説明

プラズマ処理装置及び方法

【課題】基材の表面近傍をごく短時間だけ均一に高温熱処理するに際して、あるいは、反応ガスによるプラズマまたはプラズマと反応ガス流を同時に基材へ照射して基材を低温プラズマ処理するに際して、基材の所望の被処理領域全体を短時間で処理することができ、かつ、再現性に優れたプラズマ処理装置及び方法を提供することを目的としている。
【解決手段】プラズマトーチユニットTにおいて、螺旋形の導体棒3が石英管4の内部に配置され、その周囲に真鍮ブロック5が配置されている。筒状チャンバ内にガスを供給しつつ、導体棒3に高周波電力を供給して、筒状チャンバ内にプラズマを発生させ、基材2に照射する。真鍮ブロック5は開口部12を先端として先細形状に構成され、放射光の光軸43が真鍮ブロック5によって遮られない位置に、基材2の表面温度を測定するための放射温度計受光部42が配置されている。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、熱プラズマを基材に照射して基材を処理する熱プラズマ処理や、反応ガスによるプラズマまたはプラズマと反応ガス流を同時に基材へ照射して基材を処理する低温プラズマ処理などの、プラズマ処理装置及び方法に関するものである。
【背景技術】
【0002】
従来、多結晶シリコン(poly−Si)等の半導体薄膜は薄膜トランジスタ(TFT:Thin Film Transistor)や太陽電池に広く利用されている。とりわけ、poly−SiTFTは、キャリア移動度が高いうえ、ガラス基板のような透明の絶縁基板上に作製できるという特徴を活かして、例えば、液晶表示装置、液晶プロジェクタや有機EL表示装置などの画素回路を構成するスイッチング素子として、或いは液晶駆動用ドライバの回路素子として広く用いられている。
【0003】
ガラス基板上に高性能なTFTを作製する方法としては、一般に「高温プロセス」と呼ばれる製造方法がある。TFTの製造プロセスの中でも、工程中の最高温度が1000℃程度の高温を用いるプロセスを一般的に「高温プロセス」と呼んでいる。高温プロセスの特徴は、シリコンの固相成長により比較的良質の多結晶シリコンを成膜することができる点、シリコンの熱酸化により良質のゲート絶縁層を得ることができる点、及び清浄な多結晶シリコンとゲート絶縁層との界面を形成できる点である。高温プロセスではこれらの特徴により、高移動度でしかも信頼性の高い高性能TFTを安定的に製造することができる。
【0004】
他方、高温プロセスは固相成長によりシリコン膜の結晶化を行うプロセスであるために、600℃程度の温度で48時間程度の長時間の熱処理を必要とする。これは大変長時間の工程であり、工程のスループットを高めるためには必然的に熱処理炉を多数必要とし、低コスト化が難しいという点が課題である。加えて、耐熱性の高い絶縁性基板として石英ガラスを使わざるを得ないため基板のコストが高く、大面積化には向かないとされている。
【0005】
一方、工程中の最高温度を下げ、安価な大面積のガラス基板上にpoly−SiTFTを作製するための技術が「低温プロセス」と呼ばれる技術である。TFTの製造プロセスの中でも、最高温度が概ね600℃以下の温度環境下において比較的安価な耐熱性のガラス基板上にpoly−SiTFTを製造するプロセスは、一般に「低温プロセス」と呼ばれている。低温プロセスでは、発振時間が極短時間のパルスレーザーを用いてシリコン膜の結晶化を行うレーザー結晶化技術が広く使われている。レーザー結晶化とは、基板上のシリコン薄膜に高出力のパルスレーザー光を照射することによって瞬時に溶融させ、これが凝固する過程で結晶化する性質を利用する技術である。
【0006】
しかしながら、このレーザー結晶化技術には幾つかの大きな課題がある。一つは、レーザー結晶化技術によって形成したポリシリコン膜の内部に局在する多量の捕獲準位である。この捕獲準位の存在により、電圧の印加によって本来能動層を移動するはずのキャリアが捕獲され、電気伝導に寄与できず、TFTの移動度の低下、閾値電圧の増大といった悪影響を及ぼす。更に、レーザー出力の制限によって、ガラス基板のサイズが制限されるといった課題もある。レーザー結晶化工程のスループットを向上させるためには、一回で結晶化できる面積を増やす必要がある。しかしながら、現状のレーザー出力には制限があるため、第7世代(1800mm×2100mm)といった大型基板にこの結晶化技術を採用する場合には、基板一枚を結晶化するために長時間を要する。
【0007】
また、レーザー結晶化技術は一般的にライン状に成形されたレーザーが用いられ、これを走査させることによって結晶化を行なう。このラインビームは、レーザー出力に制限があるため基板の幅よりも短く、基板全面を結晶化するためには、レーザーを数回に分けて走査する必要がある。これによって基板内にはラインビームの継ぎ目の領域が発生し、二回走査されてしまう領域ができる。この領域は一回の走査で結晶化した領域とは結晶性が大きく異なる。そのため両者の素子特性は大きく異なり、デバイスのバラツキの大きな要因となる。最後に、レーザー結晶化装置は装置構成が複雑であり且つ、消耗部品のコストが高いため、装置コストおよびランニングコストが高いという課題がある。これによって、レーザー結晶化装置によって結晶化したポリシリコン膜を使用したTFTは製造コストが高い素子になってしまう。
【0008】
このような基板サイズの制限、装置コストが高いといった課題を克服するため、「熱プラズマジェット結晶化法」と呼ばれる結晶化技術が研究されている(例えば、非特許文献1を参照)。本技術を以下に簡単に説明する。タングステン(W)陰極と水冷した銅(Cu)陽極を対向させ、DC電圧を印加すると両極間にアーク放電が発生する。この電極間に大気圧下でアルゴンガスを流すことによって、銅陽極に空いた噴出孔から熱プラズマが噴出する。熱プラズマとは、熱平衡プラズマであり、イオン、電子、中性原子などの温度がほぼ等しく、それらの温度が10000K程度を有する超高温の熱源である。このことから、熱プラズマは被熱物体を容易に高温に加熱することが可能であり、a−Si膜を堆積した基板が超高温の熱プラズマ前面を高速走査することによってa−Si膜を結晶化することができる。
【0009】
このように装置構成が極めて単純であり、且つ大気圧下での結晶化プロセスであるため、装置をチャンバー等の高価な部材で覆う必要が無く、装置コストが極めて安くなることが期待できる。また結晶化に必要なユーティリティは、アルゴンガスと電力と冷却水であるため、ランニングコストも安い結晶化技術である。
【0010】
図19は、この熱プラズマを用いた半導体膜の結晶化方法を説明するための模式図である。
【0011】
同図において、熱プラズマ発生装置31は、陰極32と、この陰極32と所定距離だけ離間して対向配置される陽極33とを備え構成される。陰極32は、例えばタングステン等の導電体からなる。陽極33は、例えば銅などの導電体からなる。また、陽極33は、中空に形成され、この中空部分に水を通して冷却可能に構成されている。また、陽極33には噴出孔(ノズル)34が設けられている。陰極32と陽極33の間に直流(DC)電圧を印加すると両極間にアーク放電が発生する。この状態において、陰極32と陽極33の間に大気圧下でアルゴンガス等のガスを流すことによって、上記の噴出孔34から熱プラズマ35を噴出させることができる。ここで「熱プラズマ」とは、熱平衡プラズマであり、イオン、電子、中性原子などの温度がほぼ等しく、それらの温度が10000K程度を有する超高温の熱源である。
【0012】
このような熱プラズマを半導体膜の結晶化のための熱処理に利用することができる。具体的には、基板36上に半導体膜37(例えば、アモルファスシリコン膜)を形成しておき、当該半導体膜37に熱プラズマ(熱プラズマジェット)35を当てる。このとき、熱プラズマ35は、半導体膜37の表面と平行な第1軸(図示の例では左右方向)に沿って相対的に移動させながら半導体膜37に当てられる。すなわち、熱プラズマ35は第1軸方向に走査しながら半導体膜37に当てられる。ここで「相対的に移動させる」とは、半導体膜37(及びこれを支持する基板23)と熱プラズマ35とを相対的に移動させることを言い、一方のみを移動させる場合と両者をともに移動させる場合のいずれも含まれる。このような熱プラズマ35の走査により、半導体膜37が熱プラズマ35の有する高温によって加熱され、結晶化された半導体膜38(本例ではポリシリコン膜)が得られる(例えば、特許文献1を参照)。
【0013】
図20は、最表面からの深さと温度の関係を示す概念図である。図20に示すように、熱プラズマ35を高速で移動させることにより、表面近傍のみを高温で処理することができる。熱プラズマ35が通り過ぎた後、加熱された領域は速やかに冷却されるので、表面近傍はごく短時間だけ高温になる。
【0014】
このような熱プラズマは、点状領域に発生させるのが一般的である。熱プラズマは、陰極32からの熱電子放出によって維持されており、プラズマ密度の高い位置では熱電子放出がより盛んになるため、正のフィードバックがかかり、ますますプラズマ密度が高くなる。つまり、アーク放電は陰極の1点に集中して生じることとなり、熱プラズマは点状領域に発生する。
【0015】
半導体膜の結晶化など、平板状の基材を一様に処理したい場合には、点状の熱プラズマを基材全体に渡って走査する必要があるが、走査回数を減らしてより短時間で処理できるプロセスを構築するには、熱プラズマの照射領域を広くすることが有効である。このため、古くから熱プラズマを大面積に発生させる技術が検討されている。
【0016】
例えば、プラズマトーチの外ノズルより噴射するプラズマジェットに、外ノズルの中心軸線と交差する方向でプラズマジェットを広幅化させるための広幅化ガスを2ケ所から同時に噴出し、プラズマジェットを広幅化させる方法が開示されている(例えば、特許文献2を参照)。あるいは、ノズル通路の口部が、当該ノズル通路の軸芯に対して所定角度で傾斜していることを特徴とするプラズマノズルを設け、ノズル通路を構成するケーシング、またはそのケーシングの一部を、その長手軸芯回りに高速で回転させ、プラズマノズルをワークピースに沿って通過移動させる方法が開示されている(例えば、特許文献3を参照)。また、少なくとも一つの偏芯して配置されたプラズマノズルを持つ回転ヘッドを設けたものが開示されている(例えば、特許文献4を参照)。
【0017】
なお、大面積を短時間で処理することを目的としたものではないが、熱プラズマを用いた溶接方法として、帯状電極を用い、その幅方向が溶接線方向となるように配置して溶接することを特徴とする高速ガスシールドアーク溶接方法が開示されている(例えば、特許文献5を参照)。
【0018】
また、扁平な直方体状の絶縁体材料を用いた、線状の細長い形状をなす誘導結合型プラズマトーチが開示されている(例えば、特許文献6を参照)。
【0019】
なお、長尺の電極を用いた細長い線状のプラズマを生成する方法が開示されている(例えば、特許文献7を参照)。熱プラズマを発生させるものと記載されているが、これは低温プラズマを発生させるものであり、熱処理に適した構成ではない。仮に熱プラズマを発生させたとすると、電極を用いた容量結合型であるため、アーク放電が一箇所に集中し、長尺方向に均一な熱プラズマを発生させることは困難と推察される。一方、低温プラズマ処理装置としては、エッチングガスやCVD(Chemical Vapor Deposition)用のガスをプラズマ化することにより、エッチングや成膜などのプラズマ処理が可能な装置である。
【0020】
また、熱プラズマを半導体膜の結晶化のための熱処理に利用する場合に基板の温度を測定する方法として、放射温度計を用いるものが開示されている(例えば、非特許文献2を参照)。
【先行技術文献】
【特許文献】
【0021】
【特許文献1】特開2008−53634号公報
【特許文献2】特開平08−118027号公報
【特許文献3】特開2001−68298号公報
【特許文献4】特表2002−500818号公報
【特許文献5】特開平04−284974号公報
【特許文献6】特表2009−545165号公報
【特許文献7】特開2007−287454号公報
【非特許文献】
【0022】
【非特許文献1】S.Higashi, H.Kaku,T.Okada,H.Murakami and S.Miyazaki,Jpn.J.Appl.Phys.45,5B(2006)pp.4313−4320
【非特許文献2】太田直希, 春田浩司, 清水宏一, 小林知洋, 白井肇, 埼玉大学地域オープンイノベーションセンター紀要(2008)pp.41−48
【発明の概要】
【発明が解決しようとする課題】
【0023】
しかしながら、半導体の結晶化など、ごく短時間だけ基材の表面近傍を高温処理する用途に対して、従来の熱プラズマを大面積に発生させる技術は有効ではなかった。
【0024】
従来例に示した特許文献2に記載の、熱プラズマを大面積に発生させる技術においては、広幅化はされるものの、広幅化された領域における温度分布は100℃以上となっており、均一な熱処理の実現は不可能である。
【0025】
また、従来例に示した特許文献3、4に記載の、熱プラズマを大面積に発生させる技術においては、本質的には熱プラズマを揺動させるものであるから、実質的に熱処理されている時間は、回転させずに走査した場合と比べて短くなるので、大面積を処理する時間が特段短くなるものではない。また、均一処理のためには回転速度を走査速度に比べて十分に大きくする必要があり、ノズルの構成が複雑化することは避けられない。
【0026】
また、従来例に示した特許文献5に記載の技術は溶接技術であり、大面積を均一に処理するための構成ではない。仮にこれを大面積処理用途に適用しようとしても、この構成においては点状のアークが帯状電極に沿って振動するので、時間平均すると均一にプラズマが発生するものの、瞬間的には不均一なプラズマが生じている。したがって、大面積の均一処理には適用できない。
【0027】
また、従来例に示した特許文献6に記載の技術は、非特許文献1や特許文献1に開示されているDCアーク放電を用いたものと異なり、誘導結合型の高周波プラズマトーチであることが特徴である。無電極放電であることから、熱プラズマの安定性に優れ(時間変化が小さい)、電極材料の基材への混入(コンタミネーション)が少ないという利点がある。
【0028】
さて、誘導結合型プラズマトーチにおいては、高温プラズマから絶縁体材料を保護するために、絶縁体材料を二重管構成としてその間に冷媒を流す方法が一般的に採用されている。しかしながら、従来例に示した特許文献6に記載の技術においては、絶縁体材料が扁平な直方体状をなしていることから、これを単純に二重管構成としただけでは、十分な流量の冷媒を流すことができない。なぜなら、絶縁体材料は一般に金属に比べて機械的強度に劣るため、絶縁体材料を長尺方向に余りに長くすると、二重管の内圧を高くできなくなるからである。このため、大面積を均一に処理するのに限界がある。
【0029】
また、仮に絶縁体材料の冷却の問題がないと仮定しても、従来例に示した特許文献6に記載の技術においては、絶縁体材料の内部空間に形成した高温プラズマは、その最下部から噴出するごく一部のみが基材に直接作用する構成であるため、電力効率が悪いという問題点がある。また、絶縁体材料の内部空間においては、中心付近のプラズマ密度が高くなるので、長尺方向にプラズマが不均一となり、基材を均一に処理することができないという問題点がある。
【0030】
なお、点状の熱プラズマであっても、その直径が大きければ大面積処理の際の走査回数を減らせるため、用途によっては短時間で処理できる。しかし、熱プラズマの直径が大きいと、走査時に熱プラズマが基材上を通過する時間が実質的に長くなるため、ごく短時間だけ基材の表面近傍のみを高温処理することはできず、基材のかなり深い領域までが高温になり、例えばガラス基板の割れや膜剥がれなどの不具合を生じることがある。
【0031】
また、従来例に示した技術は、あらかじめ決めたトーチ生成条件で基板を処理するものであり、トーチ構成部品の材料劣化などの経時変化等により、プラズマの状態が変化し、結果として処理時の基板温度が変化するおそれがある。つまり、処理の再現性に問題がある。あるいは、装置の異常を検知できない。
【0032】
また、従来例に示した非特許文献2に開示されている技術は、基板温度を測定しながら処理を行うものであるが、トーチを構成する石英円筒と走査の方向が垂直で熱プラズマの直径も非常に小さく、大面積処理に適しているとはいいがたい。また、石英円筒が水冷されていないため、十分に温度の高いプラズマが形成できず、走査時に熱プラズマが基材上を通過する時間を長くする必要があり、基材のかなり深い領域までが高温になり、例えばガラス基板の割れや膜剥がれなどの不具合を生じることがある。これを水冷しようとすると、石英円筒の下側を大きな金属製フランジで蓋する構造とならざるを得ず、温度計の光軸がフランジで遮られてしまい、処理と基板温度の測定を同時に行うことは困難である。
【0033】
本発明はこのような課題に鑑みなされたもので、基材の表面近傍をごく短時間だけ均一に高温熱処理するに際して、あるいは、反応ガスによるプラズマまたはプラズマと反応ガス流を同時に基材へ照射して基材を低温プラズマ処理するに際して、基材の所望の被処理領域全体を短時間で処理することができ、かつ、再現性に優れたプラズマ処理装置及び方法を提供することを目的としている。
【課題を解決するための手段】
【0034】
本願の第1発明のプラズマ処理装置は、スリット状の開口部を備える筒状チャンバと、前記チャンバ内にガスを供給するガス導入口と、前記チャンバ内に高周波電磁界を発生させるコイルと、前記コイルに高周波電力を供給する高周波電源と、前記開口部と対向して配置され、かつ基材を保持する基材載置台と、を有するプラズマ処理装置において、前記筒状チャンバの長手方向と前記開口部の長手方向とは平行に配置され、前記開口部の長手方向に対して垂直な向きに、前記チャンバと前記基材載置台とを相対的に移動可能とする移動機構を備え、前記筒状チャンバの外形は、前記基材載置台に近づくほど、前記筒状チャンバの長手方向に垂直で、かつ、前記基材載置台に平行な方向の幅が小さく、放射温度計の受光部が、前記筒状チャンバの外側の位置で、かつ、前記放射温度計と前記基材載置台上に基材が載置されるべき位置とを結ぶ線分、すなわち、温度測定のための放射光の光軸が、前記筒状チャンバによって遮られない位置に配置されていることを特徴とする。
【0035】
このような構成により、基材の表面近傍をごく短時間だけ均一に高温熱処理するに際して、あるいは、反応ガスによるプラズマまたはプラズマと反応ガス流を同時に基材へ照射して基材を低温プラズマ処理するに際して、基材の所望の被処理領域全体を短時間で処理することができ、かつ、再現性に優れたプラズマ処理が実現できる。
【0036】
本願の第1発明のプラズマ処理装置において、好適には、前記放射温度計が、1μm以上14μm以下の波長の光を受光することにより、温度を測定するものであることが望ましい。
【0037】
このような構成により、プラズマの発光と基材の温度上昇にともなう放射光が干渉しない波長で温度を測定することができるため、より正確な温度測定が可能となる。
【0038】
また、好適には、前記放射温度計の受光部が、前記開口部の長手方向に対して平行な線分上の複数の位置に設けられていることが望ましい。
【0039】
このような構成により、開口部の長手方向の不均一を検出することができるため、より均一なプラズマ処理が実現できる。
【0040】
また、好適には、前記放射温度計の測定結果により、高周波電力、ガス流量、または、前記筒状チャンバと基材載置台との距離を変化させるフィードバック制御機構を備えることが望ましい。
【0041】
このような構成により、再現性に優れたプラズマ処理が実現できる。
【0042】
また、好適には、前記放射温度計の測定結果により、装置状態の異常判定を行う機構を備えることが望ましい。
【0043】
このような構成により、信頼性に優れたプラズマ処理が実現できる。
【0044】
また、好適には、前記コイルはソレノイドコイルであり、前記コイルの延出方向と前記開口部の長手方向とが平行に配置されていることが望ましい。
【0045】
このような構成により、開口部の長手方向の均一性に優れたプラズマ処理が実現できる。
【0046】
この場合、さらに好適には、前記チャンバを前記コイルの延出方向に対して垂直な面で切った断面形状のうち、前記チャンバ内部の空間は、U字状であることが望ましい。
【0047】
このような構成により、さらに長手方向の均一性に優れたプラズマ処理が実現できる。
【0048】
また、好適には、前記チャンバ内部のU字状の空間の外側が金属筒で構成され、前記前記チャンバ内部のU字状の空間の内側が誘電体筒で構成され、前記誘電体筒に前記コイルが設けられてなることが望ましい。
【0049】
このような構成により、信頼性に優れ、長手方向の均一性に優れたプラズマ処理が実現できる。
【0050】
また、好適には、前記ガス導入口が前記開口部の長手方向と平行に設けられ、かつ前記開口部と対向する面に設けられていることが望ましい。
【0051】
このような構成により、長手方向の均一性に優れたプラズマ処理が実現できる。
【0052】
また、好適には、前記コイルが絶縁性流体に浸され、かつ、前記絶縁性流体が流れることによって前記コイルが冷却されることが望ましい。
【0053】
このような構成により、さらに高温のプラズマを安定して発生させることができる。
【0054】
あるいは、前記コイルが、前記筒状チャンバの長手方向に平行に配置された複数の導体棒を、前記筒状チャンバの長手方向と垂直に配置された導体リンクにより接続してなるものであり、
前記導体棒が、誘電体筒内に挿入され、
前記誘電体筒の一部が前記筒状チャンバ内部の空間に露出するよう配置されていてもよい。
【0055】
この場合、好適には、前記導体棒の外壁面と前記誘電体筒の内壁面の間の空間に絶縁性流体が流れることによって、前記導体棒及び前記誘電体筒が冷却されることが望ましい。
【0056】
このような構成により、さらに高温のプラズマを安定して発生させることができる。
【0057】
また、好適には、前記導体棒が中空の管状であり、前記導体棒がなす管の内部空間に流体が流れることによって、前記導体棒が冷却されることが望ましい。
【0058】
このような構成により、さらに高温のプラズマを安定して発生させることができる。
【0059】
本願の第2発明のプラズマ処理方法は、筒状チャンバ内にガスを供給しつつ、前記チャンバに形成されたスリット状の開口部から基材に向けてガスを噴出すると共に、コイルに高周波電力を供給することで、前記チャンバ内に高周波電磁界を発生させるプラズマ処理方法において、前記開口部の長手方向に対して垂直な向きに前記チャンバと前記基材とを相対的に移動しながら、放射温度計を用いて基材の温度を測定しながら前記基材の表面を処理するに際して、前記筒状チャンバの外形は、前記基材載置台に近づくほど、前記筒状チャンバの長手方向に垂直で、かつ、前記基材載置台に平行な方向の幅が小さく配置され、
放射温度計の受光部が、前記筒状チャンバの外側の位置で、かつ、前記放射温度計と前記基材載置台上に基材が載置されるべき位置とを結ぶ線分、すなわち、温度測定のための放射光の光軸が、前記筒状チャンバによって遮られない位置に配置されていることを特徴とする。
【0060】
このような構成により、基材の表面近傍をごく短時間だけ均一に高温熱処理するに際して、あるいは、反応ガスによるプラズマまたはプラズマと反応ガス流を同時に基材へ照射して基材を低温プラズマ処理するに際して、基材の所望の被処理領域全体を短時間で処理することができ、かつ、再現性に優れたプラズマ処理が実現できる。
【発明の効果】
【0061】
本発明によれば、基材の表面近傍をごく短時間だけ均一に高温熱処理するに際して、あるいは、反応ガスによるプラズマまたはプラズマと反応ガス流を同時に基材へ照射して基材を低温プラズマ処理するに際して、基材の所望の被処理領域全体を短時間で処理することができ、かつ、再現性に優れたプラズマ処理が実現できる。
【図面の簡単な説明】
【0062】
【図1】本発明の実施の形態1におけるプラズマ処理装置の構成を示す断面図
【図2】本発明の実施の形態1におけるプラズマ処理装置の構成を示す斜視図
【図3】本発明の実施の形態1におけるプラズマ処理装置の構成を示す斜視図
【図4】本発明の実施の形態2におけるプラズマ処理装置の構成を示す断面図
【図5】本発明の実施の形態2におけるプラズマ処理装置の構成を示す斜視図
【図6】本発明の実施の形態2におけるプラズマ処理装置の構成を示す斜視図
【図7】本発明の実施の形態3におけるプラズマ処理装置の構成を示す断面図
【図8】本発明の実施の形態3におけるプラズマ処理装置の構成を示す斜視図
【図9】本発明の実施の形態3におけるプラズマ処理装置の構成を示す断面図
【図10】本発明の実施の形態3におけるプラズマ処理装置の構成を示す斜視図
【図11】本発明の実施の形態3におけるプラズマ処理装置の構成を示す斜視図
【図12】本発明の実施の形態3におけるプラズマ処理装置の構成を示す斜視図
【図13】本発明の実施の形態4におけるプラズマ処理装置の構成を示す断面図
【図14】本発明の実施の形態5におけるプラズマ処理装置の構成を示す断面図
【図15】本発明の実施の形態6におけるプラズマ処理装置の構成を示す断面図
【図16】本発明の実施の形態6におけるプラズマ処理装置の構成を示す断面図
【図17】本発明の実施の形態7におけるプラズマ処理装置の構成を示す斜視図
【図18】本発明の実施の形態7におけるプラズマ処理装置の構成を示す斜視図
【図19】従来例の熱プラズマを用いた半導体膜の結晶化方法を説明するための模式図
【図20】従来例における最表面からの深さと温度の関係を示す概念図
【発明を実施するための形態】
【0063】
以下、本発明の実施の形態におけるプラズマ処理装置について図面を用いて説明する。
【0064】
(実施の形態1)
以下、本発明の実施の形態1について、図1〜図3を参照して説明する。
【0065】
図1(a)は本発明の実施の形態1におけるプラズマ処理装置の構成を示すもので、誘導結合型プラズマトーチユニットの長尺方向に垂直な面で切った断面図である。図1(b)は、図1(a)の破線A〜A’で切った断面図であり、ソレノイドコイルの中心軸を含み、かつ、基材に垂直な面で切った断面図である。
【0066】
なお、図1(a)は、図1(b)の破線B〜B’で切った断面図である。また、図2は、図1に示した誘導結合型プラズマトーチユニットの組立構成図であり、各部品の斜視図を並べたものである。また、図3は、誘導結合型プラズマトーチユニットを構成する蓋を、下から見たときの斜視図である。
【0067】
図1〜図3において、基材載置台1上に基材2が載置されている。誘導結合型プラズマトーチユニットTにおいて、ソレノイドコイルをなす螺旋形の導体棒3が、誘電体筒としての石英管4の内部に、石英管4を貫通して配置される。石英管4の周囲に、筒状チャンバの壁面を与える筐体としての真鍮ブロック5が配置され、また、石英管4の上側は、真鍮製の蓋6に接している。筒状チャンバ内部の空間7は、石英管4、真鍮ブロック5、蓋6、真鍮ブロック17により囲まれた筒状の長細いU字状の空間である。つまり、筒状チャンバを導体棒3の延出方向に対して垂直な面で切った断面形状のうち、筒状チャンバ内部の空間は、U字状である。なお、導体棒3の延出方向とは、導体棒3がなすソレノイドコイルの中心軸の方向(図1(b)の左右方向)であり、コイルが延びる方向を意味する。
【0068】
蓋6の下方に、プラズマガスマニホールド8となる溝、プラズマガス供給穴9となる溝、シースガスマニホールド10となる溝、シースガス供給穴11となる溝が形成されている。また、基材載置台1に近い部分に、シールドガスノズル13が配置され、その内部にはシールドガスマニホールド14が設けられる。このように、3系統のガス導入が準備されており、プラズマ生成に適したプラズマガスと、真鍮ブロック5の内壁面を保護するシースガスとに分けて、ガス種・ガス流量などを適宜調整することにより、安定したプラズマ処理を可能とするほか、シールドガスを別途供給して大気中の酸素、二酸化炭素など、処理に不要、あるいは悪影響を及ぼすガスのプラズマ照射面への混入を低減することが可能となる。
【0069】
導体棒3が配置されている石英管4の内部は、絶縁性流体としての水に浸され、かつ、水が流れることによって導体棒3が冷却される構成となっている。また、真鍮ブロック5及び蓋6には、これらを貫通する冷却水配管15が設けられている。これらの水路は、真鍮ブロック17の外側に設けられた樹脂ケース18と真鍮ブロック17との間の空間がなす冷却水マニホールド22に連通している。樹脂ケース18には、冷却水出入口24が各1箇所ずつ設けられ、誘導結合型トーチユニットTへの水冷配管の引き回しが非常に簡潔なものとなっている。
【0070】
導体棒3は樹脂ケース18に設けられた高周波導入端子穴26及び接地端子穴27を介して銅ブロック19に接続され、銅板20を通じて図示しない高周波整合回路に接続される。
【0071】
長方形のスリット状のプラズマ噴出口12(これを「開口部」と称する場合もある)が設けられ、基材載置台1(或いは、基材載置台1上に基材2)は、プラズマ噴出口12と対向して配置されている。この状態で、筒状チャンバ内にガスを供給しつつ、プラズマ噴出口12から基材2に向けてガスを噴出させながら、図示していない高周波電源よりソレノイドコイルをなす導体棒3に高周波電力を供給することにより、筒状チャンバ内にプラズマを発生させ、プラズマ噴出口12からプラズマを基材2に照射することにより、基材2上の薄膜16をプラズマ処理することができる。
【0072】
本構成においては、筒状チャンバの長手方向と、コイルの延出方向と、開口部12の長手方向とがすべて平行に配置されていることが特徴で、開口部12の長手方向に対して垂直な向きに、チャンバと基材載置台1とを相対的に移動させることで、基材2を処理する。つまり、図1(a)の左右方向へ、図1(b)の紙面に垂直な方向へ、誘導結合型プラズマトーチユニットTまたは基材載置台1を動かす。このとき、基材2の表面温度を測定するための放射温度計受光部42は、誘導結合型プラズマトーチユニットTとの相対位置を一定に保つことが好ましい。
【0073】
また、筒状チャンバの外形をなす真鍮ブロック5は、開口部12を先端として先細形状に構成されている。つまり、真鍮ブロック5は、基材載置台1に近づくほど、筒状チャンバの長手方向に垂直で、かつ、基材載置台1に平行な方向の幅が小さくなっている。そして、誘導結合型プラズマトーチユニットTの外側の位置で、かつ、放射温度計受光部42と基材載置台1上に基材2が載置されるべき位置とを結ぶ線分、すなわち、温度測定のための放射光の光軸43が、筒状チャンバをなす真鍮ブロック5によって遮られない位置に、放射温度計受光部42が配置されている。このように構成することで、重要なパラメータである基材2の表面温度を測定しながらプラズマ処理ができるので、再現性に優れたプラズマ処理が実現できる。
【0074】
このような構成をとりうるのは、筒状チャンバの長手方向と開口部12の長手方向とが平行に配置されていることに起因する。従来の誘導結合型プラズマトーチにおいては、筒状チャンバの長手方向と開口部の長手方向とは垂直な向きに配置されているので、開口部を十分に冷却しつつ、筒状チャンバを十分に冷却するには、トーチユニットの下部を比較的大型の金属製フランジで蓋する構造とならざるを得ず、温度計の光軸がフランジで遮られてしまい、処理と基板温度の測定を同時に行うことは困難である。一方、本構成においては、筒状チャンバの長手方向と、開口部12の長手方向が平行に配置されているので、トーチユニットの下部で誘電体筒を蓋する必要がなくなり、先細の形状をとることが可能となった。
【0075】
なお、放射温度計受光部42内にはレンズが設けられ、基材2の表面の狭い領域(たとえば、直径0.5mm程度の領域)の温度を測定することが可能である。レンズを介して、受光部42に接続された図示しない光ファイバに導かれた放射光が、図示しない放射温度計本体に送られる。
【0076】
次に、ガス供給の構造について説明する。プラズマガス供給配管41、シースガス供給配管42は、蓋6に設けられ、蓋6内部の貫通穴を介してプラズマガスマニホールド8、シースガスマニホールド10に連通する。図3に示すように、蓋6の下面にマニホールド8、10やガス供給穴9、11となる溝が形成されている。マニホールド8、10となる溝は深く、筒状チャンバの長手方向に平行に長く掘り込まれており、ガス溜まりとして機能する。ガス供給穴9、11となる溝は浅く、筒状チャンバの長手方向に平行に短く掘り込まれており、その数は多数となっている。
【0077】
蓋6の凸部と石英管4の間の僅かな隙間から、プラズマガスが下方、すなわち、トーチユニットTから基材2へ向かう向きに染み出してくる構成である。同様に、蓋6の凸部と真鍮ブロック5の間の僅かな隙間から、シースガスが下方、すなわち、トーチユニットTから基材2へ向かう向きに染み出してくる構成である。ガスが筒状チャンバ内に染み出してくる部位をガス導入口と呼ぶならば、ガス導入口は開口部12の長手方向と平行に設けられ、かつ開口部12と対向する面に設けられている構成となっている。このような構成により、筒状チャンバ内のガスの流れと、ガス噴出口から基材載置台1に向かうガスの流れが、ともにスムーズになって層流化しやすく、安定したプラズマ処理が可能となる。
【0078】
一方、シールドガスは、シールドガスマニホールド14に連通した多数の穴、または単一の溝から、開口部12と基材2の間に向けて噴出させる。このとき、穴または単一の溝の向きを工夫することにより、ガス噴出の向きを開口部12に向けたり、基材2の表面に向けたりすることも可能であり、処理の種類に応じて適宜選択すればよい。
【0079】
また、本構成においては、プラズマ噴射口12の長手方向の長さが、基材2の幅以上となっているので、一度の走査(トーチユニットTと基材載置台1とを相対的に移動すること)で基材2の表面近傍の薄膜16の全体を熱処理することができる。
【0080】
このようなプラズマ処理装置において、筒状チャンバ内にガス噴出口よりArまたはAr+H2ガス、シールドガス噴出口からN2ガスを供給しつつ、プラズマ噴出口12から基材2に向けてガスを噴出させながら、図示していない高周波電源より13.56MHzの高周波電力を、ソレノイドコイルをなす導体棒3に供給することにより、筒状チャンバ内にプラズマを発生させ、プラズマ噴出口12からプラズマを基材2に照射するとともに走査することで、半導体膜の結晶化などの熱処理を行うことができる。
【0081】
このように、ソレノイドコイルの中心軸の方向と、プラズマ噴出口12の長手方向と、基材載置台1とが平行に配置されたまま、プラズマ噴出口12の長手方向とは垂直な向きに、筒状チャンバと基材載置台1とを相対的に移動するので、生成すべきプラズマの長さと、基材2の処理長さがほぼ等しくなるように構成することが可能となる。また、筒状チャンバをその中心軸に垂直な面で切った断面の幅(図1(b)における、チャンバ内部空間7の幅)は、プラズマ噴出口12の幅(図1(b)における隙間の長さ)より少しでも大きければよい。つまり、生成すべきプラズマの体積を、従来と比較して極めて小さくすることができる。その結果、電力効率が飛躍的に高まる。
【0082】
また、筒状チャンバの内部空間においては、中心軸の向きに比較的均一なプラズマを生成することができるので、長尺方向にプラズマが均一となり、基材を均一に処理することができる。
【0083】
なお、放射温度計が、1μm以上14μm以下の波長の光を受光することにより、温度を測定するものであることが望ましい。このような構成により、プラズマの発光と基材の温度上昇にともなう放射光が干渉しない波長で温度を測定することができるため、より正確な温度測定が可能となる。
【0084】
また、放射温度計の測定結果により、高周波電力、ガス流量、または、筒状チャンバと基材載置台との距離を変化させるフィードバック制御機構を備えることにより、再現性に優れたプラズマ処理が実現できる。例えば、測定された温度が所定の温度よりも低ければ、高周波電力を大きくする、ガス流量を減らす、または筒状チャンバと基材載置台との距離を小さくする、という変化を与えることが適切である。
【0085】
また、放射温度計の測定結果により、装置状態の異常判定を行う機構を備えることにより、信頼性に優れたプラズマ処理が実現できる。例えば、測定された温度が所定の温度範囲を外れた場合に装置の異常と判断し、装置を一時停止とするとともに、オペレータに点検を促す信号を表示することができる。
【0086】
(実施の形態2)
以下、本発明の実施の形態2について、図4〜図6を参照して説明する。
【0087】
図4(a)は本発明の実施の形態2におけるプラズマ処理装置の構成を示すもので、誘導結合型プラズマトーチユニットの長尺方向に垂直な面で切った断面図である。図4(b)は、図4(a)の破線A〜A’で切った断面図であり、ソレノイドコイルの中心軸を含み、かつ、基材に垂直な面で切った断面図である。
【0088】
なお、図4(a)は、図4(b)の破線B〜B’で切った断面図である。また、図5は、図4に示した誘導結合型プラズマトーチユニットの組立構成図であり、各部品の斜視図を並べたものである。また、図6は、誘導結合型プラズマトーチユニットを構成する蓋を、下から見たときの斜視図である。
【0089】
本発明の実施の形態2においては、実施の形態1とは、石英管4と蓋6の形状が異なるだけであるから、それ以外の説明は省略する。
【0090】
石英管4は、位置決めとシールのための突出部(一部、外径が大きくなっている部分)を除き、外径が一様の円筒であり、製作が極めて容易であるという点で、本発明の実施の形態1よりも優れる。石英管4の上方の空間を埋めることにより、ガス流れの層流化を図るため、蓋6の下方が下に向けて大きく凸になっている。そして、凸部の先端が石英管4に沿うように、円弧状に成形されている。また、凸部にも水冷配管15を形成できるので、実施の形態1よりも効果的な水冷が可能である。
【0091】
プラズマガス供給配管41、シースガス供給配管42は、蓋6に設けられ、蓋6内部の貫通穴を介してプラズマガスマニホールド8、シースガスマニホールド10に連通する。図6に示すように、蓋6の下面にマニホールド8、10やガス供給穴9、11となる溝が形成されている。マニホールド8、10となる溝は深く、筒状チャンバの長手方向に平行に長く掘り込まれており、ガス溜まりとして機能する。ガス供給穴9となる溝は、浅く、筒状チャンバの長手方向に平行に長く掘り込まれており、その数は1つである。ガス供給穴11となる溝は浅く、筒状チャンバの長手方向に平行に短く掘り込まれており、その数は多数となっている。ガス供給穴9となる溝が、長手方向に長く掘り込まれている点が、実施の形態1との大きな違いである。
【0092】
実施の形態2のような構成においても、長手方向に短く掘り込まれた多数の浅い溝を用いることができるし、逆に、実施の形態1のような構成においても、長手方向に長く掘り込まれた1つの浅い溝を用いることも可能である。
【0093】
この構成は、蓋6の凸部と石英管4の間の僅かな隙間(浅い溝)から、プラズマガスが下方、すなわち、トーチユニットTから基材2へ向かう向きに染み出してくる構成である。同様に、蓋6の凸部と真鍮ブロック5の間の僅かな隙間から、プラズマガスが下方、すなわち、トーチユニットTから基材2へ向かう向きに染み出してくる構成である。
【0094】
(実施の形態3)
以下、本発明の実施の形態3について、図7〜図12を参照して説明する。
【0095】
図7(a)は本発明の実施の形態3におけるプラズマ処理装置の構成を示すもので、誘導結合型プラズマトーチユニットの長尺方向に垂直な面で切った断面図である。図7(b)は、図7(a)の破線A〜A’で切った断面図であり、導体棒の中心軸を含み、かつ、基材に垂直な面で切った断面図である。
【0096】
なお、図7(a)は、図7(b)の破線B〜B’で切った断面図である。また、図8は、図7に示した誘導結合型プラズマトーチユニットの組立構成図であり、各部品の斜視図を並べたものである。また、図9は、図7(b)C部の拡大断面図である。また、図10は、導体棒の周辺構造を示す斜視図、図11は長い導体棒の周辺構造を示す斜視図、図12は、導体棒と導体リンクの配置を示す斜視図である。
【0097】
図7〜図8において、基材載置台1上に基材2が載置されている。誘導結合型プラズマトーチユニットTにおいて、コイルは、筒状チャンバの長手方向に平行に配置された複数の導体棒3を、筒状チャンバの長手方向と垂直に配置された導体リンク23により接続してなるものであり、全体として螺旋形を構成し、その螺旋の内部空間と筒状チャンバ内部の空間7が重なり合っている構造である。
【0098】
複数の導体棒3は、誘電体筒としての石英管4の内部に、石英管4を貫通して配置される。石英管4の周囲に、筒状チャンバの壁面を与える筐体としての真鍮ブロック5が配置され、また、石英管4の外側は、真鍮ブロック5に接している。筒状チャンバ内部の空間7は、石英管4、真鍮ブロック5、真鍮ブロック17により囲まれた筒状の長細い空間である。つまり、石英管4の一部(内側の半円柱部分)が筒状チャンバ内部の空間7に露出するよう配置されている。
【0099】
真鍮ブロック5の上方に、プラズマガスマニホールド8となる溝、プラズマガス供給穴9となる溝が形成されており、2つの真鍮ブロック5を組み合わせたときに、これらに囲まれた空間が閉じた空間としてプラズマガスマニホールド8とプラズマガス供給穴9が画定される構造である。また、蓋6にシースガスマニホールド10となる座グリが設けられ、真鍮ブロック5と組み合わせたときに、真鍮ブロック5と蓋6に囲まれた空間が閉じた空間としてシースガスマニホールド10が画定される構造である。また、真鍮ブロック5に、シースガス供給穴11となる貫通孔が形成されている。
【0100】
また、基材載置台1に近い部分に、シールドガスノズル13が配置され、その内部にはシールドガスマニホールド14が設けられる。このように、3系統のガス導入が準備されており、プラズマ生成に適したプラズマガスと、石英管4の外壁面を保護するシースガスとに分けて、ガス種・ガス流量などを適宜調整することにより、安定したプラズマ処理を可能とするほか、シールドガスを別途供給して大気中の酸素、二酸化炭素など、処理に不要、あるいは悪影響を及ぼすガスのプラズマ照射面への混入を低減することが可能となる。
【0101】
導体棒3が配置されている石英管4の内部は、絶縁性流体としての水に浸され、かつ、水が流れることによって石英管4と導体棒3が冷却される構成となっている。さらに、導体棒3は中空の管状であり、導体棒3内部にも水が流れ、導体棒3が冷却される構成となっている。すなわち、導体棒3の外壁面と石英管4の内壁面の間の空間に絶縁性流体が流れることによって、導体棒3及び石英管4が冷却され、導体棒3が中空の管状であり、導体棒3がなす管の内部空間に流体が流れることによって、導体棒3が冷却される構成である。
【0102】
また、真鍮ブロック5には、これらを貫通する冷却水配管15が設けられている。これらの水路は、真鍮ブロック17の外側に設けられた樹脂ケース18と真鍮ブロック17との間の空間がなす冷却水マニホールド22に連通している。冷却水には、冷却水出入口24が各1箇所ずつ設けられ、誘導結合型トーチユニットTへの水冷配管の引き回しが非常に簡潔なものとなっている。
【0103】
導体棒3のうち、2本の長い導体棒3aは、樹脂ケース18に設けられた高周波導入端子穴26及び接地端子穴27を介して銅ブロック19に接続され、銅板20を通じて図示しない高周波整合回路に接続される。
【0104】
長方形のスリット状のプラズマ噴出口12(これを「開口部」と称する場合もある)が設けられ、基材載置台1(或いは、基材載置台1上に基材2)は、プラズマ噴出口12と対向して配置されている。この状態で、筒状チャンバ内にガスを供給しつつ、プラズマ噴出口12から基材2に向けてガスを噴出させながら、図示していない高周波電源よりコイルをなす導体棒3に高周波電力を供給することにより、筒状チャンバ内にプラズマを発生させ、プラズマ噴出口12からプラズマを基材2に照射することにより、基材2上の薄膜16をプラズマ処理することができる。
【0105】
本構成においては、筒状チャンバの長手方向と、導体棒3の長手方向と、開口部12の長手方向とがすべて平行に配置されていることが特徴で、開口部12の長手方向に対して垂直な向きに、チャンバと基材載置台1とを相対的に移動させることで、基材2を処理する。つまり、図7(a)の左右方向へ、図7(b)の紙面に垂直な方向へ、誘導結合型プラズマトーチユニットTまたは基材載置台1を動かす。このとき、基材2の表面温度を測定するための放射温度計受光部42は、誘導結合型プラズマトーチユニットTとの相対位置を一定に保つことが好ましい。
【0106】
また、筒状チャンバの外形をなす真鍮ブロック5は、開口部12を先端として先細形状に構成されている。つまり、真鍮ブロック5は、基材載置台1に近づくほど、筒状チャンバの長手方向に垂直で、かつ、基材載置台1に平行な方向の幅が小さくなっている。そして、誘導結合型プラズマトーチユニットTの外側の位置で、かつ、放射温度計受光部42と基材載置台1上に基材2が載置されるべき位置とを結ぶ線分、すなわち、温度測定のための放射光の光軸43が、筒状チャンバをなす真鍮ブロック5によって遮られない位置に、放射温度計受光部42が配置されている。このように構成することで、重要なパラメータである基材2の表面温度を測定しながらプラズマ処理ができるので、再現性に優れたプラズマ処理が実現できる。
【0107】
このような構成をとりうるのは、筒状チャンバの長手方向と開口部12の長手方向とが平行に配置されていることに起因する。従来の誘導結合型プラズマトーチにおいては、筒状チャンバの長手方向と開口部の長手方向とは垂直な向きに配置されているので、開口部を十分に冷却しつつ、筒状チャンバを十分に冷却するには、トーチユニットの下部を比較的大型の金属製フランジで蓋する構造とならざるを得ず、温度計の光軸がフランジで遮られてしまい、処理と基板温度の測定を同時に行うことは困難である。一方、本構成においては、筒状チャンバの長手方向と、開口部12の長手方向が平行に配置されているので、トーチユニットの下部で誘電体筒を蓋する必要がなくなり、先細の形状をとることが可能となった。
【0108】
なお、放射温度計受光部42内にはレンズが設けられ、基材2の表面の狭い領域(たとえば、直径0.5mm程度の領域)の温度を測定することが可能である。レンズを介して、受光部42に接続された図示しない光ファイバに導かれた放射光が、図示しない放射温度計本体に送られる。
【0109】
次に、ガス供給の構造について説明する。プラズマガス供給配管41はフランジ25に設けられ、真鍮ブロック5を組み合わせてできる穴を介して、プラズマガスマニホールド8に連通する。また、シースガス供給配管42は蓋6に設けられ、蓋6内部の貫通穴を介してシースガスマニホールド10に連通する。プラズママニホールド8となる溝は深く、筒状チャンバの長手方向に平行に長く掘り込まれており、ガス溜まりとして機能する。プラズマガス供給穴9となる溝は浅く、筒状チャンバの長手方向に平行に短く掘り込まれており、その数は多数となっている。
【0110】
真鍮ブロック5の凹部と石英管4の間の僅かな隙間から、プラズマガスが側方、すなわち、トーチユニットTから基材2へ向かう向きとは垂直な向きに染み出してくる構成である。ガスが筒状チャンバ内に染み出してくる部位をガス導入口と呼ぶならば、ガス導入口は開口部12の長手方向と平行に設けられる構成となっている。一方、シールドガスは、シールドガスマニホールド14に連通した多数の穴、または単一の溝から、開口部12と基材2の間に向けて噴出させる。このとき、穴または単一の溝の向きを工夫することにより、ガス噴出の向きを開口部12に向けたり、基材2の表面に向けたりすることも可能であり、処理の種類に応じて適宜選択すればよい。
【0111】
次に、冷却水の流れ方について説明する。図9において、真鍮ブロック17には、石英管4の位置決めを担う機能があり、石英管4の数に応じて貫通穴が設けられる。貫通穴には両側から座グリが形成され、内側の座グリには水漏れ防止のためのオーリング28が配置されるとともに、石英管4の外径が太くなった部分が嵌め込まれる。
【0112】
図9、10に示すように、石英管4の両端の先端付近に、矩形の貫通穴29が設けられ、真鍮ブロック17に嵌め込まれたときに、貫通穴29aが外側の座グリ30の中に配置されるようになっている。石英管4の両端は、導体棒3と石英管4の中心軸を一致させるためのブッシュ21により蓋される。したがって、冷却水は、外側の座グリ30、貫通穴29aを通って、石英管4の内部に流れ込み、出て行く構造となっている。一方、ブッシュ21の中心には貫通穴が設けられ、冷却水マニホールド22から導体棒3の内部に冷却水が流れ込み、出て行くことができる。
【0113】
但し、長い導体棒3aは、樹脂ケース18に設けられた高周波導入端子穴26及び接地端子穴27を突き抜ける構造であり、その内部に水を連通させるために、図5に示すように貫通穴29bが設けられている。つまり、冷却水は、樹脂ケースに設けられた座グリ、貫通穴29bを通って、長い導体棒3aの内部に流れ込み、出て行く構造となっている。
【0114】
また、図12に示すように、複数の導体棒3は、導体リンク23により接続され、全体として3ターンの螺旋形を構成し、その螺旋の内部空間と筒状チャンバ内部の空間7が重なり合っている構造となっている。
【0115】
本構成においては、プラズマ噴射口12の長手方向の長さが、基材2の幅以上となっているので、一度の走査(トーチユニットTと基材載置台1とを相対的に移動すること)で基材2の表面近傍の薄膜16の全体を熱処理することができる。
【0116】
このようなプラズマ処理装置において、筒状チャンバ内にガス噴出口よりArまたはAr+H2ガス、シールドガス噴出口からN2ガスを供給しつつ、プラズマ噴出口12から基材2に向けてガスを噴出させながら、図示していない高周波電源より13.56MHzの高周波電力を、コイルをなす導体棒3に供給することにより、筒状チャンバ内にプラズマを発生させ、プラズマ噴出口12からプラズマを基材2に照射するとともに走査することで、半導体膜の結晶化などの熱処理を行うことができる。
【0117】
このように、プラズマ噴出口12の長手方向と、基材載置台1とが平行に配置されたまま、プラズマ噴出口12の長手方向とは垂直な向きに、筒状チャンバと基材載置台1とを相対的に移動するので、生成すべきプラズマの長さと、基材2の処理長さがほぼ等しくなるように構成することが可能となる。また、筒状チャンバをその中心軸に垂直な面で切った断面の幅(図7(b)における、チャンバ内部空間7の幅)は、プラズマ噴出口12の幅(図7(b)における隙間の長さ)より少しでも大きければよい。つまり、生成すべきプラズマの体積を、従来と比較して極めて小さくすることができる。その結果、電力効率が飛躍的に高まる。
【0118】
また、筒状チャンバの内部空間においては、中心軸の向きに比較的均一なプラズマを生成することができるので、長尺方向にプラズマが均一となり、基材を均一に処理することができる。
【0119】
なお、放射温度計が、1μm以上14μm以下の波長の光を受光することにより、温度を測定するものであることが望ましい。このような構成により、プラズマの発光と基材の温度上昇にともなう放射光が干渉しない波長で温度を測定することができるため、より正確な温度測定が可能となる。
【0120】
また、放射温度計の測定結果により、高周波電力、ガス流量、または、筒状チャンバと基材載置台との距離を変化させるフィードバック制御機構を備えることにより、再現性に優れたプラズマ処理が実現できる。例えば、測定された温度が所定の温度よりも低ければ、高周波電力を大きくする、ガス流量を減らす、または筒状チャンバと基材載置台との距離を小さくする、という変化を与えることが適切である。
【0121】
また、放射温度計の測定結果により、装置状態の異常判定を行う機構を備えることにより、信頼性に優れたプラズマ処理が実現できる。例えば、測定された温度が所定の温度範囲を外れた場合に装置の異常と判断し、装置を一時停止とするとともに、オペレータに点検を促す信号を表示することができる。
【0122】
(実施の形態4)
以下、本発明の実施の形態4について、図13を参照して説明する。
【0123】
図13は本発明の実施の形態4におけるプラズマ処理装置の構成を示すもので、誘導結合型プラズマトーチユニットの長尺方向に垂直な面で切った断面図である。
【0124】
本発明の実施の形態4においては、実施の形態3とは、導体棒3と石英管4の本数が異なるだけであるから、それ以外の説明は省略する。
【0125】
図13において、導体棒3はともに長い導体棒3aであり、導体リンク23で接続されることにより、1ターンコイルを構成する。
【0126】
この構成では、プラズマの発生する体積が実施の形態3よりも小さくなり、パワー効率に優れたトーチユニットを実現可能である。
【0127】
(実施の形態5)
以下、本発明の実施の形態5について、図14を参照して説明する。
【0128】
図14は本発明の実施の形態5におけるプラズマ処理装置の構成を示すもので、誘導結合型プラズマトーチユニットの長尺方向に垂直な面で切った断面図である。
【0129】
本発明の実施の形態5においては、実施の形態4とは、導体棒3と石英管4の配置が異なるだけであるから、それ以外の説明は省略する。
【0130】
図14において、2本の導体棒3は、開口部12から同じ距離に配置されており、導体リンク23で接続されることにより、1ターンコイルを構成する。
【0131】
この構成では、プラズマの発生する体積が実施の形態4よりも小さくなり、パワー効率に優れたトーチユニットを実現可能である。
【0132】
(実施の形態6)
以下、本発明の実施の形態6について、図15〜図16を参照して説明する。
【0133】
図15は本発明の実施の形態6におけるプラズマ処理装置の構成を示すもので、誘導結合型プラズマトーチユニットの長尺方向に垂直な面で切った断面図である。
【0134】
本発明の実施の形態6においては、実施の形態3とは、導体棒3と石英管4の配置が異なるだけであるから、それ以外の説明は省略する。
【0135】
図15において、6本の導体棒3は、2本ずつペアになって開口部12から同じ距離に配置されており、導体リンク23で接続されることにより、3ターンコイルを構成する。
【0136】
あるいは、2本ずつのペアごとに異なる高周波電源に接続することで、各ペアに供給する電力を独立に制御することができる。
【0137】
さらに、図16に示すように、シースガスマニホールド10、シースガス供給穴11を、各ペアごとに別系統に構成することも可能である。このような構成により、各ペアごとに必要最小限のシースガス流量を流すことが可能である。
【0138】
あるいは、各ペアに供給する電力を独立に制御することと、シースガスマニホールド10、シースガス供給穴11を、各ペアごとに別系統に構成することを同時に行うこともできる。この場合、各系統に異なるガス種を供給し、その電離度を電力バランスで制御することで、より制御性に優れたプラズマ処理が可能となる。
【0139】
(実施の形態7)
以下、本発明の実施の形態7について、図17〜図18を参照して説明する。
【0140】
図17は、実施の形態1における誘導結合型プラズマトーチユニットの組立構成図であり、各部品を組み合わせたときの概観を示すものである。このように、温度測定のための放射光の光軸43が、筒状チャンバをなす真鍮ブロック5によって遮られない位置に、放射温度計受光部42が配置されている。
【0141】
温度測定を長尺方向に複数とする構成も可能である。その配置例を図18に示す。図18において、放射温度計の受光部42が、開口部の長手方向に対して平行な線分上の複数の位置に設けられている。この例では、長尺方向に3箇所の温度を同時に測定しており、処理の長尺方向の均一性をも処理中にモニタリングすることが可能であり、より再現性に優れたプラズマ処理、よりきめ細かな装置状態異常判定を行うことができる。
【0142】
以上述べたプラズマ処理装置及び方法は、本発明の適用範囲のうちの典型例を例示したに過ぎない。
【0143】
本発明の種々の構成によって、基材2の表面近傍を高温処理することが可能となるが、従来例で詳しく述べたTFT用半導体膜の結晶化や太陽電池用半導体膜の改質に適用可能であることは勿論、プラズマディスプレイパネルの保護層の清浄化や脱ガス低減、シリカ微粒子の集合体からなる誘電体層の表面平坦化や脱ガス低減、種々の電子デバイスのリフローなど、さまざまな表面処理に適用できる。また、太陽電池の製造方法としては、シリコンインゴットを粉砕して得られる粉末を基材上に塗布し、これにプラズマを照射して溶融させ多結晶シリコン膜を得る方法にも適用可能である。
【0144】
また、誘導結合型プラズマトーチユニットTを、固定された基材載置台1に対して走査してもよいが、固定された誘導結合型プラズマトーチユニットTに対して、基材載置台1を走査してもよい。
【0145】
また、螺旋形のコイルは、特開平8−83696に開示されているような、多重の螺旋形であってもよい。このような構成とすることにより、コイルのインダクタンスを低減し、電力効率の改善を図ることができる。これは、処理したい基材2の幅が大きい場合、すなわち、誘導結合型プラズマトーチユニットやコイルが長尺方向に長くなる場合にとくに有効である。
【0146】
また、ガス噴出口は点状のものが複数並べられていてもよく、あるいは、線状のものであってもよい。
【0147】
また、部品材料の金属として真鍮を用いた構成を例示したが、金属材料からなる部品のうち、筒状チャンバの内壁にあたる部分を絶縁体材料でコーティングすることにより、プラズマへの金属材料の混入を防ぐとともにアーク放電を抑制することも可能である。
【0148】
また、プラズマの着火を容易にするために、着火源を用いることも可能である。着火源としては、ガス給湯器などに用いられる点火用スパーク装置などを利用できる。
【0149】
また、説明においては簡単のため「熱プラズマ」という言葉を用いているが、熱プラズマと低温プラズマの区分けは厳密には難しく、また、例えば、田中康規「熱プラズマにおける非平衡性」プラズマ核融合学会誌、Vol.82、No.8(2006)pp.479−483において解説されているように、熱的平衡性のみでプラズマの種類を区分することも困難である。本発明は、基材を熱処理することを一つの目的としており、熱プラズマ、熱平衡プラズマ、高温プラズマなどの用語にとらわれず、高温のプラズマを照射する技術に関するものに適用可能である。
【0150】
また、基材の表面近傍をごく短時間だけ均一に高温熱処理する場合について詳しく例示したが、反応ガスによるプラズマまたはプラズマと反応ガス流を同時に基材へ照射して基材を低温プラズマ処理する場合においても、本発明は適用できる。プラズマガスまたはシースガスに反応ガスを混ぜることにより、反応ガスによるプラズマを基材へ照射し、エッチングやCVDが実現できる。あるいは、プラズマガスやシースガスとしては希ガスまたは希ガスに少量のH2ガスを加えたガスを用いつつ、シールドガスとして反応ガスを含むガスを供給することによって、プラズマと反応ガス流を同時に基材へ照射し、エッチングやCVDを実現することもできる。プラズマガスやシースガスとしてアルゴンを主成分とするガスを用いると、実施例で詳しく例示したように、熱プラズマが発生する。
【0151】
一方、プラズマガスやシースガスとしてヘリウムを主成分とするガスを用いると、比較的低温のプラズマを発生させることができる。このような方法で、基材をあまり加熱することなく、エッチングや成膜などの処理が可能となる。
【0152】
エッチングに用いる反応ガスとしては、ハロゲン含有ガス、例えば、Cxy(x、yは自然数)、SF6などがあり、シリコンやシリコン化合物などをエッチングすることができる。反応ガスとしてO2を用いれば、有機物の除去、レジストアッシングなどが可能となる。CVDに用いる反応ガスとしては、モノシラン、ジシランなどがあり、シリコンやシリコン化合物の成膜が可能となる。あるいは、TEOS(Tetraethoxysilane)に代表されるシリコンを含有した有機ガスとO2の混合ガスを用いれば、シリコン酸化膜を成膜することができる。その他、撥水性・親水性を改質する表面処理など、種々の低温プラズマ処理が可能である。
【0153】
従来技術(例えば、特許文献7に記載のもの)に比較すると、誘導結合型であるため、単位体積あたり高いパワー密度を投入してもアーク放電に移行しにくいため、より高密度なプラズマが発生可能であり、その結果、速い反応速度が得られ、基材の所望の被処理領域全体を短時間で処理することが可能となる。
【産業上の利用可能性】
【0154】
以上のように本発明は、TFT用半導体膜の結晶化や太陽電池用半導体膜の改質に適用可能であることは勿論、プラズマディスプレイパネルの保護層の清浄化や脱ガス低減、シリカ微粒子の集合体からなる誘電体層の表面平坦化や脱ガス低減、種々の電子デバイスのリフローなど、さまざまな表面処理において、基材の表面近傍をごく短時間だけ均一に高温熱処理するに際して、基材の所望の被処理領域全体を短時間で処理する上で有用な発明である。また、種々の電子デバイスなどの製造における、エッチング・成膜・表面改質などの低温プラズマ処理において、基材の所望の被処理領域全体を短時間で処理する上で有用な発明である。
【符号の説明】
【0155】
1 基材載置台
2 基材
T 誘導結合型プラズマトーチユニット
3 導体棒
4 石英管
5 真鍮ブロック
6 蓋
7 チャンバ内部空間
8 プラズマガスマニホールド
9 プラズマガス供給穴
10 シースガスマニホールド
11 シースガス供給穴
12 プラズマ噴出口
13 シールドガスノズル
14 シールドガスマニホールド
15 冷却水配管
16 薄膜
17 真鍮ブロック
18 樹脂ケース
19 銅ブロック
20 銅板
22 冷却水マニホールド
41 プラズマガス供給配管
42 放射温度計受光部
43 光軸

【特許請求の範囲】
【請求項1】
スリット状の開口部を備える筒状チャンバと、前記チャンバ内にガスを供給するガス導入口と、前記チャンバ内に高周波電磁界を発生させるコイルと、前記コイルに高周波電力を供給する高周波電源と、前記開口部と対向して配置され、かつ基材を保持する基材載置台と、を有するプラズマ処理装置において、
前記筒状チャンバの長手方向と前記開口部の長手方向とは平行に配置され、
前記開口部の長手方向に対して垂直な向きに、前記チャンバと前記基材載置台とを相対的に移動可能とする移動機構を備え、
前記筒状チャンバの外形は、前記基材載置台に近づくほど、前記筒状チャンバの長手方向に垂直で、かつ、前記基材載置台に平行な方向の幅が小さく、
放射温度計の受光部が、前記筒状チャンバの外側の位置で、かつ、前記放射温度計と前記基材載置台上に基材が載置されるべき位置とを結ぶ線分、すなわち、温度測定のための放射光の光軸が、前記筒状チャンバによって遮られない位置に配置されていること
を特徴とするプラズマ処理装置。
【請求項2】
前記放射温度計は、1μm以上14μm以下の波長の光を受光することにより、温度を測定するものであることを特徴とする、請求項1記載のプラズマ処理装置。
【請求項3】
前記放射温度計の受光部が、前記開口部の長手方向に対して平行な線分上の複数の位置に設けられていることを特徴とする、請求項1記載のプラズマ処理装置。
【請求項4】
前記放射温度計の測定結果により、高周波電力、ガス流量、または、前記筒状チャンバと基材載置台との距離を変化させるフィードバック制御機構を備えたことを特徴とする、請求項1記載のプラズマ処理装置。
【請求項5】
前記放射温度計の測定結果により、装置状態の異常判定を行う機構を備えたことを特徴とする、請求項1記載のプラズマ処理装置。
【請求項6】
前記コイルはソレノイドコイルであり、前記コイルの延出方向と前記開口部の長手方向とは平行に配置されていることを特徴とする、請求項1記載のプラズマ処理装置。
【請求項7】
前記チャンバを前記コイルの延出方向に対して垂直な面で切った断面形状のうち、前記チャンバ内部の空間は、U字状である、請求項6記載のプラズマ処理装置。
【請求項8】
前記チャンバ内部のU字状の空間の外側が金属筒で構成され、前記前記チャンバ内部のU字状の空間の内側が誘電体筒で構成され、前記誘電体筒に前記コイルが設けられてなる、請求項7記載のプラズマ処理装置。
【請求項9】
前記ガス導入口は前記開口部の長手方向と平行に設けられ、かつ前記開口部と対向する面に設けられている、請求項6記載のプラズマ処理装置。
【請求項10】
前記コイルは絶縁性流体に浸され、かつ、前記絶縁性流体が流れることによって前記コイルが冷却される、請求項6記載のプラズマ処理装置。
【請求項11】
前記コイルは、前記筒状チャンバの長手方向に平行に配置された複数の導体棒を、前記筒状チャンバの長手方向と垂直に配置された導体リンクにより接続してなるものであり、
前記導体棒は、誘電体筒内に挿入され、
前記誘電体筒の一部が前記筒状チャンバ内部の空間に露出するよう配置されていること
を特徴とする、請求項1記載のプラズマ処理装置。
【請求項12】
前記導体棒の外壁面と前記誘電体筒の内壁面の間の空間に絶縁性流体が流れることによって、前記導体棒及び前記誘電体筒が冷却される、請求項11記載のプラズマ処理装置。
【請求項13】
前記導体棒が中空の管状であり、前記導体棒がなす管の内部空間に流体が流れることによって、前記導体棒が冷却される、請求項11記載のプラズマ処理装置。
【請求項14】
筒状チャンバ内にガスを供給しつつ、前記チャンバに形成されたスリット状の開口部から基材に向けてガスを噴出すると共に、コイルに高周波電力を供給することで、前記チャンバ内に高周波電磁界を発生させるプラズマ処理方法において、
前記開口部の長手方向に対して垂直な向きに前記チャンバと前記基材とを相対的に移動しながら、放射温度計を用いて基材の温度を測定しながら前記基材の表面を処理するに際して、
前記筒状チャンバの外形は、前記基材載置台に近づくほど、前記筒状チャンバの長手方向に垂直で、かつ、前記基材載置台に平行な方向の幅が小さく配置され、
放射温度計の受光部が、前記筒状チャンバの外側の位置で、かつ、前記放射温度計と前記基材載置台上に基材が載置されるべき位置とを結ぶ線分、すなわち、温度測定のための放射光の光軸が、前記筒状チャンバによって遮られない位置に配置されていること
を特徴とするプラズマ処理方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate

【図14】
image rotate

【図15】
image rotate

【図16】
image rotate

【図17】
image rotate

【図18】
image rotate

【図19】
image rotate

【図20】
image rotate


【公開番号】特開2012−54132(P2012−54132A)
【公開日】平成24年3月15日(2012.3.15)
【国際特許分類】
【出願番号】特願2010−196391(P2010−196391)
【出願日】平成22年9月2日(2010.9.2)
【出願人】(000005821)パナソニック株式会社 (73,050)
【Fターム(参考)】