説明

半導体装置及びその製造方法

【課題】MIS−HEMTにおいて、閾値電圧の低下を抑制する。
【解決手段】半導体装置は、基板19と、この基板上に形成されており、電子走行層13及び電子供給層15が順次積層されて形成された積層構造体17とを含む下地11を具えている。この下地の下地面には、互いに離間し、かつ対向して第1及び第2主電極が形成されている。そして、下地面11aの、これら第1主電極41a及び第2主電極41b間に挟まれた領域内に、ゲート形成用凹部27が形成されている。更に、半導体装置はゲート絶縁膜29を具えている。そして、このゲート絶縁膜は、最小でも2.9g/cmの結晶密度で形成されている。また、半導体装置は、ゲート絶縁膜が形成された前記ゲート形成用凹部を埋め込むゲート電極43を具えている。

【発明の詳細な説明】
【技術分野】
【0001】
この発明は、半導体装置に関し、特にMIS構造のHEMTに関する。
【背景技術】
【0002】
従来から、2次元電子ガス(以下、2DEGとも称する)層を電流通路として使用した電界効果トランジスタとして、HEMT(High Electron Mobility Transistor)が周知である。HEMTは、例えば、不純物が導入されていないGaNを材料とした電子走行層、及びこの電子走行層の上側にAlGaNを材料として形成された電子供給層を含む下地を有する。また、HEMTは、下地の上側にゲート電極と、このゲート電極を挟んで配置されたソース電極及びドレイン電極とを有する。周知の通り、このようなHEMTでは、電子走行層及び電子供給層のヘテロ接合面の、ピエゾ分極と自発分極とのいずれか一方、または両方に基づいて、電子走行層に2DEG層が生じる。そして、電子供給層の膜厚方向の抵抗値が小さく、また膜厚方向に直交する方向の抵抗値が大きいため、ドレイン電極とソース電極との間の電流は、2DEG層を流れる。
このように、2DEG層を利用することにより、HEMTは、高温動作、高速スイッチング動作、大電力動作等の点において、優れた電子素子を実現する材料として期待を集めている。
【0003】
このようなHEMTにおいて、近年では、いわゆるMIS(Metal Insulator Semiconductor)構造を有するHEMT(以下、MIS−HEMTとも称する)が注目されている(例えば非特許文献1参照)。
【0004】
MIS−HEMTは、下地の上側表面にゲート絶縁膜を介してゲート電極が形成された構造を有している。そして、このような構造を採用することによって、MIS−HEMTは、ゲートリーク電流を大幅に低減できる点、及び順方向に電圧を印加できる点において、いわゆるMES(Metal Semiconductor)構造のHEMT(以下、MES−HEMTとも称する)、すなわちゲート電極がショットキ接合によって下地の上側表面に接して形成されたHEMTと比して有利である。
【0005】
ところで、MIS−HEMTでは、上述したMES−HEMTとは異なり、下地上にゲート絶縁膜を介してゲート電極を形成するため、MES−HEMTと比して、ゲート電極及び2DEG層間の離間距離が大きくなる。その結果、MIS−HEMTでは、相互コンダクタンスが低下するという問題が生じる。
【0006】
そこで、このような相互コンダクタンスの低下を抑制するために、下地に、下地面から凹部、すなわちゲートリセス部を開口形成し、このゲートリセス部の内側底面の領域内にゲート電極を形成する、いわゆるリセス構造のMIS−HEMTが知られている(例えば、特許文献1参照)。この周知のMIS−HEMTによれば、ゲートリセス部の内側底面は、ゲートリセス部外の下地面と比して、2DEG層との離間距離が短くなっている。そして、この周知のMIS−HEMTでは、ゲートリセス部の内側底面の領域内にゲート絶縁膜及びゲート電極を形成することによって、ゲート電極及び2DEG層間の離間距離を短く設定し、相互コンダクタンスの低下の抑制を図っている。
【0007】
ここで、MIS−HEMTでは、下地及びゲート電極間にゲート絶縁膜を形成することによって、ゲート絶縁膜を形成しないMES−HEMTよりも閾値電圧が低下するという問題が生じる。
【0008】
ゲート絶縁膜を形成することによって低下する閾値電圧の変動量は、ゲート絶縁膜の物性に依存する。より具体的には、周知の通り、ゲート絶縁膜を構成する例えばシリコン窒化膜の結晶密度とゲート絶縁膜の誘電率とは比例関係にある。そのため、ゲート絶縁膜は結晶密度が小さい程誘電率が低くなり、その結果、閾値電圧が大きく低下する。
【特許文献1】特開2005−260172号公報
【非特許文献1】信学技法 IEICE Technical Report, ED2006-236, MW2006-189 (2007-1)
【発明の開示】
【発明が解決しようとする課題】
【0009】
しかしながら、例えば特許文献1では、MIS−HEMTのゲート絶縁膜の結晶密度、及び閾値の低下について何ら開示されていない。従って、例えば特許文献1に開示のMIS−HEMTでは、ゲート絶縁膜の結晶密度によっては、閾値電圧を所望の値で得ることができない。
【0010】
この発明の目的は、リセス構造のMIS−HEMTにおいて、閾値電圧の低下を抑制するために、ゲート絶縁膜の結晶密度が好適に設定された半導体装置、及びその製造方法を提案することにある。
【課題を解決するための手段】
【0011】
上述の目的の達成を図るため、発明者らは、鋭意研究した結果、ゲート絶縁膜を好適な結晶密度で形成することによって、閾値電圧の低下が抑制されたMIS−HEMTを提供できることを見出した。そこで、この発明による半導体装置は、以下の特徴を有する。
【0012】
この発明による半導体装置は、基板と、この基板上に形成されており、電子走行層及び電子供給層が順次積層されて形成された積層構造体とを含む下地を具えている。この下地の下地面には、互いに離間し、かつ対向して第1及び第2主電極が形成されている。
【0013】
そして、下地面の、これら第1及び第2主電極間に挟まれた領域内に、ゲート形成用凹部が形成されている。
【0014】
更に、この発明による半導体装置は、ゲート絶縁膜を具えている。ゲート絶縁膜は、ゲート形成用凹部の内側底面を被覆する第1ゲート絶縁膜部分、ゲート形成用凹部の内側壁面を被覆する第2ゲート絶縁膜部分、及び第1及び第2主電極間に挟まれた領域内であって、ゲート形成用凹部外の下地面を被覆する第3ゲート絶縁膜部分を以て一体的に形成さている。このゲート絶縁膜は、ゲート形成用凹部の開口深さよりも薄い膜厚で形成されている。そして、このゲート絶縁膜は、結晶密度が最小でも2.9g/cmである。
【0015】
また、この発明による半導体装置は、ゲート絶縁膜が形成された前記ゲート形成用凹部を埋め込むゲート電極を具えている。
【0016】
また、この発明による半導体装置の製造方法は、以下の第1工程から第4工程までの各工程を含む。
【0017】
すなわち、まず第1工程では、基板と、この基板上に形成されており、電子走行層及び電子供給層が順次積層されて形成された積層構造体とを含む下地に、下地面からゲート形成用凹部を開口する。
【0018】
次に、第2工程では、熱CVD法を用いて、ゲート形成用凹部の内側底面を被覆する第1ゲート絶縁膜部分、ゲート形成用凹部の内側壁面を被覆する第2ゲート絶縁膜部分、及びゲート形成用凹部外の下地面の上側を被覆する第3ゲート絶縁膜部分を含む一体的なゲート絶縁膜を、ゲート形成用凹部の開口深さよりも薄い膜厚で形成する。この発明による半導体装置の製造方法では、このゲート絶縁膜を、結晶密度を最小でも2.9g/cmとして形成する。
【0019】
次に、第3工程では、下地に、ゲート形成用凹部を挟んで互いに離間して設定された第1及び第2主電極形成予定領域に存在する第3ゲート絶縁膜部分の領域部分を、下地面が露出するまで除去する。そして、しかる後、この除去によって露出した下地面に、第1及び第2主電極を互いに対向するようにそれぞれ形成する。
【0020】
次に、第4工程では、ゲート絶縁膜が形成されているゲート形成用凹部を埋め込んでゲート電極を形成する。
【発明の効果】
【0021】
この発明による半導体装置では、ゲート絶縁膜が最小でも2.9g/cmの結晶密度で形成されている。その結果、この発明による半導体装置では、MIS−HEMTにおいても、ゲート絶縁膜を形成することによる閾値電圧の低下が抑制された半導体装置を提供することができる。
【0022】
また、この発明による半導体装置の製造方法では、熱CVD法を用いてゲート絶縁膜を形成することによって、最小でも2.9g/cmの結晶密度のゲート絶縁膜を得ることが可能となる。
【0023】
そして、この発明の半導体装置及び半導体装置の製造方法では、ゲート絶縁膜の結晶密度を最小でも2.9g/cmとすることによって、MIS−HEMTにおいても、ゲート絶縁膜を形成することによる閾値電圧の低下が抑制された半導体装置を得られること、また、熱CVD法を用いることによって、最小でも2.9g/cmの結晶密度のゲート絶縁膜を得られることが測定によって確かめられた。尚、この測定については、後述する第1の実施の形態において詳細に説明する。
【発明を実施するための最良の形態】
【0024】
以下、図面を参照して、この発明に係る半導体装置、及び半導体装置の製造方法について説明する。なお、各図は、この発明が理解できる程度に、各構成要素の形状、大きさ、及び配置関係を概略的に示してあるに過ぎない。従って、この発明の構成は、何ら図示の構成例にのみ限定されるものではない。
【0025】
〈第1の実施の形態〉
第1の実施の形態では、MIS構造、すなわちゲート絶縁膜の上側表面にゲート電極が形成された構造であり、かつリセス構造、すなわち下地に、下地面からゲート形成用凹部が開口形成されており、このゲートリセス部の内側底面の領域内にゲート電極が形成されている構造の半導体装置であって、ゲート絶縁膜が最小でも2.9g/cmの結晶密度で形成されている半導体装置、及びその製造方法について説明する。この製造方法は、第1工程から第4工程までを含んでいる。以下、第1工程から順に各工程につき説明する。
【0026】
図1(A)及び(B)は、この発明の第1の実施の形態を説明する工程図である。また、図2(A)及び(B)は、図1(B)に続く工程図である。これらの各図は、それぞれ、各製造段階で得られた構造体の断面の切り口を示してある。
【0027】
まず、第1工程では、基板19と、この基板19上に形成されており、電子走行層13及び電子供給層15が順次積層されて形成された積層構造体17とを含む下地11に、この下地11の上側表面11a、すなわち下地面11aからゲート形成用凹部27を開口して図1(A)に示すような構造体を得る。
【0028】
下地11は、従来周知の半導体基板であり、かつ電子走行層13及び電子供給層15の界面にヘテロ接合面を有する下地、すなわち例えばAlGaN層及びGaN層を堆積した下地や、AlGaAs層及びGaAs層を堆積した下地等、その他の半導体基板の中から設計に応じて好適なものを用いればよい。尚、この第1の実施の形態では、一例としてAlGaN/GaN−HEMTを製造する工程を説明する。そこで、下地11として、AlGaN/GaNのヘテロ接合面を有する下地を用いた場合を例に挙げて、図示すると共に説明する。
【0029】
図1に示す構成例では、下地11は、まず、例えばSi、SiC、またはサファイア等で構成された基板19、及びこの基板19の上側に周知のMOCVD法によって形成された例えばAlNまたはGaN等のバッファ層21を具えている。更に、このバッファ層21の上側に電子走行層13として、UID(Un−Intentionally−Doped:不純物無添加)−GaN層13(以下、単にGaN層13とも称する)、及び電子供給層15として、UID−AlGaN層15(以下、単にAlGaN層15とも称する)が周知のMOCVD法、またはMBE法によって順次形成されている。このような積層構造を形成すると、GaN層13とAlGaN層15とのエネルギーバンドギャップの違いから、GaN層13内のAlGaN層15との境界付近に2次元電子ガス層23(以下、2DEG層23とも称する)層が形成される。
【0030】
そして、第1工程では、まず、このような下地11の下地面11aを被覆する表面保護膜25を形成する。
【0031】
第1の実施の形態では、表面保護膜25を製造工程中において汚染されるのを防ぐ目的で形成する。
【0032】
また、表面保護膜25は、後の工程において下地11の上側にフィールドプレートを形成する場合には、フィールドプレートと下地面11aとの間の離間距離を、この表面保護膜25の膜厚を以て十分に確保しつつ、調節する機能を果たす。従って、この第1工程では、設定すべきフィールドプレートと下地面11aとの間の離間距離の値に応じた膜圧で、表面保護膜25を形成する。尚、表面保護膜25の膜厚の好適例については後述する。
【0033】
第1の実施の形態では、表面保護膜25を、周知の熱CVD法を用いてシリコン窒化膜を成長させて形成するのが好ましい。
【0034】
そして、表面保護膜25を形成した後に、この表面保護膜25及び下地11にゲートリセス部としてのゲート形成用凹部27を開口する。
【0035】
第1の実施の形態では、周知のホトリソ技術、及び例えば誘導結合プラズマイオンエッチング等のドライエッチングの技術を用いて、表面保護膜25の上側表面25aから連続的に表面保護膜25及び下地11を開口して、ゲート形成用凹部27を形成する。このとき、上述した相互コンダクタンスの低下を抑制し、かつ製造された半導体装置の閾値電圧が0Vとならないように、ゲート形成用凹部27の開口深さを設定するのが好ましい。具体的には、ゲート形成用凹部27の内側底面27aと2DEG層23との間の離間距離が、例えば5〜6nm程度となる深さまで、ゲート形成用凹部27を開口するのが好ましい。
【0036】
また、第1の実施の形態において製造された半導体装置を、いわゆるノーマリ・オフ型、すなわちゲート電流に電流を印加していないときに電流が流れない構造とする場合には、ゲート形成用凹部27の内側底面27aが2DEG層23に達する深さで、または2DEG層23から最大でも3〜5nm離間する深さで、ゲート形成用凹部27を開口するのが好ましい。
【0037】
また、第1の実施の形態では、ゲート形成用凹部27を開口することによって、表面保護膜25からゲート形成用凹部27内において下地11の表面が一部露出する。そのため、この露出面であるゲート形成用凹部27の内側底面27a及び内側壁面27bが外気に晒され、結果、これら内側底面27a及び内側壁面27bに酸化物や炭素化合物等の汚れが付着する可能性がある。第1の実施の形態では、後の工程において、ゲート形成用凹部27を埋め込んでゲート電極を形成するため、このような汚れがゲート形成用凹部27内に付着した場合には、製造される半導体装置に特性劣化が生じる恐れがある。
【0038】
そこで、第1の実施の形態では、第1工程によってゲート形成用凹部27を形成した後であって、続く第2工程を行う前に、ゲート形成用凹部27内から酸化物や炭素化合物等の汚れを除去する。そのために、ゲート形成用凹部27の内側底面27a及び内側壁面27bを、例えば800℃程度の高温下において、NHを用いて洗浄する。そして、この洗浄の後、速やかに続く第2工程を行い、ゲート形成用凹部27の内側底面27a及び内側壁面27bをゲート絶縁膜によって被覆する。
【0039】
次に、第2工程では、ゲート絶縁膜29を形成して図1(B)に示すような構造体を得る。
【0040】
第1の実施の形態では、ゲート絶縁膜29を、ゲート形成用凹部27を含む下地11の全面を一体的に覆うように形成する。このとき、ゲート形成用凹部の開口深さよりも薄い膜厚でゲート絶縁膜29を形成する。これによって、ゲート絶縁膜29は、ゲート形成用凹部27の内側底面27aを被覆する第1ゲート絶縁膜部分31、ゲート形成用凹部27の内側壁面27bを被覆する第2ゲート絶縁膜部分33、及びゲート形成用凹部27外の下地面11aの上側を被覆する第3ゲート絶縁膜部分35を以て一体的に形成される。ここで、この第1の実施の形態では、第1工程において、下地面11上に表面保護膜25を形成しているため、第3ゲート絶縁膜部分35は、表面保護膜25の上側表面25aに形成される。その結果、第1の実施の形態によって製造される半導体装置では、表面保護膜25が下地11と第3絶縁膜部分35との間に挟み込まれている構造となる。
【0041】
また、第1の実施の形態では、製造される半導体装置の閾値電圧が低下するのを抑制するために、ゲート絶縁膜29を好適な結晶密度で形成する必要がある。既に説明したように、閾値電圧は、ゲート絶縁膜の結晶密度が小さい程大きく低下する。従って、この第1の実施の形態では、ゲート絶縁膜29を高結晶密度で、より具体的にはゲート絶縁膜29を最小でも2.9g/cmの結晶密度で形成する。そのために、例えば反応ガスとして100sccmの0.7%SiH及び6slmの100%NHを、またキャリアガスとしてN及びHを用い、760Torrの圧力下において、周知の熱CVD法を用いてシリコン窒化膜を好ましくは5nm程度の膜厚に成長させることによって、ゲート絶縁膜29を形成する。
【0042】
また、第1の実施の形態では、この第2工程において、下地11に、素子領域37を区画する目的で素子分離領域39を形成する。素子分離領域39は、下地11上の各素子領域37を電気的に分離する目的で、例えばArイオン等を下地11にイオン注入して形成される。このとき、各素子領域37を確実に電気的に分離するために、下地面11aから2DEG層23の下側までイオン注入を行い、素子分離領域27を形成する。
【0043】
尚、素子分離領域39の形成は、この第2工程において、ゲート絶縁膜29の形成前、またはゲート絶縁膜29の形成後のいずれの時点で行ってもよい。
【0044】
次に、第3工程では、第1及び第2主電極41a及び41bを形成して図2(A)に示すような構造体を得る。
【0045】
そのために、まず、下地11に、ゲート形成用凹部27を挟んで互いに離間して設定された第1及び第2主電極形成予定領域に存在する第3ゲート絶縁膜部分35及び表面保護膜25の領域部分を、下地面11aが露出するまで除去する。
【0046】
第1の実施の形態では、周知のホトリソ技術と、例えば反応性イオンエッチング、ウェットエッチング、またはドライエッチング等の技術とを用いて、第1及び第2主電極形成予定領域に存在する第3ゲート絶縁膜部分35及び表面保護膜25の領域部分を除去する。
【0047】
また、第1の実施の形態では、上述した第1工程において下地面11a上に表面保護膜25を形成している。そこで、第1及び第2主電極形成予定領域の下地面11aを露出させるために、この除去処理よって、第3ゲート絶縁膜部分35及び表面保護膜25の領域部分を連続的に除去する。この除去により、第1及び第2主電極形成予定領域では、下地面11aが露出面として露出する。なお、この除去処理により残存した第3ゲート絶縁膜部分35の領域部分を35aで、また残存した表面保護膜25の領域部分を25b示す。
【0048】
次に、この除去によって露出した下地面11a、すなわち露出面11b及び11cに、第1及び第2主電極41a及び41bを互いに対向するようにそれぞれ形成する。
【0049】
そのために、第1及び第2主電極41a及び41bを、周知のEB(Electron Beam)蒸着を用いて、例えばTi及びAlを堆積することによって形成するのが好適である。これら第1及び第2主電極41a及び41bは、露出面11b及び11cにおいて、下地面11aとオーミック接触が取られる。その結果、これら第1及び第2主電極41a及び41bは、オーミック電極として、一方がソース電極、また他方がドレイン電極として機能する。
【0050】
次に、第4工程では、ゲート絶縁膜29が形成されているゲート形成用凹部27を埋め込んでゲート電極43を形成して図2(B)に示すような構造体を得る。
【0051】
ゲート電極43は、周知のEB蒸着を用いて、例えばNi及びAuを堆積することによって形成される。そして、互いに離間しかつ対向して形成された第1及び第2主電極41a及び41b間に形成されている、ゲート形成用凹部27を埋め込んでゲート電極43を形成することによって、このゲート電極43は、第1及び第2主電極41a及び41b間に挟み込まれて配置される。
【0052】
第1の実施の形態では、第4工程を行った後に、この第4工程によって得た構造体にフィールドプレート45を形成してもよい(図3参照)。
【0053】
フィールドプレート45は、ゲート電極43周辺領域の電界集中を緩和することによって、電流コラプスを抑制する目的で形成される。
【0054】
そのために、この実施の形態では、フィールドプレート45を、ゲート電極43の上側表面43a、及びゲート電極43のゲート長方向(図3に矢印で示す)における一方の側の側面43bまたは43cから、この一方の側の第3ゲート絶縁膜部分35に渡って、一体的に被覆させて形成する。
【0055】
ここで、HEMTでは、動作時において、ゲート電極及びドレイン電極間に電界が集中しやすいことが周知である。そこで、この第1の実施の形態では、好ましくは、ドレイン電極側のゲート電極の側部及びその周辺領域を覆うように、フィールドプレート45を形成するのが好ましい。従って、第1の実施の形態では、第1電極及び第2主電極41a及び41bのうち、ドレイン電極として用いる一方の主電極と対向したゲート電極43の側面43bまたは43c、及びゲート電極43とドレイン電極として用いる一方の主電極との間に形成された第3ゲート絶縁膜部分35を覆うように、フィールドプレート45を形成するのが好ましい。尚、図3では、ゲート電極43の上側表面43a及び側面43bから、この側面43bの側の第3ゲート絶縁膜部分35に渡って被覆するフィールドプレート45を形成した場合の構成例を示している。
【0056】
ところで、フィールドプレート45を用いてゲート電極43周辺領域の電界集中を緩和するという効果を得るためには、フィールドプレート45及び下地11間の離間距離を、当該効果を得るための好適な距離に調節する必要がある。
【0057】
既に説明したように、この第1の実施の形態では、上述した第1工程において形成する表面保護膜25の膜厚を以って、フィールドプレート45及び下地11間の離間距離を調節する。そして、フィールドプレート45を用いてゲート電極43周辺領域の電界集中を緩和するためには、フィールドプレート45及び下地面11a間の離間距離、すなわち第3ゲート絶縁膜部分35及び表面保護膜25の膜厚の和を少なくとも50nmに設定する。従って、例えば、上述した第2工程において第3ゲート絶縁膜部分35を含むゲート絶縁膜29を5nmで形成する場合には、第1工程において表面保護膜25を少なくとも45nmの膜厚で形成しておくのが好ましい。また、より好適には、フィールドプレート45及び下地面11a間の離間距離、すなわち第3ゲート絶縁膜部分35及び表面保護膜25の膜厚の和を150nm程度に設定するのが好ましい。従って、例えば、第3ゲート絶縁膜部分35を5nmの膜圧で形成する場合には、表面保護膜25を145nmの膜厚で形成するのが好ましい。
【0058】
また、この第1の実施の形態では、フィールドプレート45を、例えば周知のEB蒸着を用いてTi、Pt、及びAuを材料として形成するのが好ましい。
【0059】
以上説明した第1の実施の形態による半導体装置では、ゲート絶縁膜29が最小でも2.9g/cmの結晶密度で形成されている。既に説明したように、ゲート絶縁膜29を構成するシリコン窒化膜の結晶密度とゲート絶縁膜29の誘電率とは比例関係にある。この第1の実施の形態では、ゲート絶縁膜29の結晶密度を2.9g/cm以上の高結晶密度とすることによって、ゲート絶縁膜29の程誘電率の低下を抑えている。
【0060】
また、この第1の実施の形態による半導体装置では、ゲートリセス部としてのゲート形成用凹部27にゲート電極43を形成している。
【0061】
これらの結果、第1の実施の形態による半導体装置では、MIS−HEMTにおいても、相互コンダクタンスの低下の抑制が抑制され、かつゲート絶縁膜を形成することによる閾値電圧の低下が抑制された半導体装置を提供することができる。
【0062】
ここで、第1の実施の形態による半導体装置について、上述した第2工程において説明した条件の下において、熱CVD法を用いてゲート絶縁膜を形成することによって、結晶密度が2.9gcm以上のゲート絶縁膜を形成できることを確認するためにX線反射率測定(以下、XRR測定とも称する)を行った。
【0063】
図4は、第1の実施の形態の第2工程において形成したゲート絶縁膜に対してXRR測定を行った結果を示す図である。図4において、縦軸は、反射率を目盛ってある。また、横軸は、X線の入射角を度単位で目盛ってある。
【0064】
図4中の曲線Iは、第1の実施の形態による半導体装置を測定することによって得た実測値である。そして、この曲線Iから、周知のシミュレーションソフトDIFFRAC・PLUS・LEPTOS5を用いて、上述した第2工程において形成したゲート絶縁膜の結晶密度を算出した。尚、曲線IIはシミュレーションによる理論値である。そして、第1の実施例におけるゲート絶縁膜の結晶密度を算出するに当たり、曲線IIにおける結晶密度のパラメータを、曲線IIが曲線Iと重なるように決定し、このときの結晶密度の値を、ゲート絶縁膜の結晶密度として決定した。
【0065】
その結果、上述した第2工程において説明した条件下において、周知の熱CVD法を用いて形成したゲート絶縁膜の結晶密度は、2.93g/cmであることを確認した。
【0066】
以上の結果から明らかなように、この第1の実施の形態による半導体装置の製造方法では、熱CVD法を用いてゲート絶縁膜を形成することによって、最小でも2.9g/cmの結晶密度のゲート絶縁膜を得ることが可能となる。
【0067】
次に、第1の実施の形態による半導体装置について、ゲート絶縁膜を高結晶密度とすることによる効果を評価するための実験を行った。
【0068】
図5(A)〜(C)は、半導体装置の動作特性について、第1の実施の形態による半導体装置、すなわち熱CVD法によって2.93g/cmの結晶密度で形成されたゲート絶縁膜を備えるMIS−HEMT構造の半導体装置(以下、被測定素子1とも称する)と、プラズマCVD法によって形成されたゲート絶縁膜、すなわち結晶密度が熱CVD法によって形成されたゲート絶縁膜と比して小さいゲート絶縁膜を備えるMIS−HEMT構造の半導体装置(以下、被測定素子2とも称する)と、ゲート絶縁膜を備えていないMES−HEMT構造の半導体装置(以下、被測定素子3とも称する)とを比較する図である。
【0069】
図5(A)〜(C)では、縦軸は、Ids(ドレイン−ソース電流)をmA単位で目盛ってある。また、横軸は、Vds(ドレイン−ソース電圧)をV単位で目盛ってある。
【0070】
そして、図5(A)は、被測定素子1についてパルス測定を行った結果を示している。また、図5(B)は、被測定素子2についてパルス測定を行った結果を示している。尚、図5(C)は、被測定素子3についてパルス測定を行った結果を示している。また、図5(A)及び(B)では、被測測定素子1及び被測定素子2に対して、Vg(ゲート電圧)を+6〜−8Vの範囲で、1Vずつ変化させて測定した結果を示している。また、図5(C)では、被測測定素子3に対して、Vgを+2〜−6Vの範囲で、1Vずつ変化させて測定した結果を示している。
【0071】
ここで、被測測定素子1と被測定素子2との間ではゲート絶縁膜の結晶密度のみであり、また、被測定素子1及び被測定に用いたこれらの半導体装置間における構造上の差異は、被測定素子2と、被測定素子3との間ではゲート絶縁膜の有無のみである。そして、その他の構成要素については同様の条件の下で測定を行った。そして、この測定では、被測測定素子1及び被測定素子2のゲート絶縁膜の膜厚を10nmに設定した。
【0072】
図5(A)から、被測測定素子1では閾値電圧が約−5.83V、また、図5(B)から、被測測定素子2では閾値電圧が約−7.33V、また、図5(C)から、被測測定素子3では閾値電圧が約−4.35Vとなることが確認された。
【0073】
従って、被測測定素子1及び被測測定素子3の閾値電圧を比較すると、被測測定素子1、すなわち第1の実施の形態による半導体装置では、熱CVD法を用いてゲート絶縁膜を形成して、MIS−HEMT構造とすることによって、MES−HEMT構造の半導体装置と比して、閾値電圧が約1V低下している。
【0074】
これに対して、被測測定素子2及び被測測定素子3の閾値電圧を比較すると、被測測定素子2では、プラズマCVD法を用いてゲート絶縁膜を形成して、MIS−HEMT構造とすることによって、MES−HEMT構造の半導体装置と比して、閾値電圧が約3.0V低下している。
【0075】
以上の結果から、第1の実施の形態による半導体装置は、熱CVD法を用いて2.9g/cm以上の結晶密度でゲート絶縁膜を形成することによって、MIS−HEMT構造を有しつつも、ゲート絶縁膜を形成したことによる閾値電圧の低下が抑制されていることが明らかである。
【図面の簡単な説明】
【0076】
【図1】(A)及び(B)は、この発明の第1の実施の形態を説明する工程図である。
【図2】(A)及び(B)は、この発明の第1の実施の形態を説明する工程図であり、図1(B)に続く工程図である。
【図3】この発明の第1の実施の形態を説明する工程図であり、図2(B)に続く工程図である。
【図4】この発明の第1の実施の形態による半導体装置が具えるゲート絶縁膜を評価する図である。
【図5】(A)〜(C)は、この発明の第1の実施の形態による半導体装置の特性を評価する図である。
【符号の説明】
【0077】
11:下地
13:電子走行層
15:電子供給層
17:積層構造体
19:基板
21:バッファ層
23:2次元電子ガス層
25:表面保護膜
27:ゲート形成用凹部
29:ゲート絶縁膜
31:第1ゲート絶縁膜部分
33:第2ゲート絶縁膜部分
35:第3ゲート絶縁膜部分
37:素子領域
39:素子分離領域
41a及び41b:第1及び第2主電極
43:ゲート電極
45:フィールドプレート

【特許請求の範囲】
【請求項1】
基板と、該基板上に形成されており、電子走行層及び電子供給層が順次積層されて形成された積層構造体とを含む下地と、
該下地の下地面に互いに離間し、かつ対向して形成された第1及び第2主電極と、
前記下地面の、前記第1及び第2主電極間に挟まれた領域内に形成されたゲート形成用凹部と、
該ゲート形成用凹部の内側底面を被覆する第1ゲート絶縁膜部分、前記ゲート形成用凹部の内側壁面を被覆する第2ゲート絶縁膜部分、及び前記第1及び第2主電極間に挟まれた領域内であって、前記ゲート形成用凹部外の下地面を被覆する第3ゲート絶縁膜部分を以て一体的に形成されたゲート絶縁膜であって、前記ゲート形成用凹部の開口深さよりも薄い膜厚で形成された当該ゲート絶縁膜と、
該ゲート絶縁膜が形成された前記ゲート形成用凹部を埋め込むゲート電極と
を具え、
前記ゲート絶縁膜は、結晶密度が最小でも2.9g/cmである
ことを特徴とする半導体装置。
【請求項2】
請求項1に記載の半導体装置であって、
前記電子走行層は、該電子走行層内の前記電子供給層との境界付近に2次元電子ガス層を含み、
前記ゲート形成用凹部の内側底面が前記2次元電子ガス層に達する深さで、または前記内側底面及び前記2次元電子ガス層間の離間距離が最大でも3〜5nmとなる深さで開口されている
ことを特徴とする半導体装置。
【請求項3】
請求項1または2に記載の半導体装置であって、
前記下地と前記第3ゲート絶縁膜部分との間に挟み込まれて形成されている表面保護膜を具える
ことを特徴とする半導体装置。
【請求項4】
請求項3に記載の半導体装置であって、
前記第3ゲート絶縁膜部分及び前記表面保護膜の膜厚の和が150nmである
ことを特徴とする半導体装置。
【請求項5】
請求項3または4に記載の半導体装置であって、
前記ゲート電極の上側表面、及び該ゲート電極のゲート長方向における一方の側の側面から、前記一方の側の前記第3ゲート絶縁膜部分に渡って、一体的に被覆するように形成されているフィールドプレートを具える
ことを特徴とする半導体装置。
【請求項6】
基板と、該基板上に形成されており、電子走行層及び電子供給層が順次積層されて形成された積層構造体とを含む下地に、下地面からゲート形成用凹部を開口する第1工程と、
熱CVD法を用いて、該ゲート形成用凹部の内側底面を被覆する第1ゲート絶縁膜部分、前記ゲート形成用凹部の内側壁面を被覆する第2ゲート絶縁膜部分、及び前記ゲート形成用凹部外の下地面の上側を被覆する第3ゲート絶縁膜部分を含む一体的なゲート絶縁膜を、前記ゲート形成用凹部の開口深さよりも薄い膜厚で、かつ結晶密度を最小でも2.9g/cmとして形成する第2工程と、
前記下地に、前記ゲート形成用凹部を挟んで互いに離間して設定された第1及び第2主電極形成予定領域に存在する前記第3ゲート絶縁膜部分の領域部分を、前記下地面が露出するまで除去し、しかる後、該除去によって露出した前記下地面に、第1及び第2主電極を互いに対向するようにそれぞれ形成する第3工程と、
前記ゲート絶縁膜が形成されている前記ゲート形成用凹部を埋め込んでゲート電極を形成する第4工程と
を含むことを特徴とする半導体装置の製造方法。
【請求項7】
請求項6に記載の半導体装置の製造方法であって、
前記ゲート形成用凹部の内側底面が、前記電子走行層内の前記電子供給層との境界付近に形成されている2次元電子ガス層に達する深さで、または前記2次元電子ガス層から最大でも3〜5nm離間する深さで、当該ゲート形成用凹部を形成する
ことを特徴とする半導体装置の製造方法。
【請求項8】
請求項6または7に記載の半導体装置の製造方法であって、
前記第1工程において、前記下地面を被覆する表面保護膜を形成し、しかる後、該表面保護膜及び前記下地に、前記表面保護膜の上側表面から連続的に前記ゲート形成用凹部を開口し、
前記第3工程において、前記第1及び第2主電極形成予定領域に存在する前記第3ゲート絶縁膜部分及び前記表面保護膜の領域部分を、前記下地面が露出するまで除去する
ことを特徴とする半導体装置の製造方法。
【請求項9】
請求項8に記載の半導体装置の製造方法であって、
前記第3ゲート絶縁膜部分及び前記表面保護膜の膜厚の和が150nmとなるように、該第3ゲート絶縁膜部分及び該表面保護膜を形成する
ことを特徴とする半導体装置の製造方法。
【請求項10】
請求項8または9に記載の半導体装置の製造方法であって、
前記第4工程の後に、前記ゲート電極の上側表面、及び該ゲート電極のゲート長方向における一方の側の側面から、前記一方の側の前記第3ゲート絶縁膜部分に渡って、一体的に被覆するフィールドプレートを形成する工程を含む
ことを特徴とする半導体装置の製造方法。
【請求項11】
請求項6〜10のいずれか一項に記載の半導体装置の製造方法であって、
前記第2工程の前に、ゲート形成用凹部の内側底面及び内側壁面を洗浄する
ことを特徴とする半導体装置の製造方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate


【公開番号】特開2010−50347(P2010−50347A)
【公開日】平成22年3月4日(2010.3.4)
【国際特許分類】
【出願番号】特願2008−214437(P2008−214437)
【出願日】平成20年8月22日(2008.8.22)
【出願人】(000000295)沖電気工業株式会社 (6,645)
【Fターム(参考)】