を伸長して表示用画像を生成する画像圧縮伸長回路、112はLCD液晶表示装置108に出力する映像信号を保持する画像表示メモリ、107は画像表示メモリに出力されたデジタル信号をアナログ信号に変換するデジタル・アナログ変換器(以降、D/A変換器と記述)、108はD/A変換器107から出力されるアナログ映像信号をユーザに対して表示するLCD液晶表示装置、120はメモリ119上に一時的に記憶されている画像データを画像ファイルの形で保存するメモリカードやディスクなどの2次記録装置、118は記録装置120への画像データの書き込み及び読み出しを行うためのカードインタフェース(以降、カードI/Fと記述)、121(121−1〜121−3)はネットワーク上の他の装置、117はネットワーク上の他の装置121と接続するための通信インタフェース(以降、通信用I/Fと記述)である。ここでネットワーク上の他の装置121は、装置内部に保持している画像データを外部機器に対して送信することが出来る装置であり、具体的にはデジタルカメラ、フラットベッドスキャナ、パーソナルコンピュータなどが考えられる。また通信I/F117は有線である必要はなく、無線LAN装置などを利用したものでも良い。更にネットワーク上の他の装置121との間の通信プロトコルも、既存のさまざまな種類のものが考えられる。通信I/F117と通信プロトコルの組み合わせとしては、具体的にはUSBインターフェースの場合のPTPプロトコル、IEEE1394の場合のSBP2、BlueToothの場合のデジタルカメラプロファイルなどが考えられる。
【0118】
116はネットワーク上の他の装置121との通信を管理する通信管理手段であり、複数の装置121が同時にデジタルカメラ101と接続するような状況では、116が個々の装置121との通信を管理する。115は通信管理手段116によって複数の装置121から受信された画像データを、装置121毎にグループ化して管理する画像管理手段、114は画像管理手段115によってグループ化して管理されている画像群を統括的に表示する画像表示手段である。
【産業上の利用可能性】
【0119】
本件発明は、固体撮像装置を用いたデジタルカメラ等に利用することができる。
【図面の簡単な説明】
【0120】
【図1】本発明の固体撮像装置の回路構成図である。
【図2】本発明の固体撮像装置の変形例にかかる回路構成図である。
【図3】本発明の固体撮像装置の動作を表したシーケンス図である。
【図4】本発明の固体撮像装置の消去時の動作説明図である。
【図5】本発明の固体撮像装置の初期書き込み時の動作説明図である。
【図6】本発明の固体撮像装置の書き込み時の動作説明図である。
【図7】本発明の固体撮像装置の書き込み動作の電圧チャートである。
【図8】本発明の固体撮像装置の読み出し時の動作説明図である。
【図9】本発明の固体撮像装置のメモリセルトランジスタのIV特性図である。
【図10】本発明の実施例1のレイアウトパターンである。
【図11】本発明の実施例1の書き込み時の動作説明図である。
【図12】本発明の実施例1の読み出し時の動作説明図である。
【図13】本発明の実施例1の消去時の動作説明図である。
【図14】本発明の実施例2のレイアウトパターンである。
【図15】本発明の実施例2の書き込み時の動作説明図である。
【図16】本発明の実施例2の読み出し時の動作説明図である。
【図17】本発明の実施例2の消去時の動作説明図である。
【図18】本発明の第3の実施例に係る固体撮像素子の回路構成図である。
【図19】本発明の第3の実施例に係る固体撮像素子の動作を表す説明図である。
【図20】従来の不揮発性記憶素子の書き込み特性分布を表す説明図である。
【図21】本発明の第3の実施例に係る不揮発性記憶素子の書き込み特性分布を表す説明図である。
【図22】本発明の第4の実施例に係る固体撮像素子の回路構成図である。
【図23】本発明の第4の実施例に係る固体撮像素子の動作を表す説明図である。
【図24A】本発明の第5の実施例に係る固体撮像素子の製造プロセスにおける第1の工程を表す概略断面図である。
【図24B】本発明の第5の実施例に係る固体撮像素子の製造プロセスにおける第2の工程を表す概略断面図である。
【図24C】本発明の第5の実施例に係る固体撮像素子の製造プロセスにおける第3の工程を表す概略断面図である。
【図24D】本発明の第5の実施例に係る固体撮像素子の製造プロセスにおける第4の工程を表す概略断面図である。
【図24E】本発明の第5の実施例に係る固体撮像素子の製造プロセスにおける第5の工程を表す概略断面図である。
【図24F】本発明の第5の実施例に係る固体撮像素子の製造プロセスにおける第6の工程を表す概略断面図である。
【図24G】本発明の第5の実施例に係る固体撮像素子の製造プロセスにおける第7の工程を表す概略断面図である。
【図25A】本発明の第6の実施例に係る固体撮像素子の製造プロセスにおける第1の工程を表す概略断面図である。
【図25B】本発明の第6の実施例に係る固体撮像素子の製造プロセスにおける第2の工程を表す概略断面図である。
【図25C】本発明の第6の実施例に係る固体撮像素子の製造プロセスにおける第3の工程を表す概略断面図である。
【図25D】本発明の第6の実施例に係る固体撮像素子の製造プロセスにおける第4の工程を表す概略断面図である。
【図25E】本発明の第6の実施例に係る固体撮像素子の製造プロセスにおける第5の工程を表す概略断面図である。
【図25F】本発明の第6の実施例に係る固体撮像素子の製造プロセスにおける第6の工程を表す概略断面図である。
【図26A】本発明の第7の実施例に係る固体撮像素子の製造プロセスにおける第1の工程を表す概略断面図である。
【図26B】本発明の第7の実施例に係る固体撮像素子の製造プロセスにおける第2の工程を表す概略断面図である。
【図26C】本発明の第7の実施例に係る固体撮像素子の製造プロセスにおける第3の工程を表す概略断面図である。
【図26D】本発明の第7の実施例に係る固体撮像素子の製造プロセスにおける第4の工程を表す概略断面図である。
【図26E】本発明の第7の実施例に係る固体撮像素子の製造プロセスにおける第5の工程を表す概略断面図である。
【図26F】本発明の第7の実施例に係る固体撮像素子の製造プロセスにおける第6の工程を表す概略断面図である。
【図27A】本発明の第8の実施例に係る固体撮像素子の製造プロセスにおける第1の工程を表す概略断面図である。
【図27B】本発明の第8の実施例に係る固体撮像素子の製造プロセスにおける第2の工程を表す概略断面図である。
【図27C】本発明の第8の実施例に係る固体撮像素子の製造プロセスにおける第3の工程を表す概略断面図である。
【図27D】本発明の第8の実施例に係る固体撮像素子の製造プロセスにおける第4の工程を表す概略断面図である。
【図27E】本発明の第8の実施例に係る固体撮像素子の製造プロセスにおける第5の工程を表す概略断面図である。
【図27F】本発明の第8の実施例に係る固体撮像素子の製造プロセスにおける第6の工程を表す概略断面図である。
【図27G】本発明の第8の実施例に係る固体撮像素子の製造プロセスにおける第7の工程を表す概略断面図である。
【図28】本発明の第9の実施例に係る第1の固体撮像素子を表す概略断面図である。
【図29】本発明の第9の実施例に係る第2の固体撮像素子を表す概略断面図である。
【図30】本発明の第9の実施例に係る第3の固体撮像素子を表す概略断面図である。
【図31】本発明の変形例(第1の実施例に対応)である。
【図32】本発明の変形例(第3の実施例に対応)である。
【図33】本発明の変形例(第4の実施例に対応)である。
【図34】本発明の変形例(第1の実施例に対応、但しPN反転)である。
【図35】本発明の変形例(第3の実施例に対応、但しPN反転)である。
【図36】本発明の変形例(第4の実施例に対応、但しPN反転)である。
【図37】本発明の変形例(第1の実施例に対応、但しメモリトランジスタはP型、他のMOSトランジスタはN型)である。
【図38】本発明の変形例(第3の実施例に対応、但しメモリトランジスタはP型、他のMOSトランジスタはN型)である。
【図39】本発明の変形例(第4の実施例に対応、但しメモリトランジスタはP型、他のMOSトランジスタはN型)である。
【図40】本発明の固体撮像素子を用いたデジタルカメラの一例である。
【符号の説明】
【0121】
100 固体撮像装置
101 デジタルカメラ
1100、1101・・・10nm 画素
1 フォトダイオード
2 第1MOSトランジスタ
3 第2MOSトランジスタ
4 不揮発性記憶素子
5 ゲート絶縁膜
5a 第1ゲート絶縁膜
5b 第2ゲート絶縁膜
5c 第3ゲート絶縁膜
6 電荷蓄積層
7 ゲート電極
7a 第1ゲート電極
7b 第2ゲート電極
8 浮遊ゲート
9 一重・二重ゲート併存領域
10 シリコン基板
11 素子分離
12、13 P型MOSトランジスタ
12n、13n N型MOSトランジスタ
14 メモリセルトランジスタ(不揮発性記憶素子)
14a 露光データ記憶素子
14an 露光データ記憶素子(N型)
14b 初期状態記憶素子
14bn 初期状態記憶素子(N型)
15 ドレイン
16 ソース
17a 第1のゲート電極膜
17b 第2のゲート電極膜
19 フォトレジスト
WL ワード線
NW N型ウェル
PW P型ウェル
PD フォトダイオード
FD 検知ノード
BL ビット線
PL プレート線
SL ソース線
TG 第1の制御信号線
RG 第2の制御信号線

【特許請求の範囲】
【請求項1】
入射光を受け信号電荷を発生させる受光素子と、
一端が前記受光素子に接続され、他端が検出ノードに接続された第1のトランジスタと、
一端が前記検出ノードに接続された第2のトランジスタと、
前記検出ノードに制御ゲート又は一端が接続された電荷蓄積層を有するメモリセルトランジスタと、を具備することを特徴とする固体撮像装置。
【請求項2】
入射光を受け信号電荷を発生させる複数の受光素子と、
対応する前記複数の受光素子にそれぞれ一端が接続され、他端が検出ノードに共通接続された複数の第1のトランジスタと、
一端が前記検出ノードに接続された第2のトランジスタと、
前記検出ノードに制御ゲートまたは一端が接続されたそれぞれ電荷蓄積層を有する複数のメモリセルトランジスタと、を具備することを特徴とする固体撮像装置。
【請求項3】
入射光を受け信号電荷を発生させる受光素子と、一端が前記受光素子に接続され、他端が検出ノードに接続された第1のトランジスタと、一端が前記検出ノードに接続された第2のトランジスタと、前記検出ノードに制御ゲート又は一端が接続された電荷蓄積層を有するP型のMOSトランジスタからなるメモリセルトランジスタと、を具備する固体撮像装置の動作方法において、
前記メモリセルトランジスタのゲート電圧をVg、ウェル電圧をVsub、一端の電圧をVs、他端の電圧をVdとした場合に、Vg及びVsubをVs及びVdよりも高く設定して電荷の蓄積層への注入を行うことを特徴とする固体撮像装置の動作方法。
【請求項4】
行列状に配置された複数の画素を有する固体撮像装置であって、前記複数の画素の各々は、入射光を受け信号電荷を発生させる受光素子と、一端が前記受光素子に接続され、他端が検出ノードに接続された第1のトランジスタと、一端が前記検出ノードに接続された第2のトランジスタと、前記検出ノードに制御ゲート又は一端が接続された電荷蓄積層を有するメモリセルトランジスタと、を具備する固体撮像装置の動作方法において、
前記受光素子にて発生された信号電荷に応じたデータをメモリセルトランジスタへ書き込む際には、1つ又は複数の列毎または行毎に順次書き込むことを特徴とする固体撮像装置の動作方法。
【請求項5】
行列状に配置された複数の画素と、前記複数の画素にわたって配置された複数の第1の信号線と、各行に配置された複数のワード線及び第2の信号線と、各列に配置された複数のビット線及びソース線とからなる固体撮像装置において、
前記複数の画素の各々は、
入射光を受け信号電荷を発生させる受光素子と、
ゲートが第1の信号線に接続され、一端が前記受光素子に接続され、他端が検出ノードに接続された第1のトランジスタと、
ゲートが第2の信号線に接続され、一端が前記検出ノードに接続され、他端が前記ワード線に接続された第2のトランジスタと、
制御ゲートが前記検出ノードに接続され、一端が前記ソース線に接続され、他端が前記ビット線に接続された電荷蓄積層を有するメモリセルトランジスタと、を具備することを特徴とする固体撮像装置。
【請求項6】
行列状に配置された複数の画素と、前記複数の画素にわたって配置された複数の第1の信号線、第2の信号線及び第3の信号線と、各行に配置された複数のワード線、各列に配置された複数のビット線とからなる固体撮像装置において、
前記複数の画素の各々は、
入射光を受け信号電荷を発生させる受光素子と、
ゲートが第1の信号線に接続され、一端が前記受光素子に接続され、他端が検出ノードに接続された第1のトランジスタと、
ゲートが第2の信号線に接続され、一端が前記検出ノードに接続され、他端が前記第3の信号線に接続された第2のトランジスタと、
制御ゲートが前記ワード線接続され、一端が前記検出ノードに接続され、他端が前記ビット線に接続された電荷蓄積層を有するメモリセルトランジスタと、を具備することを特徴とする固体撮像装置。
【請求項7】
請求項1記載の固体撮像装置において、さらに、前記検出ノードに制御ゲート又は一端が接続された電荷蓄積層を有する初期状態記憶用メモリセルトランジスタと、を具備することを特徴とする固体撮像装置。
【請求項8】
入射光を受け信号電荷を発生させる受光素子と、
前記信号電荷に対応した情報を記憶する電荷蓄積層を有するメモリセルトランジスタと、を具備することを特徴とする固体撮像装置の動作方法において、
初期状態の前記メモリセルトランジスタの読み出し値と、前記信号電荷に応じて書き込みがなされた状態の前記メモリセルトランジスタの読み出し値との差を算出することを特徴とする固体撮像装置の動作方法。
【請求項9】
請求項8記載の固体撮像装置の動作方法において、
前記信号電荷に応じて書き込みがなされた状態の前記メモリセルトランジスタを読み出した後、前記メモリセルトランジスタに対して消去を行って前記初期状態とすることを特徴とする固体撮像装置の動作方法。
【請求項10】
入射光を受け信号電荷を発生させる受光素子と、
前記信号電荷に対応した情報を記憶する電荷蓄積層を有する第1のメモリセルトランジスタと、第2のメモリセルトランジスタとを具備することを特徴とする固体撮像装置の動作方法において、
前記第2のメモリセルトランジスタを初期状態にしてこれを読み出した値と、前記信号電荷に応じて書き込みがなされた状態の前記第1のメモリセルトランジスタの読み出し値との差を算出することを特徴とする固体撮像装置の動作方法。
【請求項11】
請求項10記載の固体撮像装置の動作方法において、
前記第1のメモリセルトランジスタ及び前記第2のメモリセルトランジスタに対して同時に消去を行い、前記第2のメモリセルトランジスタを前記初期状態にし、
次いで、前記第1のメモリセルトランジスタに対して前記信号電荷に応じて書き込みをすることを特徴とする請求項10記載の固体撮像装置の動作方法。
【請求項12】
半導体基板表面の第1領域と第2領域とを区画する素子分離領域を形成し、
前記第2領域及び前記素子分離領域の一部上に第1のゲート電極膜を形成し、
前記第1領域、前記素子分離領域の他の一部及び前記第1のゲート電極膜上に第2のゲート電極膜を形成し、
前記第1領域及び前記第2領域にそれぞれ第1及び第2のトランジスタを形成するように前記第1のゲート電極膜及び前記第2のゲート電極膜をパターニングし、
前記第1領域の一部に前記第1のトランジスタと接続された拡散層を形成してフォトダイオードを形成する
ことを特徴とする固体撮像装置の製造方法。
【請求項13】
半導体基板表面の第1領域と第2領域とを区画する素子分離領域を形成し、
前記第1領域、前記第2領域及び前記素子分離領域上に第1のゲート電極膜を形成し、
前記第1のゲート電極膜上に第2のゲート電極膜を形成し、
前記第1領域及び前記第2領域にそれぞれ第1及び第2のトランジスタを形成するように前記第1のゲート電極膜及び前記第2のゲート電極膜をパターニングし、
前記第1領域の一部に前記第1のトランジスタと接続された拡散層を形成してフォトダイオードを形成する
ことを特徴とする固体撮像装置の製造方法。
【請求項14】
請求項13記載の固体撮像装置の製造方法において、前記第1領域上の前記第1のゲート電極膜及び前記第2のゲート電極膜を電気的に接続することを特徴とする固体撮像装置の製造方法。
【請求項15】
請求項14記載の固体撮像装置の製造方法において、前記第1領域上の前記第1のゲート電極膜及び前記第2のゲート電極膜と前記第2領域上で接触させて電気的に接続することを特徴とする固体撮像装置の製造方法。
【請求項16】
半導体基板表面の第1領域と第2領域とを区画する素子分離領域を形成し、
前記第2領域及び前記素子分離領域の一部上に第1のゲート電極膜を形成し、
前記第1領域、前記素子分離領域の他の一部及び前記第1のゲート電極膜上に第2のゲート電極膜を形成し、
前記第1領域に第1のトランジスタを形成するように前記第2のゲート電極膜をパターニングし、
前記第2領域に第2のトランジスタを形成するように前記第2のゲート電極膜及び前記第1のゲート電極膜をパターニングして、前記素子分離領域上に前記第1のゲート電極膜及び前記第2のゲート電極膜を残存させ、
前記第1領域の一部に前記第1のトランジスタと接続された拡散層を形成してフォトダイオードを形成する
ことを特徴とする固体撮像装置の製造方法。
【請求項17】
半導体基板と、
前記半導体基板の表面の第1領域と第2領域とを区画する素子分離領域と、
前記第1領域に形成され第1のゲート絶縁膜を有する第1のMOSトランジスタと、
前記第2領域に形成され第2のゲート絶縁膜を有する第2のMOSトランジスタと、
前記第1領域に形成され前記第1の第1のMOSトランジスタと接続するフォトダイオードとからなり、
前記第1のゲート電極膜と前記第2のゲート電極膜とは異なる膜厚である
ことを特徴とする固体撮像装置。
【請求項18】
半導体基板と、
前記半導体基板の表面の第1領域と第2領域とを区画する素子分離領域と、
前記第1領域に形成され第1のゲート絶縁膜を有する第1のMOSトランジスタと、
前記第2領域に形成され第2のゲート絶縁膜を有する第2のMOSトランジスタと、
前記第1領域に形成され前記第1の第1のMOSトランジスタと接続するフォトダイオードとからなり、
前記第1のゲート電極膜には電荷蓄積層が形成されている
ことを特徴とする固体撮像装置。
【請求項19】
請求項1,2,5乃至7,17又は18のいずれか記載の固体撮像装置を用いたデジタルカメラ。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate

【図14】
image rotate

【図15】
image rotate

【図16】
image rotate

【図17】
image rotate

【図18】
image rotate

【図19】
image rotate

【図20】
image rotate

【図21】
image rotate

【図22】
image rotate

【図23】
image rotate

【図24A】
image rotate

【図24B】
image rotate

【図24C】
image rotate

【図24D】
image rotate

【図24E】
image rotate

【図24F】
image rotate

【図24G】
image rotate

【図25A】
image rotate

【図25B】
image rotate

【図25C】
image rotate

【図25D】
image rotate

【図25E】
image rotate

【図25F】
image rotate

【図26A】
image rotate

【図26B】
image rotate

【図26C】
image rotate

【図26D】
image rotate

【図26E】
image rotate

【図26F】
image rotate

【図27A】
image rotate

【図27B】
image rotate

【図27C】
image rotate

【図27D】
image rotate

【図27E】
image rotate

【図27F】
image rotate

【図27G】
image rotate

【図28】
image rotate

【図29】
image rotate

【図30】
image rotate

【図31】
image rotate

【図32】
image rotate

【図33】
image rotate

【図34】
image rotate

【図35】
image rotate

【図36】
image rotate

【図37】
image rotate

【図38】
image rotate

【図39】
image rotate

【図40】
image rotate


【公開番号】特開2010−56512(P2010−56512A)
【公開日】平成22年3月11日(2010.3.11)
【国際特許分類】
【出願番号】特願2008−319339(P2008−319339)
【出願日】平成20年12月16日(2008.12.16)
【公序良俗違反の表示】
(特許庁注:以下のものは登録商標)
1.Bluetooth
【出願人】(503291439)株式会社GENUSION (33)
【Fターム(参考)】