説明

車両制御装置

【課題】加速度に基づいて走行特性を変化させる場合の節度感を良好にすることのできる車両制御装置を提供する。
【解決手段】車両の加速度を検出もしくは推定するとともにその加速度に基づいて、前記車両の駆動力特性と変速特性と操舵特性と懸架特性との少なくともいずれか一つの特性を含む走行特性を変更するように構成された車両制御装置において、前記加速度の時間微分値であるジャークを算出するとともに、そのジャークの大小を判断する禁止判断閾値が前記走行特性に含まれる複数の特性毎に設定されており、前記ジャークがいずれかの特性についての前記禁止判断閾値を超えている場合(ステップS4)にはジャークが超えている禁止判断閾値についての前記特性の変更を禁止するように構成されている。

【発明の詳細な説明】
【技術分野】
【0001】
この発明は、車両の加速度に基づいて、駆動力特性や変速特性、操舵特性、サスペンション特性などの走行特性を制御する制御装置に関するものである。
【背景技術】
【0002】
車両に対する運転者の期待や要求は、運転者毎に区々であり、挙動の変化が機敏な走行(俊敏な走行:いわゆるスポーティな走行)を好む運転者や、これとは反対に滑らかでゆったりとした走行(いわゆるマイルドな走行)を好む運転者など、好みは多様である。これに対して、車両毎の走行特性は、車種などに応じて、設計段階で予め決められ、運転者の運転指向(もしくは運転嗜好)に必ずしも一致しない場合がある。
【0003】
このような不一致を可及的に是正することが従来種々試みられており、例えば特許文献1には、ニューロコンピュータを使用する駆動力制御装置であって、アクセルストロークおよび車速に対する加速度の関係を要求加速度モデルとして学習し、そのモデルと走りの指向を反映した第2の基準加速度モデルとの偏差、および第2の基準加速度モデルと標準的な第1の基準加速度モデルとの偏差に基づいてスロットル開度を演算するように構成された装置が記載されている。
【0004】
また、特許文献2には、加加速度情報を用いて、車両の操舵や加減速を制御する装置であって、横加加速度(すなわち横ジャーク)がゼロ近傍になった際に加速を開始するように構成された装置が記載されている。さらに、特許文献3には、ジャークに基づいて運転者の運転傾向を推定するように構成された装置が記載されている。またさらに、特許文献4には、縦・横のジャークに基づいてサスペンションを制御する装置であって、これらのジャークに応じてサスペンションの特性を変更するように構成された装置が記載されている。そして、特許文献5には、運転者の運転スタイルを加速度の変化率(すなわちジャーク)に基づいて評価し、その評価結果に基づいて車両のサブシステムの動作状態を設定するように構成された装置が記載されている。
【先行技術文献】
【特許文献】
【0005】
【特許文献1】特開平06−249007号公報
【特許文献2】特開2007−290650号公報
【特許文献3】特開2005−186674号公報
【特許文献4】特開2009−508751号公報
【特許文献5】特開2009−530166号公報
【発明の概要】
【発明が解決しようとする課題】
【0006】
車両の走行状態に基づいて運転者の運転指向や運転の意図などを検出もしくは推定し、その検出もしくは推定の結果を車両の制御に反映させることは上記の特許文献1に記載され、またその検出もしくは推定のために加速度の時間微分値であるジャークを使用することは特許文献2ないし5などによって知られている。しかしながら、走行特性を運転者の運転指向や運転意図に、より良く適合させ、あるいはドライバビリティを更に向上させるためには未だ改善の余地があった。
【0007】
この発明は上記の技術的課題に着目し、加速度に基づく走行特性の設定を更に的確に行うことのできる車両制御装置を提供することを目的とするものである。
【課題を解決するための手段】
【0008】
上記の目的を達成するために、請求項1の発明は、車両の加速度を検出もしくは推定するとともにその加速度に基づいて、前記車両の駆動力特性と変速特性と操舵特性と懸架特性との少なくともいずれか一つの特性を含む走行特性を変更するように構成された車両制御装置において、前記車両の挙動の機敏さが増大する方向への前記走行特性の変更に対して、前記車両の挙動の機敏さが低下する方向への前記走行特性の変更を相対的に遅延させるように構成されるとともに、前記加速度の時間微分値であるジャークが大きい場合には小さい場合に比較して前記走行特性の変更を制限するように構成されていることを特徴とするものである。
【0009】
請求項2の発明は、請求項1の発明において、前記走行特性の変更の制限は、前記ジャークの値が前記走行特性の変更が制限される値より小さくなるまで前記走行特性の変更を遅延させることを含む車両制御装置である。
【0010】
請求項3の発明は、請求項1または2の発明において、前記加速度は、前記車両の前後方向の前後加速度と横方向の横加速度とを含み、前記走行特性の変更は、横加速度よりも前後加速度に基づいて生じ易く構成されていることを特徴とする車両制御装置である。
【0011】
請求項4の発明は、請求項1ないし3のいずれかの発明において、前記走行特性の変更の制限の解除が、直前のジャークの極大値が大きい場合には、小さい場合に比較して、ジャークの値が大きい状態で実行されるように構成されていることを特徴とする車両制御装置である。
【0012】
請求項5の発明は、請求項1ないし4のいずれかの発明において、前記走行特性の変更の制限は、前記ジャークが予め定められた禁止判断閾値を超えている場合に前記走行特性の変更を禁止することを含む車両制御装置である。
【0013】
請求項6の発明は、請求項5の発明において、前記走行特性は、前記車両の駆動力特性と変速特性と操舵特性と懸架特性とのいずれか複数の特性を含み、前記禁止判断閾値は、走行特性に含まれる各特性毎に設定されていることを特徴とする車両制御装置である。
【0014】
請求項7の発明は、請求項6の発明において、前記特性の変更の禁止は、前記ジャークが予め定められた許可判断閾値を横切って低下したことにより解除され、さらに前記許可判断閾値は、前記ジャークの前記禁止判断閾値を超えていた最大値が大きいほど大きい値に設定されていることを特徴とする車両制御装置である。
【0015】
請求項8の発明は、請求項6または7の発明において、前記走行特性の変更は、前記ジャークが前記許可判断閾値に低下した後、予め定めた所定時間を経過してから開始されるように構成されていることを特徴とする車両制御装置である。
【0016】
請求項9の発明は、請求項8の発明において、前記所定時間は、前記ジャークが前記禁止判断閾値を超えていた最大値に応じて決められていることを特徴とする車両制御装置である。
【0017】
請求項10の発明は、請求項7ないし9のいずれかの発明において、前記許可判断閾値は、前記走行特性に含まれる前記特性毎に設定されていることを特徴とする車両制御装置である。
【0018】
請求項11の発明は、請求項8ないし10のいずれかの発明において、前記所定時間は、前記走行特性に含まれる前記特性毎に設定されていることを特徴とする車両制御装置である。
【0019】
請求項12の発明は、請求項1ないし11のいずれかの発明において、前記加速度に基づいて指標が求められるとともに、前記走行特性の変更は、前記指標が変化することにより実行され、かつ前記走行特性の変更の制限は、前記指標の変化を制限することにより実行されるように構成されていることを特徴とする車両制御装置である。
【0020】
請求項13の発明は、請求項1ないし12のいずれかの発明において、前記加速度は、前記車両の前後方向の前後加速度と横方向の横加速度とからなる合成加速度を含み、その合成加速度のうち横加速度の割合が前後加速度の割合より所定値以上大きい旋回領域では、前記車両の駆動力を変更させることになる所定の特性の変更を禁止するように構成されていることを特徴とする車両制御装置である。
【0021】
請求項14の発明は、請求項1ないし13のいずれかの発明において、複数の前記特性を変更する場合、時間差を設けて各特性の変更が実行されることを特徴とする車両制御装置である。
【0022】
請求項15の発明は、請求項14の発明において、複数の前記特性を変更する場合、前記特性の変更の制御の応答性が高い特性の変更から順に実行されることを特徴とする車両制御装置である。
【発明の効果】
【0023】
請求項1の発明によれば、車両の加速度が大小に変化すると、それに伴って走行特性が変更される。その走行特性の変更は、車両の挙動が機敏になる方向への変更と、機敏さが低下する方向への変更とであるが、後者の機敏さが低下する方向への変更は、前者の変更に対して相対的に遅延させられる。そして、これらいずれの変更も、ジャークが大きい場合に制限され、したがって、加速度が相対的に大きく変化している状態で、車両の挙動が重畳的に生じることを回避することができる。
【0024】
請求項2の発明によれば、走行特性の変更は、ジャークが小さくなった際に実行されるので、加速度あるいはその時間変化率として現れている運転者の運転指向もしくは走行意図を、走行特性に可及的に反映させることができ、また加速度の変化が収まった状態で走行特性の変更に伴う挙動の変化が生じることになり、走行特性の変更を運転者が認識し易く、また走行特性の変更に節度感をもたせることができる。
【0025】
請求項3の発明によれば、制動などによる前後加速度が、横加速度よりも走行特性もしくはその変更に、より良く、もしくはより強く反映させられて走行特性が設定されるので、運転者の走行指向あるいは意図をより良く反映した走行特性とすることができる。
【0026】
請求項4あるいは5の発明によれば、加速度の変化による車両の挙動の変化と、走行特性の変化による挙動の変化とが重なりにくいので、走行特性の変更を運転者が認識し易く、また走行特性の変更に節度感をもたせることができる。
【0027】
請求項6の発明によれば、走行特性に含まれる各特性を違和感を生じさせることなく変更することができる。
【0028】
請求項7の発明によれば、加速度の変化が収まった状態で走行特性の変更に伴う挙動の変化が生じることになり、走行特性の変更を運転者が認識し易く、また走行特性の変更に節度感をもたせることができる。
【0029】
請求項8ないし11のいずれかの発明によれば、加速度の変化による車両の挙動の変化と、走行特性の変化による挙動の変化とが重なりにくいので、走行特性の変更を運転者が認識し易く、また走行特性の変更に節度感をもたせることができる。
【0030】
請求項12の発明によれば、加速度が指標に置き換えられ、その指標に基づいて走行特性の変更もしくは保持などの制御を行うので、上述した効果に加えて、制御の多様性あるいは自由度を向上させることができる。
【0031】
請求項13の発明によれば、横加速度が大きい状態では駆動力特性あるいは加速特性などいずれかの特性の変更が禁止されるので、走行特性の変更の節度感を向上させることができる。
【0032】
請求項14あるいは15の発明によれば、駆動力に関する特性あるいは操舵特性に先行して懸架特性を変更するなど、特性の変更に順序を設定することができるので、それぞれの特性の変更の効果をより確実に発揮させることができる。
【図面の簡単な説明】
【0033】
【図1】この発明に係る制御装置で実行される制御の一例を説明するためのフローチャートである。
【図2】この発明に係る制御装置で実行される制御の他の例を説明するためのフローチャートである。
【図3】この発明で対象とすることのできる車両を模式的に示す図である。
【図4】前後加速度および横加速度の検出値をタイヤ摩擦円上にプロットして示す図である。
【図5】瞬時スポーツ度に基づく指示スポーツ度の変化の一例を示す図である。
【図6】瞬時スポーツ度と指示スポーツ度との偏差の時間積分とその積分値のリセットの状況を説明するための図である。
【図7】指示スポーツ度と要求最大加速度率との関係を示すマップである。
【図8】各要求回転数毎の車速と加速度との関係を示す図に指示スポーツ度に基づく要求最大加速度率を書き加えた図およびその図に基づいて最終指示回転数を求める手順を示す図である。
【図9】各変速段毎の車速と加速度との関係を示す図に指示スポーツ度に基づく要求最大加速度率を書き加えた図およびその図に基づいて最終指示変速段を求める手順を示す図である。
【図10】有段自動変速機を搭載した車両において指示スポーツ度に基づいて求められた補正変速段および補正駆動力を変速制御およびエンジン出力制御に反映させる制御のブロック図である。
【図11】有段自動変速機を搭載した車両において指示スポーツ度に基づいて求められた補正変速段および補正駆動力を変速制御およびエンジン出力制御に反映させる他の制御のブロック図である。
【図12】有段自動変速機を搭載した車両において指示スポーツ度に基づいて求められた補正変速段および補正駆動力を変速制御およびエンジン出力制御に反映させる更に他の制御のブロック図である。
【図13】指示スポーツ度に基づいて求められた補正ギヤ比および補正アシストトルクを操舵特性に反映させる制御のブロック図である。
【図14】指示スポーツ度に基づいて求められた車高長および補正減衰係数ならびに補正ばね定数を懸架特性に反映させる制御のブロック図である。
【発明を実施するための形態】
【0034】
つぎに具体例を参照してこの発明を説明する。この発明の制御装置が対象とする車両は、駆動力源が出力した動力を駆動輪に伝達して走行し、また前輪を操舵機構によって転舵することにより旋回走行し、さらに各車輪にブレーキが配置され、そして車体をサスペンション機構によって支持した一般的な構成の車両である。その駆動力源は、内燃機関(エンジン)によって構成され、あるいはエンジンと発電機(すなわちモータ・ジェネレータ)とによって構成され、あるいはモータによって構成されていてもよい。
【0035】
エンジンを駆動力源とする車両では、そのエンジンの出力側に有段式もしくは無段式の変速機を連結して設けることができる。また、エンジンと発電機とを駆動力源として備えるいわゆるハイブリッド車では、遊星歯車機構などの差動作用のある動力分割機構にエンジンと発電機とを連結し、その発電機の回転数に応じて内燃機関の回転数を制御するように構成することができる。さらに、モータを駆動力源とする車両にあっては、必要に応じてその出力側に変速機を連結して設けることができる。
【0036】
また、この発明に係る制御装置は、エンジンや変速機などの駆動系統の制御と併せて、操舵機構による操舵の制御内容、ブレーキによる制動制御の内容、サスペンション機構による車体の支持制御の内容を、車両の走行状態(より具体的には加速度)に応じて変更するように構成されている。これらの各機構は車両の挙動を変化させるように動作するものであるから、結局、この発明に係る制御装置は、挙動特性を車両の走行状態(すなわち加速度)に基づいて変更するように構成されている。したがって、この発明における走行特性には、駆動力源やブレーキによる駆動力特性、変速機での変速特性、操舵機構による操舵特性もしくは回頭性あるいはパワーアシスト特性、サスペンション機構による懸架特性もしくはダンパー特性などが含まれ、以下の説明で「走行特性」とはこれらの特性の総称を意味することがある。
【0037】
この発明に係る制御装置は、車両の加速度に基づいて走行特性の制御を行うように構成されており、その加速度には、前後方向あるいは横方向の加速度、これらの加速度を合成した合成加速度を含み、またセンサが検出された実加速度だけでなく、アクセル操作量、ブレーキ操作量、ステアリンクホイール操作量など操作量から求められた推定加速度が含まれる。さらに、この発明に係る制御装置では、上記の加速度に直接基づいて走行特性を制御するように構成してもよいが、これに替えて、加速度から所定の指標を求め、その指標に基づいて走行特性を制御するように構成することができる。
【0038】
以下、この発明に係る制御装置をより具体的に説明すると、先ず、図3はこの発明で対象することのできる車両の一例を模式的に示しており、ここに示す車両1は、運転者の操作によって加減速し、また旋回する車両であり、その典型的な例が、内燃機関やモータを駆動力源とした自動車である。すなわち、車両1は、操舵輪である二つの前輪2と、駆動輪である二つの後輪3との四輪を備えた車両であり、これらの四輪2,3のそれぞれは懸架装置4によって車体(図示せず)に取り付けられている。この懸架装置4は、一般に知られているものと同様に、スプリングとショックアブソーバー(ダンパー)とを主体として構成されており、図3にはそのショックアブソーバー5を示してある。ここに示すショックアブソーバー5は、気体や液体などの流体の流動抵抗を利用して緩衝作用を生じさせるように構成され、モータ6などのアクチュエータによってその流動抵抗を大小に変更できるように構成されている。すなわち、流動抵抗を大きくした場合には、車体が沈み込みにくく、いわゆる硬い感じとなり、車両の挙動としては、コンフォートな感じが少なくなって、スポーティ感が増大する。なお、これらのショックアブソーバー5に加圧気体を給排することによって車高の調整を行うように構成することもできる。
【0039】
前後輪2,3のそれぞれには、図示しないブレーキ装置が設けられており、運転席に配置されているブレーキペダル7を踏み込むことによりブレーキ装置が動作して前後輪2,3に制動力を与えるように構成されている。
【0040】
車両1の駆動力源は、内燃機関やモータあるいはこれらを組み合わせた機構など、一般に知られている構成の駆動力源であり、図3には内燃機関(エンジン)8を搭載している例を示してあり、このエンジン8の吸気管9には、吸気量を制御するためのスロットルバルブ10が配置されている。このスロットルバルブ10は、電子スロットルバルブと称される構成のものであって、モータなどの電気的に制御されるアクチュエータ11によって開閉動作させられ、かつ開度が調整されるように構成されている。そして、このアクチュエータ11は、運転席に配置されているアクセルペダル12の踏み込み量すなわちアクセル開度に応じて動作してスロットルバルブ10を所定の開度(スロットル開度)に調整するように構成されている。
【0041】
そのアクセル開度とスロットル開度との関係は適宜に設定でき、両者の関係が一対一に近いほど、いわゆるダイレクト感が強くなって車両の走行特性は、スポーティな感じになる。これとは反対にアクセル開度に対してスロットル開度が相対的に小さくなるように特性を設定すれば、車両の走行特性はいわゆるマイルドな感じになる。なお、駆動力源としてモータを使用した場合には、スロットルバルブ10に替えてインバータあるいはコンバータなどの電流制御器を設け、アクセル開度に応じてその電流を調整するとともに、アクセル開度に対する電流値の関係すなわち走行特性を適宜に変更するように構成する。
【0042】
エンジン8の出力側に変速機13が連結されている。この変速機13は、入力回転数と出力回転数との比率すなわち変速比を適宜に変更するように構成されており、例えば一般に知られている有段式の自動変速機やベルト式無段変速機あるいはトロイダル型無段変速機などの変速機である。したがって、変速機13は、図示しないアクチュエータを備え、そのアクチュエータを適宜に制御することにより変速比をステップ的(段階的)に変化させ、あるいは連続的に変化させるように構成されている。なお、その変速制御は、基本的には、燃費効率が良くなる変速比を設定するように行われる。具体的には、車速やアクセル開度などの車両の状態に対応させて変速比を決めた変速マップを予め用意し、その変速マップに従って変速制御を実行し、あるいは車速やアクセル開度などの車両の状態に基づいて目標出力を算出し、その目標出力と最適燃費線とから目標エンジン回転数を求め、その目標エンジン回転数となるように変速制御を実行する。
【0043】
このような基本的な変速制御に対して燃費優先の制御や駆動力を増大させる制御を選択できるように構成されている。燃費を優先する制御は、アップシフトを相対的に低車速で実行する制御もしくは相対的に高速側変速比を低車速側で使用する制御であり、また駆動力もしくは加速特性を向上させる制御は、アップシフトを相対的に高車速で実行する制御もしくは相対的に低速側変速比を高車速側で使用する制御である。このような制御は、変速マップを切り替えたり、駆動要求量を補正したり、あるいは算出された変速比を補正したりして行うことができる。なお、エンジン8と変速機13との間に、ロックアップクラッチ付きのトルクコンバータなどの伝動機構を、必要に応じて設けることができる。そして、変速機13の出力軸が終減速機であるデファレンシャルギヤ14を介して後輪3に連結されている。
【0044】
前輪2を転舵する操舵機構15について説明すると、ステアリングホイール16の回転動作を左右の前輪2に伝達するステアリングリンケージ17が設けられ、またステアリングホイール16の操舵角度もしくは操舵力をアシストするアシスト機構18が設けられている。このアシスト機構18は、図示しないアクチュエータを備え、そのアクチュエータによるアシスト量を調整できるように構成されており、したがってアシスト量を少なくすることにより操舵力(もしくは操舵角)と前輪2の実際の転舵力(もしくは転舵角)とが一対一の関係に近くなり、いわゆる操舵のダイレクト感が増して、車両の走行特性がいわゆるスポーティな感じになるように構成されている。
【0045】
なお、特には図示しないが、上記の車両1には挙動あるいは姿勢を安定化させるためのシステムとして、アンチロック・ブレーキ・システム(ABS)やトラクションコントロールシステム(TRC)、これらのシステムを統合して制御するビークルスタビリティコントロールシステム(VSC)などが設けられている。これらのシステムは一般に知られているものであって、車体速度と車輪速度との偏差に基づいて車輪2,3に掛かる制動力を低下させ、あるいは制動力を付与し、さらにはこれらと併せてエンジントルクを制御することにより、車輪2,3のロックやスリップを防止もしくは抑制して車両の挙動を安定させるように構成されている。また、走行路や走行予定路に関するデータ(すなわち走行環境)を得ることのできるナビゲーションシステムや、スポーツモードとノーマルモードおよび低燃費モード(エコモード)となどの走行モードを手動操作で選択するためのスイッチを設けてあってもよく、さらには登坂性能や加速性能あるいは回頭性などの走行特性を変化させることのできる四輪駆動機構(4WD)を備えていてもよい。
【0046】
上記のエンジン8や変速機13あるいは懸架装置4のショックアブソーバー5、前記アシスト機構18、上述した図示しない各システムなどを制御するためのデータを得る各種のセンサが設けられている。その例を挙げると、前後輪2,3の回転速度を検出する車輪速センサ19、アクセル開度センサ20、スロットル開度センサ21、エンジン回転数センサ22、変速機13の出力回転数を検出する出力回転数センサ23、操舵角センサ24、前後加速度(Gx)を検出する前後加速度センサ25、横方向(左右方向)の加速度(横加速度Gy)を検出する横加速度センサ26、ヨーレートセンサ27などが設けられている。なお、各加速度センサ25,26は、上記のアンチロック・ブレーキ・システム(ABS)やビークルスタビリティコントロールシステム(VSC)などの車両挙動制御で用いられている加速度センサと共用することができ、あるいはエアバッグを搭載している車両では、その展開制御のために設けられている加速度センサと共用することができる。さらに、前後左右の加速度Gx,Gyは、水平面上で車両の前後方向に対して所定角度(例えば45°)傾斜させて配置した加速度センサで検出した検出値を、前後加速度および横加速度に分解して得ることとしてもよい。またさらに、前後左右の加速度Gx,Gyはセンサによって検出することに替えて、アクセル開度や車速、ロードロード、操舵角度などに基づいて演算して求めてもよい。これらのセンサ19,〜27は、電子制御装置(ECU)28に検出信号(データ)を伝送するように構成されており、また電子制御装置28はそれらのデータおよび予め記憶しているデータならびにプログラムに従って演算を行い、その演算結果を制御指令信号として上述した各システムあるいはそれらのアクチュエータに出力するように構成されている。なお、合成加速度は、車両の前後方向の加速度成分と、車幅方向(横方向)の加速度成分とを含む加速度等の複数の方向の加速度成分を含む加速度に限らず、車両前後方向のみなど、いずれか一つの方向の加速度を用いてもよい。
【0047】
この発明に係る制御装置は、車両の走行状態(特に加速度)を車両の挙動制御に反映させるように構成されている。ここで車両の加速度とは、前後加速度や横加速度あるいはヨーイングやローリングの加速度、もしくはこれら複数方向の加速度を合成した加速度で表される状態である。すなわち、車両を目標とする速度で走行させたり、目標とする方向に進行させたりすることにより、あるいは路面などの走行環境の影響を受けて車両の挙動を元の状態に戻したりする場合に、複数方向の加速度が生じるのが通常であることを考慮すると、車両の加速度は走行環境や運転指向をある程度反映していると考えられる。この発明に係る制御装置は、このような背景に基づき、車両の加速度を車両の挙動制御に反映させるように構成されている。
【0048】
前述したように、車両の挙動には、加速性や回頭性(旋回性)、懸架装置4による支持剛性(すなわちバンプ・リバウンドの程度や生じやすさ)、ローリングやピッチングの程度などが含まれ、この発明に係る制御装置では、これらの走行特性の変更の要因の一つとして上記の走行状態を含んでいる。その場合、上記の走行状態の一例であるいずれかの方向の加速度もしくは合成加速度の値をそのまま使用して走行特性を変更してもよいが、より違和感を減らすため、それらの値を補正した指標を用いてもよい。
【0049】
その指標の一例としてスポーツ度(SPI:Sports Index)について説明する。ここで、スポーツ度とは、運転者の意図または車両の走行状態を示す指標である。この発明で採用することのできるスポーツ度は、複数方向の加速度(特にその絶対値)を合成して得られる指標であり、走行方向に対する挙動に大きく関係する加速度として前後加速度Gxと横加速度Gyとを合成した加速度がその例である。例えば、
瞬時スポーツ度Iin=(Gx+Gy1/2
で算出される。ここで、加速度はセンサで検出された加速度に限らず、アクセル開度や操舵角、ブレーキ踏力もしくはブレーキペダルの踏み込み量などの運転者による操作に基づいて演算もしくは推定されたものであってもよい。また、「瞬時スポーツ度Iin」とは、車両の走行中における各瞬間毎に、各方向の加速度が求められ、その加速度に基づいて算出される指標という意味であり、いわゆる物理量である。なお、「各瞬間毎」とは、加速度の検出およびそれに基づく瞬時スポーツ度Iinの算出が所定のサイクルタイムで繰り返し実行される場合には、その繰り返しの都度を意味する。
【0050】
また、上記の演算式に用いられる前後加速度Gxのうち、加速側加速度もしくは減速側の加速度(すなわち減速度)の少なくともいずれか一方は、正規化処理されたもの、あるいは重み付け処理されたものを用いてもよい。すなわち、一般的な車両では、加速側の加速度に対して減速側の加速度の方が大きいが、その相違は運転者にはほとんど体感もしくは認識されず、多くの場合、加速側および減速側の加速度がほぼ同等に生じていると認識されている。正規化処理とは、このような実際の値と運転者が抱く感覚との相違を是正するための処理であり、前後加速度Gxについては、加速側の加速度を大きくし、あるいは減速側の加速度(すなわち減速度)を小さくする処理である。より具体的には、それぞれの加速度の最大値の比率を求め、その比率を加速側あるいは減速側の加速度に掛ける処理である。もしくは横加速度に対する減速側の加速度を補正する重み付け処理である。要は、タイヤで生じさせることのできる前後駆動力および横力がタイヤ摩擦円で表されるのと同様に、各方向の最大加速度が所定半径の円周上に位置するように、前後の少なくともいずれか一方を重み付けするなどの補正を行う処理である。したがって、このような正規化処理と重み付け処理とを行うことにより、加速側の加速度と減速側の加速度との走行特性に対する反映の程度が異なることになる。そこで重み付け処理の一例として、車両の前後の減速方向の加速度と、車両の前後の加速方向の加速度とのうち、加速方向の加速度の影響度が、減速方向の加速度の影響に対して相対的に大きくなるよう、減速方向の加速度と、加速方向の加速度とを重み付け処理してもよい。なお、横加速度は加速側加速度より大きく現れることがあるので、横加速度についても正規化処理あるいは重み付け処理を行ってもよい。
【0051】
このように、加速度の実際値と運転者が抱く感覚とには、加速度の方向によって相違がある。例えばヨーイング方向やローリング方向での加速度と前後加速度とには、そのような相違があることが考えられる。そこでこの発明では、方向が異なる加速度ごとの走行特性に対する反映の程度、言い換えれば、いずれかの方向の加速度に基づく走行特性の変化の程度を、他の方向の加速度に基づく走行特性の変化の程度とは異ならせるように構成することができる。一例として、走行特性の変更に対する減速度の反映の程度を、横加速度の反映の程度より大きくする。
【0052】
横加速度Gyのセンサ値および上記の正規化処理を行った前後加速度Gyをタイヤ摩擦円上にプロットした例を図4に示してある。これは、一般道を模擬したテストコースを走行した場合の例であり、大きく減速する場合に横加速度Gyも大きくなる頻度は高く、タイヤ摩擦円に沿って前後加速度Gxと横加速度Gyとが生じるのは一般的な傾向であることが看て取れる。
【0053】
この発明に係る実施例としての制御装置では、上記の瞬時スポーツ度Iinから指示スポーツ度Iout が求められる。この指示スポーツ度Iout は、走行特性を変更する制御に用いられる指標であり、その算出の元になる前記瞬時スポーツ度Iinの増大に対しては直ちに増大し、瞬時スポーツ度Iin(すなわち合成加速度)の低下に対して遅れて低下するように構成した指標である。特に、所定の条件の成立を要因として指示スポーツ度Iout を低下させるように構成されている。図5には、瞬時スポーツ度Iinの変化に基づいて求められた指示スポーツ度Iout の変化を示してある。ここに示す例では、瞬時スポーツ度Iinは上記の図4にプロットしてある値で示し、これに対して、指示スポーツ度Iout は、瞬時スポーツ度Iinの極大値(加速度の直前の極大値)に設定され、所定の条件が成立するまで、従前の値を維持するように構成されている。すなわち、指示スポーツ度Iout は、増大側には迅速に変化し、低下側には相対的に遅れて変化する指標として構成されている。
【0054】
具体的に説明すると、図5における制御の開始からT1 の時間帯では、例えば車両が制動旋回した場合など、その加速度の変化によって得られる瞬時スポーツ度Iinが増減するが、前回の極大値を上回る瞬時スポーツ度Iinが、前述した所定の条件の成立に先行して生じるので、指示スポーツ度Iout が段階的に増大し、保持される。これに対してt2 時点あるいはt3 時点では、例えば車両が旋回加速から直線加速に移行した場合など、低下のための条件が成立したことにより指示スポーツ度Iout が低下する。このように指示スポーツ度Iout を低下させる条件は、要は、指示スポーツ度Iout を従前の大きい値に保持することが運転者の意図と合わないと考えられる状態が成立することであり、ここで説明している具体例では時間の経過を要因として成立するように構成されている。
【0055】
すなわち、指示スポーツ度Iout を従前の大きい値に保持することが運転者の意図と合わないと考えられる状態は、保持されている指示スポーツ度Iout とその間に生じている瞬時スポーツ度Iinとの乖離が相対的に大きく、かつその状態が継続し、蓄積している状態である。したがって、旋回加速コントロールした場合など、運転者によってアクセルペダル12を一時的に緩めるなどの操作に起因する瞬時スポーツ度Iinによっては指示スポーツ度Iout を低下させずに、緩やかに減速に移行した場合など、運転者によってアクセルペダル12を連続的に緩めるなどの操作に起因する瞬時スポーツ度Iinが、保持されている指示スポーツ度Iout を下回っている状態が所定時間継続した場合に、指示スポーツ度Iout を低下させる条件が成立した、とするように構成されている。このように指示スポーツ度Iout の低下開始条件は、瞬時スポーツ度Iinが指示スポーツ度Iout を下回っている状態の継続時間とすることができ、また実際の走行状態をより的確に指示スポーツ度Iout に反映させるために、保持されている指示スポーツ度Iout と瞬時スポーツ度Iinとの偏差の時間積分値(あるいは累積値)が予め定めたしきい値に達することを、指示スポーツ度Iout の低下開始条件とすることができる。なお、そのしきい値は、運転者の意図に沿った走行実験やシミュレーションなどに基づいて適宜に設定できる。後者の偏差の時間積分値を用いるとすれば、指示スポーツ度Iout と瞬時スポーツ度Iinとの偏差および時間を加味して指示スポーツ度Iout を低下させることになるので、実際の走行状態あるいは挙動をより的確に反映した走行特性の変更制御が可能になる。
【0056】
なお、図5に示す例では、上記のt2 時点に到るまでの指示スポーツ度Iout の保持時間が、t3 時点に到るまでの指示スポーツ度Iout の保持時間より長くなっているが、これは以下の制御を行うように構成されているためである。すなわち、前述したT1 の時間帯の終期に指示スポーツ度Iout が所定値に増大させられて保持され、その後、前述した低下開始条件が成立する前のt1 時点に瞬時スポーツ度Iinが増大して、更に保持されている指示スポーツ度Iout との偏差積分値が予め定めた所定値以下となっている。なお、その所定値は、運転者の意図に沿った走行実験やシミュレーションを行って、あるいは瞬時スポーツ度Iinの算出誤差を考慮して適宜に設定できる。このように瞬時スポーツ度Iinが保持されている指示スポーツ度Iout に近くなったということは、その時点の走行状態が、保持されている指示スポーツ度Iout の元になった瞬時スポーツ度Iinを生じさせた加減速状態および/または旋回状態もしくはそれに近い状態になっていることを意味している。すなわち指示スポーツ度Iout を保持されている値に増大させた時点からある程度時間が経過しているとしても、走行状態はその時間が経過する前の時点の走行状態と近似しているので、瞬時スポーツ度Iinが保持されている指示スポーツ度Iout を下回る状態であっても、前述した低下開始条件の成立を遅延させ、指示スポーツ度Iout を従前の値に保持させることとしたのである。その遅延のための制御もしくは処理は、前述した経過時間の積算値(累積値)や偏差の積分値をリセットして、経過時間の積算や前記偏差の積分を再開したり、あるいはその積算値もしくは積分値を所定量減じたり、さらには積算もしくは積分を一定時間中断したりして行えばよい。
【0057】
図6は前述した偏差の積分とそのリセットとを説明するための模式図であり、図6にハッチングを施してある部分の面積が偏差積分値に相当する。その過程で、瞬時スポーツ度Iinと指示スポーツ度Iout との差が所定値Δd以下になったt11時点に積分値がリセットされ、再度、前記偏差の積分が開始される。したがって、その低下開始条件が成立しないので、指示スポーツ度Iout は従前の値に維持される。そして、積分を再開した後、瞬時スポーツ度Iinが保持されている指示スポーツ度Iout より大きい値になると、指示スポーツ度Iout が瞬時スポーツ度Iinに応じた大きい値に更新され、かつ保持され、前記積分値がリセットされる。
【0058】
上記の積分値に基づいて指示スポーツ度Iout の低下制御開始の条件を判断するよう構成した場合、指示スポーツ度Iout の低下の程度もしくは勾配を異ならせてもよい。上述した積分値は、保持されている指示スポーツ度Iout と瞬時スポーツ度Iinとの偏差を時間積分した値であるから、前記偏差が大きければ短時間に積分値が所定値に達して前記条件が成立し、また前記偏差が小さい場合には、相対的に長い時間が掛かって前記積分値が所定値に達して前記条件が成立する。したがって、短時間で前記条件が成立したとすれば、保持されている指示スポーツ度Iout に対する瞬時スポーツ度Iinの低下幅が大きいことになり、指示スポーツ度Iout がその時の運転者の意図と大きく乖離していることになる。そこで、このような場合には、指示スポーツ度Iout を大きい割合もしくは勾配で低下させる。これとは反対に、前記条件が成立するまでの時間が相対的に長い場合には、保持されている指示スポーツ度Iout に対する瞬時スポーツ度Iinの低下幅が小さいことになり、保持されている指示スポーツ度Iout がその時点の運転者の意図と特に大きく乖離しているとは言い得ない。そこで、このような場合には、指示スポーツ度Iout を小さい割合もしくは勾配でゆっくり低下させる。こうすることにより、走行特性を設定するための指示スポーツ度Iout と運転者の意図との乖離を迅速かつ的確に是正し、走行状態に適合した車両の走行特性を設定することが可能になる。したがって、指示スポーツ度Iout を低下させる場合、保持している経過時間の長短に応じて低下の程度もしくは勾配を異ならせることが好ましい。
【0059】
ところで、この発明に係る制御装置では、加速度に基づいて指標を求め、その指標に応じて走行特性を設定するように構成されている。その加速度は、センサによって得られたいわゆる実加速度であってよいが、これに替えて駆動要求量や車速あるいは制動操作量、さらには操舵角度などから演算して求められた推定加速度(あるいは目標加速度)であってもよい。また、実加速度と目標加速度とを併用することとしてもよい。実加速度と目標加速度とを併用する場合、それぞれの加速度に応じて指標(第1の指標および第2の指標)を求め、それらの指標を比較していわゆるスポーツ度が高くなる指標を採用する。例えば、実加速度に基づいていわゆる実瞬時スポーツ度Iinおよびそれに基づく実指示スポーツ度Iout を求める一方、目標加速度に基づいていわゆる目標瞬時スポーツ度Iinおよびそれに基づく目標指示スポーツ度Iout を求め、これら実指示スポーツ度Iout と目標指示スポーツ度Iout とのうち大きい値を採用し、その採用された指示スポーツ度Iout に応じて走行特性を設定する。その指示スポーツ度Iout と走行特性との関係は、後述する。
【0060】
さらにこの発明で採用することのできる推定加速度の例を挙げると、以下のとおりである。前後方向の加速度は、変速機(T/M)13の入力回転数の微分値、あるいは変速機(T/M)13の出力回転数の微分値、ドライブシャフト回転数の微分値のいずれかを前後加速度として採用してもよい。また、GPS(グローバルポジショニングシステム)により得られる自車両の位置の変化に基づいて前後加速度を求めてもよい。
【0061】
上述したいわゆる実加速度あるいは推定加速度に基づいて瞬時スポーツ度Iinが算出され、その瞬時スポーツ度Iinから決まる上記の指示スポーツ度Iout は、車両の走行状態を表しており、これは、路面勾配やコーナの有無あるいはその曲率などの走行環境、さらに運転者の運転指向を含んだものとなっている。走行路の状態によって車両の加速度が変化するとともに、走行路の状態によって運転者による加減速操作が行われ、さらにはその加減速操作によって加速度が変化するからである。この発明に係る制御装置は、その指示スポーツ度Iout を車両の走行特性の制御に利用するように構成されている。この発明における走行特性には、駆動力特性、変速特性や操舵特性、サスペンション特性、音特性などが含まれ、これらの特性は、前述したスロットルバルブ10の制御特性、変速機13の変速特性、懸架装置4におけるショックアブソーバー5による減衰特性、アシスト機構18のアシスト特性などを、それぞれに設けられているアクチュエータによって変化させることにより適宜に設定される。その走行特性の変化の一般的な傾向は、指示スポーツ度Iout が大きいほど、いわゆるスポーティな走行が可能になる特性の変化である。
【0062】
この発明で対象とする車両は、上記のように加速度やその加速度に基づく指標が変化することにより走行特性が変化し、その走行特性の変化に伴って車両の駆動力や旋回の状態などの挙動が変化することがある。また一方、車両の挙動は運転者のペダル操作や操舵などによっても変化する。これらの挙動の変化を共調させて制御することにより、節度感のある走行特性の変更が可能になり、またドライバビリティも向上する。そこで、この発明に係る制御装置は、一例として以下に説明する制御を実行するように構成されている。
【0063】
図1はその制御例を説明するためのフローチャートであって、ここに示す例は、運転者の操作に起因する車両の挙動の変化が安定するのを待って、走行特性を変化させることにより、走行特性の変更に伴う挙動の変化が、運転者の操作による挙動の変化と重畳することを避けるように構成した例である。具体的に説明すると、図1に示す例では、先ず、瞬時スポーツ度Iinすなわち合成加速度(合成G)が演算される(ステップS1)。瞬時スポーツ度Iinおよびその演算については既に説明したとおりである。ついで、瞬時スポーツ度Iinに基づいて指示スポーツ度Iout が求められる(ステップS2)。指示スポーツ度Iout およびその求め方ならびにその低下の仕方について、図5および図6を参照して説明したとおりである。
【0064】
さらに、加速度の時間微分値(すなわちジャーク)が演算される(ステップS3)。ここで説明している例では、前後加速度Gxと横加速度Gyとの合成加速度を、車両の走行状態を表すデータとして使用しているので、その合成加速度の時間微分値がジャークとして採用されている。すなわち、
ジャーク={(dGx/dt)+(dGy/dt)1/2
である。こうして演算されたジャーク(すなわちIin微分値)が予め定めた禁止判断閾値αより大きいか否かが判断される(ステップS4)。この禁止判断閾値αは、加速度の変化と走行特性の変更に伴う挙動の変化とが重畳することが好ましくないと考えられるジャークの下限値であり、走行実験やシミュレーションなどによって予め定めたものである。そして、この禁止判断閾値αは、走行特性の全体について一つの値を設定することができるが、これとは異なり、走行特性を規定する(走行特性に含まれる)駆動力特性や変速特性、操舵特性、懸架特性(ダンパ特性もしくはサスペンション特性)などの各特性毎に設定することができる。その場合、変化が車両の搭乗者に体感されやすい特性についての禁止判断閾値αほど小さい値とする。こうすることにより、加速度が変化している際の、変化が体感されやすい特性の変化が、より強く制限される。さらにまた、上記の禁止判断閾値αは、一定値であってもよく、あるいは車速などの他の要因に応じて変化する変数であってもよい。
【0065】
ジャークが上記の禁止判断閾値より大きいことによりステップS4で肯定的に判断された場合には、フラグFが立てられる(ステップS5)。すなわち、フラグFが「1」にセットされる。ついで、ジャークが許可判断閾値βより小さいか否かが判断される(ステップS6)。この許可判断閾値βは、ジャークが低下している場合のジャークの値を評価するためのものであり、より具体的には、走行特性の変更を開始し得る程度までジャークが低下しているか否かを判断するためのものである。この許可判断閾値βは、走行特性の変更に伴う車両の挙動が加速度の変化と重畳してもよいと考えられるジャークの程度を判断し、もしくは走行特性の変更が、加速度の変化がほぼ無くなっている状態で終了するように走行特性の変更制御のタイミングを判断するためのものであり、走行実験やシミュレーションなどによって予め定めたものである。そして、この許可判断閾値βは、走行特性の全体について一つの値を設定することができるが、これとは異なり、走行特性を規定する(走行特性に含まれる)駆動力特性や変速特性、操舵特性、懸架特性(ダンパ特性もしくはサスペンション特性)などの各特性毎に設定することができる。その場合、変化が車両の搭乗者に体感されやすい特性についての許可判断閾値βほど小さい値とする。こうすることにより、加速度が変化している際の、変化が体感されやすい特性の変化が、より強く制限される。さらにまた、上記の許可判断閾値βは、一定値とすることができ、例えばゼロに近い値とすることができる。これに替えて許可判断閾値βは、ジャークが前述した禁止判断閾値αを超えていた場合の値(例えば最大値)に応じた値とすることができる。具体的には、ジャークの最大値が大きいほど、許可判断閾値βを大きい値とすることができる。
【0066】
上記のフラグFを「1」にセットした時点もしくは直後では、ジャークが増大しているからジャークが許可判断閾値βを下回ることはなく、したがってステップS6で否定的に判断される。この場合は、図1に示すルーチンを一旦終了する。すなわち、ジャークが禁止判断閾値αを超えていることにより、たとえ大きい加速度が生じていて走行特性を変更する状態が成立していても、走行特性の変更が制限され、あるいは禁止される。
【0067】
一方、上記のステップS4で否定的に判断された場合、すなわちジャークが禁止判断閾値α以下になっている場合、フラグFが「1」か否かが判断される(ステップS7)。ジャークが禁止判断閾値α以下となるのは、ジャークが増大しても禁止判断閾値αを超えなかった場合と、ジャークが禁止判断閾値αを超えた後に低下して禁止判断閾値α以下になった場合との両方がある。前者の場合、すなわちジャークが禁止判断閾値αを超えなかった場合には、フラグFが「1」にセットされていないので、ステップS7で否定的に判断される。この場合は、ジャークが直前の状態として禁止判断閾値αを超えたことがないことになり、その場合、シャシー特性が演算され(ステップS8)、また変速特性が演算される(ステップS9)。なお、これらステップS8およびステップS9は、走行特性の演算を例示したものである。その後、ステップS10に進んでフラグFが「0」にセットされ、図1のルーチンを一旦終了する。なお、ジャークが禁止判断閾値αを直前に超えたことがなければ、フラグFが「0」になっているので、ステップS10の制御は、何らの制御も実行しないいわゆる空制御となる。このように、ジャークが禁止判断閾値α以下であることにより小さい値となっている場合、言い換えれば、加速度の変化が相対的に小さい場合には、その加速度に基づいて、走行特性が通常どおり変更される。走行特性の変更もしくは補正の具体例は後述する。
【0068】
また一方、フラグFが「1」にセットされていることによりステップS7で肯定的に判断された場合には、上述したステップS6に進み、ジャークが許可判断閾値βより小さいか否かが判断される。この許可判断閾値βは、前述したようにジャークの直前の最大値(極大値)に応じた値とされることがあり、その場合には、許可判断閾値βが前述した禁止判断閾値αより大きい値の場合がある。ジャークが低下し始めたとしても、未だ許可判断閾値β以上の場合にはステップS6で否定的に判断され、図1のルーチンを一旦終了する。すなわち、走行特性の変更を制限もしくは禁止する状態が維持される。
【0069】
これとは反対にジャークが許可判断閾値βを下回る状態になると、ステップS6で肯定的に判断され、その場合、一定時間が経過したか否かが判断される(ステップS11)。この一定時間は、上記のステップS6で肯定的な判断が成立した時点からの経過時間であって、後に開始される走行特性の変更制御が、ジャークがほぼゼロになっている状態で開始され、もしくは終了するように設定されたいわゆる待ち時間であり、その目的を達成するように、実験もしくはシミュレーションなどによって予め決めることができる。またその値は一定値であってもよく、あるいは走行特性を規定する複数の特性毎にかつそれらの特性に応じて設定した値であってもよく、さらにはジャークの直前の最大値に応じた値であってもよい。このステップS11で否定的に判断された場合には、走行特性の変更禁止(変更制限)を解除する条件が成立していないことになるので、特に制御を行うことなく図1のルーチンを一旦終了する。
【0070】
これとは反対に上記の一定時間が経過してステップS11で肯定的に判断された場合には、前述したステップS8およびステップS9に進み、走行特性が変更させられる。なお、前述したように、禁止判断閾値αや許可判断閾値βを、走行特性に含まれる複数の特性毎に設けてある場合には、ジャークが下回った許可判断閾値βについての特性ごとに、その変更が実行される。また、許可判断閾値βをジャークの直前の最大値に応じた値とした場合、走行特性の変更の開始が早められ(いわゆる前出しされ)、またジャークが許可判断閾値βを下回った後、一定時間が経過して走行特性が変更させられるので、ジャークがほぼゼロの状態で走行特性の変更が完了する。言い換えれば、許可判断閾値βもしくは上記の一定時間はジャークがほぼゼロの状態で完了するように設定することができる。
【0071】
なお、車両がコーナを走行していて横加速度がある程度大きい状態では、駆動力特性や変速特性などの走行特性を変更せずに車両の挙動に変化を生じさせないことが好ましい場合がある。そのような場合には、車両の旋回を判定して走行特性の変更を禁止することができる。特に、駆動力に関係する特性の変更を禁止するように構成することができる。その駆動力に関係する特性は、アクセルペダルの踏み込み量に対するスロットル開度を規定する特性や、変速機13における変速比を設定する特性などである。
【0072】
旋回領域で走行特性の変更を禁止する制御の例を説明すると、例えば図1に併記してあるように、上述したステップS1の前に、車両が旋回領域に入っているか否かを判断するステップS0を追加し、そのステップS0で肯定的に判断された場合には、図1に示すルーチンを抜け、ステップS0で否定的に判断された場合にステップS1およびこれ以降のステップに進むように構成することかできる。また、車両の走行状態から旋回領域に入っているか否かの判断は、以下のようにして行うことができる。ここで、旋回領域とは、図4に示すタイヤ摩擦円上に設定した領域であって、合成加速度(瞬時スポーツ度Iin)を決めている加速度のうち、横加速度Gyの成分割合が相対的に大きい領域であり、例えば図4における横軸(Gyの線)を中心にして上下に45°±5°に開いた線で囲まれる領域である。なお、この領域は左右両側に設定される。タイヤ摩擦円上における旋回領域以外の領域が加減速域領域であり、したがってその旋回領域における横加速度Gyの成分は、加減速域における横加速度Gyの成分より相対的に大きくなっている。
【0073】
上述したように、この発明に係る制御装置では、禁止判断閾値αや許可判断閾値βを、走行特性に含まれる複数の特性毎に設定することができる。したがってこれらの値によって、変更制御の開始もしくは実行の順序を決めることができ、また変更制御の開始もしくは実行に時間差を設定することができる。このようにして順序や時間差を設定する場合、シャシー特性を駆動力に関係する特性に先行して開始もしくは実行するように構成することができる。あるいは制御応答性の速い特性を先行して変更するように構成することができる。なおここで、この発明で対象とする走行特性に含まれる特性を例示すると、エンジン8の出力を制御する駆動力特性、サスペンション機構におけるダンパ特性、スタビライザー特性、操舵機構におけるパワーステアリング特性、デファレンシャル特性、車高特性、エンジンマウント特性、ブレーキ特性、エアロダイナミック特性、表示色などの色に関係する表示特性、車室内の音響特性などである。
【0074】
上述した図1に示す例は、指標である指示スポーツ度Iout を車両の加速度に基づいて求め、その指示スポーツ度Iout に基づいて走行特性を変更するように構成されているが、この発明では、指示スポーツ度Iout などの指標を介することなく、加速度(もしくは合成加速度)に基づいて、直接、走行特性を変更し、また設定するように構成することもできる。すなわち、走行特性についての補正値を加速度から求めるように構成することができる。また一方、指示スポーツ度Iout に基づいて走行特性を変更するように構成されている場合、ジャークに応じて走行特性の変更を制限もしくは禁止する替わりに、指示スポーツ度Iout の変更を制限もしくは禁止することにより、走行特性の変更をジャークが許可判断閾値βを下回るまで禁止(保留)するように構成することもできる。
【0075】
その一例を図2にフローチャートで示してあり、先ず、瞬時スポーツ度Iinすなわち合成加速度(合成G)が演算され(ステップS21)、またその時間微分値(ジャーク)が演算される(ステップS22)。これらの制御は、前述した図1に示すステップS1およびステップS3と同様の制御である。ついで、そのジャークが予め定めた禁止判断閾値αより大きいか否かが判断される(ステップS23)。このステップS23での判断は、前述した図1に示すステップS4での判断と同様にして行われる。ジャークが上記の禁止判断閾値αより大きいことによりステップS23で肯定的に判断された場合には、フラグFが立てられる(ステップS24)。すなわち、フラグFが「1」にセットされる。ついで、ジャークが前述した許可判断閾値βより小さいか否かが判断される(ステップS25)。このステップS25での判断は前述した図1に示すステップS6での判断と同様の判断である。
【0076】
上記のフラグFを「1」にセットした時点もしくは直後では、ジャークが増大しているからジャークが許可判断閾値βを下回ることはなく、したがってステップS25で否定的に判断される。この場合は、図2に示すルーチンを一旦終了する。すなわち、ジャークが禁止判断閾値αを超えていることにより、たとえ大きい加速度(瞬時スポーツ度Iin)が生じていても、指示スポーツ度Iout の変更やそれに伴う走行特性を変更する状態が成立していても、指示スポーツ度Iout の変更やそれに伴う走行特性の変更が制限もしくは禁止される。
【0077】
一方、上記のステップS23で否定的に判断された場合、すなわちジャークが禁止判断閾値α以下になっている場合、フラグFが「1」か否かが判断される(ステップS26)。この判断は、前述した図1に示す例におけるステップS7と同様の判断である。このステップS26で否定的に判断された場合は、指示スポーツ度Iout が演算され(ステップS27)、またシャシー特性が演算され(ステップS28)、さらに変速特性が演算される(ステップS29)。なお、これらステップS28およびステップS29は、走行特性の演算を例示したものである。その後、ステップS30に進んでフラグFが「0」にセットされ、図2のルーチンを一旦終了する。なお、ジャークが禁止判断閾値αを直前に超えたことがなければ、フラグFが「0」になっているので、ステップS30の制御は、何らの制御も実行しないいわゆる空制御となる。このように、ジャークが禁止判断閾値α以下であることにより小さい値となっている場合、言い換えれば、加速度の変化が相対的に小さい場合には、その加速度に基づいて、指示スポーツ度Iout および走行特性が通常どおり変更される。瞬時スポーツ度Iinに基づく指示スポーツ度Iout の変更については図5を参照して説明したとおりであり、また走行特性の変更もしくは補正の具体例は後述する。
【0078】
また一方、フラグFが「1」にセットされていることによりステップS26で肯定的に判断された場合には、上述したステップS25に進み、ジャークが許可判断閾値βより小さいか否かが判断される。この許可判断閾値βは、前述したようにジャークの直前の最大値(極大値)に応じた値とされることがあり、その場合には、許可判断閾値βが前述した禁止判断閾値αより大きい値の場合がある。ジャークが低下し始めたとしても、未だ許可判断閾値β以上の場合にはステップS25で否定的に判断され、その場合は図2のルーチンを一旦終了する。すなわち、指示スポーツ度Iout の演算やその変更ならびに走行特性の変更を禁止する状態が維持される。
【0079】
これとは反対にジャークが許可判断閾値βを下回る状態になると、ステップS25で肯定的に判断され、その場合は前述した図1に示す制御例と同様に、一定時間が経過したか否かが判断される(ステップS31)。その一定時間は、図1の制御例で説明したとおりである。そして、このステップS31で否定的に判断された場合には、走行特性の変更禁止(変更制限)を解除する条件が成立していないことになるので、特に制御を行うことなく図2のルーチンを一旦終了する。
【0080】
これとは反対に上記の一定時間が経過してステップS31で肯定的に判断された場合には、前述したステップS27およびステップS28ならびにステップS29に進み、指示スポーツ度Iout が演算されて変更され、それに伴って走行特性が変更させられる。なお、走行特性の変更は、これに含まれる各特性毎に行われ、またジャークがほぼゼロになった状態で走行特性の変更が開始され、あるいは終了されることなどは、前述した図1に示す制御例と同様である。
【0081】
ここで、加速度あるいは指示スポーツ度Iout に基づく走行特性の変更の制御について説明する。先ず走行特性の変更の一例として加速性を指示スポーツ度Iout に応じて変更する例を説明すると、上述したようにして設定される指示スポーツ度Iout に対応させて要求最大加速度率を求める。その例を図7に示してある。ここで要求最大加速度率とは、余裕駆動力を規定するものであって、例えば要求最大加速度率が100%とは、車両が発生し得る最大の加速度を可能にする状態であり、変速機13についてはエンジン回転数が最大になる変速比もしくは最も大きい変速比(最も低車速側の変速比)を設定することである。また例えば要求最大加速度率が50%とは、車両が発生し得る最大の加速度の半分の加速度を可能にする状態であり、変速機13については中間の変速比を設定することである。図7に示す例では、指示スポーツ度Iout が大きくなるほど要求最大加速度率が大きくなるように構成されている。図7に実線で示す基本特性は、車両を実際に走行させて得られたデータに基づいて指示スポーツ度Iout と要求最大加速度率との関係を計算して求めたものであり、実車による走行やシミュレーションを行って適宜に修正を加えたものである。この基本特性に対して要求最大加速度率が大きくなる側に特性線を設定した場合には、車両の加速度が相対的に大きくなるので、いわゆるスポーティな走行特性もしくは加速特性となる。これとは反対に要求最大加速度率が小さくなる側に特性線を設定した場合には、車両の加速度が相対的に小さくなるので、いわゆるコンフォートな走行特性もしくは加速特性となる。これらの調整(すなわち適合もしくはチューニング)は、車両に要求される商品性などに応じて適宜行えばよい。なお、基本特性では、指示スポーツ度Iout がゼロより大きい状態で要求最大加速度率がゼロとなるように設定してあるのは、交通渋滞や車庫入れなどの微速走行状態を、加速特性を設定もしくは変更するための制御に反映させないようにしたためである。
【0082】
上記の要求最大加速度率を変速機13の変速特性に反映させて加速特性を変更する場合の制御について説明する。変速機13として無段変速機を搭載している車両やエンジン回転数をモータによって制御可能なハイブリッド車では、車速や駆動要求量に基づいて目標出力を算出し、その目標出力を達成するエンジン回転数となるように制御される。その要求回転数毎の車速と加速度との関係を示せば図8のようになり、これに上述した図7に基づいて指示スポーツ度Iout から求められた要求最大加速度率を書き加える。例えば100%と50%との要求最大加速度率を書き加えると図8の太い実線のようになる。したがって、指示スポーツ度Iout から求められた要求最大加速度を示す線と現在時点の車速を示す線との交点を通る線で表される回転数が要求回転数となる。
【0083】
前述した図3を参照して説明したような変速機13を備えている車両では、その変速機13によって設定するべき変速比を制御するために、基本的な変速マップを備えている。その変速マップは、無段変速機については、車速とエンジン回転数とに応じて変速比を設定したマップである。その変速比制御の一例は、一般に、トルクデマンド制御として知られている制御であり、例えば駆動要求量としてのアクセル開度と車速とに基づいて駆動力マップから要求駆動力を求め、その要求駆動力と車速もしくはエンジン回転数とからエンジンの要求出力を求める。その要求出力を最適燃費で出力する目標エンジン回転数がエンジン回転数マップに基づいて求められ、その目標エンジン回転数を達成するように無段変速機の変速比が制御される。すなわち、変速機13を駆動力源であるエンジンの回転数制御機構として機能させる。なお、エンジンの出力はトルクと回転数との積で求められるから、上記の目標エンジン回転数あるいはこれに相当する車速とに基づいて要求出力を達成するエンジントルクが求められ、そのエンジントルクとなるようにスロットル開度が算出される。
【0084】
図8に示すスポーツモード回転数指示手段B31は、上述した指示スポーツ度Iout に基づいて求められた要求回転数を指示する手段であってスポーツ回転数算出手段と言うことができ、またノーマルモード回転数指示手段B32は、トルクデマンド制御などの通常のエンジン回転数制御で求められた目標回転数を指示する手段であってノーマル回転数算出手段と言うことができる。これらのいわゆるノーマルモード回転数と上記のいわゆるスポーツモード回転数とが回転数調停手段B33によって比較され(調停され)、大きい値の回転数が選択される。いわゆるマックスセレクトされる。こうして選択された回転数が最終回転数指示手段B34によって制御信号として出力される。したがって、アクセル開度が小さいことにより、ノーマルモード回転数がスポーツモード回転数より低回転数の場合には、スポーツモード回転数が維持されることになる。なお、アクセルペダルが大きく踏み込まれるなど、要求最大加速度を超える駆動要求量に増大するとダウンシフトが行われる。
【0085】
このような制御は、無段変速機においては、低車速側の変速比(大きい値の変速比)を目標とした変速制御である。その結果、変速比が大きくなることにより最大駆動力あるいはエンジンブレーキ力が大きくなって車両の挙動コントロールが機敏になり、いわゆるスポーティ感のある特性、あるいは運転者の運転指向もしくは走行路の状態などの走行環境に即した特性となる。なお、無段変速機を搭載している車両についてのこのような制御は、モード選択スイッチが搭載され、そのスイッチによって例えばスポーツモードが選択されている場合に実行するように構成してもよい。
【0086】
一方、変速機13が有段変速機の場合には、図9に示すように制御する。有段変速機の変速制御では、目標とする変速段を定め、その変速段を設定するように変速機13のアクチュエータに制御指令信号が出力される。したがって、各変速段毎の車速と加速度との関係を示せば図9に示すようになり、これに指示スポーツ度Iout から求められた要求最大加速度率として100%および50%の要求最大加速度の線を書き加えると図9の太い実線のようになる。したがって、指示スポーツ度Iout から求められた要求最大加速度を示す線と現在時点の車速を示す線との交点に最も近い変速段の線で表される変速段が目標変速段となる。
【0087】
この発明に係る制御装置による制御が実行されている場合、上記の図9で求められたスポーツ目標変速段と、予め用意されている変速線図に基づくノーマル目標変速段(例えば、アクセル操作と、車速とに基づいて定まる変速比)とが比較(ギヤ段調停)され、変速比が大きい低車速側の変速段が選択される。いわゆるミニマムセレクトされ、その結果、変速比が大きくなることにより最大駆動力あるいはエンジンブレーキ力が大きくなって車両の挙動コントロールが機敏になる。すなわち、有段変速機によるノーマル目標変速段は、アクセル開度などの駆動要求量と車速とによって各変速段の領域を定めた変速線図(変速マップ)に基づいて設定され、したがってアクセルペダルが大きく踏み込まれるなど、要求最大加速度を超える駆動要求量に増大するとダウンシフトが生じ、さらに車速が増大するとアップシフトが可能となる。
【0088】
図9に示すスポーツモードギヤ段指示手段B41は、上述した指示スポーツ度Iout に基づいて求められたギヤ段を指示する手段であり、またノーマルモードギヤ段指示手段B42は通常のアクセルペダル開度と車速とによる変速線図に基づいて求められたギヤ段を指示する手段である。これらのいわゆるスポーツモードギヤ段とノーマルモードギヤ段とはギヤ段調停手段B43によって比較され(調停され)、より低速側のギヤ段(より変速比が大きいギヤ段)が選択される。いわゆるミニマムセレクトされる。こうして選択されたギヤ段が最終ギヤ段指示手段B44によって制御信号として出力される。すなわち、変速機13を駆動力源であるエンジンの回転数制御機構として機能させる。したがって、アクセル開度などにより、ノーマルモードギヤ段がスポーツモードギヤ段より高車速側のギヤ段である場合には、スポーツモードギヤ段が維持され、より低車速側のギヤ段(大きい変速比)が設定されることになる。
【0089】
このような制御は、有段変速機においては、低車速側のギヤ段(大きい値の変速比)を目標とした変速制御である。その結果、変速比が大きくなることにより駆動力あるいはエンジンブレーキ力が大きくなり、車両の挙動が機敏になり、いわゆるスポーティ感のある特性、あるいは運転者の運転指向もしくは走行路の状態などの走行環境に即した特性となる。なお、このような制御は、モード選択スイッチが搭載され、そのスイッチによっていわゆるスポーツモードが選択されている場合に実行し、選択されていない場合に制御を禁止するように構成してもよい。
【0090】
なお、図8に示す各手段の機能、あるいは図9に示す各手段の機能は、前述した電子制御装置28に備えさせることができ、あるいはスポーツモード制御用の電子制御装置を設け、そのスポーツモード制御用の電子制御装置に備えさせることができる。
【0091】
つぎに、この発明に係る制御装置を、内燃機関を駆動力源とし、かつ有段変速機を搭載した車両に適用した場合の変速段および駆動力の補正およびそれに伴う走行特性の変更の制御について説明する。図10は、要求駆動力から目標変速段および目標エンジントルクを求める例であり、その基本的な構成は、先ず、車速とアクセル開度とから要求駆動力が演算される(ブロックB1)。要求駆動力は、車体重量や車両に付与する動力性能などによって決められるものであるから、ブロックB1での演算は、車速とアクセル開度とに対応させて要求駆動力を定めたマップを用意しておき、そのマップに基づいて要求駆動力を求めることにより行われる。その要求駆動力に基づいて、一方では、変速段(ギヤ段)が演算される(ブロックB2)。有段変速機の変速制御は、車速と要求駆動力とをパラメータとして変速段領域あるいはアップシフト線およびダウンシフト線を設定した変速線図に基づいて行われるので、ブロックB2での変速段の演算は、予め用意してある変速線図に基づいて行う。こうして求められた要求変速段が変速制御装置(ECT)B3に制御指令信号として出力され、変速機13での変速制御が実行される。なお、車両1の動力伝達経路にロックアップクラッチ(LU)が設けられている場合には、予め用意したマップに基づいてそのロックアップクラッチの係合・解放を判断するとともに、その係合・解放を制御する指令信号も併せて出力される。
【0092】
他方、前記ブロックB1で求められた要求駆動力と変速機13での実際の変速段とに基づいて要求エンジントルクが演算される(ブロックB4)。すなわち、変速段と車速とに基づいてエンジン回転数が決まるから、そのエンジン回転数と要求駆動力とに基づいて要求エンジントルクを演算することができる。こうして求められたエンジントルクを発生するようにエンジン(ENG)8が制御される(ブロックB5)。具体的にはスロットル開度が制御される。
【0093】
前述したようにこの発明に係る制御装置では、前後加速度Gxや横加速度Gyあるいはこれらを合成した合成加速度などの瞬時スポーツ度Iinに基づき指示スポーツ度Iout が変化し、それに伴って要求最大加速度が変化する。その要求最大加速度は、図9を参照して説明したように変速制御に反映され、スポーツモードでの指示スポーツ度Iout に基づいて求まる変速段が、ノーマルモードでの変速段よりも低車速側の変速段であれば、その低車速側の変速段が最終指示変速段となる。図10を参照して説明した基本的な構成は、ノーマルモードでの変速制御を行うものであるから、指示スポーツ度Iout に基づく最終指示変速段がより低車速側の変速段であれば、これを上記のブロックB2で取り込み、要求変速段とする。その結果、相対的に大きい変速比が設定されるので、最大駆動力あるいはエンジンブレーキ力が大きくなり、車両の挙動コントロールが機敏になり、いわゆるスポーティ感のある特性、あるいは運転者の運転指向もしくは走行路の状態などの走行環境に即した特性となる。
【0094】
また、指示スポーツ度Iout に応じた加速特性とするためには、エンジン8が出力する動力を増減してもよく、その制御は、前述したブロックB1に補正駆動力を入力し、前述した基本構成で求まる要求駆動力を補正駆動力によって増減する。なお、その補正駆動力は、前述した指示スポーツ度Iout に基づいて求められるように構成されていればよい。例えば運転者の意図に合った実験やシミュレーションなどによって指示スポーツ度Iout と補正駆動力との関係を定めてこれを予めマップなどの形でデータとして用意しておき、走行中に得られた指示スポーツ度Iout と補正駆動力マップなどのデータとから補正駆動力を求めてもよい。
【0095】
図11に示す例は、車速とアクセル開度とから変速段(ギヤ段)および要求駆動力を並行して求めるように構成した例である。前述したように、有段変速機の変速比は、車速とアクセル開度とによって変速段もしくはアップシフト線およびダウンシフト線を設定した変速線図に基づいて制御されるから、車速とアクセル開度とによって、一方では、変速段が演算され(ブロックB12)、他方で、車速とアクセル開度とから要求駆動力が演算される(ブロックB11)。この要求駆動力の演算は、前述した図10に示すブロックB1での演算と同様である。
【0096】
ブロックB12で求められた要求変速段が変速制御装置(ECT)B13に伝送され、変速機13での変速制御が実行される。なお、車両1の動力伝達経路にロックアップクラッチ(LU)が設けられている場合には、予め用意したマップに基づいてそのロックアップクラッチの係合・解放を判断するとともに、その係合・解放を制御する指令信号も併せて出力される。
【0097】
他方、前記ブロックB11で求められた要求駆動力と変速機13での実際の変速段とに基づいて要求エンジントルクが演算され(ブロックB14)、こうして求められたエンジントルクを発生するようにエンジン(ENG)8が制御される(ブロックB15)。そのブロックB14での制御は前述した図10に示すブロックB4での制御と同様であり、またブロックB15での制御は前述した図10に示すブロックB5での制御と同様である。
【0098】
図11に示す構成においても、指示スポーツ度Iout に基づく最終指示変速段がより低車速側の変速段であれば、これを上記のブロックB12で取り込み、要求変速段とする。その結果、相対的に大きい変速比が設定されるので、車両の走行特性として加速性が増大する。また、指示スポーツ度Iout に応じた補正駆動力を前述したブロックB11に入力し、前述した基本構成で求まる要求駆動力を補正駆動力によって増減する。
【0099】
さらに、図12に示す例は、車速とアクセル開度とに基づいて、変速機13およびエンジン8をそれぞれ独立して制御するように構成した例である。すなわち、車速とアクセル開度とに基づいて変速段が演算され(ブロックB22)、その演算で求められた要求変速段が変速制御装置(ECT)B23に伝送され、変速機13での変速制御が実行される。これらの制御は、図11に示すブロックB12およびブロックB13での制御と同様である。また、アクセル開度に基づいてスロットル開度が演算され(ブロックB24)、その要求スロットル開度に応じてエンジン8が制御される(ブロックB25)。なお、電子スロットルバルブを備えている場合には、アクセル開度と要求スロットル開度との関係は非線形とするのが一般的であり、アクセル開度が相対的に小さい状態では、アクセル開度の変化量に対してスロットル開度の変化量が小さく、アクセル開度が相対的に大きい場合には、アクセル開度の変化量とスロットル開度の変化量とが一対一の関係に近くなる。
【0100】
基本構成を図12に示すように構成した場合であっても、指示スポーツ度Iout に基づく最終指示変速段がより低車速側の変速段であれば、これを上記のブロックB22で取り込み、要求変速段とする。その結果、相対的に大きい変速比が設定されるので、車両の走行特性として加速性が増大する。また、指示スポーツ度Iout に応じた補正スロットル開度を前述したブロックB24に入力し、前述した基本構成で求まる要求スロットル開度を補正スロットル開度によって増減する。すなわち指示スポーツ度Iout が高くなった場合にアクセルに対する駆動源の出力特性を変える(例えば、駆動力特性をあげる)構成としてもよい。
【0101】
上述したようにこの発明に係る上記の制御装置においては、アクセルペダル12を踏み込んで加速した場合や、ブレーキペダル7を踏み込んで減速した場合、あるいはステアリングホイール16を回転させて旋回した場合など、加減速や旋回などの意図に基づいて合成加速度が増大すると、指示スポーツ度Iout が合成加速度の増大に応じて直ちに増大する。そして、その指示スポーツ度Iout の増大に応じて余裕駆動力が増大し、瞬時に要求する加速度が発生し、いわゆるスポーティな走行を行うことのできる走行特性となる。そして、運転者による上記の操作は、走行路の勾配など走行環境に応じた走行を行うべく実行されることが通常であるから、結局、上記の走行特性の変更は、運転者の指向や走行環境を反映したものとなる。
【0102】
なお、車両の走行特性に影響を与え、また走行特性を決める要因は、上述した変速比を制御するだけではないのであり、アクセル操作に対するエンジントルクの出力特性、操舵角あるいは操舵力に対する前輪の転舵角の関係である操舵特性、懸架装置4による振動の減衰特性あるいはそのばね定数、四輪駆動車における前輪と後輪とに対するトルク配分率に基づく回頭性(旋回性)などがある。この発明に係る制御装置は、これらの各特性を、加速度に基づいて、あるいは加速度から求められる指標に基づいて変更するように構成することができる。その指標に基づく例を挙げると、前述した指示スポーツ度Iout に合わせて、エンジン8の出力応答性を適正にし、すなわちスロットル開度の増大割合を適正にし、前記アシスト機構18によるアシストトルクを適正にしていわゆるダイレクト感を適正にし、さらに操舵機構15におけるギヤ比を適正にし、また後輪に対するトルク配分量を適正にして回頭性を適正にする。このような各特性を変更する制御は、それぞれの機構に設けられているアクチュエータの出力特性を変更することにより行うことができる。
【0103】
また、この発明の制御装置は、車両の加速特性あるいは動力特性を変更する場合以外に、車両の走行特性の一つである操舵特性や懸架特性などを変更する場合にも使用することができる。図13はその操舵特性を上述した指示スポーツ度Iout に基づいて変更する制御を説明するためのブロック図であり、可変歯車比ステアリングギヤ(VGRSギヤ)を用いた電動パワーステアリング機構(EPS)を模式的に示している。操舵力を受けて車両の幅方向(横方向)に前後動するラック30が設けられ、このラック30にはVGRSギヤユニット31のギヤが噛み合っている。その歯車比を変更するためのVGRSアクチュエータ32が、VGRSユニット31に付設されている。また、操舵された方向へのラック30の移動を補助(アシスト)するEPSギヤモータ33が設けられている。さらに、VGRSアクチュエータ32に指令信号を出力して前記歯車比を変更するギヤ比演算部34と、前記EPSギヤモータ33が出力するべきトルク(ラック30に与える推力)を演算して指令信号として出力するアシストトルク演算部35とが設けられている。これら、伝動パワーステアリング機構や各演算部は、一般に知られている構成のものを使用することができる。
【0104】
上記の各演算部34,35には、車速、操舵角、操舵トルクの検出値がデータとして入力されている。これらのデータは、それぞれに応じて設けられているセンサで得ることができる。これに加えたギヤ比演算部34には、補正ギヤ比がデータとして入力されている。この補正ギヤ比は、前記VGRSアクチュエータ32に対する指令信号を補正するためのギヤ比であり、前述した指示スポーツ度Iout に応じた値に設定するように構成されている。具体的には、指示スポーツ度Iout に対応する補正ギヤ比を定めたマップを予め用意し、そのマップによって補正ギヤ比を求めればよい。その指示スポーツ度Iout と補正ギヤ比との関係は必要に応じて適宜に決めておくことができる。
【0105】
一方、アシストトルク演算部35には、上記の車速、操舵角ならびに操舵トルクに加えて、補正アシストトルクがデータとして入力される。この補正アシストトルクは、前記EPSギヤモータ33に対する指令信号を補正するためのトルクであり、前述した指示スポーツ度Iout に応じた値に設定するように構成されている。具体的には、指示スポーツ度Iout に対応する補正アシストトルクを定めたマップを予め用意し、そのマップによってアシストトルクを求めればよい。その指示スポーツ度Iout と補正アシストトルクとの関係は必要に応じて適宜に決めておくことができる。
【0106】
したがって図13に示すように構成した場合には、車両に生じている加速度に基づいて求められる指示スポーツ度Iout の大小に応じて、VGRSユニット31における歯車比が変更され、また操舵力をアシストするトルクが変更される。
【0107】
さらに、図14は懸架特性を上述した指示スポーツ度Iout に基づいて変更する制御を説明するためのブロック図であり、懸架機構(図示せず)による車高長および振動の減衰係数ならびにばね定数を制御するように構成した例である。これら車高長および振動の減衰係数ならびにばね定数の要求値を演算する演算部40が設けられている。この演算部40は、一例としてマクロコンピュータを主体として構成され、入力されたデータおよび予め記憶しているデータを使用して演算を行うことにより、要求車高長および要求減衰係数ならびに要求ばね定数を求めるように構成されている。そのデータの例を挙げると、車速、右前輪(FR)輪ハイトコントロールセンサの検出信号、左前輪(FL)輪ハイトコントロールセンサの検出信号、右後輪(RR)輪ハイトコントロールセンサの検出信号、左後輪(RL)輪ハイトコントロールセンサの検出信号、右前輪(FR)上下G(加速度)センサの検出信号、左前輪(FL)上下G(加速度)センサの検出信号、右後輪(RR)上下G(加速度)センサの検出信号、左後輪(RL)上下G(加速度)センサの検出信号がデータとして入力されている。これらは、一般に知られている装置と同様である。
【0108】
そして、図14に示す例では、補正車高長および補正減衰係数ならびに補正ばね定数が、懸架特性の制御のためのデータとして入力されている。補正車高長は、前記指示スポーツ度Iout に応じて車高長を補正するためのデータであり、例えば指示スポーツ度Iout に対応する補正車高長を定めたマップを予め用意し、そのマップによって補正車高長を求めるように構成することができる。また、補正減衰係数は、ショックアブソーバーなどの振動減衰作用を行う機器における減衰係数を補正するためのデータであり、例えば指示スポーツ度Iout に対応する補正減衰係数を定めたマップを予め用意し、そのマップによって補正減衰係数を求めるように構成することができる。補正減衰係数は、指示スポーツ度Iout が大きいほど大きい値とされ、懸架装置がいわゆる硬い感じの特性に設定される。補正ばね定数も同様であって、懸架装置におけるばね定数を補正するためのデータとして、例えば指示スポーツ度Iout に対応する補正ばね定数を定めたマップを予め用意し、そのマップによって補正ばね定数を求めるように構成することができる。補正ばね定数は、指示スポーツ度Iout が大きいほど大きい値とされ、懸架装置がいわゆる硬い感じの特性に設定される。
【0109】
上記の演算部40は、上述した各データを使用して演算を行い、算出された要求車高長を車高長制御部41に制御指令信号として出力し、指示スポーツ度Iout に応じた車高長に制御するように構成されている。具体的には、指示スポーツ度Iout が相対的に大きい場合には、車高が相対的に低くなるように制御される。また、演算部40は演算の結果得られた要求減衰係数を減衰係数制御部42に制御指令信号として出力し、指示スポーツ度Iout に応じた減衰係数に制御するように構成されている。具体的には、指示スポーツ度Iout が相対的に大きい場合には、減衰係数が相対的に大きくなるように制御される。さらに、演算部40は演算の結果得られた要求ばね定数をばね定数制御部43に制御指令信号として出力し、指示スポーツ度Iout に応じた減衰ばね定数に制御するように構成されている。具体的には、指示スポーツ度Iout が相対的に大きい場合には、ばね定数が相対的に大きくなるように制御される。
【符号の説明】
【0110】
1…車両、 2…前輪、 3…後輪、 4…懸架装置、 5…ショックアブソーバー、 6…モータ、 7…ブレーキペダル、 8…内燃機関(エンジン)、 10…スロットルバルブ、 11…アクチュエータ、 12…アクセルペダル、 13…変速機、 15…操舵機構、 16…ステアリングホイール、 17…ステアリングリンケージ、 18…アシスト機構、 19…車輪速センサ、 20…アクセル開度センサ、 21…スロットル開度センサ、 22…エンジン回転数センサ、 23…出力回転数センサ、 24…操舵角センサ、 25…前後加速度センサ、 26…横加速度センサ、 27…ヨーレートセンサ、 28…電子制御装置(ECU)。

【特許請求の範囲】
【請求項1】
車両の加速度を検出もしくは推定するとともにその加速度に基づいて、前記車両の駆動力特性と変速特性と操舵特性と懸架特性との少なくともいずれか一つの特性を含む走行特性を変更するように構成された車両制御装置において、
前記車両の挙動の機敏さが増大する方向への前記走行特性の変更に対して、前記車両の挙動の機敏さが低下する方向への前記走行特性の変更を相対的に遅延させるように構成されるとともに、
前記加速度の時間微分値であるジャークが大きい場合には小さい場合に比較して前記走行特性の変更を制限するように構成されている
ことを特徴とする車両制御装置。
【請求項2】
前記走行特性の変更の制限は、前記ジャークの値が前記走行特性の変更が制限される値より小さくなるまで前記走行特性の変更を遅延させることを含む請求項1に記載の車両制御装置。
【請求項3】
前記加速度は、前記車両の前後方向の前後加速度と横方向の横加速度とを含み、
前記走行特性の変更は、横加速度よりも前後加速度に基づいて生じ易く構成されている
ことを特徴とする請求項1または2に記載の車両制御装置。
【請求項4】
前記走行特性の変更の制限の解除が、直前のジャークの極大値が大きい場合には、小さい場合に比較して、ジャークの値が大きい状態で実行されるように構成されていることを特徴とする請求項1ないし3のいずれかに記載の車両制御装置。
【請求項5】
前記走行特性の変更の制限は、前記ジャークが予め定められた禁止判断閾値を超えている場合に前記走行特性の変更を禁止することを含む請求項1ないし4のいずれかに記載の車両制御装置。
【請求項6】
前記走行特性は、前記車両の駆動力特性と変速特性と操舵特性と懸架特性とのいずれか複数の特性を含み、
前記禁止判断閾値は、走行特性に含まれる各特性毎に設定されていることを特徴とする請求項5に記載の車両制御装置。
【請求項7】
前記特性の変更の禁止は、前記ジャークが予め定められた許可判断閾値を横切って低下したことにより解除され、さらに前記許可判断閾値は、前記ジャークの前記禁止判断閾値を超えていた最大値が大きいほど大きい値に設定されていることを特徴とする請求項6に記載の車両制御装置。
【請求項8】
前記走行特性の変更は、前記ジャークが前記許可判断閾値に低下した後、予め定めた所定時間を経過してから開始されるように構成されていることを特徴とする請求項6または7に記載の車両制御装置。
【請求項9】
前記所定時間は、前記ジャークが前記禁止判断閾値を超えていた最大値に応じて決められていることを特徴とする請求項8に記載の車両制御装置。
【請求項10】
前記許可判断閾値は、前記走行特性に含まれる前記特性毎に設定されていることを特徴とする請求項7ないし9のいずれかに記載の車両制御装置。
【請求項11】
前記所定時間は、前記走行特性に含まれる前記特性毎に設定されていることを特徴とする請求項8ないし10のいずれかに記載の車両制御装置。
【請求項12】
前記加速度に基づいて指標が求められるとともに、前記走行特性の変更は、前記指標が変化することにより実行され、かつ前記走行特性の変更の制限は、前記指標の変化を禁止することにより実行されるように構成されていることを特徴とする請求項1ないし11のいずれかに記載の車両制御装置。
【請求項13】
前記加速度は、前記車両の前後方向の前後加速度と横方向の横加速度とからなる合成加速度を含み、その合成加速度のうち横加速度の割合が前後加速度の割合より所定値以上大きい旋回領域では、前記車両の駆動力を変更させることになる所定の特性の変更を禁止するように構成されていることを特徴とする請求項1ないし12のいずれかに記載の車両制御装置。
【請求項14】
複数の前記特性を変更する場合、時間差を設けて各特性の変更が実行されることを特徴とする請求項1ないし13のいずれかに記載の車両制御装置。
【請求項15】
複数の前記特性を変更する場合、前記特性の変更の制御の応答性が高い特性の変更から順に実行されることを特徴とする請求項14に記載の車両制御装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate

【図14】
image rotate


【公開番号】特開2012−61943(P2012−61943A)
【公開日】平成24年3月29日(2012.3.29)
【国際特許分類】
【出願番号】特願2010−207208(P2010−207208)
【出願日】平成22年9月15日(2010.9.15)
【出願人】(000003207)トヨタ自動車株式会社 (59,920)
【Fターム(参考)】