説明

半導体装置及びその製造方法

【課題】Wを材料とする接続部の下地膜の形成工程として、形成容易なプロセスを選択することができ、下層のCu配線である第1の配線のCuの浸食を抑制することにより、第1の配線と接続部との間における接触抵抗を低く抑えるとともにその均一性を高め、信頼性の高い半導体装置を実現する。
【解決手段】熱CVD法によりWF6、H2及びB26を含有し、シラン系ガスを含有しない第1の供給ガスを用いてW膜18aを形成した後、WF6及びH2を含有する第2の供給ガスを用いてW膜18bを形成し、CMPを経て、ビア孔16をW膜18で充填するWプラグ19を形成する。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、銅を含有する導電材料からなる配線を有する半導体装置及びその製造方法に関するものである。
【背景技術】
【0002】
近年では、半導体素子の高集積化とチップサイズの縮小化に伴い、配線の微細化及び多層配線化が加速的に進められている。こうした多層配線を有するロジックデバイスにおいては、配線遅延がデバイス信号遅延の支配的要因の1つになりつつある。デバイスの信号遅延は配線抵抗値と配線容量の積に比例しており、従って配線遅延の改善のためには、配線抵抗値や配線容量を軽減することが重要である。
【0003】
そこで、配線抵抗を低減するため、銅(Cu)を用いた配線を形成することが検討されている。以下、当該配線をCu配線と記載する。このCu配線は、Cuを例えば90%以上含有する導電材料からなる配線であり、純粋にCuのみからなる配線に限定されるものではない。
【0004】
Cu配線は、その耐湿性に難があり、最上層の配線に適用するには適さない。そのため、Cu配線の上層配線としては、比較的耐湿性に優れたアルミニウム(Al)を含有する材料を用いた配線(Al配線)が好適である。
Cu配線とその上部のAl配線とを接続するには、両者の間に導電性の接続プラグを形成する。この接続プラグは、配線信頼性や耐熱性を考慮して、その材料として高融点金属であるタングステン(W)が用いられる。
【0005】
この接続プラグ(Wプラグ)を形成するには、Cu配線を埋め込む層間絶縁膜に、Cu配線の表面の一部を露出させる開口、ここではビア孔を形成する。次に、密着層として窒化チタン(TiN)等を材料とする下地膜を形成し、この下地膜を介してWを堆積し、Wでビア孔を埋め込む。そして、表面のWを平坦化してWプラグを形成する。
【0006】
ここで、Wを堆積する際には、例えば熱CVD法を採用する。処理温度を例えば450℃程度とし、供給ガスとしては、熱分解反応によりWを供給するためのWF6ガスに加えて、H2ガス及びシラン系(SiH4,Si26等)ガスを含有するものが用いられる。供給ガスにシラン系ガスをH2ガスと共に添加することにより、シラン系ガスのSiがWF6ガスと反応し、WF6ガスの熱分解反応を促進することができる。
【0007】
なお、Cu配線とその上層配線とを接続するWプラグを形成する代わりに、Cu配線を埋め込む層間絶縁膜に開口として溝を形成し、この溝をWで充填してなるヒューズ(Wヒューズ)を形成する場合にも、上記と同様の供給ガスを用いた熱CVD法が採用される。
【0008】
【特許文献1】特開2002−43418号公報
【発明の開示】
【発明が解決しようとする課題】
【0009】
Cu配線上の接続孔にWプラグを形成する場合、Wプラグの下地膜として例えばTiN膜を形成する場合が多い。図Xに示すように、この下地膜を厚く形成すると、Cu配線、Wプラグ及び上層配線間の接触抵抗が増加する。従って、下地膜はある程度薄く形成する必要がある。
【0010】
しかしながら、薄い下地膜を形成すると、接続孔の内壁面において十分な段差被覆性を得ることができない。そのため、接続孔の内壁面に段差が生じる。この段差形成に起因して、接続孔を埋め込むようにCVD法によりWを堆積すると、供給ガスが下地膜の段差部分を透過して、接続孔の底面に露出するCu表面を浸食する場合がある。この浸食は特に、供給ガス中のシラン系ガスが主因であると考えられる。シラン系ガスはCuとの反応が活性であり、シラン系ガスによるCuの浸食が促進する。Cuの浸食が進むと、Cu配線とWプラグとの間における接触抵抗が増大し、電気特性が劣化するという問題がある。
【0011】
特許文献1には、ダマシン法で形成されるCu配線のWプラグにおいて、下地膜を塊状の多結晶構造に形成し、Cu拡散を防止する旨が開示されている。しかしながらこの場合、下地膜を窒素濃度を高くして所期の特殊な状態に形成することを要する。また、特許文献1の明細書の例えば段落[0037]には、CVD法によりWプラグを形成する際の供給ガスをWF6ガスとシラン系ガスであるSiH4ガスとの混合ガスとする旨が明記されており、シラン系ガスを用いたことによる上記の問題の発生は不可避であると考えられる。
【0012】
本件は、上記の課題に鑑みてなされたものであり、Wを材料とする接続部の下地膜の形成工程として、形成容易なプロセスを選択することができ、下層のCu配線である第1の配線のCuの浸食を抑制することにより、第1の配線と接続部との間における接触抵抗を低く抑えるとともにその均一性を高め、信頼性の高い半導体装置を実現することを可能とする、半導体装置及びその製造方法を提供することを目的とする。
【課題を解決するための手段】
【0013】
本件の半導体装置の製造方法は、半導体基板の上方に銅を含有する第1の配線を形成する工程と、前記第1の配線上に層間絶縁膜を形成する工程と、前記層間絶縁膜に、前記第1の配線の表面の一部を露出させる開口を形成する工程と、WF6と、B26及びNH3の少なくとも一方とを含有する第1の供給ガスを用い、前記開口にWを含有する接続部を形成する工程とを含む。
【0014】
本件の半導体装置は、半導体基板と、前記半導体基板の上方に形成された、銅を含有する第1の配線と、前記第1の配線上に形成され、前記第1の配線の一部を露出させるように形成された開口を有する層間絶縁膜と、前記開口部に形成されたWを含有する接続部とを含み、前記接続部は、前記接続部はB又はNを含有する。
【発明の効果】
【0015】
本件によれば、Wを材料とする接続部の下地膜の形成工程として、形成容易なプロセスを選択することができ、下層のCu配線である第1の配線のCuの浸食を抑制することにより、第1の配線と接続部との間における接触抵抗を低く抑えるとともにその均一性を高め、信頼性の高い半導体装置を実現することができる。
【発明を実施するための最良の形態】
【0016】
―本発明の基本骨子―
本発明者は、Wを材料とする接続部を形成する際に生じるCu配線のCu浸食を、配線材料にCuを用いたことにより発生する特有の問題であると認識した。
【0017】
本発明では、CVD法の供給ガスにおいて、シラン系ガスの少なくとも一部に替わってB26及びNH3の少なくとも一方を用いる。
26及びNH3は、シラン系ガスと同様にWF6ガスの熱分解反応を促進する性質を有する。その一方で、シラン系ガスと異なり、Cuとの反応性に乏しい。従って、CVD法によりB26及びNH3の少なくとも一方を含有する供給ガスを用いて、接続孔等の開口を埋め込むようにWを堆積する際に、下地膜を薄く形成して開口の内壁面に段差が生じた場合でも、開口の底面に露出するCu表面を供給ガスが浸食することが防止される。従って、開口を埋め込むようにWを堆積した場合、堆積したWにはCu配線のCuの移動が発生せず、薄い下地膜でも当該下地膜によりWがCu配線のCuと峻別された状態で、Wプラグ等の接続部が形成される。
【0018】
―本発明を適用した具体的な諸実施形態―
以下、本発明を適用した具体的な諸実施形態について、図面を参照しながら詳細に説明する。以下の実施形態では、半導体装置としてMOSトランジスタを例示し、その構成を製造方法と共に説明する。なお、本発明が適用される半導体装置としては、MOSトランジスタ以外でも、各種の半導体メモリやバイポーラトランジスタ等、微細配線を要する半導体装置であれば適用可能である。
【0019】
(第1の実施形態)
図1〜図9は、第1の実施形態によるMOSトランジスタの製造方法を工程順に示す概略断面図である。
初めに、図1(a)に示すように、シリコン基板1の素子分離構造2により確定された活性領域に、ゲート絶縁膜3を介してゲート電極4を形成する。
詳細には、先ず、シリコン基板1における素子分離領域に分離溝2aを形成し、この分離溝2aを埋め込むように絶縁膜、ここではシリコン酸化膜を形成する。そして、化学機械研磨(Chemical Mechanical Polishing:CMP)法によりシリコン酸化膜を平坦化する。以上により、分離溝2aを充填するSTI(Shallow Trench Isolation)素子分離構造2が形成され、素子分離構造2によりシリコン基板1上で活性領域が画定される。
【0020】
次に、シリコン基板1の活性領域上に膜厚2nm程度に薄いシリコン酸化膜を形成する。そして、シリコン酸化膜上にCVD法等により多結晶シリコン膜を膜厚150nm程度に堆積する。その後、多結晶シリコン膜及びシリコン酸化膜をリソグラフィー及びドライエッチングにより加工する。以上により、シリコン基板1上でゲート絶縁膜3を介してなるゲート電極4が形成される。
【0021】
続いて、図1(b)に示すように、ソース/ドレイン領域5を形成する。
詳細には、活性領域にn型不純物、ここではリン(P+)をドーズ量1×1016/cm2程度、加速エネルギー10keV程度でイオン注入する。ここで、p型不純物の場合には、例えばホウ素(B+)をドーズ量5×1015/cm2程度、加速エネルギー5keV程度でイオン注入する。その後、シリコン基板1をアニール処理して不純物を活性化する。以上により、活性領域におけるゲート電極4の両側にソース/ドレイン領域5が形成される。
【0022】
続いて、図1(b)に示すように、層間絶縁膜6を形成し、この層間絶縁膜6にWプラグ7を形成する。
詳細には、先ず、ゲート電極4を覆うように、シリコン基板1の全面にCVD法等により絶縁膜、ここではシリコン酸化膜を堆積し、層間絶縁膜6を形成する。
次に、層間絶縁膜6をリソグラフィー及びドライエッチングにより加工し、ソース/ドレイン領域5(及びゲート電極4:不図示)の表面の一部を露出させるコンタクト孔7aを形成する。そして、コンタクト孔7aの内壁面を覆うように、スパッタ法によりTiN等を堆積し、密着層となる下地膜7bを形成する。
その後、下地膜7bを介してコンタクト孔7aを埋め込むように、層間絶縁膜6上にCVD法等によりタングステン(W)を堆積し、堆積されたWの表面をCMP法により研磨して平坦化する。以上により、下地膜7bを介してコンタクト孔7aを充填してなるWプラグ7が形成される。
【0023】
続いて、図2(a)に示すように、層間絶縁膜8を形成し、ダマシン法、ここではシングルダマシン法によりこの層間絶縁膜8にCu配線9を形成する。なお、図2(a)〜図Xでは、図示の便宜上、層間絶縁膜8から上部の構成のみを図示し、層間絶縁膜6及びWプラグ7から下部の構成の図示を省略する。
【0024】
詳細には、先ず、Wプラグ7を覆うように、層間絶縁膜6の全面にCVD法等により絶縁膜、ここではPECVD法によりシリコン酸化膜を例えば膜厚500nm程度に堆積し、平坦化のための研磨処理を行って、層間絶縁膜8を形成する。
次に、下地からの反射を防止するため反射防止膜(不図示)を形成する。その後、反射防止膜にフォトレジストを塗布し、これをフォトリソグラフィーにより加工して配線溝形状のレジストパターン(不図示)を形成する。
次に、レジストパターンをマスクとして反射防止膜及び層間絶縁膜8をエッチングし、Wプラグ7の表面を露出させる配線溝9aを形成する。その後、不要なレジストパターン及び反射防止膜を除去する。
【0025】
次に、配線溝9aの内壁面を覆うように、密着層となる下地膜9bとしてTiN膜、Ta膜又はTaN膜をスパッタ法により例えば膜厚15nm程度に成膜し、次に下地膜9b上にメッキ電極膜(不図示)を例えば膜厚130nm程度に形成する。
次に、電界メッキ法によりCu膜(Cu又はその合金膜。以下同じ)を成膜した後、CMP法によりCu膜及び下地膜9bを研磨する。以上により、配線溝9a内に下地膜9bを介してCu(Cu又はその合金。以下同じ)で充填され、Wプラグ7と電気的に接続されてなるCu配線9が形成される。
【0026】
続いて、図2(b)〜図6(a)に示すように、エッチングストッパー膜11及び層間絶縁膜12を形成し、ダマシン法、ここではデュアルダマシン法によりエッチングストッパー膜11及び層間絶縁膜12にCu配線部13を形成する。
詳細には、先ず、図2(b)に示すように、Cu配線9を覆うように、層間絶縁膜8上絶縁膜、ここではシリコン窒化膜をCVD法等により膜厚50nm程度に堆積し、エッチングストッパー膜11を形成する。
次に、エッチングストッパー膜11の全面にCVD法等により絶縁膜、ここではカーボン(C)をドープさせたシリコン酸化膜を例えば膜厚500nm程度に堆積し、層間絶縁膜12を形成する。
次に、Cu配線部13を形成するときのエッチングマスクとなるSiN膜31をプラズマCVD法により例えば膜厚100nm程度に形成する。
【0027】
次に、図3(a)に示すように、SiN膜31上に反射防止膜32を形成した後、この反射防止膜32上にフォトレジストを塗布し、これをフォトリソグラフィーにより加工して配線溝形状のレジストパターン33を形成する。
次に、図3(b)に示すように、レジストパターン33をマスクとして反射防止膜32及びSiN膜31をプラズマエッチングし、SiN膜31に配線溝パターン31aを形成する。その後、不要なレジストパターン33及び反射防止膜32を除去する。
【0028】
次に、図4(a)に示すように、SiN膜31上に配線溝パターン31aを埋め込むように反射防止膜34を例えば膜厚110nm程度に形成した後、この反射防止膜34上にフォトレジストを塗布し、これをフォトリソグラフィーにより加工してビア孔パターン35aを有するレジストパターン35を形成する。
次に、図4(b)に示すように、レジストパターン35をマスクとして反射防止膜34及びSiN膜31をプラズマエッチングする。
【0029】
次に、図5(a)に示すように、レジストパターン35をマスクとし、エッチングストッパー膜11をストッパーとして、層間絶縁膜12をエッチングする。このとき、層間絶縁膜12にビア孔13aが形成されてエッチングストッパー膜11の表面の一部が露出する。ここで、エッチングストッパー膜11の一部が露出するが開口はされない(Cu配線9の表面の一部は露出しない)状態で、レジストパターン35及び反射防止膜34が当該エッチングにより消失するが、当該状態のときに残存するレジストパターン35及び反射防止膜34を除去するようにしても良い。
次に、上記のエッチングに引き続く一連工程の一環として、SiN膜31をマスクとして、エッチングストッパー膜11がエッチングされてCu配線9の表面の一部が露出するまで、層間絶縁膜12をエッチングし、層間絶縁膜12に配線溝13bを形成する。当該一連工程により、配線溝13bとビア孔13aとが連続的に一体形成された複合溝13cが形成される。
【0030】
次に、図5(b)に示すように、複合溝13cの内壁面を覆うように、密着層となる下地膜13dとしてTiN膜、Ta膜又はTaN膜(例えば膜厚15nm程度)をスパッタ法により成膜し、次に下地膜13d上にメッキ電極膜(不図示)(例えば膜厚130nm程度)を形成し、電界メッキ法によりCu膜13eを成膜する。
そして、図6(a)に示すように、CMP法によりCu膜13e及び下地膜13dを研磨する。以上により、複合溝13c内に下地膜13dを介してCuで充填され、Cu配線9と電気的に接続されてなるCu配線部13が形成される。ここで、残存したSiN膜31はCMPのストッパーとして機能し、除去される。
【0031】
続いて、図6(b)に示すように、エッチングストッパー膜14及び層間絶縁膜15を形成する。
詳細には、先ず、Cu配線部13を覆うように、層間絶縁膜12上に絶縁膜、ここではシリコン窒化膜をCVD法等により膜厚50nm程度に堆積し、エッチングストッパー膜14を形成する。
次に、エッチングストッパー膜14の全面にCVD法等により絶縁膜、ここではPECVD法によりシリコン酸化膜を例えば膜厚800nm程度に堆積し、層間絶縁膜15を形成する。
【0032】
続いて、図7(a)に示すように、ビア孔16を形成する。
詳細には、エッチングストッパー膜14をストッパーとして用い、Cu配線部13の表面の一部が露出するまで層間絶縁膜15をエッチングする。以上により、エッチングストッパー膜14及び層間絶縁膜15にビア孔16が形成される。
ここで、ビア孔16の底面で露出するCu配線部13の表面の一部は大気に晒されており、若干の表面酸化が生じる。この表面酸化膜を例えばH2を用いたプラズマ処理により除去する。
【0033】
続いて、図7(b)に示すように、下地膜17を形成する。
詳細には、ビア孔16の内壁面を覆うように層間絶縁膜15上に、密着層となる下地膜17としてTiN膜を例えば反応型スパッタ法により形成する。本実施形態では、TiN膜の段差被覆率は、電気特性に大きな影響を与えないため、高い精度による制御を必要としない。従って、当該TiN膜として、通常ではCu拡散を防止するために15nm〜20nm程度の均一な膜厚として段差被覆率の確保を要するのに対して、本実施形態では、図示のように不均一な膜厚に下地膜17を形成しても良い。ここでは、密着機能を果たす観点から膜厚下限値を設定して、下地膜17を膜厚2nm〜10nm程度、更に詳細には3nm〜5nm程度、例えば5nm程度に形成する。下地膜17としては、TiN膜の代わりに例えばWN膜を形成しても良い。
【0034】
続いて、図8(a)に示すように、タングステン(W)膜18を堆積する。
詳細には、例えば2段階の熱CVD法により、以下のようにW膜18を堆積する。
先ず、第1段階(初期段階)として、WF6、H2及びB26を含有し、シラン系ガスを含有しない第1の供給ガスを用いる。第1の供給ガスの流量におけるB26ガスの含有割合としては、WF6ガスの熱分解反応の十分な促進効率を確保する観点から下限値を、タングステンの異常凹凸成長を抑制する観点から上限値を設定して、例えば0.05%〜10%程度とすれば良い。ここでは第1の供給ガスの流量を、WF6/H2/B26について50sccm/3000sccm/10sccm程度とする。また、希釈ガスとしてN2ガスを導入する。成膜温度(基板温度:第1の温度)としては、300℃〜360℃程度、ここでは330℃程度に設定する。
上記の要件で、ビア孔16の内壁面及び層間絶縁膜15上を下地膜17により覆うように、膜厚2nm〜20nm程度、ここでは5nm程度のW膜18aを形成する。
【0035】
次に、H2を含有する第2の供給ガスを用い、第2の供給ガスの流量を、WF6/H2について100sccm/3000sccm程度に設定する。また、成膜温度(基板温度:第2の温度)を第1の温度よりも高温である350℃〜450℃程度、ここでは400℃程度に設定する。
上記の要件で、W膜18aと一体となってビア孔16を埋め込むように、膜厚100nm〜500nm程度、ここでは200nm程度のW膜18bを形成する。以上のように、W膜18aとW膜18bとが一体化してW膜18が形成される。なお、図8(a)では便宜上、W膜18aとW膜18bとの境界を破線で示す。
【0036】
続いて、図8(b)に示すように、Wプラグ19を形成する。
詳細には、層間絶縁膜15をストッパーとしてW膜18及び下地膜17をCMPにより研磨して平坦化する。以上により、ビア孔16内を下地膜17を介してW膜18で充填してなるWプラグ19が形成される。
【0037】
ここで、Wプラグ19は、W膜18aにB26ガスのホウ素(B)を含有しており、その結果、W膜18の全体として見れば、少なくともW膜18の下地膜17との界面部分(W膜18aの部分)にBを含有する構成となる。
【0038】
続いて、図9に示すように、上層配線21を形成する。
詳細には、先ず、Wプラグ19の表面を覆うように層間絶縁膜15上に、密着膜21aとしてTi膜又はTiN膜等をスパッタ法により例えば膜厚50nm程度に成膜する。
次に、密着膜21a上にAl膜(Al又はその合金膜)21bをスパッタ法により例えば膜厚1000nm程度に成膜する。
次に、Al膜21b上に、密着膜21cとしてTi膜又はTiN膜等をスパッタ法により例えば膜厚50nm程度に成膜する。
そして、密着膜21c、Al膜21b及び密着膜21aを配線形状にエッチングする。以上により、Wプラグ19と電気的に接続され、層間絶縁膜15上で延在する上層配線21が形成される。
【0039】
しかる後、保護膜の形成や上層配線21との接続パッドの形成等を経て、本実施形態によるMOSトランジスタを完成させる。
【0040】
本実施形態では、Wプラグ19を形成する際に、先ず、B26を含有する第1の供給ガスを用いて、接続孔等の開口を埋め込むようにW膜18aを堆積する。この構成により、下地膜17を薄く形成してビア孔17の内壁面に段差が生じた場合でも、ビア孔17の底面に露出するCu表面を供給ガスが浸食することが防止される。従って、ビア孔17を埋め込むようにW膜18を堆積した場合、堆積したW膜18にはCu配線部13のCuの移動が発生せず、薄い下地膜17でも当該下地膜17によりWがCu配線部13のCuと峻別された状態で、Wプラグ19が形成される。
【0041】
従って、本実施形態によれば、Wプラグ19の下地膜17の形成工程として、形成容易なプロセスを選択することができ、下層のCu配線部13のCuの浸食を抑制することにより、Cu配線部13とWプラグ19との間における接触抵抗を低く抑えるとともにその均一性を高め、信頼性の高いMOSトランジスタを実現することができる。
【0042】
(第2の実施形態)
本実施形態では、第1の実施形態と同様にMOSトランジスタの製造方法を開示するが、上層配線とその下層のCu配線部とを接続するWプラグの形成工程が若干相違する。
図10は、第2の実施形態によるMOSトランジスタの製造方法の主要工程のみを示す概略断面図である。
【0043】
初めに、第1の実施形態の図1(a)〜図7(b)と同様の各工程を順次実行する。
続いて、図10(a)に示すように、タングステン(W)膜18を堆積する。
詳細には、第1の実施形態と同様に、2段階の熱CVD法により、以下のようにW膜22を堆積する。
先ず、第1段階(初期段階)として、WF6、H2及びNH3を含有し、シラン系ガスを含有しない第1の供給ガスを用いる。第1の供給ガスの流量におけるNH3ガスの含有割合としては、WF6ガスの熱分解反応の十分な促進効率を確保する観点から下限値を、成膜被覆率の低減を抑制する観点から上限値を設定して、例えば2%〜30%程度とすれば良い。ここでは第1の供給ガスの流量を、WF6/H2/NH3について50sccm/3000sccm/200sccm程度とする。また、希釈ガスとしてN2ガスを導入する。成膜温度(基板温度:第1の温度)としては、300℃〜360℃程度、ここでは330℃程度に設定する。また、WF6とNH3とを同時に反応室に導入せず、交互に導入することにより、WF6の分解の急速な反応を抑制して、薄膜成長を行う場合もある。
上記の要件で、ビア孔16の内壁面及び層間絶縁膜15上を下地膜17を介して覆うように、膜厚2nm〜10nm程度、ここでは5nm程度のW膜22aを形成する。
【0044】
次に、WF6及びH2を含有する第2の供給ガスを用い、第2の供給ガスの流量を、WF6/H2について100sccm/3000sccm程度に設定する。また、成膜温度(基板温度:第2の温度)を第1の温度よりも高温である350℃〜450℃程度、ここでは400℃程度に設定する。
上記の要件で、W膜22aと一体となってビア孔16を埋め込むように、膜厚100nm〜500nm程度、ここでは200nm程度のW膜22bを形成する。以上のように、W膜22aとW膜22bとが一体化してW膜22が形成される。なお、図示の例では便宜上、W膜22aとW膜22bとの境界を破線で示す。
【0045】
続いて、図8(b)と同様にCMPにより、ビア孔16内を下地膜17を介してW膜22で充填してなるWプラグ23を形成した後、図9と同様の工程を経る。以上により、図10(b)に示すように、Wプラグ23と電気的に接続され、層間絶縁膜15上で延在する上層配線21が形成される。
【0046】
ここで、Wプラグ23は、W膜22aにNH3ガスの窒素(N)を含有しており、その結果、W膜22の全体として見れば、少なくともW膜22の下地膜17との界面部分(W膜22aの部分)にNを含有する構成となる。
【0047】
しかる後、保護膜の形成や上層配線21との接続パッドの形成等を経て、本実施形態によるMOSトランジスタを完成させる。
【0048】
本実施形態では、Wプラグ23を形成する際に、先ず、NH3を含有する第1の供給ガスを用いて、接続孔等の開口を埋め込むようにW膜22aを堆積する。この構成により、下地膜17を薄く形成してビア孔17の内壁面に段差が生じた場合でも、ビア孔17の底面に露出するCu表面を供給ガスが浸食することが防止される。従って、ビア孔17を埋め込むようにW膜22を堆積した場合、堆積したW膜22にはCu配線部13のCuの移動が発生せず、薄い下地膜17でも当該下地膜17によりWがCu配線部13のCuと峻別された状態で、Wプラグ23が形成される。
【0049】
従って、本実施形態によれば、Wプラグ23の下地膜17の形成工程として、形成容易なプロセスを選択することができ、下層のCu配線部13のCuの浸食を抑制することにより、Cu配線部13とWプラグ23との間における接触抵抗を低く抑えるとともにその均一性を高め、信頼性の高いMOSトランジスタを実現することができる。
【0050】
なお、上記したように、第1の実施形態ではWプラグ19のW膜18aを形成する際に、第1の供給ガスとしてB26を含有したものを用い、第1の実施形態ではWプラグ23のW膜22aを形成する際に、第1の供給ガスとしてNH3を含有したものを用いる場合を例示した。本発明はこれらに限定されることなく、例えば第1の供給ガスとしてB26及びNH3を共に含有するものを用いることも考えられる。
【0051】
また、第1及び第2の実施形態では、第1の供給ガスを用いて形成する対象がWプラグである場合を例示した。本発明はこれらに限定されることなく、Cu配線部13を埋め込む層間絶縁膜15に開口として溝を形成し、この溝をW膜で充填してなるヒューズ(Wヒューズ)を形成する場合にも、上記と同様の第1の供給ガスを用いた熱CVD法が採用される。
【0052】
以下、本発明の諸態様を付記としてまとめて記載する。
【0053】
(付記1)半導体基板の上方に銅を含有する第1の配線を形成する工程と、
前記第1の配線上に層間絶縁膜を形成する工程と、
前記層間絶縁膜に、前記第1の配線の表面の一部を露出させる開口を形成する工程と、
WF6と、B26及びNH3の少なくとも一方とを含有する第1の供給ガスを用い、前記開口にWを含有する接続部を形成する工程と
を含むことを特徴とする半導体装置の製造方法。
【0054】
(付記2)前記接続部を形成する工程は、
前記第1の供給ガスを用いて、前記開口の内壁面を覆う第1のW含有膜を形成する工程と、
WF6及びH2を含有する第2の供給ガスを用い、前記開口を充填する第2のW含有膜を形成する工程と
を含むことを特徴とする付記1に記載の半導体装置の製造方法。
【0055】
(付記3)前記第1のW含有膜を形成する工程では、成膜温度を300℃以上360℃以下の第1の温度とし、
前記第2のW含有膜を形成する工程では、成膜温度を前記第1の温度よりも高い第2の温度とすることを特徴とする付記2に記載の半導体装置の製造方法。
【0056】
(付記4)前記接続部と電気的に接続されるように、前記層間絶縁膜上にAlを含有する第2の配線を形成する工程を更に含むことを特徴とする付記1〜3のいずれか1項に記載の半導体装置の製造方法。
【0057】
(付記5)前記開口部を形成する工程の後、前記接続部を形成する工程の前に、前記開口部の内壁に下地膜を形成する工程をさらに含むことを特徴とする付記1〜4のいずれか1項に記載の半導体装置の製造方法。
【0058】
(付記6)前記下地膜は、TiN又はWNを含むことを特徴とする付記1〜5のいずれか1項に記載の半導体装置の製造方法。
【0059】
(付記7)前記下地膜は、その最厚部分の厚みが2nm以上10nm以下であることを特徴とする付記1〜6のいずれか1項に記載の半導体装置の製造方法。
【0060】
(付記8)前記第1の供給ガスはシラン系ガスを含有しないことを特徴とする付記1〜7のいずれか1項に記載の半導体装置の製造方法。
【0061】
(付記9)半導体基板と、
前記半導体基板の上方に形成された、銅を含有する第1の配線と、
前記第1の配線上に形成され、前記第1の配線の一部を露出させるように形成された開口を有する層間絶縁膜と、
前記開口部に形成されたWを含有する接続部と
を含み、
前記接続部は、前記接続部はB又はNを含有することを特徴とする半導体装置。
【0062】
(付記10)前記接続部と電気的に接続されるように前記層間絶縁膜上に形成されてなる、Alを含有する第2の配線を更に含むことを特徴とする付記9に記載の半導体装置。
【0063】
(付記11)前記開口部の内壁面と前記接続部の間に形成された下地膜をさらに有し、前記下地膜はTiN又はWNを含むことを特徴とする付記9又は10に記載の半導体装置。
【0064】
(付記12)前記下地膜は、その最厚部分の厚みが2nm以上10nm以下であることを特徴とする付記9〜11のいずれか1項に記載の半導体装置。
【図面の簡単な説明】
【0065】
【図1】第1の実施形態によるMOSトランジスタの製造方法を工程順に示す概略断面図である。
【図2】図1に引き続き、第1の実施形態によるMOSトランジスタの製造方法を工程順に示す概略断面図である。
【図3】図2に引き続き、第1の実施形態によるMOSトランジスタの製造方法を工程順に示す概略断面図である。
【図4】図3に引き続き、第1の実施形態によるMOSトランジスタの製造方法を工程順に示す概略断面図である。
【図5】図4に引き続き、第1の実施形態によるMOSトランジスタの製造方法を工程順に示す概略断面図である。
【図6】図5に引き続き、第1の実施形態によるMOSトランジスタの製造方法を工程順に示す概略断面図である。
【図7】図6に引き続き、第1の実施形態によるMOSトランジスタの製造方法を工程順に示す概略断面図である。
【図8】図7に引き続き、第1の実施形態によるMOSトランジスタの製造方法を工程順に示す概略断面図である。
【図9】図8に引き続き、第1の実施形態によるMOSトランジスタの製造方法を工程順に示す概略断面図である。
【図10】第2の実施形態によるMOSトランジスタの製造方法の主要工程のみを示す概略断面図である。
【符号の説明】
【0066】
1 シリコン基板
2 素子分離構造
2a 分離溝
3 ゲート絶縁膜
4 ゲート電極
5 ソース/ドレイン領域
6,8,12,15 層間絶縁膜
7 Wプラグ
7a コンタクト孔
7b,9b,13d,17 下地膜
9 Cu配線
9a,13b 配線溝
11,14 エッチングストッパー膜
13 Cu配線部
13a,16 ビア孔
13c 複合溝
13e Cu膜
18,18a,18b,22,22a,22b W膜
19,23 Wプラグ
21 上層配線
21a,21c 密着膜
21b Al膜
31 SiN膜
31a 配線溝パターン
32,34 反射防止膜
33,35 レジストパターン
35a ビア孔パターン

【特許請求の範囲】
【請求項1】
半導体基板の上方に銅を含有する第1の配線を形成する工程と、
前記第1の配線上に層間絶縁膜を形成する工程と、
前記層間絶縁膜に、前記第1の配線の表面の一部を露出させる開口を形成する工程と、
WF6と、B26及びNH3の少なくとも一方とを含有する第1の供給ガスを用い、前記開口にWを含有する接続部を形成する工程と
を含むことを特徴とする半導体装置の製造方法。
【請求項2】
前記接続部を形成する工程は、
前記第1の供給ガスを用いて、前記開口の内壁面を覆う第1のW含有膜を形成する工程と、
WF6及びH2を含有する第2の供給ガスを用い、前記開口を充填する第2のW含有膜を形成する工程と
を含むことを特徴とする請求項1に記載の半導体装置の製造方法。
【請求項3】
前記第1のW含有膜を形成する工程では、成膜温度を300℃以上360℃以下の第1の温度とし、
前記第2のW含有膜を形成する工程では、成膜温度を前記第1の温度よりも高い第2の温度とすることを特徴とする請求項2に記載の半導体装置の製造方法。
【請求項4】
前記接続部と電気的に接続されるように、前記層間絶縁膜上にAlを含有する第2の配線を形成する工程を更に含むことを特徴とする請求項1〜3のいずれか1項に記載の半導体装置の製造方法。
【請求項5】
半導体基板と、
前記半導体基板の上方に形成された、銅を含有する第1の配線と、
前記第1の配線上に形成され、前記第1の配線の一部を露出させるように形成された開口を有する層間絶縁膜と、
前記開口部に形成されたWを含有する接続部と
を含み、
前記接続部は、前記接続部はB又はNを含有することを特徴とする半導体装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate


【公開番号】特開2009−130211(P2009−130211A)
【公開日】平成21年6月11日(2009.6.11)
【国際特許分類】
【出願番号】特願2007−304944(P2007−304944)
【出願日】平成19年11月26日(2007.11.26)
【出願人】(308014341)富士通マイクロエレクトロニクス株式会社 (2,507)
【Fターム(参考)】