説明

車両運動制御装置

【課題】車両に対する障害物を事前に判断し、様々な走行情報を加味して回避走行全般に亘り、ドライバの操作、意志を的確に反映して自然に各車両挙動の制御装置が適切に動作し、障害物の回避走行を適切に行う。
【解決手段】路面摩擦係数、路面勾配の路面情報、自車両と障害物の相対的な運動を考慮し自車両が制動操作のみで障害物を回避できるか判定し、自車両の障害物に対する回避操作の状態を判定する。そして、自車両の制動操作のみで障害物を回避できない場合で且つ自車両の障害物に対する回避操作が行われている際、ハンドル操作と車両挙動に応じ回避走行モードに移行する。回避走行モード中はハンドル操作と車両挙動の変化に応じ必要な制御を車両挙動制御部に実行させ、回避走行モードの解除はドライバのハンドル操作による回避走行終了を検出し、或いは、障害物回避後の車両挙動の安定を検出し行う。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、障害物の回避を回避前から回避後までを考慮して適切に行わせる車両運動制御装置に関する。
【背景技術】
【0002】
近年、車両の走行性能を向上させるために様々な車両挙動の制御装置が開発・実用化されている。コーナリング等の際に車両にはたらく力の関係からコーナリング中に制動力を適切な車輪に加えて走行安定性を向上させる制動力制御装置、車両の走行状態に応じて前輪舵角を適正な舵角に補正する前輪操舵制御装置、車両の走行状態に応じて後輪の操舵を制御する後輪操舵制御装置、車両の走行状態を基に左右輪間の駆動力配分を制御する左右駆動力配分制御装置、車両の走行状態を基に前後輪間のセンタデファレンシャル装置の差動制限力を制御して前後輪間で所定にトルク配分を行う動力配分制御装置がその例である。
【0003】
最近では、車両前方の障害物(先行車も含む)を認識して安全に停止、或いは、回避できるようにする様々な技術が提案されている。例えば、特開2002−274409号公報では、前方障害物を認識し、路面摩擦係数、路面勾配の路面情報、自車両と障害物の相対的な運動を考慮し、自車両が制動操作のみで障害物を回避できない場合、ハンドル操作と車両挙動に応じて車両挙動制御部を回避走行モードに移行させる技術が開示されている。
【特許文献1】特開2002−274409号公報
【発明の開示】
【発明が解決しようとする課題】
【0004】
しかしながら、上述の特許文献1に開示される技術では、前方障害物を検出して回避走行モードに入る際に、ドライバの意志が反映された制御が行われないため、前方障害物を回避しようとしてドライバが回避操作しても、車両の挙動制御装置が回避時に応じた適切な制御特性に対応しておらず、ドライバに違和感を与えたり、車両運動制御介入のタイミングが遅いことによる回頭性向上制御の効果不足などの問題を生じる虞がある。
【0005】
本発明は上記事情に鑑みてなされたもので、車両に対する障害物を事前に判断し、様々な走行情報を加味して回避走行全般に亘り、ドライバの操作、意志を的確に反映して自然に各車両挙動の制御装置が適切に動作し、障害物の回避走行を適切に行うことができる車両運動制御装置を提供することを目的としている。
【課題を解決するための手段】
【0006】
本発明は、前方の障害物を認識して障害物情報を検出する障害物認識手段と、上記自車両の回頭性能を可変して車両挙動を制御する車両挙動制御手段と、上記自車両の上記障害物に対する回避操作の状態を判定する回避操作判定手段と、上記自車両の上記障害物に対する回避操作が行われている場合にハンドル操作と車両挙動に応じて上記車両挙動制御手段を可変して回避走行モードに移行させる回避制御手段とを備えたことを特徴としている。
【発明の効果】
【0007】
本発明による車両運動制御装置は、車両に対する障害物を事前に判断し、様々な走行情報を加味して回避走行全般に亘り、ドライバの操作、意志を的確に反映して自然に各車両挙動の制御装置が適切に動作し、障害物の回避走行を適切に行うことが可能となる。
【発明を実施するための最良の形態】
【0008】
以下、図面に基づいて本発明の実施の形態を説明する。
図1〜図6は本発明の実施の一形態を示し、図1は車両における車両運動制御装置全体の概略説明図、図2は回避走行制御部を説明する機能ブロック図、図3は回避走行制御プログラムのフローチャート、図4は図3の続きのフローチャート、図5は図4の続きのフローチャート、図6は図3の続きのフローチャートである。
【0009】
図1において、符号1は自車両を示し、符号2はエンジンで、車両前部に配置されている。このエンジン2からの駆動力は、エンジン2後方の自動変速装置(トルクコンバータ等も含んで図示)3からトランスミッション出力軸3aを介して、センタデファレンシャル装置4に伝達され、このセンタデファレンシャル装置4にて、後輪側と前輪側とへ所定のトルク配分比にて分配される。
【0010】
センタデファレンシャル装置4から後輪側へ分配された駆動力は、リヤドライブ軸5、プロペラシャフト6、ドライブピニオン7を介してリヤファイナルドライブ装置8に入力される。
【0011】
一方、センタデファレンシャル装置4から前輪側へ分配された駆動力は、トランスファドライブギヤ9、トランスファドリブンギヤ10、フロントドライブ軸11を介してフロントデファレンシャル装置12に入力される。ここで、自動変速機3、センタデファレンシャル装置4、及び、フロントデファレンシャル装置12等は、一体的にケース13内に設けられている。
【0012】
リヤファイナルドライブ装置8に入力された駆動力は、後輪左ドライブ軸14rlを介して左後輪15rlに、後輪右ドライブ軸14rrを介して右後輪15rrに伝達される。一方、フロントデファレンシャル装置12に入力された駆動力は、前輪左ドライブ軸14flを介して左前輪15flに、前輪右ドライブ軸14frを介して右前輪15frに伝達される。
【0013】
センタデファレンシャル装置4は、ケース13内後方に設けられており、回転自在に収納したキャリヤ16の前方からトランスミッション出力軸3aが回転自在に挿入される一方、後方からはリヤドライブ軸5が回転自在に挿入されている。
【0014】
入力側のトランスミッション出力軸3aの後端部には、大径の第1のサンギヤ17が軸着され、後輪への出力を行うリヤドライブ軸5の前端部には、小径の第2のサンギヤ18が軸着されており、キャリヤ16内に第1のサンギヤ17と第2のサンギヤ18が格納されている。
【0015】
そして、第1のサンギヤ17が小径の第1のピニオン19と噛合して第1の歯車列が形成され、第2のサンギヤ18が大径の第2のピニオン20と噛合して第2の歯車列が形成されている。第1のピニオン19と第2のピニオン20は一体に形成されており、複数対(例えば3対)のピニオンが、キャリヤ16に回転自在に軸支されている。また、キャリヤ16は、前端にトランスファドライブギヤ9が連結されて、このキャリヤ16から前輪への出力が行われる。
【0016】
すなわち、センタデファレンシャル装置4は、トランスミッション出力軸3aからの駆動力が第1のサンギヤ17に伝達され、第2のサンギヤ18からリヤドライブ軸5へ出力すると共に、キャリヤ16からトランスファドライブギヤ9,トランスファドリブンギヤ10を経てフロントドライブ軸11へ出力するリングギヤのない複合プラネタリギヤ式に構成されている。
【0017】
そしてかかる複合プラネタリギヤ式のセンタデファレンシャル装置4は、第1,第2のサンギヤ17,18、及び、これらサンギヤ17,18の周囲に複数個配置される第1,第2のピニオン19,20の歯数を適切に設定することで差動機能を有する。
【0018】
また、第1,第2のサンギヤ17,18と第1,第2のピニオン19,20との噛み合いピッチ円半径を適宜設定することで、基準トルク配分が前後50:50の等トルク配分、或いは、前後どちらかに偏重した不等トルク配分が可能となっており、本実施の形態においては、前後、36:64の基準トルク配分に設定されている。
【0019】
更に、第1,第2のサンギヤ17,18と第1,第2のピニオン19,20とを、例えば、はすば歯車にし、第1の歯車列と第2の歯車列の捩れ角を異にして、スラスト荷重を相殺させることなくスラスト荷重を残留させてピニオン端面間に摩擦トルクを生じさせるようになっている。また、第1,第2のピニオン19,20とこれら第1,第2のピニオン19,20を軸支するキャリヤ16の軸部の表面に、噛合いによる分離,接線荷重の合成力が作用して摩擦トルクが生じるように設定している。このように構成することで、本実施の形態におけるセンタデファレンシャル装置4は、入力トルクに比例した差動制限トルクを得ることによりセンタデファレンシャル装置4自身で差動制限機能を有したものに構成されている。
【0020】
また、センタデファレンシャル装置4のキャリヤ16とリヤドライブ軸5との間には、前後輪間の駆動力配分を可変する、油圧式多板クラッチを採用したトランスファクラッチ21が設けられており、このトランスファクラッチ21の締結力を制御することで、前後輪のトルク配分が、50:50の直結による4WDから、センタデファレンシャル装置4によるトルク配分比の範囲で可変制御することが可能となっている。
【0021】
トランスファクラッチ21は、複数のソレノイドバルブを擁した油圧回路で構成するトランスファクラッチ駆動部61と接続されており、このトランスファクラッチ駆動部61で発生される油圧で解放、連結が行われる。そして、トランスファクラッチ駆動部61を駆動させる制御信号(各ソレノイドバルブに対する出力信号)は、後述の前後駆動力配分制御部60から出力されるようになっている。
【0022】
一方、リヤファイナルドライブ装置8は、左右輪間の差動機能と動力配分機能を有するもので、ベベルギヤ式の差動機構部22と、3列歯車からなる歯車機構部23と、後輪における左右輪間の駆動力配分を可変する2組のクラッチ機構部24とから主要に構成され、デファレンシャルキャリア25内に一体的に収容されている。
【0023】
そして、ドライブピニオン7は、差動機構部22のデファレンシャルケース26の外周に設けられたファイナルギヤ27と噛合され、センタデファレンシャル装置4から後輪側に配分された駆動力を伝達する。
【0024】
差動機構部22は、デファレンシャルケース26に固定したピニオンシャフト28に回転自在に軸支されたデファレンシャルピニオン(ベベルギヤ)29と、これに噛み合う左右のサイドギヤ(ベベルギヤ)30L,30Rをデファレンシャルケース26内に収容して構成され、これらサイドギヤ30L,30Rには後輪左右ドライブ軸14rl,14rrの端部が、デファレンシャルケース26内でそれぞれ軸着されている。
【0025】
すなわち、差動機構部22は、ドライブピニオン7の回転によりデファレンシャルケース26がサイドギヤ30L,30Rと同一軸芯上で回転されて、デファレンシャルケース26内部に形成した歯車機構により左右輪間の差動を行う構成となっている。
【0026】
歯車機構部23は、差動機構部22を挟み、その左右に分割構成されており、後輪左ドライブ軸14rlに第1の歯車23z1が固着され、後輪右ドライブ軸14rrには第2の歯車23z2と第3の歯車23z3とが軸着されて、これら第1,第2,第3の歯車23z1,23z2,23z3は、同一回転軸芯上に配設されている。
【0027】
これら第1,第2,第3の歯車23z1,23z2,23z3は、同一回転軸芯上に配設された第4,第5,第6の歯車23z4,23z5,23z6と噛合され、これら第4,第5,第6の歯車23z4,23z5,23z6の回転軸芯に配設されたトルクバイパス軸31の左輪側端部に、第4の歯車23z4が軸着されている。
【0028】
また、トルクバイパス軸31の右輪側端部には、左右輪間の動力配分を実行するクラッチ機構部24の第1のデフコントロールクラッチ24aが形成されており、トルクバイパス軸31は、この第1のデフコントロールクラッチ24aを介して(トルクバイパス軸31をクラッチハブ側、第6の歯車23z6の軸部側をクラッチドラム側として)、第1のデフコントロールクラッチ24aの左側に配置された第6の歯車23z6の軸部と連結自在になっている。
【0029】
更に、トルクバイパス軸31の、差動機構部22と第5の歯車23z5の間の位置には、クラッチ機構部24の第2のデフコントロールクラッチ24bが形成されており、トルクバイパス軸31は、この第2のデフコントロールクラッチ24bを介して(トルクバイパス軸31をクラッチハブ側、第5の歯車23z5の軸部側をクラッチドラム側として)、第2のデフコントロールクラッチ24bの右側に配置された第5の歯車23z5の軸部と連結自在になっている。
【0030】
そして、第1,第2,第3,第4,第5,第6の歯車23z1,23z2,23z3,23z4,23z5,23z6のそれぞれの歯数z1,z2,z3,z4,z5,z6は、例えば、82,78,86,46,50,42に設定されており、第1,第4の歯車23z1,23z4の歯車列((z4/z1)=0.56)を基準として、第2,第5の歯車23z2,23z5の歯車列((z5/z2)=0.64)が増速、第3,第6の歯車23z3,23z6の歯車列((z6/z3)=0.49)が減速の歯車列となっている。
【0031】
このため、第1,第2のデフコントロールクラッチ24a,24bの両方を連結作動させない場合、ドライブピニオン6からの駆動力は、そのまま差動機構部22を経て後輪左右ドライブ軸14rl,14rrに等配分されるが、第1のデフコントロールクラッチ24aを連結作動させた場合は、後輪右ドライブ軸14rrに配分された駆動力の一部が、第3の歯車23z3、第6の歯車23z6、第1のデフコントロールクラッチ24a、トルクバイパス軸31、第4の歯車23z4、第1の歯車23z1と順に経てデファレンシャルケース26に戻され、結果として左後輪15rlのトルク配分が大きくなり、通常の路面μであれば車両の右旋回性が向上される。
【0032】
逆に、第2のデフコントロールクラッチ24bを連結作動させた場合は、ドライブピニオン6からデファレンシャルケース26に伝達された駆動力の一部が、第1の歯車23z1、第4の歯車23z4、トルクバイパス軸31、第2のデフコントロールクラッチ24b、第5の歯車23z5、第2の歯車23z2と順に経て後輪右ドライブ軸14rrにバイパスされて、右後輪15rrのトルク配分が大きくなり、通常の路面μであれば車両の左旋回性が向上される。
【0033】
第1,第2のデフコントロールクラッチ24a,24bは、複数のソレノイドバルブを擁した油圧回路で構成するデフコントロールクラッチ駆動部66と接続されており、このデフコントロールクラッチ駆動部66で発生される油圧で解放、連結が行われる。そして、デフコントロールクラッチ駆動部66を駆動させる制御信号(各ソレノイドバルブに対する出力信号)は、後述の左右駆動力配分制御部65から出力されるようになっている。
【0034】
一方、符号32は、車両1の後輪操舵部を示し、この後輪操舵部32には、後述する後輪操舵制御部70により制御される後輪操舵駆動部71で駆動される後輪操舵モータ33が設けられており、この後輪操舵モータ33による動力が、ウォーム・ウォームホィール、リンク機構を介して伝達され、上記左後輪15rl,右後輪15rrを転舵するようになっている。
【0035】
また、符号76は車両のブレーキ駆動部を示し、このブレーキ駆動部76には、ドライバにより操作されるブレーキペダルと接続されたマスターシリンダ(図示せず)が接続されており、ドライバがブレーキペダルを操作するとマスターシリンダにより、ブレーキ駆動部76を通じて、4輪15fl,15fr,15rl,15rrの各ホイールシリンダ(左前輪ホイールシリンダ34fl,右前輪ホイールシリンダ34fr,左後輪ホイールシリンダ34rl,右後輪ホイールシリンダ34rr)にブレーキ圧が導入され、これにより4輪にブレーキがかかって制動されるように構成されている。
【0036】
ブレーキ駆動部76は、加圧源、減圧弁、増圧弁等を備えたハイドロリックユニットで、上述のドライバによるブレーキ操作以外にも、後述する制動力制御部75及びトラクション制御部92からの入力信号に応じて、各ホイールシリンダ34fl,34fr,34rl,34rrに対して、それぞれ独立にブレーキ圧を導入自在に形成されている。
【0037】
上述の前後駆動力配分制御部60、左右駆動力配分制御部65、後輪操舵制御部70および制動力制御部75は、それぞれ車両挙動制御手段として設けられているものであり、自車両1には、これら各制御部60,65,70,75に対して、信号出力する回避走行制御部80が搭載されている。
【0038】
尚、図中、エンジン制御部91は、エンジン2に関して燃料噴射制御、点火時期制御、その他全般に亘る制御を行う公知のものである。また、トラクション制御部92は、後述の車輪速度センサ41fl,41fr,41rl,41rrからの各車輪速度を基に各車輪のスリップ率を検出し、このスリップ率が予め設定するスリップ率判定値以上になった際に、ブレーキ駆動部76或いはエンジン制御部91に所定の制御信号を出力して自動ブレーキ或いはエンジン2のトルクダウンを行い、車輪の空転を防止するようになっている。
【0039】
自車両1には、自車両の走行状態を検出する自車両情報検出手段として各センサ、スイッチ類が設けられている。すなわち、各車輪15fl,15fr,15rl,15rrの車輪速度が車輪速度センサ41fl,41fr,41rl,41rrにより検出されて、所定に演算され車速Vとして、前後駆動力配分制御部60、左右駆動力配分制御部65、後輪操舵制御部70、制動力制御部75および回避走行制御部80に入力される。また、ハンドル角θHがハンドル角センサ42により検出され、ヨーレートγがヨーレートセンサ43により検出されて、前後駆動力配分制御部60、左右駆動力配分制御部65、後輪操舵制御部70、制動力制御部75および回避走行制御部80に入力される。更に、横加速度Gyが横加速度センサ44により検出され、前後駆動力配分制御部60および左右駆動力配分制御部65に入力される。また、スロットル開度θthがスロットル開度センサ45により検出され、ギヤ位置がインヒビタスイッチ46により検出され、前後駆動力配分制御部60に入力される。更に、エンジン回転数Neがエンジン回転数センサ47により検出されて、前後駆動力配分制御部60及び回避走行制御部80に入力される。また、後輪舵角δrが後輪舵角センサ48により検出されて後輪操舵制御部70に入力され、前後加速度Gxが前後加速度センサ49により検出されて回避走行制御部80に入力される。更に、アクセル開度θacがアクセルペダルセンサ53により検出され、回避走行制御部80に入力される。また、パーキングブレーキのON−OFFがパーキングブレーキスイッチ54により検出されて、回避走行制御部80に入力される。更に、エンジン制御部91からはエンジン(出力)トルクTeが、また、トラクション制御部92からはトラクション制御のON−OFFの信号が回避走行制御部80に入力される。また、車両1には、回避走行制御部80により回避走行の際に点灯される警報ランプ55がインストルメントパネルに設けられている。
【0040】
また、自車両1にはステレオ光学系が配設されており、このステレオ光学系は、例えば電荷結合素子(CCD)等の固体撮像素子を用いた1組のCCDカメラ(左側カメラ51L,右側カメラ51R)からなり、これら左右のCCDカメラ51L,51Rが、それぞれ車室内の天井前方に一定の間隔をもって取り付けられ、車外の対象を異なる視点からステレオ撮像するようになっている。
【0041】
CCDカメラ51L,51Rからの画像信号は、障害物認識部52に入力され、同一物体に対する視差から3次元の距離分布を算出し、この距離分布データを処理して道路形状や複数の立体物を認識して先行車等の走行路前方の障害物を検出する。すなわち、本発明の実施の形態では、CCDカメラ51L,51Rおよび障害物認識部52により走行路前方の障害物を認識して障害物情報を検出する障害物認識手段が構成されている。
【0042】
障害物認識部52は、CCDカメラ51L,51Rで撮像した2枚のステレオ画像に対して微小領域毎に同一の物体が写っている部分を探索し、対応する位置のずれ量を求めて物体までの距離を算出して距離分布データ(距離画像)を記憶し、この距離分布データを処理して道路形状や複数の立体物を認識することにより前方障害物を検出するように構成されている。
【0043】
具体的には、障害物認識部52における道路検出処理では、記憶された距離画像による3次元的な位置情報を利用して実際の道路上の白線だけを分離して抽出し、内蔵した道路モデルのパラメータを実際の道路形状と合致するよう修正・変更することで、道路形状、自車の走行レーンを認識する。
【0044】
また、障害物認識部52における前方障害となる物体検出処理では、距離画像を格子状に所定の間隔で区分し、各領域毎に、走行の障害となる可能性のある立体物のデータのみを選別して、その検出距離を算出する。そして、隣接する領域において物体までの検出距離の差異が設定値以下の場合は同一の物体と見なし、一方、設定値以上の場合は別々の物体と見なし、検出した物体(障害物)の輪郭像を抽出する。尚、以上の距離画像の生成、距離画像から道路形状や物体を検出する処理については、本出願人によって先に提出された特開平5−265547号公報や特開平6−177236号公報等に詳述されている。
【0045】
そして、障害物認識部52で検出された前方障害物に関するデータ(障害物(先行車)との距離Ls、障害物(先行車)の速度Vs、障害物(先行車)の減速度αs等)は、回避走行制御部80に入力される。
【0046】
次に、自車両1の車両挙動を制御する各制御部について説明する。
前後駆動力配分制御部60では、例えば、本出願人が特開平8−2274号公報で開示した方法、すなわち、車速V、ハンドル角θH、実ヨーレートγを用いて車両の横運動の運動方程式に基づき、前後輪のコーナリングパワーを非線形域に拡張して推定し、高μ路での前後輪の等価コーナリングパワーに対する推定した前後輪のコーナリングパワーの比を基に路面状況に応じて路面摩擦係数μを推定する。そして、この路面摩擦係数μに感応して予め設定しておいたマップを参照し、ベースとなるクラッチトルクVTDout0を求め、このベースクラッチトルクVTDout0に対して、センタデファレンシャル装置3に入力される入力トルクTi(エンジン回転数Neとギヤ比iから演算)、スロットル開度θthおよび実ヨーレートγ、ハンドル角θHと車速Vとから演算した目標ヨーレートγtと実ヨーレートγとの偏差(ヨーレート偏差Δγ=γ−γt)、横加速度Gyを基に補正を加え、前後輪間動力配分の基本クラッチ締結力FOtbの基となる制御出力トルクVTDout を演算する。更に、この制御出力トルクVTDout を、ハンドル角θで補正して、ハンドル角感応クラッチトルクとしてトランスファクラッチ21における基本クラッチ締結力FOtbとして定め、これに対応する所定の信号をトランスファクラッチ駆動部61に対して出力し、このクラッチ油圧でトランスファクラッチ21を作動させ、センタデファレンシャル装置3に対する差動制限力となるように付与して前後輪間の動力配分制御を行う。
【0047】
ここで、ヨーレート偏差Δγによる補正は、ベースクラッチトルクVTDout0に対し、車両のオーバーステア傾向、或いはアンダーステア傾向を防止するため、旋回時に発生が予想される目標ヨーレートγtと実ヨーレートγの偏差に応じて、クラッチトルクを追加、或いは減少補正するものである。
【0048】
例えば、旋回時に、目標ヨーレートγt(絶対値)が大きく実ヨーレートγ(絶対値)が小さいことが予想され、車両がアンダーステア傾向になることが予想される場合には、クラッチトルクを減少補正して前後の駆動力配分を後輪偏重にして回頭性を向上するように補正する。
【0049】
これとは逆に、旋回時、目標ヨーレートγt(絶対値)が小さく実ヨーレートγ(絶対値)が大きいことが予想され、車両がオーバーステア傾向になることが予想される場合には、クラッチトルクを増加補正して前後の駆動力配分を前後等配分にして安定性を向上するように補正する。
【0050】
また、前後駆動力配分制御部60には、回避走行制御部80から、回頭性向上、或いは安定性向上の制御信号が入力されるようになっている。そして、前後駆動力配分制御部60に回頭性向上の制御信号が入力されると、演算した目標ヨーレートγt(絶対値)に1より大きい係数が乗じられて目標ヨーレートγt(絶対値)が通常よりも大きく補正され、クラッチトルクが減少補正されて前後の駆動力配分が後輪偏重になり、回頭性が向上するように補正される。逆に、前後駆動力配分制御部60に安定性向上の制御信号が入力されると、演算した目標ヨーレートγt(絶対値)に1より小さい係数が乗じられて目標ヨーレートγt(絶対値)が通常よりも小さく補正され、クラッチトルクが増加補正されて前後の駆動力配分が等配分方向になり、安定性が向上するように補正される。
【0051】
また、左右駆動力配分制御部65は、例えば、車速V、ハンドル角θH、横加速度Gyを基に車両左右間の接地荷重に応じたクラッチトルクを演算し、このクラッチトルクをハンドル角θHと車速Vとから演算した目標ヨーレートγtと実ヨーレートγとの偏差で補正して、この最終的なクラッチトルクを発生させるため、第1のデフコントロールクラッチ24a或いは第2のデフコントロールクラッチ24bを作動させて左右輪間の動力配分制御を実行する。
【0052】
左右駆動力配分制御部65におけるヨーレート偏差Δγによる補正も、車両のオーバーステア傾向、或いはアンダーステア傾向を防止するため、旋回時に発生が予想される目標ヨーレートγtと実ヨーレートγの偏差に応じて、クラッチトルクを追加、或いは減少補正するものである。
【0053】
例えば、旋回時に、目標ヨーレートγt(絶対値)が大きく実ヨーレートγ(絶対値)が小さいことが予想され、車両がアンダーステア傾向になることが予想される場合には、旋回外側車輪の駆動力配分が大きくなるように補正して旋回性を向上させる。
【0054】
これとは逆に、旋回時、目標ヨーレートγt(絶対値)が小さく実ヨーレートγ(絶対値)が大きいことが予想され、車両がオーバーステア傾向になることが予想される場合には、旋回外側車輪に対する駆動力配分の増加を抑制し、安定性を向上するように補正する。
【0055】
また、左右駆動力配分制御部65は、回避走行制御部80から、回頭性向上、或いは安定性向上の制御信号が入力されるようになっている。そして、左右駆動力配分制御部65に回頭性向上の制御信号が入力されると、演算した目標ヨーレートγt(絶対値)に1より大きい係数が乗じられて目標ヨーレートγt(絶対値)が通常よりも大きく補正され、旋回外側車輪の駆動力配分が大きくなるように補正されて回頭性が向上される。逆に、左右駆動力配分制御部65に安定性向上の制御信号が入力されると、演算した目標ヨーレートγt(絶対値)に1より小さい係数が乗じられて目標ヨーレートγt(絶対値)が通常よりも小さく補正され、旋回外側車輪に対する駆動力配分の増加が抑制されて安定性が向上される。
【0056】
後輪操舵制御部70は、例えば、車速V、ハンドル角θf、ヨーレートγを用い予め所定の制御則に基づいて目標とする後輪舵角δr'を算出し、現在の後輪舵角δrと比較して必要な後輪操舵量を設定し、この後輪操舵量に対応する信号を後輪操舵駆動部71に出力し、後輪操舵モータ33を駆動させるようになっている。そして、回避走行制御部80からの制御信号に応じ、所定に、前輪舵角とヨーレートに対する後輪舵角の同相操舵量を大きく設定する補正が行われるようになっている。
【0057】
後輪操舵制御部70で行われる制御を更に詳述すると、この後輪操舵制御部70に設定されている制御則は、例えば本発明の実施の形態では周知の「ハンドル角逆相+ヨーレート同相制御則」を基本制御則とするもので、以下の(1)式で与えられる。
δr'=−kδ0・f1・(θH/N)+kγ0・f2・γ …(1)
ここで、kδ0はハンドル角感応ゲイン、kγ0はヨーレート感応ゲイン、Nはステアリングギヤ比である。
【0058】
ヨーレート感応ゲインkγ0は、ヨーレートγを減少させるように後輪の操舵量を定める係数になっている。また、ハンドル角感応ゲインkδ0は、操舵回頭性を与えるように後輪の操舵量を定める係数になっている。
【0059】
すなわち、ヨーレート感応ゲインkγ0はヨーレートγに対して同相に後輪を操舵するよう与えられており、ヨーレート感応ゲインkγ0が大きいほど車両は旋回せずに斜めに進む傾向が強くなり、ヨーレートγの発生を防ぐことができる。換言すれば回頭性が減少し、安定性が向上した車両特性になる。このようにヨーレート感応ゲインkγ0は、発生したヨーレートγに対してどのくらい後輪に対して操舵量を与えてやれば、ヨーレートγの発生を防ぐことができるかの係数とみなすことができる。
【0060】
しかしながら、ヨーレート感応ゲインkγ0だけでは、旋回することのできない車両となってしまう。これを防止するためハンドル角感応ゲインkδ0が設定される。すなわちハンドル角θHに対して後輪を逆相に操舵させることで車両の回頭性を向上させるのである。ハンドル角θHに対してハンドル角感応ゲインkδ0の項の方が大きくなるよう設定することで車両は旋回する。但し、ステアリングをニュートラルの状態に戻すことで、制御則はヨーレート感応ゲインkγ0の項だけとなるため、旋回終了後はヨーレートγを無くす方向(車両のふらつきを無くす方向)に後輪が操舵される。
【0061】
また、ハンドル角感応ゲインkδ0は、前輪と後輪のコーナリングパワーに基づき算出されるため、車速が一定値以上ではハンドル角感応ゲインkδ0の値は変化しない。但し、車速が0に近い状態では、後輪の据え切りを防止するため、ハンドル角感応ゲインkδ0は小さい値に設定されている。
【0062】
上述のように設定されているハンドル角感応ゲインkδ0とヨーレート感応ゲインkγ0に対し、本発明の実施の形態では、回避走行制御部80からの制御信号の入力により、ハンドル角感応ゲインkδ0については後輪舵角補正値f1を乗じることで補正することが可能なように、ヨーレート感応ゲインkγ0については後輪舵角補正値f2を乗じることで補正することが可能なようになっている。
【0063】
すなわち、ハンドル角感応ゲインkδ0については、回頭性を向上するには、1より大きな後輪舵角補正値f1を乗じることで、その絶対値が大きくなるように補正され、ハンドル角θHに対して通常より後輪が逆相に操舵されるようにしている。
【0064】
これとは逆に、ハンドル角感応ゲインkδ0について安定性を向上するには、1より小さな後輪舵角補正値f1を乗じることで、その絶対値が小さくなるように補正され、ハンドル角θHに対して通常より後輪が逆相に操舵されることを減少させて車両の回頭性が向上されることを抑制するように補正するようになっている。
【0065】
また、ヨーレート感応ゲインkγ0については、回頭性を向上するには、1より小さな後輪舵角補正値f2を乗じることで、通常より小さくなるように補正され、ヨーレートγに対して後輪は同相に小さく補正される。
【0066】
これとは逆に、ヨーレート感応ゲインkγ0について安定性を向上するには、1より大きな後輪舵角補正値f2を乗じることで、通常より大きくなるように補正され、ヨーレートγに対して後輪は同相に大きくされて車両の回頭性が向上されることを抑制するように補正する。
【0067】
尚、車両によってはハンドル角感応ゲインkδ0の補正とヨーレート感応ゲインkγ0の補正の一方のみを行うようにしても効果が得られることはいうまでもない。
【0068】
制動力制御部75は、例えば、車速V、ハンドル角θHから求めた目標ヨーレートγtと実際のヨーレートγとから、制動させる車輪を決定して演算した制動力を加え、車両に最適なヨーモーメントを発生させることを基本とする。具体的には、目標ヨーレートγt(絶対値)が大きく実ヨーレートγ(絶対値)が小さく、車両がアンダーステア傾向の場合は、旋回方向内側後輪の制動を実行させて車両の回頭性を向上させる。これとは逆に、目標ヨーレートγt(絶対値)が小さく、実ヨーレートγ(絶対値)が大きく、車両がオーバーステア傾向の場合は、旋回方向外側前輪の制動を実行させて車両の安定性を向上させる。
【0069】
また、制動力制御部75には、回避走行制御部80から、回頭性向上、或いは安定性向上の制御信号が入力されるようになっている。そして、制動力制御部75に回頭性向上の制御信号が入力されると、演算した目標ヨーレートγt(絶対値)に1より大きい係数が乗じられて目標ヨーレートγt(絶対値)が通常よりも大きく補正される。逆に、制動力制御部75に安定性向上の制御信号が入力されると、演算した目標ヨーレートγt(絶対値)に1より小さい係数が乗じられて目標ヨーレートγt(絶対値)が通常よりも小さく補正される。
【0070】
次に、回避走行制御部80について説明する。回避走行制御部80には、車速V、ハンドル角θH、ヨーレートγ、前後加速度Gx、アクセル開度θac、エンジン回転数Ne、パーキングブレーキのON−OFF状態、エンジントルクTe、トラクション制御のON−OFF状態等の自車両1の各走行、操作情報が入力されると共に、障害物認識部52から障害物(先行車)情報(障害物(先行車)との距離Ls、障害物(先行車)の速度Vs、障害物(先行車)の減速度αs等)が入力される。
【0071】
そして、これら障害物情報と自車両情報と演算により推定される路面情報とに基づき自車両1の制動操作のみで自車両1が障害物を回避可能か否か判定し、制動操作のみで障害物を回避できない場合で且つ自車両1の障害物に対する回避操作が行われている場合に、ハンドル操作と車両挙動に応じて回避走行モードに移行して、各車両挙動の制御部60,65,70,75に制御特性を回頭性向上、或いは安定性向上に制御特性を変更させる信号を出力させるようになっている。また、回避走行モード中では、ハンドル操作と車両挙動に応じて回避走行モードでの制御特性変更の信号を可変制御する。
【0072】
回避走行制御部80は、図2に示すように、路面摩擦係数推定部81、路面勾配推定部82、必要減速距離演算部83、必要減速距離補正部84、目標ヨーレート演算部85、ヨーレート偏差演算部86、回避操作判定部87、制御変更設定部88及び警報駆動部89とから主要に構成されている。
【0073】
路面摩擦係数推定部81では、車速V、ハンドル角θH、実ヨーレートγが入力され、前述の如く、車両の横運動の運動方程式に基づき、前後輪のコーナリングパワーを非線形域に拡張して推定し、高μ路での前後輪の等価コーナリングパワーに対する推定した前後輪のコーナリングパワーの比を基に路面状況に応じて路面摩擦係数μを推定する。そして、この推定した路面摩擦係数μは、必要減速距離演算部83に出力される。
【0074】
路面勾配推定部82は、車速Vと前後加速度Gxとが入力され、車速Vの設定時間毎の変化率(m/s)を演算し、この車速変化率(m/s)と前後加速度Gxを用いて次の(2)式により路面勾配SL(%)を演算し、必要減速距離演算部83に出力する。重力加速度をg(m/s)とし、路面勾配の登り方向を(+)として、
路面勾配SL=(前後加速度Gx−車速変化率/g)・100 …(2)
【0075】
尚、以下の(3)式に示すように、エンジン出力トルク(N−m),トルクコンバータのトルク比(オートマチックトランスミッション車の場合),トランスミッションギヤ比,ファイナルギヤ比,タイヤ半径(m),走行抵抗(N),車両質量(kg),車速変化率(m/s),重力加速度をg(m/s)により路面勾配SLを演算しても良い。
路面勾配SL=tan(sin−1((((エンジン出力トルク・トルクコンバータのトルク比・トランスミッションギヤ比・ファイナルギヤ比/タイヤ半径)−走行抵抗)/車両質量−車速変化率)/g))・100)≒((((エンジン出力トルク・トルクコンバータのトルク比・トランスミッションギヤ比・ファイナルギヤ比/タイヤ半径)−走行抵抗)/車両質量−車速変化率)/g))・100 …(3)
【0076】
必要減速距離演算部83は、車速V、障害物(先行車)速度Vs、障害物(先行車)減速度αs(m/s)が入力されると共に、路面摩擦係数推定部81から路面摩擦係数μが、路面勾配推定部82から路面勾配SLが入力されて、自車両1と障害物(先行車)の相対的な運動を考慮して、自車両1の制動のみで、障害物(先行車)を回避することのできる最小の距離(必要減速距離)LGBを演算するものである。必要減速距離LGBは、以下の(4)式で演算され、必要減速距離補正部84に出力される。
必要減速距離LGB=(1/2)・(V−Vs)
/((μ−(SL/100))・g−αs)…(4)
【0077】
必要減速距離補正部84は、車速V、障害物(先行車)速度Vs、障害物(先行車)減速度αsが入力され、更に、車速Vから自車両の減速度α(m/s)を演算して、以下の(5)式に示すように、ドライバによる制動操作の遅れを考慮して必要減速距離LGBの補正を行うようになっている。予め設定しておいたドライバの操作遅れ時間をTtd(s)として、
必要減速距離LGB=LGB+(V−Vs)・Ttd
+(1/2)・(αs−α)・Ttd …(5)
こうして必要減速距離補正部84にて補正された必要減速距離LGBは、制御変更設定部88に出力される。
【0078】
目標ヨーレート演算部85は、車速V、ハンドル角θHが入力されて、目標ヨーレートγtの演算を実行する。目標ヨーレートγtの演算は、他の車両挙動制御部(例えば、前後駆動力配分制御部60、左右駆動力配分制御部65、制動力制御部75)で実行されるものと略同様で以下の(6)式により演算される。
目標ヨーレートγt=1/(1+T・S)・γt0 …(6)
ここで、Sはラプラス演算子、Tは一次遅れ時定数、γt0は目標ヨーレート定常値であり、一次遅れ時定数Tは、以下の(7)式で与えられる。
一次遅れ時定数T=(m・Lf ・V)/(2・L・Kr) …(7)
ここで、mは車両質量、Lはホイールベース、Lf は前軸と重心間の距離、Krはリア等価コーナリングパワーである。
【0079】
また、目標ヨーレート定常値γt0は、以下の(8)式で与えられる。
目標ヨーレート定常値γt0=Gγδ・(θH/n) …(8)
nはステアリングギヤ比、Gγδはヨーレートゲインである。
ここで、ヨーレートゲインGγδは、以下の(9)式で求められる。
ヨーレートゲインGγδ=1/(1+A・V)・(V/L) …(9)
Aは車両の諸元で決まるスタビリティファクタであり、以下の(10)式で演算される。
スタビリティファクタA=−(m/(2・L ))
・(Lf ・Kf−Lr ・Kr)/(Kf・Kr) …(10)
(10)式中、Lr は後軸と重心間の距離、Kfはフロント等価コーナリングパワーである。
【0080】
ヨーレート偏差演算部86は、ヨーレートセンサ43から実際のヨーレートγと、目標ヨーレート演算部85から目標ヨーレートγtとが入力され、ヨーレート偏差Δγを(11)式により演算して制御変更設定部88に出力する。
ヨーレート偏差Δγ=γ−γt …(11)
【0081】
回避操作判定部87は、ハンドル角θH、前後加速度Gx、エンジン回転数Ne、アクセル開度θac、エンジントルクTe、パーキングスイッチのON−OFF状態、及びトラクション制御のON−OFF状態が入力される。
【0082】
そして、ハンドル角θHの絶対値が予め設定しておいた閾値以上で、且つ、ハンドル角速度(dθH/dt)の絶対値、前後加速度Gx、エンジン回転数Ne、アクセル開度θac及びエンジントルクTeの何れかが予めそれぞれの値について設定しておいた閾値以上の場合、トラクション制御がON状態の場合、パーキングスイッチがON状態の場合の何れかの条件が成立する場合には、ドライバによる回避操作が行われていると判定する。
【0083】
また、この条件が成立しない場合、すなわち、ハンドル角θHの絶対値が予め設定しておいた閾値より小さい場合、或いは、ハンドル角速度(dθH/dt)の絶対値、前後加速度Gx、エンジン回転数Ne、アクセル開度θac及びエンジントルクTeの何れも予めそれぞれの値について設定しておいた閾値より小さく、且つ、トラクション制御がOFF状態でパーキングスイッチがOFF状態の場合は、ドライバによる回避操作が行われていないと判定する。
【0084】
尚、本発明の実施の形態では、ドライバの回避操作を判定するのに、回頭操作を判断するパラメータとしてのハンドル角θHと、他の7つのパラメータで判定しているが、車両によっては、ハンドル角θHのみ、或いは、ハンドル角θHに加え、上述の何れか(複数でも良い)のパラメータの組み合わせでドライバによる回避操作を判断するようにしても良い。
【0085】
また、本発明の実施の形態では、ハンドル角θHの値を、特に、ドライバによる回頭操作を判定するパラメータとして用いている。このため、ハンドル角θHに代えて、例えば、実ヨーレートγをドライバによる回頭操作を判定するパラメータとして用いても良い。この際、実ヨーレートγの絶対値が予め設定しておいた閾値以上で、且つ、ヨー角加速度(dγ/dt)の絶対値、前後加速度Gx、エンジン回転数Ne、アクセル開度θac及びエンジントルクTeの何れかが予めそれぞれの値について設定しておいた閾値以上の場合、トラクション制御がON状態の場合、パーキングスイッチがON状態の場合の何れかの条件が成立する場合には、ドライバによる回避操作が行われていると判定する。
【0086】
更に、ドライバによる回頭操作を判定するパラメータとして横加速度Gyを用いる場合は、横加速度Gyが予め設定しておいた閾値以上で、且つ、横速度(∫(Gy)dt)、前後加速度Gx、エンジン回転数Ne、アクセル開度θac及びエンジントルクTeの何れかが予めそれぞれの値について設定しておいた閾値以上の場合、トラクション制御がON状態の場合、パーキングスイッチがON状態の場合の何れかの条件が成立する場合には、ドライバによる回避操作が行われていると判定する。
【0087】
また、ドライバによる回頭操作を判定するパラメータとして横滑り角β(複数のセンサ値により演算した値)を用いる場合は、横滑り角βが予め設定しておいた閾値以上で、且つ、横滑り角速度(dβ/dt)、前後加速度Gx、エンジン回転数Ne、アクセル開度θac及びエンジントルクTeの何れかが予めそれぞれの値について設定しておいた閾値以上の場合、トラクション制御がON状態の場合、パーキングスイッチがON状態の場合の何れかの条件が成立する場合には、ドライバによる回避操作が行われていると判定する。
【0088】
更に、ドライバによる回頭操作を判定するパラメータとして車両走行ベクトル(車両の向きとその変化により設定するベクトル)を用いる場合は、車両走行ベクトルが予め設定しておいた閾値以上で、且つ、車両走行ベクトル微分値、前後加速度Gx、エンジン回転数Ne、アクセル開度θac及びエンジントルクTeの何れかが予めそれぞれの値について設定しておいた閾値以上の場合、トラクション制御がON状態の場合、パーキングスイッチがON状態の場合の何れかの条件が成立する場合には、ドライバによる回避操作が行われていると判定する。
【0089】
また、上述したエンジン回転数Ne、アクセル開度θac、エンジントルクTeについては、それぞれの変化量が予め設定しておいた閾値以上となる場合に、ドライバによる回避操作が行われていると判定するようにしてもよい。
【0090】
すなわち、本発明の実施の形態においては、回避操作判定部87は、回避操作判定手段として設けられている。
【0091】
制御変更設定部88は、ハンドル角θH、実ヨーレートγ、障害物(先行車)との距離Lsが入力されると共に、必要減速距離補正部84から必要減速距離LGB、目標ヨーレート演算部85から目標ヨーレートγt、ヨーレート偏差演算部86からヨーレート偏差Δγ、回避操作判定部87からドライバによる回避操作の有無の判定結果が入力され、自車両1が制動操作のみで障害物を回避できない場合で且つ自車両1の障害物に対する回避操作が行われている場合にハンドル操作と車両挙動に応じて回避走行モードに移行し、回避走行モードに移行した際には、各車両挙動制御部60,65,70,75に出力する信号(回頭性を向上する信号、安定性を向上する信号、或いは回避走行モード解除の信号)を設定して出力するようになっている。また、回避走行モードに移行した際には、警報駆動部89に対して信号が出力され、回避走行モードが解除されるまで、警報ランプ55の点灯が行われる。すなわち、制御変更設定部88は、回避制御手段として設けられている。
【0092】
次に、自車両1の回避走行制御部80での回避走行での制御を、図3〜図6の回避走行制御プログラムのフローチャートで説明する。この回避走行制御プログラムは所定時間毎に実行され、まず、ステップ(以下「S」と略称)101で自車両情報を読み込み、S102に進んで前述の(6)式により目標ヨーレートγtを演算する。
【0093】
そして、S103に進むと、既に回避走行モードか否かの判定が行われ、回避走行モードではない場合はS104に進み、既に回避走行モードの場合にはS125へと進む。
【0094】
ここでは先に、回避走行モードではなくS104へと進む場合について説明する。S104に進むと障害物情報が読み込まれ、S105に進むと障害物(先行車も含む)が存在するか否か判定される。
【0095】
S105で障害物が存在しないと判定されるとそのままプログラムを抜ける。一方、障害物が存在する場合は、S105からS106に進み路面摩擦係数μを推定し、S107に進んで前述の(2)式により路面勾配SLを推定する。
【0096】
その後、S108に進んで前述の(4)式により必要減速距離LGBを演算し、S109に進んで前述の(5)式により必要減速距離LGBを補正する。
【0097】
こうしてS110に進むと、最終的に補正を加えて演算された必要減速距離LGBと障害物までの距離Lsとの比較が行われ、この比較の結果、障害物までの距離Lsが必要減速距離LGBよりも大きく(Ls>LGB)、障害物との衝突を自車両1の制動のみで回避可能と判定できる場合は、そのままプログラムを抜ける。
【0098】
一方、S110の判定で、障害物までの距離Lsが必要減速距離LGB以下(Ls≦LGB)であり、障害物との衝突を自車両1の制動のみでは回避不可能と判定した場合は、S111へと進む。
【0099】
S111〜S118の手順は、ドライバが回避操作をしているか否かを判定する手順で、まず、S111でハンドル角θHの絶対値は設定値以上か否か判定される。この判定の結果、ハンドル角θHの絶対値が設定値に達しない場合、ドライバによる回頭操作が行われておらず、ドライバによる回避操作が行われていないと判断して、そのままプログラムを抜ける。
【0100】
逆に、ハンドル角θHの絶対値が設定値以上の場合は、S112以降へと進み、S112でハンドル角速度(dθH/dt)の絶対値が設定値以上か、S113でアクセル開度θacは設定値以上か、S114でエンジン回転数Neが設定値以上か、S115でエンジントルクTeは設定値以上か、S116で前後加速度Gxは設定値以上か、S117でトラクション制御は作動(ON)しているか、S118でパーキングブレーキスイッチはON状態かの判定が行われる。そして、これらの手順で何れかでも該当する場合(YESの場合)は、ドライバによる回避操作が行われていると判定し、回避走行モードに移行すべくS119に進む。
【0101】
また、上述のS112〜S118の何れも該当しない場合(NOの場合)は、ドライバは、回避操作をしていないと判断して、そのままプログラムを抜ける。
【0102】
ドライバによる回避操作が行われていると判定し、回避走行モードに移行すべくS119に進むと、その運転状態における前輪操舵方向がメモりされる。
【0103】
そして、S120に進み、ハンドル角θHの絶対値が所定値より大きいか否か、すなわち、既にハンドル操作が行われているか否かの判定が行われ、ハンドル角θHの絶対値が所定値より大きく、ハンドル操作が行われてる場合には、S121に進む。
【0104】
S121では、目標ヨーレートγtの絶対値と実ヨーレートγの絶対値の比較が行われて車両挙動の状態が判定され、目標ヨーレートγtの絶対値が実ヨーレートγの絶対値より大きく(|γt|>|γ|)、車両の挙動がアンダーステア傾向にあるとみなせるときはS122に進んで、各車両挙動制御部60,65,70,75に対して制御特性を回頭性が向上する方向に変更するよう信号を出力する。
【0105】
具体的には、前後駆動力配分制御部60に対しては、前後駆動力配分制御部60で用いる演算した目標ヨーレートγt(絶対値)に1より大きい係数が乗じられて目標ヨーレートγt(絶対値)が通常よりも大きく補正され、クラッチトルクが減少補正されて前後の駆動力配分が後輪偏重になり、回頭性が向上するように補正される。
【0106】
また、左右駆動力配分制御部65に対しては、左右駆動力配分制御部65で用いる演算した目標ヨーレートγt(絶対値)に1より大きい係数が乗じられて目標ヨーレートγt(絶対値)が通常よりも大きく補正され、旋回外側車輪の駆動力配分が大きくなるように補正されて回頭性が向上される。
【0107】
更に、後輪操舵制御部70に対しては、ハンドル角感応ゲインkδ0について、1より大きな後輪舵角補正値f1を乗じることで、その絶対値が大きくなるように補正して、ハンドル角θHに対して通常より後輪が逆相に操舵されるようにして回頭性を向上させる。また、ヨーレート感応ゲインkγ0については、1より小さな後輪舵角補正値f2を乗じることで、通常より小さくなるように補正して、ヨーレートγに対して後輪を同相に小さく補正して回頭性を向上する。
【0108】
また、制動力制御部75に対しては、制動力制御部75で用いる演算した目標ヨーレートγt(絶対値)に1より大きい係数が乗じられて目標ヨーレートγt(絶対値)が通常よりも大きく補正されて回頭性が向上される。
【0109】
一方、S121での目標ヨーレートγtの絶対値と実ヨーレートγの絶対値の比較の結果、目標ヨーレートγtの絶対値が実ヨーレートγの絶対値以下(|γt|≦|γ|)で、車両の挙動がオーバーステア傾向にあるとみなせるときはS123に進んで、各車両挙動制御部60,65,70,75に対して制特性を安定性が向上する方向に変更するよう信号を出力する。
【0110】
具体的には、前後駆動力配分制御部60に対しては、前後駆動力配分制御部60で用いる演算した目標ヨーレートγt(絶対値)に1より小さい係数が乗じられて目標ヨーレートγt(絶対値)が通常よりも小さく補正され、クラッチトルクが増加補正されて前後の駆動力配分が等配分方向になり、安定性が向上するように補正される。
【0111】
また、左右駆動力配分制御部65に対しては、左右駆動力配分制御部65で用いる演算した目標ヨーレートγt(絶対値)に1より小さい係数が乗じられて目標ヨーレートγt(絶対値)が通常よりも小さく補正され、旋回外側車輪に対する駆動力配分の増加が抑制されて安定性が向上される。
【0112】
更に、後輪操舵制御部70に対しては、ハンドル角感応ゲインkδ0について、1より小さな後輪舵角補正値f1を乗じることで、その絶対値が小さくなるように補正して、ハンドル角θHに対して通常より後輪が逆相に操舵されることを抑制して安定性を向上する。また、ヨーレート感応ゲインkγ0については、1より大きな後輪舵角補正値f2を乗じることで、通常より大きくなるように補正して、ヨーレートγに対して後輪を同相方向に大きくなるように補正して安定性を向上する。
【0113】
また、制動力制御部75に対しては、制動力制御部75で用いる演算した目標ヨーレートγt(絶対値)に1より小さい係数が乗じられて目標ヨーレートγt(絶対値)が通常よりも小さく補正されて安定性が向上される。
【0114】
また、S120で、ハンドル角θHの絶対値が所定値以下の場合は、今後障害物回避のためにハンドル操作が行われ、旋回されることが予想されるため上記S122に進んで各車両挙動制御部60,65,70,75に対して制御特性を回頭性が向上する方向に変更するよう信号を出力する。
【0115】
こうして、S122或いはS123の処理の後はS124へと進み、回避走行モードであることをドライバに報知するため、警報駆動部89に信号出力して警報ランプ55を点灯させてプログラムを抜ける。
【0116】
次に、S103で回避走行モード中と判定されてS125に進んだ場合について説明する。S103からS125へと進むと、現在の回避走行モードが各車両挙動制御部60,65,70,75に対して制御特性を回頭性が向上する方向に変更させるものか否か判定する。
【0117】
S125で回頭性向上方向に変更中と判定した場合、S126に進み前輪の操舵方向が反転、すなわち、S119でメモリした前輪操舵方向に対して今回の前輪操舵方向が反転しているかの判定が行われ、反転していなければそのままプログラムを抜け、反転していればS127に進んで、回頭性向上方向に変更中の各車両挙動制御部60,65,70,75に対する制御特性の変更出力を、安定性が向上する方向に変更するように信号を出力する。
【0118】
一方、S125で安定性向上方向に変更中と判定した場合は、S128へと進む。S128ではハンドル角θHの絶対値が所定値以下の状態が所定時間以上継続したか否か判定し、継続していない場合はS129に進みヨーレート偏差Δγを前述の(11)式により演算して、S130に進んでヨーレート偏差Δγの絶対値が所定値以下の状態が所定時間以上継続したか否か判定し、継続していない場合はそのままプログラムを抜ける。
【0119】
S128、或いはS130のどちらか一方でも条件を満たす場合、すなわち、ハンドル角θHの絶対値が所定値以下の状態が所定時間以上継続、或いはヨーレート偏差Δγの絶対値が所定値以下の状態が所定時間以上継続した場合はS131へと進み、各車両挙動制御部60,65,70,75に対して制御特性を変更する指示を解除(回避走行モードの解除)して、S132に進み警報駆動部89への信号出力を解除してプログラムを抜ける。
【0120】
このように本発明の実施の形態では、自車両1に対する障害物を事前に判断し、路面摩擦係数、路面勾配の路面情報、自車両1と障害物の相対的な運動を考慮して自車両1が制動操作のみで障害物を回避できるか否か正確に判定するようになっている。
【0121】
そして、自車両1が自車両1の制動操作のみで障害物を回避できない場合で且つ自車両1の障害物に対する回避操作が行われていない際に、そのときのハンドル操作とアンダーステア、或いはオーバーステア状態の車両挙動に応じて各車両挙動制御部60,65,70,75を回避走行モードに移行して作動させるため、ドライバは安全かつ容易に障害物の回避運転を実行することができる。
【0122】
また、ドライバが回避操作を実行している場合は、そのドライバの操作、意志を的確に反映して各車両挙動制御部を回避走行モードに移行させるので、ドライバに対して違和感を与えることも確実に防止でき、自然に各車両挙動の制御装置が適切に動作し、障害物の回避走行を適切に行うことができる
更に、一般に回避走行では、前半は回頭性が重視され、障害物を通過してハンドルを反転してからの後半は安定性が重視されるが、回避走行モード中では、ハンドル操作と車両挙動の変化からこのことを正確に判定し必要な制御を各車両挙動制御部60,65,70,75に実行させるようになっている。
【0123】
また、回避走行モードの解除も、ドライバのハンドル操作による回避走行終了を検出し、或いは、障害物回避後の車両挙動の安定を検出して正確なタイミングで実行されるようになっている。
【0124】
尚、本発明の実施の形態では、前方障害物の検出に、一対のCCDカメラ51R,51Lによって捉えた画像を処理して行う例を示したが、これに限定することなく、例えば単眼カメラ、超音波レーダ、レーザ等の装置を用いて障害物を検出するようにしても良い。
【0125】
また、本発明の実施の形態では、自車両1は、車両挙動の制御部として前後駆動力配分制御部60、左右駆動力配分制御部65、後輪操舵制御部70及び制動力制御部75の4つを備え、回避走行制御部80からこれら4つに信号出力するようになっているが、これらの車両挙動制御部60,65,70,75のうち少なくとも1つを回避走行制御部80で制御するものであれば本発明が適用できることはいうまでもない。更に、本実施の形態では、特に例示していないが、車両挙動の制御部として、車両の走行状態に応じて前輪舵角を適正な舵角に補正する前輪操舵制御部を用いることもできる。
【0126】
また、本発明の実施の形態では、車両挙動制御部60,65,70,75でのパラメータ(目標ヨーレート、或いはハンドル角感応ゲイン、ヨーレート感応ゲイン)の絶対値の増加補正には、1より大きい定数を乗じることで行い、減少補正には1より小さい定数を乗じることで行うようになっているが、補正できればこれに限るものではない。
【0127】
更に、本発明の実施の形態では、前後駆動力配分制御部60は、制御中に目標ヨーレートを補正パラメータとして用いるものであるが、この制御方法に限るものではない。この場合、回頭性を向上するには後輪偏重の駆動力配分となるように、安定性を向上するには前後等配分の駆動力配分になるようにトランスファクラッチ21の締結トルクを設定できれば良い。
【0128】
また、本発明の実施の形態では、左右駆動力配分制御部65でも制御中に目標ヨーレートを補正パラメータとして用いるものであるが、この制御方法に限るものではない。この場合、回頭性を向上するにあたり、車両が基準となるステア特性よりも更に強いアンダーステア傾向と判断される時、目標とする左右駆動力配分比を外輪がより強く駆動する方向、或いは内輪がより強く制動する方向に補正する。また、安定性を向上させる場合には、車両が基準となるステア特性よりも更に弱いアンダーステア傾向或いはオーバーステア傾向と判断される時、目標とする左右駆動力配分比を内輪がより強く駆動する方向、或いは、外輪がより強く制動する方向に補正する。更に、左右駆動力配分は、本実施形態以外の機構によるもの、例えば、公知の油圧ポンプモータにより左右輪間の駆動力配分を行うものであっても適用できることは云うまでもない。
【0129】
また、本発明の実施の形態では、後輪操舵制御部70での制御則は「ハンドル角逆相+ヨーレート同相制御則」を基本制御則とするものを例に説明したが、これに限るものではなく、例えば周知の「ヨーレートフィードバック方式の制御則」や「前輪舵角比例方式の制御則」等であっても良い。そして、他の制御則であっても、回頭性を向上する場合は、前輪に対する後輪の転舵角を同相方向への操舵量を減らすことも含め、逆相方向に補正する。また、安定性を向上させる場合には、前輪に対する後輪の転舵角を逆相操舵量を減らすことも含め、同相方向に補正する。
【0130】
更に、制動力制御部75での制動力制御は、本発明の実施の形態のものに限るものではない。そして、回頭性を向上するには、車両が基準となるステア特性よりも更に強いアンダーステア傾向と判断される時、目標ヨーモーメントを大きくして付加する制動力を増加補正する。また、安定性を向上させる場合には、車両が基準となるステア特性よりも更に弱いアンダーステア傾向或いはオーバーステア傾向と判断される時、目標ヨーモーメントを大きくして付加する制動力を増加補正するようにしても良い。
【図面の簡単な説明】
【0131】
【図1】車両における車両運動制御装置全体の概略説明図
【図2】回避走行制御部を説明する機能ブロック図
【図3】回避走行制御プログラムのフローチャート
【図4】図3の続きのフローチャート
【図5】図4の続きのフローチャート
【図6】図3の続きのフローチャート
【符号の説明】
【0132】
1 自車両
42 ハンドル角センサ
43 ヨーレートセンサ
47 エンジン回転数センサ
49 前後加速度センサ
51R,51L CCDカメラ(障害物認識手段)
52 障害物認識部(障害物認識手段)
53 アクセルペダルセンサ
54 パーキングブレーキスイッチ
60 前後駆動力配分制御部(車両挙動制御手段)
65 左右駆動力配分制御部(車両挙動制御手段)
70 後輪操舵制御部(車両挙動制御手段)
75 制動力制御部(車両挙動制御手段)
80 回避走行制御部(回避操作判定手段、回避制御手段)
91 エンジン制御部
92 トラクション制御部

【特許請求の範囲】
【請求項1】
前方の障害物を認識して障害物情報を検出する障害物認識手段と、
上記自車両の回頭性能を可変して車両挙動を制御する車両挙動制御手段と、
上記自車両の上記障害物に対する回避操作の状態を判定する回避操作判定手段と、
上記自車両の上記障害物に対する回避操作が行われている場合にハンドル操作と車両挙動に応じて上記車両挙動制御手段を可変して回避走行モードに移行させる回避制御手段と、
を備えたことを特徴とする車両運動制御装置。
【請求項2】
上記回避操作判定手段は、少なくとも上記自車両の回頭操作が行われている場合に回避操作が行われていると判定することを特徴とする請求項1記載の車両運動制御装置。
【請求項3】
上記回避制御手段による上記回避走行モードは、上記車両挙動制御手段を、通常より回頭性を向上させる方向に制御変更する第1のモードと、この第1のモードより車両姿勢を強く維持させる方向に制御変更する第2のモードからなることを特徴とする請求項1又は請求項2に記載の車両運動制御装置。
【請求項4】
上記回避制御手段による上記回避走行モードは、上記車両挙動制御手段を上記第1のモードの場合にハンドル操舵方向が反転した際は、上記車両挙動制御手段を上記第2のモードに切り換えることを特徴とする請求項3記載の車両運動制御装置。
【請求項5】
上記回避制御手段による上記回避走行モードは、ハンドル操舵が小さい状態が所定時間以上継続した場合と、目標とするヨーレートと実際のヨーレートの偏差が予め定めた設定範囲内である状態が所定時間以上継続した場合の少なくともどちらかの場合に上記回避走行モードを解除することを特徴とする請求項1乃至請求項4の何れか一つに記載の車両運動制御装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate


【公開番号】特開2008−18832(P2008−18832A)
【公開日】平成20年1月31日(2008.1.31)
【国際特許分類】
【出願番号】特願2006−192011(P2006−192011)
【出願日】平成18年7月12日(2006.7.12)
【出願人】(000005348)富士重工業株式会社 (3,010)
【Fターム(参考)】