説明

電気光学装置の製造方法、電気光学装置および電子機器

【課題】保持容量の単位面積当たりの容量値を高めるための構成を利用して、ゲート絶縁
層の下層側に形成された下層側導電層への電気的な接続を効率よく行うことのできる電気
光学装置の製造方法、電気光学装置、およびこの電気光学装置を備えた電子機器を提供す
ること。
【解決手段】液晶装置の素子基板10を構成するにあたって、ゲート絶縁層4の厚い下層
側ゲート絶縁層4aを形成した後、ドライエッチングにより下電極3cと重なる部分およ
び下層側導電層層接続用コンタクトホール89の形成領域の下層側ゲート絶縁層4aを除
去する。次に、薄い上層側ゲート絶縁層4bを形成し、この上層側ゲート絶縁層4bを保
持容量1hの誘電体層4cとして用いる。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、素子基板上に薄膜トランジスタおよび保持容量を備えた電気光学装置の製造
方法、電気光学装置および電子機器に関するものである。
【背景技術】
【0002】
各種の電気光学装置のうち、アクティブマトリクス型の液晶装置では、例えば、図19
(a)、(b)に示す素子基板10と対向基板(図示せず)との間に液晶が保持されてい
る。素子基板10において、ゲート線3a(走査線)とソース線6a(データ線)との交
差に対応する複数の画素領域1eの各々には、画素スイッチング用の薄膜トランジスタ1
c、およびこの薄膜トランジスタ1cのドレイン領域に電気的に接続された画素電極2a
が形成されており、ソース線6aから薄膜トランジスタ1cを介して画素電極2aに印加
された画像信号により液晶の配向を画素毎に制御する。また、画素領域1eには、容量線
3bの一部などを下電極3cとし、ドレイン電極6bの延設部分などを上電極6cとする
保持容量1hが形成されており、保持容量1hでは、薄膜トランジスタ1cのゲート絶縁
層4を誘電体層4cとして利用することが多い。ここで、保持容量1hの単位面積当たり
の容量値を高めれば、電荷の保持特性が向上する。また、保持容量1hの単位面積当たり
の容量値を高めれば、占有面積を縮小し、画素開口率を高めることができる。それには、
ゲート絶縁層4を薄くすればよいが、その場合、薄膜トランジスタ1cのゲート耐電圧が
低下してしまう。
【0003】
そこで、ゲート電極、ゲート絶縁層、および半導体層が下層側から順に積層されたボト
ムゲート構造の薄膜トランジスタを形成するにあたって、ゲート絶縁層を形成した後、ゲ
ート絶縁層の上層に半導体層を島状に形成し、次に、ゲート絶縁層のうち、保持容量の下
電極と重なる部分に深さ方向の途中位置までエッチングを行い、エッチングにより、膜厚
を薄くした部分を保持容量の誘電体層として用いる構成が提案されている(特許文献1参
照)。
【0004】
また、半導体層、ゲート絶縁層、およびゲート電極が下層側から順に積層されたトップ
ゲート構造の薄膜トランジスタを形成するにあたって、半導体層に対する熱酸化により形
成したシリコン酸化膜からなる第1の絶縁膜と、CVD法により形成したシリコン窒化膜
からなる第2の絶縁膜との積層膜をゲート絶縁層として形成した後、ゲート絶縁層のうち
、チャネル領域と重なる領域をレジストマスクで覆って第2の絶縁膜をエッチングにより
除去し、ゲート絶縁層において膜厚を薄くした部分を保持容量の誘電体層として用いる構
成が提案されている(特許文献2参照)。
【特許文献1】特許第2584290号公報
【特許文献2】特許第3106566号公報
【発明の開示】
【発明が解決しようとする課題】
【0005】
また、素子基板10では、ゲート絶縁層4の下層側に形成された下層側導電層に対して
ゲート絶縁層4および層間絶縁膜8を貫通する下層側導電層接続用コンタクトホールを介
して電気的な接続が行う場合がある。例えば、図19(b)の左端部、および図19(c
)にコンタクト部1sの一例を示すように、ゲート線3aと同時形成された下層側導電層
3sとソース線6aと同時形成された上層側導電層6sとを、画素電極2aと同時形成さ
れた導電パターン2sで電気的に接続することがある。このような場合、パッシベーショ
ン膜8に対して画素電極接続用コンタクトホール81を形成する際、上層側導電層6sと
導電パターン2sとを電気的に接続する上層側導電層接続用コンタクトホール89を同時
形成する。
【0006】
しかしながら、下層側導電層接続用コンタクトホール89については、パッシベーショ
ン膜8およびゲート絶縁層4の双方を貫通させる必要があるため、コンタクトホール81
、86と同時形成するのは困難である。従って、コンタクトホール89を形成するには、
パッシベーション膜8を貫通させた後、ゲート絶縁層4を貫通させるためのエッチングが
必要であるが、ゲート絶縁層4を貫通させるだけでもエッチングに長時間を要し、スルー
プットが低いという問題点がある。また、下層側導電層接続用コンタクトホール89の形
成にドライエッチングを採用した場合には、ゲート絶縁層4が厚い場合、ゲート絶縁層4
が静電気やプラズマに長い時間、晒されるので、ゲート絶縁層4に欠陥が多数、発生する
。その結果、ゲート絶縁層4の膜厚を薄くして誘電体層として用いた保持容量1hでは耐
電圧の低下や絶縁破壊(ショート)が発生するという問題点がある。
【0007】
以上の問題点に鑑みて、保持容量の単位面積当たりの容量値を高めるための構成を利用
して、ゲート絶縁層の下層側に形成された下層側導電層への電気的な接続を効率よく行う
ことのできる電気光学装置の製造方法、電気光学装置、およびこの電気光学装置を備えた
電子機器を提供することにある。
【課題を解決するための手段】
【0008】
上記課題を解決するために、本発明では、素子基板上の複数の各画素領域の各々に、薄
膜トランジスタと、該薄膜トランジスタに電気的に接続された画素電極と、前記薄膜トラ
ンジスタのゲート絶縁層を挟んで対向する下電極および上電極を備えた保持容量とを有す
るとともに、前記素子基板では、前記ゲート絶縁層の下層側に形成された下層側導電層に
対して前記ゲート絶縁層および層間絶縁膜を貫通する下層側導電層接続用コンタクトホー
ルを介して電気的な接続が行われている電気光学装置の製造方法において、前記薄膜トラ
ンジスタのゲート電極、前記下電極および前記下層側導電層を形成するゲート電極形成工
程と、前記ゲート絶縁層を形成するゲート絶縁層形成工程と、前記薄膜トランジスタの半
導体層を形成する半導体層形成工程と、前記薄膜トランジスタのソースおよびドレイン電
極を形成するソース・ドレイン電極形成工程と、前記層間絶縁膜を形成する層間絶縁膜形
成工程と、前記層間絶縁膜をエッチングして画素電極接続用コンタクトホール、および前
記下層側導電層接続用コンタクトホールを形成するコンタクトホール形成工程と、前記画
素電極を形成する画素電極形成工程とを有し、さらに、前記上電極と前記下電極とが重な
る領域および前記下層側導電層接続用コンタクトホールを形成すべき領域の前記ゲート絶
縁層をエッチングして膜厚を薄くする薄膜化工程を有していることを特徴とする。
【0009】
このような方法で製造した電気光学装置は、例えば、素子基板上の複数の各画素領域の
各々に、ゲート電極、ゲート絶縁層および半導体層が下層側から順に形成された構造の薄
膜トランジスタと、該薄膜トランジスタを覆う層間絶縁膜に形成された画素電極接続用コ
ンタクトホールを介して当該薄膜トランジスタのドレイン領域に電気的に接続された画素
電極と、前記ゲート絶縁層を挟んで対向する下電極および上電極を備えた保持容量とを有
するとともに、前記素子基板では、前記ゲート絶縁層の下層側に形成された下層側導電層
に対して前記ゲート絶縁層および前記層間絶縁膜を貫通する下層側導電層接続用コンタク
トホールを介して電気的な接続が行われている。また、前記ゲート絶縁層は、前記下電極
および前記上電極と重なる領域、および前記下層側導電層接続用コンタクトホールが形成
された領域に前記ゲート電極と前記半導体層とに重なる領域よりも膜厚が薄い第1の薄膜
部分および第2の薄膜部分を各々備え、前記下層側導電層接続用コンタクトホールは、前
記第2の薄膜部分を貫通する下側ホールと、前記層間絶縁膜を貫通する上側ホールと、を
備えていることを特徴とする。
【0010】
本発明では、ゲート絶縁層を薄くした第1の薄膜部分を保持容量の誘電体層として用い
るため、薄膜トランジスタのゲート耐電圧を低下させることなく、また、薄膜トランジス
タに大きな容量を寄生させることなく、保持容量の単位面積当たりの静電容量を高めるこ
とができる。また、ゲート絶縁層を薄くして第1の薄膜部分を形成する際、下層側導電層
接続用コンタクトホールを形成すべき領域でも、ゲート絶縁層を薄くして第2の薄膜部分
を形成する。このため、コンタクトホール形成工程において、層間絶縁膜をエッチングし
て下層側導電層接続用コンタクトホールを形成する際、下層側導電層接続用コンタクトホ
ールの上側ホールを形成した時点で底部に残るゲート絶縁層の膜厚が薄い。従って、下層
側導電層接続用コンタクトホールを下層側導電層まで貫通させる際にゲート絶縁層をエッ
チングするのに要する時間が短いので、スループットを向上することができる。また、下
層側導電層接続用コンタクトホールの形成にドライエッチングを採用した場合には、エッ
チング時間が短い分、ゲート絶縁層が静電気やプラズマに晒される時間が短いので、ゲー
ト絶縁層に欠陥が発生することを防止することができる。それ故、ゲート絶縁層の膜厚を
薄くして誘電体層として用いた保持容量であっても耐電圧の低下や絶縁破壊(ショート)
が発生しない。
【0011】
本発明に係る電気光学装置の製造方法おいて、前記ゲート絶縁層形成工程では、前記ゲ
ート絶縁層の下層側部分を構成する1層乃至複数層の絶縁膜からなる下層側絶縁層を形成
する下層側ゲート絶縁層形成工程と、前記ゲート絶縁層の上層側部分を構成する1層乃至
複数層の絶縁膜からなる上層側ゲート絶縁層を形成する上層側ゲート絶縁層形成工程とを
行い、前記下層側ゲート絶縁層形成工程の後、前記上層側ゲート絶縁層形成工程の前に前
記薄膜化工程を行うことが好ましい。
【0012】
このような方法で製造した電気光学装置では、前記ゲート絶縁層が、1層乃至複数層の
絶縁膜からなる下層側ゲート絶縁層と、1層乃至複数層の絶縁膜からなる上層側ゲート絶
縁層とを備え、前記下層側ゲート絶縁層の除去部分によって前記第1の薄膜部分および前
記第2の薄膜部分が構成されている。
【0013】
このような構成を採用すると、上層側ゲート絶縁層と半導体層とを連続して成膜できる
ので、ゲート絶縁層と半導体層との間に清浄な界面を構成することができ、薄膜トランジ
スタの信頼性を向上することができる。また、ゲート絶縁層を部分的に薄くした部分を保
持容量の誘電体層として用いるにあたって、下層側ゲート絶縁層を残さず、上層側ゲート
絶縁層のみで誘電体層を構成するため、ゲート絶縁層を深さ方向の途中位置までエッチン
グするという構成を採用する必要がない。それ故、エッチング深さのばらつきに起因する
保持容量の容量ばらつきを防止することができる。さらに、下層側ゲート絶縁層および上
層側ゲート絶縁層のうち、下層側ゲート絶縁層を除去し、上層側ゲート絶縁層を保持容量
の誘電体層として用いており、かかる上層側ゲート絶縁層であれば、下層側ゲート絶縁層
を部分的にドライエッチングする際の静電気やプラズマに晒されることがないので、上層
側ゲート絶縁層に、表面の損傷や欠陥が発生することを防止することができる。また、上
層側ゲート絶縁層は、下層側ゲート絶縁層を部分的にウエットエッチングした際のエッチ
ング液に接触することもないので、上層側ゲート絶縁層にはピンホールも発生しない。そ
れ故、保持容量の耐電圧が低下することを防止することができる。
【0014】
本発明において、前記ゲート絶縁層形成工程を真空雰囲気中で行った後、前記半導体層
形成工程を開始するまで前記素子基板を真空雰囲気中に保持し続けることが好ましい。
【0015】
本発明において、前記コンタクトホール形成工程では、前記下層側導電層接続用コンタ
クトホールが前記下層側導電層に到達するまでエッチングを連続して行うことが好ましい
。本発明では、下層側導電層接続用コンタクトホールを形成する箇所のゲート絶縁層の膜
厚が薄いので、下層側導電層接続用コンタクトホールが下層側導電層に到達するまでエッ
チングを連続して行ってスループットの向上を図った場合でも、画素電極接続用コンタク
トホールの底部に位置する電極が大きく損傷することがない。
【0016】
本発明は、前記コンタクトホール形成工程でドライエッチングを行う場合に適用すると
効果的である。
【0017】
本発明において、前記画素電極形成工程では、前記下層側導電層接続用コンタクトホー
ルを介して前記下層側導電層に電気的に接続する導電パターンを前記画素電極と同時形成
することがある。この場合、前記ソース・ドレイン電極形成工程では、上層側導電層を前
記ソースおよび前記ドレイン電極と同時形成し、前記コンタクトホール形成工程では、前
記層間絶縁膜を貫通して前記上層側導電層に至る上層側導電層接続用コンタクトホールを
形成し、前記画素電極形成工程では、前記上層側導電層接続用コンタクトホールを介して
前記上層側導電層に電気的に接続するように前記導電パターンを形成してもよい。
【0018】
本発明において、前記素子基板に対して、対向基板の導電層が形成された面を貼り合わ
せる貼り合わせ工程を有し、当該貼り合わせ工程では、前記素子基板と前記対向基板との
間に導電材を介在させて、前記下層側導電層接続用コンタクトホール内で前記下層側導電
層と前記対向基板の導電層とを電気的に接続させることがある。
【0019】
本発明に係る電気光学装置は、携帯電話機やモバイルコンピュータなどの電子機器に用
いることができる。
【発明を実施するための最良の形態】
【0020】
以下、図面を参照して、本発明の実施の形態を説明する。なお、以下の説明に用いた各
図では、各層や各部材を図面上で認識可能な程度の大きさとするため、各層や各部材毎に
縮尺を相違させてある。また、以下の説明では、図19に示した例との対応が明確になる
ように、共通する機能を有する部分には同一の符号を付して説明する。
【0021】
[実施の形態1]
(液晶装置の全体構成)
図1(a)、(b)はそれぞれ、液晶装置(電気光学装置)をその上に形成された各構
成要素と共に対向基板の側から見た平面図、およびそのH−H′断面図である。図1(a
)、(b)において、本形態の液晶装置1は、TN(Twisted Nematic)
モード、ECB(Electrically Controlled Birefrin
gence)モード、あるいはVAN(Vertical Aligned Nemat
ic)モードの透過型のアクティブマトリクス型の液晶装置である。この液晶装置1では
、シール材22を介して素子基板10と対向基板20とが貼り合わされ、その間に液晶1
fが保持されている。
【0022】
素子基板10において、シール材22の外側に位置する端部領域には、データ線駆動用
IC60、および走査線駆動用IC30がCOG(Chip On Glass)実装さ
れているとともに、基板辺に沿って実装端子12が形成されている。シール材22は、素
子基板10と対向基板20とをそれらの周辺で貼り合わせるための光硬化樹脂や熱硬化性
樹脂などからなる接着剤であり、両基板間の距離を所定値とするためのグラスファイバー
、あるいはガラスビーズ等のギャップ材が配合されている。シール材22には、その途切
れ部分によって液晶注入口25が形成され、液晶1fを注入した後、封止材26により封
止されている。
【0023】
詳しくは後述するが、素子基板10には薄膜トランジスタ1cや画素電極2aがマトリ
クス状に形成され、その表面に配向膜19が形成されている。対向基板20には、シール
材22の内側領域に遮光性材料からなる額縁24(図1(b)では図示を省略)が形成さ
れ、その内側が画像表示領域1aになっている。対向基板20には、図示を省略するが、
各画素の縦横の境界領域と対向する領域にブラックマトリクス、あるいはブラックストラ
イプなどと称せられる遮光膜が形成され、その上層側には、対向電極28および配向膜2
9が形成されている。図1(b)では図示を省略するが、対向基板20において、素子基
板10の各画素に対向する領域には、RGBのカラーフィルタがその保護膜とともに形成
され、それにより、液晶装置1をモバイルコンピュータ、携帯電話機、液晶テレビなどと
いった電子機器のカラー表示装置として用いることができる。
【0024】
なお、図1(a)に模式的に示すように、素子基板10と対向基板20との間では、後
述するように、シール材22に配合された基板間導通用の導電材23により、素子基板1
0に形成された定電位配線と、対向基板20の対向電極28とが電気的に接続されている

【0025】
(素子基板10の構成)
図2は、図1に示す液晶装置の素子基板の電気的な構成を示す説明図である。図2に示
すように、素子基板10には、画像表示領域1aに相当する領域に複数のソース線6a(
データ線)およびゲート線3a(走査線)が互いに交差する方向に形成され、これらの配
線の交差部分に対応する位置に画素1bが構成されている。ゲート線3aは走査線駆動用
IC30から延びており、ソース線6aはデータ線駆動用IC60から延びている。また
、素子基板10には、液晶1fの駆動を制御するための画素スイッチング用の薄膜トラン
ジスタ1cが各画素1bに形成され、薄膜トランジスタ1cのソースにはソース線6aが
電気的に接続され、薄膜トランジスタ1cのゲートにはゲート線3aが電気的に接続され
ている。
【0026】
さらに、素子基板10には、ゲート線3aと並行して容量線3bが形成されている。本
形態では、薄膜トランジスタ1cに対して、対向基板20との間に構成された液晶容量1
gが直列に接続されているとともに、液晶容量1gに対して並列に保持容量1hが接続さ
れている。ここで、容量線3bは、走査線駆動用IC30に接続されているが、定電位に
保持されている。なお、保持容量1hは、前段のゲート線3aとの間に構成される場合が
あり、この場合、容量線3bは省略できる。
【0027】
このように構成した液晶装置1では、薄膜トランジスタ1cを一定期間だけそのオン状
態とすることにより、ソース線6aから供給される画像信号を各画素1bの液晶容量1g
に所定のタイミングで書き込む。液晶容量1gに書き込まれた所定レベルの画像信号は、
液晶容量1gで一定期間保持されるとともに、保持容量1hは、液晶容量1gに保持され
た画像信号がリークするのを防止している。
【0028】
(各画素の構成)
図3(a)、(b)、(c)は、本発明の実施の形態1に係る液晶装置の画素1つ分の
平面図、A1−B1に相当する位置で液晶装置を切断したときの断面図、およびコンタク
ト部の平面図である。図4は、液晶装置のコンタクト部の説明図である。図3(a)では
、画素電極を太くて長い点線で示し、ゲート線およびそれと同時形成された薄膜を細い実
線で示し、ソース線およびそれと同時形成された薄膜を細い一点鎖線で示し、半導体層を
細くて短い点線で示してある。また、保持容量を構成するゲート絶縁層のうち、薄膜部分
については細い二点鎖線で示し、コンタクトホールについては、ゲート線などと同様、細
い実線で示してある。
【0029】
図3(a)に示すように、素子基板10では、ゲート線3aとソース線6aで囲まれた
画素領域1eに画素1bを構成する以下の要素が構成されている。まず、画素領域1eに
は、ボトムゲート型の薄膜トランジスタ1cの能動層を構成するアモルファスシリコン膜
からなる半導体層7aが形成されている。また、ゲート線3aからの突出部分によってゲ
ート電極が形成されている。半導体層7aのうち、ソース側の端部には、ソース線6aが
ソース電極として重なっており、ドレイン側の端部にはドレイン電極6bが重なっている
。また、ゲート線3aと並列して容量線3bが形成されている。
【0030】
また、画素領域1eには、容量線3bからの突出部分を下電極3cとし、ドレイン電極
6bからの延設部分を上電極6cとする保持容量1hが形成されている。また、上電極6
cに対しては、コンタクトホール81、91を介して、ITO膜(Indium Tin
Oxide)からなる画素電極2aが電気的に接続されており、コンタクトホール81
は、本発明における画素電極接続用コンタクトホールに相当する。
【0031】
このように構成した素子基板10のA1−B1断面は、図3(b)に示すように表され
る。まず、ガラス基板や石英基板からなる絶縁基板11上には、ゲート線3a(ゲート電
極)、および容量線3b(保持容量1hの下電極3c)が形成されている。本形態におい
て、ゲート線3aおよび容量線3bはいずれも、膜厚が150nmのネオジウム含有のア
ルミニウム合金膜の上層に膜厚が20nmのモリブデン膜を積層した2層構造になってい
る。
【0032】
本形態において、ゲート線3aの上層側にはゲート線3aを覆うようにゲート絶縁層4
が形成されている。ゲート絶縁層4の上層のうち、ゲート線3aの突出部分(ゲート電極
)と部分的に重なる領域には、薄膜トランジスタ1cの能動層を構成する半導体層7aが
形成されている。半導体層7aのうち、ソース領域の上層には、ドープトシリコン膜から
なるオーミックコンタクト層7b、およびソース線6aが積層され、ドレイン領域の上層
には、ドープトシリコン膜からなるオーミックコンタクト層7c、およびドレイン電極6
bが形成され、薄膜トランジスタ1cが構成されている。また、ドレイン電極6bの延設
部分によって保持容量1hの上電極6cが形成されている。本形態において、半導体層7
aは、膜厚が150nmの真性のアモルファスシリコン膜からなり、オーミックコンタク
ト層7b、7cは、リンがドープされた膜厚が50nmのn+型のアモルファスシリコン
膜からなる。ソース線6aおよびドレイン電極6b(上電極6c)はいずれも、下層側か
ら上層側に向けて、膜厚が5nmのモリブデン膜、膜厚が1500nmのアルミニウム膜
、および膜厚が50nmのモリブデン膜を積層した3層構造を備えている。
【0033】
ソース線6a、ドレイン電極6b、および上電極6cの上層側には、シリコン窒化膜な
どからなるパッシベーション膜8(層間絶縁膜)、およびアクリル樹脂などの感光性樹脂
層からなる平坦化膜9が形成されており、平坦化膜9の上層には画素電極2aが形成され
ている。画素電極2aは、平坦化膜9に形成されたコンタクトホール91、およびパッシ
ベーション膜8に形成されたコンタクトホール81を介して上電極6cに電気的に接続し
、上電極6cおよびドレイン電極6bを介して薄膜トランジスタ1cのドレイン領域に電
気的に接続している。画素電極2aの表面には配向膜19が形成されている。本形態にお
いて、パッシベーション膜8は、膜厚が250nmのシリコン窒化膜からなり、画素電極
2aは、膜厚が100nmのITO膜からなる。
【0034】
このように構成された素子基板10に対向するように対向基板20が配置され、素子基
板10と対向基板20との間には液晶1fが保持されている。対向基板20には、各色の
カラーフィルタ27、対向電極28および配向膜29が形成されており、画素電極2aと
対向電極28との間に液晶容量1g(図2参照)が構成される。なお、対向基板20の側
にはブラックマトリクスや保護膜などが形成される場合があるが、それらの図示を省略す
る。
【0035】
液晶装置1では、図4を参照して説明する各種のコンタクト部1sが構成されており、
このようなコンタクト部1sのうち、典型的な構成を図3(b)の左端部および図3(c
)に示してある。図4に示すコンタクト部1sのうち、図4(a)に示すコンタクト部1
sは、素子基板10上において、2つの薄膜トランジスタを用いて、図4(b)に示す双
方向ダイオード(静電保護素子)を構成する領域の平面図である。ここで、2つの薄膜ト
ランジスタは、画素スイッチング用の薄膜トランジスタ1cと同時形成されたものであり
、半導体層7aと同時形成された半導体層7sを備えるなど、画素スイッチング用の薄膜
トランジスタ1cと同一構造を備えている。但し、ソース・ドレイン電極のうちの一方を
ゲート電極とを電気的に接続することによりダイオードして機能する。このようなダイオ
ードを構成するには、ゲート線3aと同時形成された下層側導電層3sと、ソース線6a
と同時形成された上層側導電層6sとを電気的に接続する必要がある。そこで、本形態で
は、図3(b)、図3(c)および図4(a)に示すように、画素電極2aと同時形成さ
れた導電パターン2sをパッシベーション膜8およびゲート絶縁層4を貫通する下層側導
電層接続用コンタクトホール89を介して下層側導電層3sに電気的に接続するとともに
、パッシベーション膜8を貫通する上層側導電層接続用コンタクトホール86を介して上
層側導電層6sに電気的に接続してある。
【0036】
また、図4(c)、(d)に示すコンタクト部1sは、素子基板10上において、図1
の実装端子12や、データ線駆動用IC60および走査線駆動用IC30のバンプを実装
するための端子を構成しており、ゲート線3aと同時形成された下層側導電層3sに対し
て、画素電極2aと同時形成された導電パターン2sを、パッシベーション膜8およびゲ
ート絶縁層4を貫通する下層側導電層接続用コンタクトホール89を介して電気的に接続
し、導電パターン2sにより端子を構成している。
【0037】
さらに、図4(e)、(f)に示すコンタクト部1sは、素子基板10において、ゲー
ト線3aと同時形成された下層側導電層3sに対して、図1(a)を参照して説明した導
通材23を介して対向基板20の対向電極28を電気的に接続する部分であり、下層側導
電層3sは、パッシベーション膜8およびゲート絶縁層4を貫通する上層側導電層接続用
コンタクトホール89によって上方が開放状態にある。
【0038】
なお、図4(c)〜(f)に示すコンタクト部1sの構成は、図3(b)、(c)およ
び図4(a)、(b)に示すコンタクト部1sの構成を変形することにより実現できるの
で、以下、図3(b)、(c)および図4(a)、(b)に示すコンタクト部1sの構成
を中心に説明する。
【0039】
(ゲート絶縁層、誘電体層、およびコンタクト部の詳細構成)
再び図3(b)において、ゲート絶縁層4は、下層側の厚いシリコン窒化膜からなる下
層側ゲート絶縁層4aと、上層側の薄いシリコン窒化膜からなる上層側ゲート絶縁層との
2層構造になっている。本形態において、下層側ゲート絶縁層4aの膜厚は、薄膜トラン
ジスタの寄生容量の影響を小さくする厚さに形成され、上層側ゲート絶縁膜の膜厚は下層
側ゲート絶縁膜よりも薄く形成される。例えば下層側ゲート絶縁膜は250〜500nm
で好ましくは300nmであり、上層側ゲート絶縁層4bの膜厚は50〜200nmで好
ましくは100nmである。これらの膜厚は、薄膜トランジスタの書き込み能力、寄生容
量及び保持容量のバランスを考慮した上で最適化して決められる。例えば、高精細で画素
1bの寸法が小さな構造の場合(例えば1画素の短辺が40um以下)、画素1bにおける
保持容量1h、液晶容量1gが小さくなるが、薄膜トランジスタ1cの最小寸法はフォト
リソグラフィの解像度で律則される。このためこのような高精細画素では、薄膜トランジ
スタ1cの寄生容量が1画素全体の容量に占める割合が高くなる。この寄生容量の割合(
以下、寄生容量比)が大きくなると、電気光学装置1はフリッカや、クロストーク、焼き
付きといった表示品位の劣化を招くことが知られており、この寄生容量比が極力小さくな
るように設計を行うのが一般的である。しかしながら、前記のような高精細なレイアウト
によって寄生容量比が制約を受ける場合、従来の手法では、これを改善することが困難で
ある。しかるに本発明の構造、プロセスを用いれば、薄膜トランジスタ1cのゲート絶縁
膜の膜厚を保持容量1hの側とは全く独立に設定・製造できる。すなわち、前記の高精細
画素においては、ゲート絶縁膜を標準的な条件よりも厚く設定することにより、薄膜トラ
ンジスタ1cの寄生容量を低減し、寄生容量比を小さくすることができる。なお、このよ
うな条件設定においては、薄膜トランジスタ1cの電流駆動能力(画素への信号書き込み
能力)が低下するが、高精細画素は、書き込む画素容量そのものが小さくなっているため
、このようにゲート絶縁膜厚を厚くしても書き込み能力的には問題を生じないように設計
をおこなうことができる。
【0040】
本形態では、ゲート絶縁層4において下層側ゲート絶縁層4aは、保持容量1hの下電
極3cおよび上電極6cと平面的に重なる領域で厚さ方向の全体にわたって除去され、開
口41が形成されている。これに対して、上層側ゲート絶縁層4bは、略全面に形成され
ている。このため、ゲート絶縁層4は、下電極3cおよび上電極6cと平面的に重なる領
域(開口41と平面的に重なる領域)に、上層側ゲート絶縁層4bのみからなる膜厚の薄
い第1の薄膜部分4cを備えており、かかる第1の薄膜部分4cによって保持容量1hの
誘電体層が構成されている。ここで、下電極3cの上層側のうち、下電極3cの端縁に沿
ってはゲート絶縁層4と同一厚の厚い部分が残っており、誘電体層4cは、この厚い絶縁
膜で囲まれている。このため、下電極3cの縁部分や上電極6cの縁部分で発生しやすい
耐電圧低下を防止することができる。
【0041】
また、本形態では、コンタクト部1sでも、下層側導電層接続用コンタクトホール89
の形成領域では、ゲート絶縁層4の下層側ゲート絶縁層4aが厚さ方向の全体にわたって
除去され、開口43が形成されている。ここで、開口43は、下層側導電層接続用コンタ
クトホール89の周りを囲む広い範囲にわたって形成されているが、下層側導電層3sが
形成されている領域内に位置している。これに対して、上層側ゲート絶縁層4bは、開口
43の内側にも形成されている。このため、ゲート絶縁層4は、下層側導電層3sの上層
に上層側ゲート絶縁層4bのみからなる膜厚の薄い第2の薄膜部分4dを備えている。従
って、下層側導電層接続用コンタクトホール89は、パッシベーション膜を貫通する上側
ホール87と、ゲート絶縁層4のうち、上層側ゲート絶縁層4bのみからなる膜厚の薄い
第2の薄膜部分4dを貫通する下側ホール46とを備えている。
【0042】
(液晶装置1の製造方法)
図5(a)〜(g)、および図6(a)〜(e)は、本形態の液晶装置1に用いた素子
基板10の製造方法を示す工程断面図である。なお、素子基板10を製造するには、素子
基板10を多数取りできる大型基板の状態で以下の工程が行われるが、以下の説明では、
大型基板についても素子基板10として説明する。
【0043】
まず、図5(a)に示すゲート電極形成工程において、大型のガラス基板などの絶縁基
板11の表面に金属膜(膜厚が150nmのアルミニウム合金膜と、膜厚が20nmのモ
リブデン膜との積層膜)を形成した後、フォトリソグラフィ技術を用いて金属膜をパター
ニングし、ゲート線3a(ゲート電極)、容量線3b(下電極3c)、および下層側導電
層3sを同時形成する。
【0044】
次に、図5(b)に示すように、ゲート絶縁層形成工程(下層側ゲート絶縁層形成工程
)において、プラズマCVD法により、ゲート絶縁層4の下層側を構成する厚い下層側ゲ
ート絶縁層4aを形成する。本形態において、下層側ゲート絶縁層4aは、膜厚が約30
0nmのシリコン窒化膜からなる。
【0045】
次に、図5(c)に示す薄膜化工程では、フォトリソグラフィ技術を用いて、下電極3
cと平面的に重なる領域、およびコンタクト部1sに開口を備えたレジストマスク(図示
せず)を形成した後、下層側ゲート絶縁層4aに対して、SF6などのフッ素系のエッチ
ングガスによる反応性イオンエッチング(ドライエッチング)を行い、開口41、43を
形成する。このような反応性イオンエッチングは、イオンの物理的なスパッタ効果と、ラ
ジカルの化学的なエッチング効果の相乗効果を利用するため、異方性に優れ、かつ、高い
生産性が得られる。
【0046】
次に、図5(d)に示すゲート絶縁層形成工程(上層側ゲート絶縁層形成工程)では、
プラズマCVD法により、ゲート絶縁層4の上層側を構成する薄い上層側ゲート絶縁層4
bを形成する。本形態において、上層側ゲート絶縁層4bは、膜厚が約100nmのシリ
コン窒化膜からなる。その結果、ゲート線3a(ゲート電極)の上層側には、厚い下層側
ゲート絶縁層4aと、薄い上層側ゲート絶縁層4bとからなるゲート絶縁層4が形成され
る。これに対して、開口41と平面的に重なる領域には、上層側ゲート絶縁層4bのみか
らなる第1の薄膜部分4cが形成され、開口43と平面的に重なる領域には、上層側ゲー
ト絶縁層4bのみからなる第2の薄膜部分4dが形成される。
【0047】
次に、図5(e)に示す半導体層形成工程では、プラズマCVD法により、膜厚が15
0nmの真性のアモルファスシリコン膜7d、および膜厚が50nmのn+型シリコン膜
7eを連続して形成する。その際、図5(d)に示す上層側ゲート絶縁層形成工程を行っ
た素子基板10を真空雰囲気中に保持したまま、図5(e)に示す半導体層形成工程を行
い、素子基板10を大気と接触させない。それにより、ゲート絶縁層4(上層側ゲート絶
縁層4b)の表面が清浄な状態でアモルファスシリコン膜7dを積層できる。
【0048】
次に、図5(f)に示すように、フォトリソグラフィ技術を用いて、アモルファスシリ
コン膜7d、およびn+型シリコン膜7eにエッチングを行い、島状の半導体層7a、お
よび島状のn+型シリコン膜7eを形成する。このエッチングにおいても、SF6などのフ
ッ素系のエッチングガスを用いた反応性イオンエッチング(ドライエッチング)を行う。
【0049】
次に、図5(g)に示すソース・ドレイン電極形成工程では、金属膜(膜厚が5nmの
モリブデン膜、膜厚が1500nmのアルミニウム膜、および膜厚が50nmのモリブデ
ン膜の積層膜)を形成した後、フォトリソグラフィ技術を用いてパターニングし、ソース
線6a、ドレイン電極6b、上電極6c、および上層側導電層6sを形成する。続いて、
ソース線6aおよびドレイン電極6bをマスクとして用いて、ソース線6aとドレイン電
極6bとの間のn+型シリコン膜7eをエッチングにより除去し、ソース・ドレインの分
離を行う。その結果、ソース線6aおよびドレイン電極6bが形成されていない領域から
+型シリコン膜7eが除去されてオーミックコンタクト層7b、7cが形成される。そ
の際、半導体層7aの表面の一部がエッチングされる。このようにして、ボトムゲート型
の画素スイッチング用の薄膜トランジスタ1cが形成されるとともに、保持容量1hが形
成される。
【0050】
次に、図6(a)に示す層間絶縁膜形成工程において、プラズマCVD法により、膜厚
が250nmのシリコン窒化膜からなるパッシベーション膜8を形成する。
【0051】
次に、図6(b)に示す平坦化膜形成工程では、スピンコート法により、アクリル樹脂
などの感光性樹脂を塗布した後、露光、現像して、コンタクトホール91を備えた平坦化
膜9を形成する。
【0052】
次に、図6(c)に示すコンタクトホール形成工程において、フォトリソグラフィ技術
を用いてパッシベーション膜8に対してエッチングを行い、画素電極接続用コンタクトホ
ール81、上層側導電層接続用コンタクトホール86、および下層側導電層接続用コンタ
クトホール89を形成する。このエッチングにおいても、SF6などのフッ素系のエッチ
ングガスを用いた反応性イオンエッチング(ドライエッチング)を行う。
【0053】
その際、画素電極接続用コンタクトホール81および上層側導電層接続用コンタクトホ
ール86は、パッシベーション膜8を貫通するだけであるため、同時形成されるが、下層
側導電層接続用コンタクトホール89は、パッシベーション膜8およびゲート絶縁層4を
貫通する必要があるため、下層側導電層接続用コンタクトホール89について、パッシベ
ーション膜8を貫通する上側ホール87のみが形成される。
【0054】
従って、コンタクトホール形成工程では、フォトリソグラフィ技術を用いて別のマスク
を形成し、図6(d)に示すように、上側ホール87の底部に位置するゲート絶縁層4(
上層側ゲート絶縁層4b/第2の薄膜部分4d)を除去する。その結果、ゲート絶縁層4
に下側ホール46が形成され、下層側導電層接続用コンタクトホール89は、下層側導電
層3sに到達する。このエッチングにおいても、SF6などのフッ素系のエッチングガス
を用いた反応性イオンエッチング(ドライエッチング)を行う。
【0055】
次に、図6(e)に示す画素電極形成工程では、スパッタ法により、膜厚が100nm
のITO膜を形成した後、フォトリソグラフィ技術およびウエットエッチングを利用して
パターニングし、画素電極2aを形成する。その結果、画素電極2aは、コンタクトホー
ル91、81を介して上電極6cに電気的に接続される。続いて、図3に示す配向膜19
を形成するためのポリイミド膜を形成した後、ラビング処理を施す。
【0056】
このようにして大型基板の状態で各種配線やTFTを形成した素子基板10については
、別途形成した大型の対向基板20とシール材22で貼り合わせた後、所定のサイズに切
断する。それにより、液晶注入口25が開口するので、液状注入口25から素子基板10
と対向基板20との間に液晶1fを注入した後、液晶注入口25を封止材26により封止
する。
【0057】
(本形態の主な効果)
以上説明したように、本形態の液晶装置1では、ゲート絶縁層4を薄くした第1の薄膜
部分4cを保持容量1hの誘電体層として用いるため、薄膜トランジスタ1cのゲート耐
電圧を低下させることなく、保持容量1hの単位面積当たりの静電容量を高めることがで
きる。しかも、誘電体層4cを構成する上層側ゲート絶縁層4bは、シリコン窒化膜(比
誘電率が約7〜8)であり、シリコン酸化膜より誘電率が高いので、保持容量1hは、単
位面積当たりの静電容量が高い。それ故、保持容量1hは、電荷の保持特性が高い一方、
単位面積当たりの容量値が高くなった分、その占有面積を縮小すれば画素開口率を高める
ことができる。
【0058】
また、本形態では、ゲート絶縁層4を薄くして第1の薄膜部分4cを形成する際、下層
側導電層接続用コンタクトホール89を形成すべき領域でも、ゲート絶縁層4を薄くして
第2の薄膜部分4dを形成する。このため、コンタクトホール形成工程において、パッシ
ベーション膜8をエッチングして下層側導電層接続用コンタクトホール89を形成する際
、下層側導電層接続用コンタクトホール89の上側ホール87を形成した時点で底部に残
るゲート絶縁層4の膜厚が薄い。従って、下層側導電層接続用コンタクトホール89を下
層側導電層3sまで貫通させる際にゲート絶縁層4をエッチングするのに要する時間が短
いので、スループットを向上することができる。
【0059】
さらに、本形態では、下層側導電層接続用コンタクトホール89の形成にドライエッチ
ングを採用したが、下層側導電層接続用コンタクトホール89を形成する箇所のゲート絶
縁層4の膜厚が薄い。従って、ドライエッチングの時間が短い分、ゲート絶縁層が静電気
やプラズマに晒される時間が短いので、ゲート絶縁層4に欠陥が発生することを防止する
ことができる。それ故、ゲート絶縁層4の膜厚を薄くして誘電体層として用いた保持容量
1hであっても耐電圧の低下や絶縁破壊(ショート)の発生を防止することができる。
【0060】
また、本形態では、薄膜トランジスタ1cをボトムゲート構造で構成したため、上層側
ゲート絶縁層4b、能動層(半導体層7a)を構成するための真性のアモルファスシリコ
ン膜7d、およびオーミックコンタクト層7b、7cを構成するためのn+型シリコン膜
7eを連続成膜できるので、清浄な上層側ゲート絶縁層4bの上層にアモルファスシリコ
ン膜7dを形成することができる。しかも、本形態では、上層側ゲート絶縁層4b、アモ
ルファスシリコン膜7d、およびオーミックコンタクト層7b、7cを構成する際、素子
基板10を真空雰囲気中に保持し続けるため、上層側ゲート絶縁層4bの表面の汚染を確
実に防止することができる。それ故、ゲート絶縁層4と半導体層7aとの界面が清浄であ
り、薄膜トランジスタ1cの信頼性が高い。
【0061】
さらに、本形態では、ゲート絶縁層4を部分的に薄くした部分を保持容量1hの誘電体
層4cとして用いるにあたって、下層側ゲート絶縁層4aを残さず、上層側ゲート絶縁層
4bのみで誘電体層4cを構成したため、下層側ゲート絶縁層4aを部分的に残す場合と
違って、エッチング深さのばらつきに起因する保持容量1hの容量ばらつきを防止するこ
とができる。しかも、本形態では、ゲート絶縁層4を部分的に薄くした部分を保持容量1
hの誘電体層4cとして用いるにあたって、下層側ゲート絶縁層4aおよび上層側ゲート
絶縁層4bのうち、下層側ゲート絶縁層4aを除去し、この下層側ゲート絶縁層4aの上
層に形成した上層側ゲート窒化膜4bを保持容量1hの誘電体層4cとして用いる。この
ような上層側ゲート絶縁層4bであれば、下層側ゲート絶縁層4aをドライエッチングに
より除去する際の静電気やプラズマに晒されることがないので、上層側ゲート絶縁層4b
の欠陥密度が低い。それ故、保持容量1hの耐電圧の低下などといった不具合の発生を防
止することができる。
【0062】
なお、本形態では、下層側ゲート絶縁層4aに対してドライエッチングを行って開口4
1を形成したが、ウエットエッチングを行って開口41を形成してもよい。このような場
合でも、上層側ゲート絶縁層4bは、下層側ゲート絶縁層4aに対するエッチング液に接
触することもないので、上層側ゲート絶縁層4bにピンホールが発生することがない。そ
れ故、保持容量1hの耐電圧がばらつくことを防止することができる。
【0063】
[実施の形態1の改良例]
実施の形態1では、図6(c)に示すコンタクトホール形成工程において、下層側導電
層接続用コンタクトホール89の上側ホール87を形成した後、別のエッチング工程にお
いて、図6(d)に示すように、上側ホール87の底部に位置するゲート絶縁層4(上層
側ゲート絶縁層4b/第2の薄膜部分4d)を除去して下側ホール46を形成したが、本
形態では、上電極6cおよび上層側導電層6sの膜厚が厚く、下層側導電層接続用コンタ
クトホール89を形成する箇所のゲート絶縁層4の膜厚が薄い。従って、実施の形態1と
同様な方法で、図7(a)に示す層間絶縁膜形成工程、および図7(b)に示す平坦化膜
形成工程を行った後、図7(c)に示すコンタクトホール形成工程において、コンタクト
ホール81、86、89を同時形成し、しかる後に、図7(d)に示す画素電極形成工程
を行ってもよい。
【0064】
なお、本形態は、実施の形態1に限らず、以下に説明するいずれの実施の形態に対して
も適用することができる。
【0065】
[実施の形態2]
図8(a)、(b)、(c)は、本発明の実施の形態2に係る液晶装置の画素1つ分の
平面図、A2−B2に相当する位置で液晶装置を切断したときの断面図、およびコンタク
ト部の平面図である。図9(a)〜(g)は、本形態の液晶装置1に用いた素子基板10
の製造工程のうち、ソース・ドレイン電極を形成するまでの工程を示す工程断面図である
。本形態および以下に説明するいずれの実施の形態でも、平面図では、画素電極を太くて
長い点線で示し、ゲート線およびそれと同時形成された薄膜を細い実線で示し、ソース線
およびそれと同時形成された薄膜を細い一点鎖線で示し、半導体層を細くて短い点線で示
し、保持容量を構成するゲート絶縁層のうち、薄膜部分については細い二点鎖線で示し、
コンタクトホールについては、ゲート線などと同様、細い実線で示してある。また、本形
態および以下に説明するいずれの実施の形態でも、本形態の基本的な構成は、実施の形態
1と同様であるため、共通する部分には同一の符号を付して図示し、それらの説明を省略
する。
【0066】
図8(a)、(b)に示すように、本形態でも、実施の形態1と同様、素子基板10に
おいて、ゲート線3aとソース線6aで囲まれた画素領域1eには、ボトムゲート型の薄
膜トランジスタ1cと保持容量1hとが形成されている。保持容量1hは、容量線3bか
らの突出部分を下電極3cとし、ドレイン電極6bからの延設部分を上電極6cとしてい
る。ゲート絶縁層4は、実施の形態1と同様、下層側の厚いシリコン窒化膜からなる下層
側ゲート絶縁層4aと、上層側の薄いシリコン窒化膜からなる上層側ゲート絶縁層との2
層構造になっている。下層側ゲート絶縁層4aは、保持容量1hの下電極3cおよび上電
極6cと平面的に重なる領域で厚さ方向の全体にわたって除去され、開口41が形成され
ている。このため、保持容量1hの誘電体層は、ゲート絶縁層4のうち、膜厚の薄い第1
の薄膜部分4c(下層側ゲート絶縁層4a)によって構成されている。なお、下電極3c
の上層側のうち、下電極3cの端縁に沿ってはゲート絶縁層4と同一厚の絶縁膜が形成さ
れており、誘電体層4cは、この厚い絶縁膜で囲まれている。
【0067】
また、本形態でも、実施の形態1と同様、図8(b)、(c)に示すように、コンタク
ト部1sでも、下層側導電層接続用コンタクトホール89の形成領域では、ゲート絶縁層
4の下層側ゲート絶縁層4aが厚さ方向の全体にわたって除去され、開口43が形成され
ている。このため、ゲート絶縁層4は、下層側導電層3sの上層に上層側ゲート絶縁層4
bのみからなる膜厚の薄い第2の薄膜部分4dを備えており、下層側導電層接続用コンタ
クトホール89は、パッシベーション膜を貫通する上側ホール87と、ゲート絶縁層4の
うち、上層側ゲート絶縁層4bのみからなる膜厚の薄い第2の薄膜部分4dを貫通する下
側ホール46とを備えている。
【0068】
本形態では、半導体層7aの上層側のうち、ソース線6a(ソース電極)の端部とドレ
イン電極6bの端部との間に挟まれた領域にエッチングストッパ層7xが形成されており
、エッチングストッパ層7xの上層に被さるようにオーミックコンタクト層7b、7cが
形成されている。本形態において、エッチングストッパ層7xは、膜厚が150nmのシ
リコン窒化膜からなる。その他の構成は、実施の形態1と同様であるため、説明を省略す
る。
【0069】
このような構成の素子基板10を製造するには、図9(a)に示すゲート電極形成工程
において、絶縁基板11の表面に金属膜(アルミニウム合金膜とモリブデン膜との積層膜
)を形成した後、フォトリソグラフィ技術を用いて金属膜をパターニングし、ゲート線3
a(ゲート電極)、容量線3b(下電極3c)、および下層側導電層3sを形成する。
【0070】
次に、実施の形態1と同様、図9(b)に示す下層側ゲート絶縁層形成工程において、
プラズマCVD法により、ゲート絶縁層4の下層側を構成する厚いシリコン窒化膜(下層
側ゲート絶縁層4a)を形成した後、薄膜化工程において、下層側ゲート絶縁層4aに対
してエッチングを行い、開口41、43を形成する。次に、図9(c)に示す上層側ゲー
ト絶縁層成膜工程において、ゲート絶縁層4の上層側を構成する薄いシリコン窒化膜(上
層側ゲート絶縁層4b)を形成する。その結果、ゲート絶縁層4には、第1の薄膜部分4
cと第2の薄膜部分4dが形成される。
【0071】
次に、図9(d)に示す半導体層形成工程において、プラズマCVD法により、真性の
アモルファスシリコン膜7dを形成する。その際、図9(c)に示す上層側ゲート絶縁層
形成工程を行った素子基板10については、真空雰囲気中に保持したまま、図9(d)に
示す半導体層形成工程を行い、素子基板10を大気と接触させない。それにより、ゲート
絶縁層4(上層側ゲート絶縁層4b)の表面が清浄な状態でアモルファスシリコン膜7d
(能動層)を積層できる。次に、アモルファスシリコン膜7dの上層側に、膜厚が150
nmのシリコン窒化膜を形成した後、シリコン窒化膜をエッチングし、エッチングストッ
パ層7xを形成する。このエッチングにおいても、SF6などのフッ素系のエッチングガ
スを用いた反応性イオンエッチング(ドライエッチング)を行う。
【0072】
次に、図9(e)に示すように、エッチングストッパ層7xの上層側にn+型シリコン
膜7eを形成する。次に、図9(f)に示すように、アモルファスシリコン膜7dおよび
+型シリコン膜7eに対してフォトリソグラフィ技術を利用してドライエッチングを行
い、島状の半導体層7aおよびn+型シリコン膜7eを形成する。
【0073】
次に、図9(g)に示すソース・ドレイン電極形成工程では、金属膜(モリブデン膜、
アルミニウム膜、およびモリブデン膜の積層膜)を形成した後、フォトリソグラフィ技術
を用いてパターニングし、ソース線6a、ドレイン電極6b、上電極6c、および上層側
導電層6sを形成する。続いて、ソース線6aおよびドレイン電極6bをマスクとして用
いて、ソース線6aとドレイン電極6bとの間のn+型シリコン膜7eをエッチングによ
り除去し、ソース・ドレインの分離を行う。その結果、ソース線6aおよびドレイン電極
6bが形成されていない領域からn+型シリコン膜7eが除去されてオーミックコンタク
ト層7b、7cが形成される。その際、エッチングストッパ層7xは、半導体層7aを保
護する機能を担う。このようにして、ボトムゲート型の画素スイッチング用の薄膜トラン
ジスタ1cが形成されるとともに、保持容量1hが形成される。それ以降の工程は、実施
の形態1と同様であるため、説明を省略する。
【0074】
このように本形態では、保持容量1hの基本的な構成が実施の形態1と同様であるため
、信頼性が高い薄膜トランジスタ1cを形成できるとともに、容量が多くて耐電圧が安定
した保持容量1hを形成できるなど、実施の形態1と同様な効果を奏する。
【0075】
また、図9(d)に示すように、エッチングストッパ層7xを形成する際、アモルファ
スシリコン膜7dは、上層側ゲート絶縁層4bを保護する機能を担う。それ故、エッチン
グストッパ層7xを形成した場合でも、誘電体層4cとして用いられる上層側ゲート絶縁
層4bに欠陥が発生するのを防止できる。
【0076】
[実施の形態3]
図10(a)、(b)、(c)は、本発明の実施の形態2に係る液晶装置の画素1つ分
の平面図、A3−B3に相当する位置で液晶装置を切断したときの断面図、およびコンタ
クト部の平面図である。図11(a)〜(g)は、本形態の液晶装置1に用いた素子基板
10の製造工程のうち、ソース・ドレイン電極を形成するまでの工程を示す工程断面図で
ある。
【0077】
図10(a)、(b)に示すように、本形態でも、実施の形態1と同様、素子基板10
において、ゲート線3aとソース線6aで囲まれた画素領域1eには、ボトムゲート型の
薄膜トランジスタ1cと、保持容量1hとが形成されている。
【0078】
本形態において、保持容量1hは、容量線3bからの突出部分を下電極3cとしている
点では実施の形態1と同様である。但し、保持容量1hの上電極5aは、ゲート絶縁層4
とドレイン電極6bの層間に形成されたITO膜によって構成されており、上電極5aは
、ドレイン電極6bとの部分的な重なり部分によりドレイン電極6bに電気的に接続され
ている。本形態において、上電極5aを構成するITO膜の膜厚は50nmである。なお
、上電極5aに対しては、コンタクトホール81、91を介して、平坦化膜9の上層に形
成された画素電極2aが電気的に接続されている。
【0079】
ゲート絶縁層4は、実施の形態1と同様、下層側の厚いシリコン窒化膜からなる下層側
ゲート絶縁層4aと、上層側の薄いシリコン窒化膜からなる上層側ゲート絶縁層との2層
構造になっている。下層側ゲート絶縁層4aは、保持容量1hの下電極3cおよび上電極
5aと平面的に重なる領域で厚さ方向の全体にわたって除去され、開口41が形成されて
いる。このため、保持容量1hの誘電体層は、ゲート絶縁層4のうち、膜厚の薄い第1の
薄膜部分4c(下層側ゲート絶縁層4a)によって構成されている。なお、下電極3cの
上層側のうち、下電極3cの端縁に沿ってはゲート絶縁層4と同一厚の絶縁膜が形成され
ており、誘電体層4cは、この厚い絶縁膜で囲まれている。
【0080】
また、本形態でも、実施の形態1と同様、図10(b)、(c)に示すように、コンタ
クト部1sでも、下層側導電層接続用コンタクトホール89の形成領域では、ゲート絶縁
層4の下層側ゲート絶縁層4aが厚さ方向の全体にわたって除去され、開口43が形成さ
れている。このため、ゲート絶縁層4は、下層側導電層3sの上層に上層側ゲート絶縁層
4bのみからなる膜厚の薄い第2の薄膜部分4dを備えており、下層側導電層接続用コン
タクトホール89は、パッシベーション膜を貫通する上側ホール87と、ゲート絶縁層4
のうち、上層側ゲート絶縁層4bのみからなる膜厚の薄い第2の薄膜部分4dを貫通する
下側ホール46とを備えている。その他の構成は、実施の形態1と同様であるため、説明
を省略する。
【0081】
このような構成の素子基板10を製造するには、図11(a)に示すゲート電極形成工
程において、絶縁基板11の表面に金属膜(アルミニウム合金膜とモリブデン膜との積層
膜)を形成した後、フォトリソグラフィ技術を用いて金属膜をパターニングし、ゲート線
3a(ゲート電極)、容量線3b(下電極3c)および下層側導電層3sを形成する。
【0082】
次に、実施の形態1と同様、図11(b)に示す下層側ゲート絶縁層形成工程において
、プラズマCVD法により、ゲート絶縁層4の下層側を構成する厚いシリコン窒化膜(下
層側ゲート絶縁層4a)を形成した後、薄膜化工程において、下層側ゲート絶縁層4aに
対してエッチングを行い、開口41、43を形成する。次に、図11(c)に示す上層側
ゲート絶縁層成膜工程において、ゲート絶縁層4の上層側を構成する薄いシリコン窒化膜
(上層側ゲート絶縁層4b)を形成する。その結果、ゲート絶縁層4には、第1の薄膜部
分4cと第2の薄膜部分4dが形成される。
【0083】
次に、図11(d)に示す半導体層形成工程において、真性のアモルファスシリコン膜
7d、およびn+型シリコン膜7eを順次、形成する。その際、図11(c)に示す上層
側ゲート絶縁層形成工程を行った素子基板10については、真空雰囲気中に保持したまま
、図11(d)に示す半導体層形成工程を行い、素子基板10を大気と接触させない。そ
れにより、ゲート絶縁層4(上層側ゲート絶縁層4b)の表面が清浄な状態でアモルファ
スシリコン膜7d(能動層)を積層できる。
【0084】
次に、図11(e)に示すように、フォトリソグラフィ技術を用いて、アモルファスシ
リコン膜7d、およびn+型シリコン膜7eにドライエッチングを行い、島状の半導体層
7a、および島状のn+型シリコン膜7eを形成する。
【0085】
次に、図11(f)に示す上電極形成工程において、スパッタ法により、膜厚が50n
mのITO膜を形成した後、フォトリソグラフィ技術を用いて、ITO膜にウエットエッ
チングを行い、上電極5aを形成する。このようにして、保持容量1hが形成される。
【0086】
次に、図11(g)に示すように、金属膜(モリブデン膜、アルミニウム膜、およびモ
リブデン膜の積層膜)を形成した後、フォトリソグラフィ技術を用いてパターニングし、
ソース線6a、ドレイン電極6b、上電極6c、および上層側導電層6sを形成する。続
いて、ソース線6aおよびドレイン電極6bをマスクとして用いて、ソース線6aとドレ
イン電極6bとの間のn+型シリコン膜7eをエッチングにより除去し、ソース・ドレイ
ンの分離を行う。その結果、ソース線6aおよびドレイン電極6bが形成されていない領
域からn+型シリコン膜7eが除去されてオーミックコンタクト層7b、7cが形成され
る。このようにして、ボトムゲート型の画素スイッチング用の薄膜トランジスタ1cが形
成される。それ以降の工程は、実施の形態1と同様であるため、説明を省略する。
【0087】
このように本形態では、保持容量1hの基本的な構成が実施の形態1と同様であるため
、信頼性が高い薄膜トランジスタ1cを形成できるとともに、容量が多くて耐電圧が安定
した保持容量1hを形成できるなど、実施の形態1と同様な効果を奏する。
【0088】
また、上電極5aとしてITO膜(透明電極)を用いたため、ドレイン電極6bの延設
部分を上電極として用いた場合と比較して、画素開口率を高めることができる。
【0089】
[実施の形態4]
図12(a)、(b)、(c)は、本発明の実施の形態4に係る液晶装置の画素1つ分
の平面図、A4−B4に相当する位置で液晶装置を切断したときの断面図、およびコンタ
クト部の平面図である。図13(a)〜(g)は、本形態の液晶装置1に用いた素子基板
10の製造工程のうち、パッシベーション膜にコンタクトホールを形成するまでの工程を
示す工程断面図である。
【0090】
図12(a)、(b)に示すように、本形態でも、実施の形態1と同様、素子基板10
において、ゲート線3aとソース線6aで囲まれた画素領域1eには、ボトムゲート型の
薄膜トランジスタ1cと、保持容量1hとが形成されている。但し、実施の形態1〜3と
違って、本形態では、平坦化膜が形成されておらず、画素電極2aは、パッシベーション
膜8の上層に形成され、パッシベーション膜8に形成された画素電極接続用コンタクトホ
ール81を介してドレイン電極6bに電気的に接続されている。
【0091】
また、保持容量1hは、容量線3bからの突出部分を下電極3cとしている点では実施
の形態1と同様である。但し、保持容量1hの上電極は、画素電極2aのうち、下電極3
cと平面的に重なる部分によって構成されている。
【0092】
ゲート絶縁層4は、実施の形態1と同様、下層側の厚いシリコン窒化膜からなる下層側
ゲート絶縁層4aと、上層側の薄いシリコン窒化膜からなる上層側ゲート絶縁層との2層
構造になっている。下層側ゲート絶縁層4aは、保持容量1hの下電極3cおよび画素電
極2aと平面的に重なる領域で厚さ方向の全体にわたって除去され、開口41が形成され
ている。このため、保持容量1hの誘電体層は、ゲート絶縁層4のうち、膜厚の薄い第1
の薄膜部分4c(下層側ゲート絶縁層4a)によって構成されている。なお、下電極3c
の上層側のうち、下電極3cの端縁に沿ってはゲート絶縁層4と同一厚の絶縁膜が形成さ
れており、誘電体層4cは、この厚い絶縁膜で囲まれている。
【0093】
また、本形態でも、実施の形態1と同様、図12(b)、(c)に示すように、コンタ
クト部1sでも、下層側導電層接続用コンタクトホール89の形成領域では、ゲート絶縁
層4の下層側ゲート絶縁層4aが厚さ方向の全体にわたって除去され、開口43が形成さ
れている。このため、ゲート絶縁層4は、下層側導電層3sの上層に上層側ゲート絶縁層
4bのみからなる膜厚の薄い第2の薄膜部分4dを備えており、下層側導電層接続用コン
タクトホール89は、パッシベーション膜を貫通する上側ホール87と、ゲート絶縁層4
のうち、上層側ゲート絶縁層4bのみからなる膜厚の薄い第2の薄膜部分4dを貫通する
下側ホール46とを備えている。その他の構成は、実施の形態1と同様であるため、説明
を省略する。
【0094】
このような構成の素子基板10を製造するには、図13(a)に示すゲート電極形成工
程において、絶縁基板11の表面に金属膜(アルミニウム合金膜とモリブデン膜との積層
膜)を形成した後、フォトリソグラフィ技術を用いて金属膜をパターニングし、ゲート線
3a(ゲート電極)、容量線3b(下電極3c)、および下層側導電層3sを形成する。
【0095】
次に、実施の形態1と同様、図13(b)に示す下層側ゲート絶縁層形成工程において
、プラズマCVD法により、ゲート絶縁層4の下層側を構成する厚いシリコン窒化膜(下
層側ゲート絶縁層4a)を形成した後、薄膜化工程において、下層側ゲート絶縁層4aに
対してエッチングを行い、下電極3cと重なる位置に開口41、43を形成する。次に、
図13(c)に示す上層側ゲート絶縁層成膜工程において、ゲート絶縁層4の上層側を構
成する薄いシリコン窒化膜(上層側ゲート絶縁層4b)を形成する。その結果、ゲート絶
縁層4には、第1の薄膜部分4cと第2の薄膜部分4dが形成される。
【0096】
次に、図13(d)に示す半導体層形成工程において、真性のアモルファスシリコン膜
7d、およびn+型シリコン膜7eを順次、形成する。その際、図13(c)に示す上層
側ゲート絶縁層形成工程を行った素子基板10については、真空雰囲気中に保持したまま
、図13(d)に示す半導体層形成工程を行い、素子基板10を大気と接触させない。そ
れにより、ゲート絶縁層4(上層側ゲート絶縁層4b)の表面が清浄な状態でアモルファ
スシリコン膜7d(能動層)を積層できる。
【0097】
次に、図13(e)に示すように、フォトリソグラフィ技術を用いて、アモルファスシ
リコン膜7d、およびn+型シリコン膜7eにドライエッチングを行い、島状の半導体層
7a、および島状のn+型シリコン膜7eを形成する。
【0098】
次に、図13(f)に示すように、金属膜(モリブデン膜、アルミニウム膜、およびモ
リブデン膜の積層膜)を形成した後、フォトリソグラフィ技術を用いてパターニングし、
ソース線6a、ドレイン電極6b、上電極6c、および上層側導電層6sを形成する。続
いて、ソース線6aおよびドレイン電極6bをマスクとして用いて、ソース線6aとドレ
イン電極6bとの間のn+型シリコン膜7eをエッチングにより除去し、ソース・ドレイ
ンの分離を行う。その結果、ソース線6aおよびドレイン電極6bが形成されていない領
域からn+型シリコン膜7eが除去されてオーミックコンタクト層7b、7cが形成され
る。このようにして、ボトムゲート型の画素スイッチング用の薄膜トランジスタ1cが形
成される。
【0099】
次に、図13(g)に示すように、層間絶縁膜形成工程において、プラズマCVD法に
より、膜厚が250nmのシリコン窒化膜からなるパッシベーション膜8を形成した後、
コンタクトホール形成工程において、フォトリソグラフィ技術を用いてパッシベーション
膜8に対してエッチングを行い、画素電極接続用コンタクトホール81、上層側導電層接
続用コンタクトホール86、および下層側導電層接続用コンタクトホール89を形成する
。このエッチングにおいても、SF6などのフッ素系のエッチングガスを用いた反応性イ
オンエッチング(ドライエッチング)を行う。それ以降の工程は、実施の形態1と同様で
あるため、説明を省略する。
【0100】
このように本形態では、保持容量1hの基本的な構成が実施の形態1と同様であるため
、信頼性が高い薄膜トランジスタ1cを形成できるとともに、容量が多くて耐電圧が安定
した保持容量1hを形成できるなど、実施の形態1と同様な効果を奏する。
【0101】
[実施の形態5]
図14(a)、(b)、(c)は、本発明の実施の形態5に係る液晶装置の画素1つ分
の平面図、A5−B5に相当する位置で液晶装置を切断したときの断面図、およびコンタ
クト部の平面図である。
【0102】
図14(a)、(b)に示すように、本形態でも、実施の形態1と同様、素子基板10
において、ゲート線3aとソース線6aで囲まれた画素領域1eには、ボトムゲート型の
薄膜トランジスタ1cと、保持容量1hとが形成されている。但し、実施の形態1〜4と
違って、本形態では、容量線が形成されておらず、走査方向(ゲート線3aの延在方向と
交差する方向/ソース線6aの延在方向)における前段側のゲート線3aの一部によって
保持容量1hの下電極3cが構成されている。
【0103】
また、保持容量1hでは、下電極3cと重なる領域に上電極6dが形成されており、本
形態では、上電極6dとしては、ソース線6aやドレイン電極6bと同時形成された金属
層が用いられている。ここで、上電極6dは、ドレイン電極6bと分離して形成されてい
る。このため、平坦化膜9の上層に形成された画素電極2aは、パッシベーション膜8の
コンタクトホール81、および平坦化膜9のコンタクトホール91を介して上電極6dに
電気的に接続し、パッシベーション膜8のコンタクトホール82、および平坦化膜9のコ
ンタクトホール92を介してドレイン電極6bに電気的に接続している。
【0104】
ゲート絶縁層4は、実施の形態1と同様、下層側の厚いシリコン窒化膜からなる下層側
ゲート絶縁層4aと、上層側の薄いシリコン窒化膜からなる上層側ゲート絶縁層との2層
構造になっている。下層側ゲート絶縁層4aは、保持容量1hの下電極3cおよび上電極
6dと平面的に重なる領域で厚さ方向の全体にわたって除去され、開口41が形成されて
いる。このため、保持容量1hの誘電体層は、ゲート絶縁層4のうち、膜厚の薄い第1の
薄膜部分4c(下層側ゲート絶縁層4a)によって構成されている。なお、下電極3cの
上層側のうち、下電極3cの端縁に沿ってはゲート絶縁層4と同一厚の絶縁膜が形成され
ており、誘電体層4cは、この厚い絶縁膜で囲まれている。
【0105】
また、本形態でも、実施の形態1と同様、図14(b)、(c)に示すように、コンタ
クト部1sでも、下層側導電層接続用コンタクトホール89の形成領域では、ゲート絶縁
層4の下層側ゲート絶縁層4aが厚さ方向の全体にわたって除去され、開口43が形成さ
れている。このため、ゲート絶縁層4は、下層側導電層3sの上層に上層側ゲート絶縁層
4bのみからなる膜厚の薄い第2の薄膜部分4dを備えており、下層側導電層接続用コン
タクトホール89は、パッシベーション膜を貫通する上側ホール87と、ゲート絶縁層4
のうち、上層側ゲート絶縁層4bのみからなる膜厚の薄い第2の薄膜部分4dを貫通する
下側ホール46とを備えている。その他の構成は、実施の形態1と同様であるため、説明
を省略する。
【0106】
このような構成の素子基板10は、基本的には実施の形態1と同様な方法で製造できる
。すなわち、図5(a)に示すゲート電極形成工程では、容量線を形成しないとともに、
ゲート線3aを図14(a)に示す平面形状に形成する。また、図5(g)に示すソース
・ドレイン電極形成工程においてソース線6aおよびドレイン電極6bを形成する際、上
電極6dを形成する。さらに、図6(b)に示す平坦化膜形成工程では、コンタクトホー
ル91、92を備えた平坦化膜9を形成するとともに、図6(c)に示すコンタクトホー
ル形成工程では、フォトリソグラフィ技術を用いてパッシベーション膜8に対してエッチ
ングを行う際、コンタクトホール91、92と重なる位置にコンタクトホール81、82
を形成する。また、コンタクト部1sにコンタクトホール89を形成する。
【0107】
[実施の形態6]
図15(a)、(b)、(c)は、本発明の実施の形態6に係る液晶装置の画素1つ分
の平面図、A6−B6に相当する位置で液晶装置を切断したときの断面図、およびコンタ
クト部の平面図である。図16(a)〜(e)は、本形態の液晶装置1に用いた素子基板
10の製造工程のうち、ソース・ドレイン電極を形成するまでの工程を示す工程断面図で
ある。
【0108】
上記実施の形態1〜5では、下層側ゲート絶縁層4aを除去して第1の薄膜部分4cお
よび第2の薄膜部分4dを形成したが、図15(a)、(b)、(c)に示すように、本
形態では、上層側ゲート絶縁層4bを除去して凹部42、44を形成し、第1の薄膜部分
4cおよび第2の薄膜部分4dを形成してある。その他の構成は、実施の形態1と同様で
あるため、詳細な説明を省略する。
【0109】
このような構成の素子基板10を製造するには、図15(a)に示すゲート電極形成工
程において、絶縁基板11の表面に金属膜(アルミニウム合金膜とモリブデン膜との積層
膜)を形成した後、フォトリソグラフィ技術を用いて金属膜をパターニングし、ゲート線
3a(ゲート電極)、容量線3b(下電極3c)、および下層側導電層3sを形成する。
【0110】
次、図15(b)に示すゲート絶縁層形成工程において、ゲート絶縁層4の下層側を構
成する薄い下層側ゲート絶縁層4a、およびゲート絶縁層4の上層側を構成する厚い上層
側ゲート絶縁層4bを形成する。続いて、半導体層形成工程において、能動層を構成する
ための真性のアモルファスシリコン膜7d、およびオーミックコンタクト層を構成するた
めのn+型シリコン膜7eを順次形成した後、エッチングを行い、図15(c)に示すよ
うに、能動層を構成する半導体層7aおよびn+型シリコン膜7eを島状にパターニング
する。次に、図15(d)に示す薄膜化工程において、上層側ゲート絶縁層4aに対して
エッチングを行って上層側ゲート絶縁層4bを除去し、凹部42、44を形成する。次に
、ソース・ドレイン電極形成工程において、導電膜を形成した後、エッチングを行い、ソ
ース電極(ソース線6a)およびドレイン電極6bを形成する。続いて、n+型シリコン
膜7eにエッチングを行い、オーミックコンタクト層7b、7cを形成する。その結果、
薄膜トランジスタ1cが形成される。また、下層側ゲート絶縁層4aを誘電体層4cとし
、ドレイン電極6bの延設部分を上電極6cとする保持容量1hが形成される。それ以降
の工程は、実施の形態1と同様であるため、説明を省略する。
【0111】
このような構成の素子基板10でも、下層側導電層接続用コンタクトホール89を形成
する箇所のゲート絶縁層4の膜厚が薄いので、ドライエッチングの時間が短い分、ゲート
絶縁層が静電気やプラズマに晒される時間が短縮できるなどの効果を奏する。
【0112】
[実施の形態7]
図17(a)、(b)、(c)は、本発明の実施の形態7に係る液晶装置の画素1つ分
の平面図、A7−B7に相当する位置で液晶装置を切断したときの断面図、およびコンタ
クト部の平面図である。
【0113】
上記実施の形態1〜6では、ゲート絶縁層4を下層側ゲート絶縁層4aと上層側ゲート
絶縁層4bの2層構造を採用するとともに、上層側ゲート絶縁層4bを除去して第1の薄
膜部分4cおよび第2の薄膜部分4dを形成したが、図17(a)、(b)、(c)に示
すように、本形態では、ゲート絶縁層4を1層の絶縁膜で構成するとともに、ゲート絶縁
層4を厚さ方向の途中位置までエッチングにより除去して第1の薄膜部分4cおよび第2
の薄膜部分4dを形成してある。その他の構成は、実施の形態1と同様であるため、詳細
な説明を省略する。このような構成の素子基板10は、実施の形態6と同様な方法で製造
できるので説明を省略するが、下層側導電層接続用コンタクトホール89を形成する箇所
のゲート絶縁層4の膜厚が薄いので、ドライエッチングの時間が短い分、ゲート絶縁層が
静電気やプラズマに晒される時間が短縮できるなどの効果を奏する。
【0114】
[その他の実施の形態]
上記実施の形態1〜6では、ゲート絶縁層4を構成する下層側ゲート絶縁層4aおよび
上層側ゲート絶縁層4bのいずれもが同一の絶縁膜からなる構成であったが、下層側ゲー
ト絶縁層4aおよび上層側ゲート絶縁層4bが異なる絶縁膜からなる構成であってもよい
。この場合、ゲート絶縁層4をシリコン酸化膜とシリコン窒化膜とによって構成する場合
、誘電体層4cとして利用する上層側ゲート絶縁層4bについては誘電率の高いシリコン
窒化膜により構成することが好ましい。また、上記実施の形態では、下層側ゲート絶縁層
4aおよび上層側ゲート絶縁層4bは各々、1層の絶縁膜からなる構成であったが、下層
側ゲート絶縁層4aおよび上層側ゲート絶縁層4bが各々、複数層の絶縁膜からなる構成
であってもよい。
【0115】
上記実施の形態1〜5では、ゲート絶縁層4を部分的に薄くした部分を保持容量1hの
誘電体層4cとして用いるにあたって、下電極3cの外周縁より内側領域のみで下層側ゲ
ート絶縁層4aを除去して開口41を形成したが、下電極3cの縁部分や上電極の縁部分
で発生しやすい耐電圧低下が問題とならない場合や、他の対策が施されている場合には、
下電極3cや上電極よりも広い領域にわたって下層側ゲート絶縁層4aを除去してもよい

【0116】
上記実施の形態では、ゲート線3aにアルミニウム合金膜とモリブデン膜との多層膜を
用い、ソース線6aにアルミニウム膜とモリブデン膜との多層膜を用いたが、これらの配
線にはその他の金属膜を用いることができ、さらには、シリサイド膜などといった導電膜
を用いてもよい。また、上記実施の形態では半導体層7aとして真性のアモルファスシリ
コン膜を用いたが、その他のシリコン膜や、有機半導体膜、酸化亜鉛などの透明半導体膜
を用いてもよい。
【0117】
また、上記実施の形態では、透過型の液晶装置を例に説明したが、半透過反射型の液晶
装置や全反射型の液晶装置に本発明を適用してもよい。また、上記実施の形態では、TN
モード、ECBモード、VANモードのアクティブマトリクス型の液晶装置を例に説明し
たが、IPS(In−Plane Switching)モードの液晶装置(電気光学装
置)に本発明を適用してもよい。
【0118】
さらに、電気光学装置として液晶装置に限らず、例えば、有機EL(エレクトロルミネ
ッセンス)装置でも、有機EL膜を電気光学物質として保持する素子基板上の各画素領域
に、薄膜トランジスタと、該薄膜トランジスタに電気的に接続された画素電極と、前記薄
膜トランジスタのゲート絶縁層より下層側に下電極を具備する保持容量とが形成されるの
で、かかる有機EL装置に本発明を適用してもよい。
【0119】
[電子機器の実施形態]
図18は、本発明に係る液晶装置を各種の電子機器の表示装置として用いる場合の一実
施形態を示している。ここに示す電子機器は、パーソナルコンピュータや携帯電話機など
であり、表示情報出力源170、表示情報処理回路171、電源回路172、タイミング
ジェネレータ173、そして液晶装置1を有する。また、液晶装置1は、パネル175お
よび駆動回路176を有しており、前述した液晶装置1を用いることができる。表示情報
出力源170は、ROM(Read Only Memory)、RAM(Random
Access Memory)等といったメモリ、各種ディスク等といったストレージ
ユニット、デジタル画像信号を同調出力する同調回路等を備え、タイミングジェネレータ
173によって生成された各種のクロック信号に基づいて、所定フォーマットの画像信号
等といった表示情報を表示情報処理回路171に供給する。表示情報処理回路171は、
シリアル−パラレル変換回路や、増幅・反転回路、ローテーション回路、ガンマ補正回路
、クランプ回路等といった周知の各種回路を備え、入力した表示情報の処理を実行して、
その画像信号をクロック信号CLKと共に駆動回路176へ供給する。電源回路172は
、各構成要素に所定の電圧を供給する。
【図面の簡単な説明】
【0120】
【図1】(a)、(b)はそれぞれ、液晶装置(電気光学装置)をその上に形成された各構成要素と共に対向基板の側から見た平面図、およびそのH−H′断面図である。
【図2】図1に示す液晶装置の素子基板の電気的な構成を示す説明図である。
【図3】(a)、(b)、(c)はそれぞれ、本発明の実施の形態1に係る液晶装置の画素1つ分の平面図、A1−B1に相当する位置で液晶装置を切断したときの断面図、およびコンタクト部の平面図である。
【図4】本発明が適用された液晶装置のコンタクト部の説明図である。
【図5】(a)〜(g)は、図3に示す液晶装置に用いた素子基板の製造方法を示す工程断面図である。
【図6】(a)〜(e)は、図3に示す液晶装置に用いた素子基板の製造方法を示す工程断面図である。
【図7】(a)〜(d)は、本発明の実施の形態1に係る液晶装置用いた素子基板の別の製造方法を示す工程断面図である。
【図8】(a)、(b)、(c)はそれぞれ、本発明の実施の形態2に係る液晶装置の画素1つ分の平面図、A2−B2に相当する位置で液晶装置を切断したときの断面図、およびコンタクト部の平面図である。
【図9】(a)〜(g)は、図8に示す液晶装置に用いた素子基板の製造方法を示す工程断面図である。
【図10】(a)、(b)、(c)はそれぞれ、本発明の実施の形態3に係る液晶装置の画素1つ分の平面図、A3−B3に相当する位置で液晶装置を切断したときの断面図、およびコンタクト部の平面図である。
【図11】(a)〜(g)は、図10に示す液晶装置に用いた素子基板の製造方法を示す工程断面図である。
【図12】(a)、(b)、(c)はそれぞれ、本発明の実施の形態4に係る液晶装置の画素1つ分の平面図、A4−B4に相当する位置で液晶装置を切断したときの断面図、およびコンタクト部の平面図である。
【図13】(a)〜(g)は、図120に示す液晶装置に用いた素子基板の製造方法を示す工程断面図である。
【図14】(a)、(b)、(c)はそれぞれ、本発明の実施の形態5に係る液晶装置の画素1つ分の平面図、A5−B5に相当する位置で液晶装置を切断したときの断面図、およびコンタクト部の平面図である。
【図15】(a)、(b)、(c)はそれぞれ、本発明の実施の形態6に係る液晶装置の画素1つ分の平面図、A6−B6に相当する位置で液晶装置を切断したときの断面図、およびコンタクト部の平面図である。
【図16】(a)〜(e)は、図15に示す液晶装置に用いた素子基板の製造方法を示す工程断面図である。
【図17】(a)、(b)、(c)はそれぞれ、本発明の実施の形態7に係る液晶装置の画素1つ分の平面図、A7−B7に相当する位置で液晶装置を切断したときの断面図、およびコンタクト部の平面図である。
【図18】本発明に係る液晶装置を各種の電子機器の表示装置として用いた場合の説明図である。
【図19】(a)、(b)、(c)はそれぞれ、従来の液晶装置の画素1つ分の平面図、A11−B11に相当する位置で液晶装置を切断したときの断面図、およびコンタクト部の平面図である。
【符号の説明】
【0121】
1・・液晶装置(電気光学装置)、1b・・画素、1c・・薄膜トランジスタ、1e・・
画素領域、1f・・液晶、1g・・液晶容量、1h・・保持容量、1s・・コンタクト部
、2a・・画素電極、3a・・ゲート線(ゲート電極/走査線)、3b・・容量線、3c
・・保持容量の下電極、3s・・下層側導電層、4・・ゲート絶縁層、4a・・下層側ゲ
ート絶縁層、4b・・上層側ゲート絶縁層、4c・・第1の薄膜部分、4d・・第2の薄
膜部分、5a、6c、6d・・保持容量の上電極、6a・・ソース線(データ線)、6b
・・ドレイン電極、6s・・上層側導電層、41、43・・開口、42、44・・凹部、
46・・下層側導電層接続用コンタクトホールの下側ホール、81・・画素電極接続用コ
ンタクトホール、86・・上層側導電層接続用コンタクトホール、87・・下層側導電層
接続用コンタクトホールの上側ホール、89・・下層側導電層接続用コンタクトホール

【特許請求の範囲】
【請求項1】
素子基板上の複数の各画素領域の各々に、薄膜トランジスタと、該薄膜トランジスタに
電気的に接続された画素電極と、前記薄膜トランジスタのゲート絶縁層を挟んで対向する
下電極および上電極を備えた保持容量とを有するとともに、前記素子基板では、前記ゲー
ト絶縁層の下層側に形成された下層側導電層に対して前記ゲート絶縁層および層間絶縁膜
を貫通する下層側導電層接続用コンタクトホールを介して電気的な接続が行われている電
気光学装置の製造方法において、
前記薄膜トランジスタのゲート電極、前記下電極および前記下層側導電層を形成するゲ
ート電極形成工程と、
前記ゲート絶縁層を形成するゲート絶縁層形成工程と、
前記薄膜トランジスタの半導体層を形成する半導体層形成工程と、
前記薄膜トランジスタのソース電極およびドレイン電極を形成するソース・ドレイン電
極形成工程と、
前記層間絶縁膜を形成する層間絶縁膜形成工程と、
前記層間絶縁膜をエッチングして画素電極接続用コンタクトホール、および前記下層側
導電層接続用コンタクトホールを形成するコンタクトホール形成工程と、
前記画素電極を形成する画素電極形成工程とを有し、
さらに、前記上電極と前記下電極とが重なる領域および前記下層側導電層接続用コンタ
クトホールを形成すべき領域の前記ゲート絶縁層をエッチングして膜厚を薄くする薄膜化
工程を有していることを特徴とする電気光学装置の製造方法。
【請求項2】
前記ゲート絶縁層形成工程では、前記ゲート絶縁層の下層側部分を構成する1層乃至複
数層の絶縁膜からなる下層側絶縁層を形成する下層側ゲート絶縁層形成工程と、前記ゲー
ト絶縁層の上層側部分を構成する1層乃至複数層の絶縁膜からなる上層側ゲート絶縁層を
形成する上層側ゲート絶縁層形成工程とを行い、
前記下層側ゲート絶縁層形成工程の後、前記上層側ゲート絶縁層形成工程の前に前記薄
膜化工程を行うことを特徴とする請求項1に記載の電気光学装置の製造方法。
【請求項3】
前記上層側ゲート絶縁層形成工程を真空雰囲気中で行った後、前記半導体層形成工程を
開始するまで前記素子基板を真空雰囲気中に保持し続けることを特徴とする請求項2に記
載の電気光学装置の製造方法。
【請求項4】
前記コンタクトホール形成工程では、前記下層側導電層接続用コンタクトホールが前記
下層側導電層に到達するまでエッチングを連続して行うことを特徴とする請求項1乃至3
の何れか一項に記載の電気光学装置の製造方法。
【請求項5】
前記コンタクトホール形成工程ではドライエッチングを行うことを特徴とする請求項1
乃至4の何れか一項に記載の電気光学装置の製造方法。
【請求項6】
前記画素電極形成工程では、前記下層側導電層接続用コンタクトホールを介して前記下
層側導電層に電気的に接続する導電パターンを前記画素電極と同時形成することを特徴と
する請求項1乃至5の何れか一項に記載の電気光学装置の製造方法。
【請求項7】
前記ソース・ドレイン電極形成工程では、上層側導電層を前記ソース電極および前記ド
レイン電極と同時形成し、
前記コンタクトホール形成工程では、前記層間絶縁膜を貫通して前記上層側導電層に至
る上層側導電層接続用コンタクトホールを形成し、
前記画素電極形成工程では、前記上層側導電層接続用コンタクトホールを介して前記上
層側導電層に電気的に接続するように前記導電パターンを形成することを特徴とする請求
項6に記載の電気光学装置の製造方法。
【請求項8】
前記素子基板に対して、対向基板の導電層が形成された面を貼り合わせる貼り合わせ工
程を有し、
当該貼り合わせ工程では、前記素子基板と前記対向基板との間に導電材を介在させて、
前記下層側導電層接続用コンタクトホール内で前記下層側導電層と前記対向基板の導電層
とを電気的に接続させることを特徴とする請求項1乃至5の何れか一項に記載の電気光学
装置の製造方法。
【請求項9】
素子基板上の複数の各画素領域の各々に、ゲート電極、ゲート絶縁層および半導体層が
下層側から順に形成された構造の薄膜トランジスタと、該薄膜トランジスタを覆う層間絶
縁膜に形成された画素電極接続用コンタクトホールを介して当該薄膜トランジスタのドレ
イン領域に電気的に接続された画素電極と、前記ゲート絶縁層を挟んで対向する下電極お
よび上電極を備えた保持容量とを有するとともに、前記素子基板では、前記ゲート絶縁層
の下層側に形成された下層側導電層に対して前記ゲート絶縁層および前記層間絶縁膜を貫
通する下層側導電層接続用コンタクトホールを介して電気的な接続が行われている電気光
学装置において、
前記ゲート絶縁層は、前記下電極および前記上電極と重なる領域、および前記下層側導
電層接続用コンタクトホールが形成された領域に前記ゲート電極と前記半導体層とに重な
る領域よりも膜厚が薄い第1の薄膜部分および第2の薄膜部分を各々備え、
前記下層側導電層接続用コンタクトホールは、前記第2の薄膜部分を貫通する下側ホー
ルと、前記層間絶縁膜を貫通する上側ホールと、を備えていることを特徴とする電気光学
装置。
【請求項10】
前記ゲート絶縁層は、1層乃至複数層の絶縁膜からなる下層側ゲート絶縁層と、1層乃
至複数層の絶縁膜からなる上層側ゲート絶縁層とを備え、
前記下層側ゲート絶縁層の除去部分によって前記第1の薄膜部分および前記第2の薄膜
部分が構成されていることを特徴とする請求項9に記載の電気光学装置。
【請求項11】
請求項9または10に記載の電気光学装置を備えていることを特徴とする電子機器。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate

【図14】
image rotate

【図15】
image rotate

【図16】
image rotate

【図17】
image rotate

【図18】
image rotate

【図19】
image rotate


【公開番号】特開2007−293072(P2007−293072A)
【公開日】平成19年11月8日(2007.11.8)
【国際特許分類】
【出願番号】特願2006−121643(P2006−121643)
【出願日】平成18年4月26日(2006.4.26)
【出願人】(304053854)エプソンイメージングデバイス株式会社 (2,386)
【Fターム(参考)】