説明

ゲート絶縁膜、ゲート絶縁膜の製造方法、ゲート絶縁膜の評価方法、半導体素子、電子デバイスおよび電子機器

【課題】薄膜化した場合においても、SBDが生じ難く、高い絶縁破壊耐性(TZDB、TDDBの改善)が経時的に得られるゲート絶縁膜、かかるゲート絶縁膜の製造方法および評価方法、さらに、このゲート絶縁膜を用いた半導体素子、信頼性の高い電子デバイスおよび電子機器を提供すること。
【解決手段】ゲート絶縁膜3は、半導体基板(基材)2上に化学的気相成膜法を用いて成膜され、平均厚さが10nm以下のものであり、シリコン、酸素原子および水素原子で構成され、その密度が2.5g/cm以下なる関係を満足することにより、ソフトブレークダウンが生じるまでに流れる総電荷量が、40C/cm以上となるよう構成されている。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、ゲート絶縁膜、ゲート絶縁膜の製造方法、ゲート絶縁膜の評価方法、半導体素子、電子デバイスおよび電子機器の評価方法に関するものである。
【背景技術】
【0002】
近年、半導体集積回路装置においては、高集積化を図るために、素子のサイズは益々微細化する方向にある。
例えば、MOSFET(Metal Oxide Semiconductor Field Effect Transistor)では、ゲート絶縁膜の厚さが10nmを下回るようになっており、これにともなってゲート絶縁膜の絶縁破壊耐性を確保するのが難しくなっている。
【0003】
このゲート絶縁膜の絶縁破壊としては、初期不良であるタイムゼロ絶縁破壊(TZDB)と、ハードブレークダウン(HBD)とソフトブレークダウン(SBD)のようなストレス印加後に絶縁破壊が生じる経時絶縁破壊(TDDB)とがある。
HBDは、従来の絶縁破壊であり、破壊後には多量のリーク電流が流れる。
一方、SBDは、初期の絶縁状態よりは、多くリーク電流が流れるが、HBD後よりは、流れない中途半端な状態のことである。
【0004】
HBDは、比較的高い電気的ストレスで発生する絶縁破壊であり、一旦リーク電流が発生すると、その後、電圧ストレスを与えずに放置しても、絶縁特性が回復したりしない。これに対し、SBDは、低い電気的ストレスで頻発する絶縁破壊であり、リーク電流発生後、電気的ストレスを与えずに放置すると、絶縁特性が回復することがある。
したがって、SBDが生じたMOSFETは、特性は不安定になるが半導体素子として機能し得る場合もある。また、SBDは、時間の経過によってHBDに移行する(移行しないこともある。)。
これらの絶縁破壊のうち、ゲート絶縁膜の薄膜化を図る上で、特に問題となるのはSBDである。このSBDの発生は、ゲート酸化膜の厚さを10nm以下とした場合に、10MV/cm以下の低電圧領域において頻発し、ゲート絶縁膜の薄膜化を阻む大きな要因となっている。
【0005】
本発明者は、かかる問題点に鑑み、鋭意検討を行った結果、例えば、特許文献1に示すように、ゲート絶縁膜中に存在するSi−O(H)−SiのOH構造を減少させることにより、SBDの発生を低減し得ることがことを見出した。
しかしながら、たとえ電気的ストレスが掛かる前の前記OH構造の量を少なくしたとしても、前記OH構造の量は、電気ストレスが継続的にゲート絶縁膜に掛かることや、水素分子や水分子を含有する雰囲気下に長時間晒されることにより増加するため、半導体素子の継続的な使用により、前記OH構造の量が増加し、その結果、SBDが発生して、最終的にHBDが生じてしまうことが問題となってきた。
【0006】
【特許文献1】特開2005−175424号公報
【発明の開示】
【発明が解決しようとする課題】
【0007】
本発明の目的は、薄膜化した場合においても、SBDが生じ難く、高い絶縁破壊耐性(TZDB、TDDBの改善)が経時的に得られるゲート絶縁膜、かかるゲート絶縁膜の製造方法および評価方法、さらに、このゲート絶縁膜を用いた半導体素子、信頼性の高い電子デバイスおよび電子機器を提供することにある。
【課題を解決するための手段】
【0008】
このような目的は、下記の本発明により達成される。
本発明のゲート絶縁膜は、基材上に化学的気相成膜法を用いて成膜され、平均厚さが10nm以下であるゲート絶縁膜であって、
当該ゲート絶縁膜は、シリコン、酸素原子および水素原子で構成され、その密度が2.5g/cm以下なる関係を満足することにより、
ソフトブレークダウンが生じるまでに流れる総電荷量が、40C/cm以上となるよう構成したことを特徴とする。
これにより、膜内部に存在する水素原子の量を少なくすることができ、薄膜化した場合においても、SBDが生じ難く、高い絶縁破壊耐性(TZDB、TDDBの改善)を経時的に得ることができる。
【0009】
本発明のゲート絶縁膜では、前記ゲート絶縁膜の密度は、X線反射率測定法により測定されることが好ましい。
X線反射率測定法によれば、高い精度で、ゲート絶縁膜中の密度を測定することができる。
本発明のゲート絶縁膜では、10MV/cm以下の印加電圧で使用されることが好ましい。
本発明によれば、このような印加電圧で使用されるゲート絶縁膜において、絶縁破壊耐性が顕著に改善される。
【0010】
本発明のゲート絶縁膜では、5MV/cm以下の印加電圧で測定されるリーク電流値が、9×10−9A/cm以下であることが好ましい。
かかるゲート絶縁膜を、半導体素子のゲート絶縁膜に適用することにより、半導体素子の使用時におけるゲート絶縁膜の絶縁破壊がより生じ難くなる。
本発明のゲート絶縁膜では、ハードブレークダウンが生じるまでに流れる総電荷量が、100C/cm以上であることが好ましい。
かかるゲート絶縁膜を、半導体素子のゲート絶縁膜に適用することにより、半導体素子の使用時におけるゲート絶縁膜の絶縁破壊がより生じ難くなる。
【0011】
本発明のゲート絶縁膜の製造方法では、
前記ゲート絶縁膜は、化学的気相成膜法を用いて、シリコン、酸素原子および水素原子で構成される膜を形成した後、
相対湿度が90%RH以上で、かつ雰囲気の圧力が0.1kPa以下の減圧雰囲気下で熱酸化処理を施すことにより形成されることを特徴とする。
前記膜を前記のような条件で熱酸化処理することにより、前記膜が緻密化して、その密度を2.5g/cm以下とすることができる。その結果、前記膜中に水素分子や水分子が取り込まれるのを好適に抑制または防止することができる。
【0012】
本発明のゲート絶縁膜の製造方法では、前記熱酸化処理を施す際の雰囲気の温度は、900〜1000℃であることが好ましい。
かかる範囲内で熱酸化処理を施すことにより、前記膜の変質・劣化を確実に防止しつつ、前記膜を緻密化することができる。
本発明のゲート絶縁膜の製造方法では、前記熱酸化処理を施す時間は、15分以下であることが好ましい。
加熱温度を前記範囲内とすれば、かかる範囲のように加熱時間を短時間に設定することができることから、高温な雰囲気下に長時間晒されることによる前記膜の変質・劣化を確実に防止することができる。
【0013】
本発明のゲート絶縁膜の評価方法は、基材上に化学的気相成膜法を用いて成膜され、平均厚さが10nm以下であり、シリコン、酸素原子および水素原子で構成されるゲート絶縁膜の評価方法であって、
前記ゲート絶縁膜は、X線反射率測定法により測定された、その密度が2.5g/cm以下なる関係を満足するものであった場合、当該ゲート絶縁膜を合格品と判定することを特徴とする。
本発明のようにX線反射率測定法を用いてゲート絶縁膜の膜の特性を評価する方法は、簡便で時間もコストもかからない上、ゲート絶縁膜に影響を与えずに(非破壊で)絶縁破壊特性を判定できる、汎用性に優れた方法(評価方法)である。
【0014】
本発明の半導体素子は、本発明のゲート絶縁膜を備えることを特徴とする。
これにより、特性に優れる半導体素子が得られる。
本発明の電子デバイスは、本発明の半導体素子を備えることを特徴とする。
これにより、信頼性の高い電子デバイスが得られる。
本発明の電子機器は、本発明の電子デバイスを備えることを特徴とする。
これにより、信頼性の高い電子機器が得られる。
【発明を実施するための最良の形態】
【0015】
以下、本発明のゲート絶縁膜、ゲート絶縁膜の製造方法、ゲート絶縁膜の評価方法、半導体素子、電子デバイスおよび電子機器の好適実施形態に基づいて詳細に説明する。
まず、本発明のゲート絶縁膜を備える半導体素子の構成について説明する。
<半導体素子>
図1は、本発明のゲート絶縁膜を適用した半導体素子の実施形態を示す縦断面図、図2〜図4は、ゲート絶縁膜の分子構造を示す模式図。なお、以下では、説明の都合上、図1中の上側を「上」、下側を「下」として説明する。
【0016】
図1に示す半導体素子1は、トレンチ素子分離構造24(素子分離構造24)と、チャネル領域21とソース領域22とドレイン領域23とを備える半導体基板2と、半導体基板2を覆うように設けられたゲート絶縁膜3と、層間絶縁膜4と、ゲート絶縁膜3を介してチャネル領域21と対向するように設けられたゲート電極5と、ゲート電極5上方の層間絶縁膜4上に設けられた導電部61と、ソース領域22上方の層間絶縁膜4上に設けられ、ソース電極として機能する導電部62と、ドレイン領域23上方の層間絶縁膜4上に設けられ、ドレイン電極として機能する導電部63と、ゲート電極5と導電部61とを電気的に接続するコンタクトプラグ71と、ソース領域22と導電部62とを電気的に接続するコンタクトプラグ72と、ドレイン領域23と導電部63とを電気的に接続するコンタクトプラグ73とを有している。
【0017】
半導体基板2は、例えば、多結晶シリコン、アモルファスシリコン等のシリコン、ゲルマニウム、ヒ素化ガリウム等の半導体材料で構成される。
前述したように、この半導体基板2は、素子分離構造24を有し、この素子分離構造24によって区画形成された領域に、チャネル領域21とソース領域22とドレイン領域23とを有している。
そして、チャネル領域21の一方の側部にソース領域22が形成され、チャネル領域21の他方の側部にドレイン領域23が形成された構成となっている。
【0018】
素子分離構造24は、トレンチ内にSiO等の絶縁材料が埋め込まれて構成されている。これにより、隣接する素子同士が電気的に分離され、素子間での干渉が防止される。
チャネル領域21は、例えば真正半導体材料で構成されている。
ソース領域22およびドレイン領域23は、例えば、P等のn型不純物が導入(ドープ)された半導体材料で構成されている。
【0019】
なお、チャネル領域21、ソース領域22およびドレイン領域23は、それぞれ、このような構成のものに限定されない。
例えば、ソース領域22およびドレイン領域23は、それぞれ、p型不純物が導入された半導体材料で構成されてもよい。また、チャネル領域21は、例えばp型またはn型不純物が導入された半導体材料で構成されてもよい。
【0020】
このような半導体基板2は、絶縁膜(ゲート絶縁膜3、層間絶縁膜4)で覆われている。このような絶縁膜のうち、チャネル領域21とゲート電極5との間に介在している部分は、チャネル領域21とゲート電極5との間に生じる電界の経路として機能する。
本発明の半導体素子では、このゲート絶縁膜3の構成に特徴を有している。この点(特徴)については後に詳述する。
【0021】
層間絶縁膜4の構成材料としては、特に限定されないが、例えばSiO、TEOS(ケイ酸エチル)、ポリシラザン等のシリコン系化合物を用いることができる。なお、層間絶縁膜4は、その他、例えば樹脂材料、セラミックス材料等で構成することもできる。
層間絶縁膜4上には、導電部61、導電部62および導電部63が設けられている。
前述したように、導電部61は、チャネル領域21の上方に形成され、導電部62、63は、それぞれソース領域22、ドレイン領域23の上方に形成されている。
【0022】
また、ゲート絶縁膜3および層間絶縁膜4において、チャネル領域21、ソース領域22およびドレイン領域23が形成された領域内には、それぞれ、ゲート電極5に連通する孔部(コンタクトホール)、ソース領域21に連通する孔部、ドレイン領域23に連通する孔部が形成されており、これらの孔部内に、それぞれコンタクトプラグ71、72、73が設けられている。
導電部61は、コンタクトプラグ71を介してゲート電極5に接続され、導電部62は、コンタクトプラグ72を介してソース領域22に接続され、導電部63は、コンタクトプラグ73を介してドレイン領域23に接続されている。
【0023】
次に、ゲート絶縁膜3の構成について説明する。
本発明において、ゲート絶縁膜3は、化学的気相成膜法(CVD法)を用いて成膜されたものであり、シリコン、酸素原子および水素原子で構成されている。
すなわち、シリコン酸化物(SiO、0<Z≦2)を主材料とするゲート絶縁膜3、例えばSiOを主材料とするゲート絶縁膜3では、シリコンに酸素原子が4配位、酸素原子にシリコンが2配位することにより形成されたSi−O結合のほぼ完全な三次元ネットワークで構成され、結合の方向性が無秩序な非晶質状態となっている。
そして、このSiO膜の内部には、このSiO膜を形成(成膜)する際に、その雰囲気中に存在する水素分子および水分子や、水素原子を含むガス等に由来して不可避的に水素原子が混入している。
【0024】
この水素原子は、SiO膜の内部では、HやHOとして存在するとともに、図4に示すように、SiO膜の内部に入り込んで、所々でSi−O結合や、不完全な配位構造35と反応し、Si−H構造33やSi−OH構造34を形成して、ゲート絶縁膜3の構造に影響を与えている。
このようなSiO膜について本発明者は検討を重ね、前記特許文献1に示したように、その膜の内部に、図3に示すようなOが3配位するSi−OH構造31が安定に存在し、余った電子がリーク電流の発生に寄与し、このリーク電流によりソフトブレークダウン(SBD)が発生することを見出した。そして、これらの結果として、ハードブレークダウン(HBD)が生じやすくなること、すなわち経時絶縁破壊(TDDB)を起こし易くなることが判った。
【0025】
一方で、もう一つのSi−OH構造34やSi−H構造33は、比較的安定に存在し、SBDの発生に寄与しないことを確認した。
そのため、電気的ストレスが掛かる前のゲート絶縁膜(SiO膜)3において、その膜中のOが3配位するSi−OH構造31(以下、単に「Si−OH構造31」ということもある。)の存在量を少なくすることにより、ゲート絶縁膜3を絶縁破壊耐性に優れたものにし得ることが判った。
【0026】
しかしながら、本発明者のさらなる検討により、たとえ電気的ストレスが掛かる前(ゲート絶縁膜3の成膜時)のSi−OH構造31の量を少なくしたとしても、Si−OH構造31の量は、電気ストレスが継続的にゲート絶縁膜3に掛かることや、水素分子や水分子を含有する雰囲気下に長時間晒されることにより増加するため、半導体素子1の継続的な使用により、ゲート絶縁膜3中のSi−OH構造31の量が増加し、その結果、SBDが発生して、最終的にHBDが生じてしまうことが問題となってきた。
【0027】
なお、本明細書中では、ゲート絶縁膜3に定電流を供給し、小規模な電圧変化が初めて生じた時点でSBDが発生したとし、急激な電圧変化が生じた時点でHBDが発生したとする。
ところで、ゲート絶縁膜3は、前述したように、不完全な配位構造35が形成されている領域を除いて、シリコンに酸素原子が4配位、酸素原子にシリコンが2配位することにより形成されたSi−O結合のほぼ完全な三次元ネットワークで構成され、下記一般式(1)で表される構造を有していることが知られている。
【0028】
【化1】

[式中、nは2以上の整数を表す。]
【0029】
かかる一般式(1)で表される構造において、例えば、nが3である場合には、図2(a)に示すような3員環が形成され、nが4である場合には、図2(b)に示すような4員環が形成され、nが6である場合には、図2(c)に示すような6員環が形成される。
図2からも明らかなように、nが小さくなるほど、∠OSiOの角度が小さくなり、環内の歪みが大きくなる傾向を示す。
【0030】
かかる点について、本発明者は着目し、nの大きさの違いに応じて、第一原理電子構造シミュレーションにより検討を行った結果、nが小さく(環内の歪みが大きく)なるほど、膜中に含まれる酸素原子と水素原子との間の結合エネルギーが低下する。その結果、前記一般式(1)で表される構造中の酸素原子に、膜中に存在する水素原子が結合することとなり、O−H結合が安定に形成されること、すなわちOが3配位するSi−OH構造31が安定に存在し得ることを見出した。
また、この第一原理電子構造シミュレーションの検討の過程において、nが小さくなると、シリコン原子と水素原子との間の結合エネルギーも低下してSi−H結合を形成し得ること、すなわちSiが5配位するSi−H構造32も安定に存在し、SBDの発生に、このSiが5配位するSi−H構造32(以下、単に「Si−H構造32」ということもある。)の存在も寄与していることが判った。
【0031】
さらに、本発明者の検討の結果、I)このようなSi−OH構造31およびSi−H構造32が安定に存在する傾向は、nの大きさが4(4員環)以下になるほど、特に顕著に認められ、II)外部電場による電気的ストレスがゲート絶縁膜3に対して継続的に掛かることにより、膜内部に存在する水素原子が、nの大きさが4以下のもののSi−O結合内に経時的に取り込まれて、Si−OH構造31およびSi−H構造32の数が増加すること、III)化学的気相成膜法で形成されたSiO膜では、その膜内部に存在する水素原子(水素分子や水分子)が他の方法で形成されたSiO膜よりも多く含まれること、さらには膜中に多くの3員環および4員環が存在すると考えられることから、膜内部に存在する水素原子がSi−O結合内に取り込まれる傾向は、化学的気相成膜法で形成されたSiO膜において特に顕著に認められることを見出した。
これらのことから、化学的気相成膜法を用いて成膜されたシリコン、酸素原子および水素原子で構成されるゲート絶縁膜3において、膜内部に存在する水素原子の量を少なくすれば、ゲート絶縁膜3中において、Oが3配位するSi−OH構造31およびSiが5配位するSi−H構造32の経時的な発生を確実に抑制または防止し得ることが判ってきた。
【0032】
また、本発明者の更なる検討により、化学的気相成膜法を用いて成膜されたシリコン、酸素原子および水素原子で構成されるゲート絶縁膜3において、膜内部に存在する水素原子の量は、ゲート絶縁膜3の密度(g/cm)と相関関係を有すること、すなわち、膜が緻密化して水素原子の量が少なくなるほど、ゲート絶縁膜3の密度が低くなることが判ってきた。さらに、膜が緻密化する際に、膜中に存在する3員環および4員環の量をも減少させ得ることが判ってきた。
そして、かかる考えに基づいて、鋭意検討を重ねた結果、ゲート絶縁膜3において、その密度が2.5g/cm以下となるようにすることで、SBDが生じるまでに流れる総電荷量が、40C/cm以上となり、ゲート絶縁膜3の絶縁破壊特性を向上し得ることを見出した。
【0033】
さらに、本発明によれば、膜の密度を2.5g/cm以下にすることで、Si−OH構造31およびSi−H構造32が形成される原因となる膜内部に存在する水素原子が減少することとなるので、ゲート絶縁膜3を継続的に使用により、Si−OH構造31およびSi−H構造32が形成されてしまうのを好適に抑制または防止し得ることを見出した。
【0034】
したがって、本発明のゲート絶縁膜3は、外部電場により継続的に電界を印加したとしても、SBDや、SBDが基で発生するHBD(TZDB)が生じ難く、優れた絶縁破壊耐性を有するものとなる。すなわち、ゲート絶縁膜3の密度を2.5g/cm以下とすることで、かかる関係を満足するゲート絶縁膜3を通常の絶縁破壊試験(TZDB、TDDB試験)にかけるとき、殆どがこの試験に合格するものとなる。
【0035】
また、このような化学的気相成膜法を用いて成膜されたシリコン、酸素原子および水素原子で構成される膜をゲート絶縁膜3として備える半導体素子1は、安定な特性および耐久性を発揮することができる。
ここで、ゲート絶縁膜3の密度は、X線反射率測定(Grazing Incidence X-ray Reflectmetry;GIXR)法を用いることにより測定することができる。X線反射率測定法によれば、非接触かつ非破壊で、膜中の所望の厚さ方向における位置の密度を、高い精度で測定することができる。
【0036】
ところで、絶縁破壊特性の判定には、通常、数多くの試験を繰り返して統計的なデータを取らなければならず、時間もコストもかかる。また、当然ながら試験後のゲート絶縁膜は、破壊しているため、製品として利用することはできない。
これに対して、上述したようにX線反射率測定法を用いてゲート絶縁膜3の密度を算出する方法は、簡便で時間もコストもかからない上、ゲート絶縁膜3に影響を与えずに(非破壊で)絶縁破壊特性を判定できる、汎用性に優れた方法(評価方法)である。
【0037】
なお、前述したように、ゲート絶縁膜3の密度は2.5g/cm以下なる関係を満足すればよいが、2.3〜2.4g/cm程度なる関係を満足するのが好ましい。これにより、SBDが生じることによるSiO膜の絶縁破壊をより確実に防止することができるとともに、ゲート絶縁膜3の耐久性の向上を図ることができる。
さらに、ゲート絶縁膜3に定電流を供給した場合、ゲート絶縁膜3は、SBDが生じるまでに流れる総電荷量が40C/cm以上であればよいが、75C/cm以上であるのが好ましい。ゲート絶縁膜3がこのような条件を満足することにより、半導体素子1の使用時におけるゲート絶縁膜3の絶縁破壊がより生じ難くなる。
【0038】
また、ゲート絶縁膜3は、HBD(絶縁破壊)が生じるまでに流れる総電荷量が、100C/cm以上であるものが好ましく、200C/cm以上であるものがより好ましい。ゲート絶縁膜3がこのような条件を満足することにより、半導体素子1の使用時におけるゲート絶縁膜3の絶縁破壊がさらに生じ難くなる。
なお、ゲート絶縁膜3の平均厚さ(平均膜厚)は、10nm以下に設定され、1〜7nm程度であるのが好ましく、1〜5nm程度であるのがより好ましい。ゲート絶縁膜3の厚さを前記範囲とすることにより、半導体素子1を十分に小型化することができる。
【0039】
また、SBDの発生は、特に、ゲート絶縁膜3の膜厚を前記範囲のように10nm以下としたときに頻発する傾向にあり、したがって、このような薄い膜厚のゲート絶縁膜3に、本発明を適用することにより、その効果が顕著に発揮される。
また、ゲート絶縁膜3は、印加電圧(ゲート電圧)の絶対値が、10MV/cm以下で使用されるものであるのが好ましく、5MV/cm以下で使用されるものであるのがより好ましい。SBDは、前記範囲のゲート電圧で発生し易い欠陥であり、このゲート電圧で使用するゲート絶縁膜3の場合に、本発明を適用することにより、その効果が顕著に発揮される。
【0040】
なお、ゲート絶縁膜3に対して、前記上限値を越えた高いゲート電圧を印加すると、不可逆的な絶縁破壊(HBD)が発生してしまうおそれがある。
また、ゲート絶縁膜3は、5MV/cm(絶対値)以下の印加電圧(電界強度)で測定されるリーク電流値が、9×10−9A/cm以下であるものが好ましく、5×10−9A/cm以下であるものがより好ましい。ゲート絶縁膜3がこのような条件を満足することにより、半導体素子1の使用時におけるゲート絶縁膜3の絶縁破壊がより生じ難くなる。
【0041】
以上のようなゲート絶縁膜3の構成材料(絶縁性無機材料)は、シリコンおよび酸素原子を主材料として構成され、水素原子が不可避的に含まれているものに限定されず、シリコン、酸素原子および水素原子以外に、他の元素(原子)がゲート絶縁膜3の特性が変化しない程度に若干含まれていてもよい。
また、ゲート絶縁膜3の形成方法については、以下の半導体素子1の製造方法において説明する。
【0042】
<半導体素子の製造方法>
次に、図1に示す半導体素子の製造方法について説明する。
図5〜図7は、それぞれ、図1に示す半導体素子の製造方法を説明するための図(縦断面図)である。なお、以下では、説明の都合上、図5〜図7中の上側を「上」、下側を「下」として説明する。
【0043】
<1> まず、図5(a)に示すように、半導体基板2の表面に、例えば選択酸化法(LOCOS法)等により、トレンチ素子分離構造24を形成する。
これにより、半導体基板2の表面に、素子形成領域が区画形成される。
<2> 次に、半導体基板2にイオンドープを行い、ウェルを形成する。
例えば、pウェルを形成する場合には、Bイオン等のp型不純物をドープし、nウェルを形成する場合には、Pイオン等のn型不純物をドープする。
【0044】
<3> 次に、図5(b)に示すように、半導体基板(基材)2上に、化学的気相成膜法を用いてゲート絶縁膜(SiO膜)3を成膜する。
このゲート絶縁膜3の形成に、本発明のゲート絶縁膜の製造方法が適用される。
本発明のゲート絶縁膜の製造方法では、形成されるシリコン、酸素原子および水素原子で構成される膜の密度が2.5g/cm以下となるように各種成膜条件が設定される。
【0045】
(3−1) まず、化学的気相成膜法(CVD法)を用いて半導体基板2上に、例えば、SiO膜を形成する。
すなわち、所定圧力のチャンバ内に、シリコン酸化物前駆体と酸素原子を含むガスとを導入し、半導体基板2を加熱することにより、半導体基板2上にSiO膜を形成する。
シリコン酸化物前駆体としては、例えば、モノシラン、ジクロロシラン、ヘキサクロロジシラン、テトラキス(ヒドロカルビルアミノ)シラン、トリス(ヒドロカルビルアミノ)シラン等が挙げられ、これらのうちの1種または2種以上を組み合わせて用いることができる。
酸素原子を含むガスとしては、例えば、二酸化窒素、酸素(純酸素)、オゾン、過酸化水素、水蒸気、一酸化窒素、酸化二窒素等が挙げられ、これらのうちの1種または2種以上を組み合わせて用いることができる。
【0046】
加熱の温度(加熱温度)は、600〜800℃程度であるのが好ましく、650〜750℃程度であるのがより好ましい。
半導体基板2の加熱時間は、目的とする膜の厚さに応じて適宜設定すればよく、特に限定されないが、例えば、加熱温度を前記範囲とする場合には、5〜30分程度であるのが好ましく、10〜20分程度であるのがより好ましい。
チャンバ内の圧力(真空度)は、0.05〜1.0kPa程度であるのが好ましく、0.1〜0.5kPa程度であるのがより好ましい。
また、シリコン酸化物前駆体と酸素原子を含むガスとの混合比は、モル比で1:2〜1:10程度であるのが好ましく、1:3〜1:5程度であるのがより好ましい。
【0047】
(3−2) 次に、半導体基板2上に形成されたSiO膜に対して、相対湿度90%RH以上の水蒸気(HO)を含み、かつ雰囲気の圧力が0.1kPa以下の減圧雰囲気下で加熱する熱酸化処理を施すことによりゲート絶縁膜3を得る。このような熱酸化処理をSiO膜に施す構成とすることにより、SiO膜が緻密化して、その密度を2.5g/cm以下とすることができる。その結果、膜中に水素分子や水分子が取り込まれるのを好適に抑制または防止することができる。また、SiO膜を緻密化することにより、前記工程3−1において、SiO膜を形成する際に、膜中に形成されたSi−OH構造31やSi−H構造32から水素原子が離脱して、Si−OH構造31およびSi−H構造32の含有量を減少させることができるという効果も得られる。
この場合、加熱の温度(加熱温度)は、900〜1000℃程度であるのが好ましく、950〜1000℃程度であるのがより好ましい。かかる範囲内で熱酸化処理を施すことにより、SiO膜の変質・劣化を確実に防止しつつ、SiO膜を緻密化することができる。
【0048】
加熱の時間(加熱時間)は、加熱温度を前記範囲とする場合には、15分以下であるのが好ましく、10〜15分程度であるのがより好ましい。加熱温度を前記範囲とすることにより、加熱時間を短時間に設定することができることから、高温な雰囲気下に長時間晒されることによるSiO膜の変質・劣化を確実に防止することができる。
また、雰囲気の相対湿度は、90%RH以上であればよいが、90〜95%RH程度であるのが好ましい。これにより、SiO膜が緻密化する際に、膜が水蒸気により保護されて、変質・劣化するのを確実に防止することができる。
雰囲気の圧力(真空度)は、0.1kPa以下であればよいが、0.01〜0.05kPa程度であるのがより好ましい。このような減圧雰囲気下で熱酸化処理を施すことにより、雰囲気中に含まれるガス成分が、膜が緻密化する際に、膜中に取り込まれてしまうのを確実に防止することができる。
【0049】
以上のような方法および条件でゲート絶縁膜3を形成することにより、緻密化したゲート絶縁膜3を得ることができることから、その膜の密度を2.5g/cm以下とすることができ、膜中への水素原子の混入が抑えられる。これにより、Si−OH構造31およびSi−H構造32の存在量を極めて少なくすることができるとともに、これらの構造の経時的な増加を好適に抑制または防止することができる。
【0050】
<4> 次に、図5(c)に示すように、ゲート絶縁膜3上に、導電膜51を形成する。
この導電膜51は、ゲート絶縁膜3上に、例えばCVD法等により、多結晶シリコン等を堆積させて形成することができる。
<5> 次に、導電膜51上に、例えばフォトリソグラフィー法等により、ゲート電極5の形状に対応するレジストマスクを形成する。
そして、このレジストマスクを介して導電膜51の不要部分をエッチングにより除去する。これにより、図6(d)に示すようなゲート電極5が得られる。
このエッチングには、例えば、プラズマエッチング、リアクティブエッチング、ビームエッチング、光アシストエッチング等の物理的エッチング法、ウェットエッチング等の化学的エッチング法等のうちの1種または2種以上を組み合わせて用いることができる。
【0051】
<6> 次に、図6(e)に示すように、半導体基板2のゲート電極5の両側にイオンドープを行い、ソース領域22およびドレイン領域23を形成する。
このとき、p型不純物によりウェルを形成した場合には、P等のn型不純物をドープすることにより、ソース領域22およびドレイン領域23を形成する。
一方、n型不純物によりウェルを形成した場合には、B等のp型不純物をドープすることによりソース領域22およびドレイン領域23を形成する。
<7> 次に、図6(f)に示すように、各部が形成された半導体基板2上に、例えばCVD法等により、SiO等を堆積させることで層間絶縁膜4を形成する。
【0052】
<8> 次に、層間絶縁膜4上に、例えばフォトリソグラフィー法等により、コンタクトホールに対応する部分が開口したレジストマスクを形成する。
そして、このレジストマスクを介して、層間絶縁膜4の不要部分をエッチングにより除去する。これにより、図7(g)に示すように、チャネル領域21、ソース領域22、ドレイン領域23のそれぞれに対応してコンタクトホール41、42、43が形成される。
【0053】
<9> 次に、コンタクトホール41、42、43の内部を含めて層間絶縁膜4上に、例えばCVD法等により、導電性材料を堆積させ導電膜を形成する。
<10> 次に、導電膜上に、例えばフォトリソグラフィー法等により導電部の形状に対応するレジストマスクを形成する。
そして、このレジストマスクを介して、導電膜の不要部分をエッチングにより除去する。これにより、図7(h)に示すように、チャネル領域21、ソース領域22、ドレイン領域23のそれぞれに対応して導電部61、62、63およびコンタクトプラグ71、72、73が形成される。
以上のような工程を経て、半導体素子1が製造される。
【0054】
<電子デバイス>
前述したような半導体素子1は、各種電子デバイスに適用される。
以下では、本発明の電子デバイスを透過型液晶表示装置に適用した場合を代表に説明する。
図8は、本発明の電子デバイスを透過型液晶表示装置に適用した場合の実施形態を示す分解斜視図である。
なお、図8では、図が煩雑となるのを避けるため一部の部材を省略している。また、以下では、説明の都合上、図8中の上側を「上」、下側を「下」として説明する。
【0055】
図8に示す透過型液晶表示装置10(以下、単に「液晶表示装置10」と言う。)は、液晶パネル(表示パネル)20と、バックライト(光源)60とを有している。
この液晶表示装置10は、バックライト60からの光を液晶パネル20に透過させることにより画像(情報)を表示し得るものである。
液晶パネル20は、互いに対向して配置された第1の基板220と第2の基板230とを有し、これらの第1の基板220と第2の基板230との間には、表示領域を囲むようにしてシール材(図示せず)が設けられている。
【0056】
そして、これらの第1の基板220、第2の基板230およびシール材により画成される空間には、電気光学物質である液晶が収納され、液晶層(中間層)240が形成されている。すなわち、第1の基板220と第2の基板230との間に、液晶層240が介挿されている。
なお、図示は省略したが、液晶層240の上面および下面には、それぞれ、例えばポリイミド等で構成される配向膜が設けられている。これらの配向膜により液晶層240を構成する液晶分子の配向性(配向方向)が規制されている。
【0057】
第1の基板220および第2の基板230は、それぞれ、例えば、各種ガラス材料、各種樹脂材料等で構成されている。
第1の基板220は、その上面(液晶層240側の面)221に、マトリックス状(行列状)に配置された複数の画素電極223と、X方向に延在する走査線224と、Y方向に延在する信号線228とが設けられている。
【0058】
各画素電極223は、透明性(光透過性)を有する透明導電膜により構成され、それぞれ、1つの半導体素子(本発明の半導体素子)1を介して、走査線224および信号線228に接続されている。
また、第1の基板220の下面には、偏光板225が設けられている。
一方、第2の基板230は、その下面(液晶層240側の面)231に、複数の帯状をなす対向電極232が設けられている。これらの対向電極232は、互いに所定間隔をおいてほぼ平行に配置され、かつ、画素電極223に対向するように配列されている。
【0059】
画素電極223と対向電極232とが重なる部分(この近傍の部分も含む)が1画素を構成し、これらの電極間で充放電を行うことにより、各画素毎に、液晶層240の液晶が駆動、すなわち、液晶の配向状態が変化する。
対向電極232も、前記画素電極223と同様に、透明性(光透過性)を有する透明導電膜(により構成されている。
【0060】
各対向電極232の下面には、それぞれ、赤(R)、緑(G)、青(B)の有色層(カラーフィルター)233が設けられ、これらの各有色層233がブラックマトリックス234によって仕切られている。
ブラックマトリックス234は、遮光機能を有し、例えば、クロム、アルミニウム、アルミニウム合金、ニッケル、亜鉛、チタンのような金属、カーボン等を分散した樹脂等で構成されている。
また、第2の基板230の上面には、前記偏光板225とは偏光軸が異なる偏光板235が設けられている。
【0061】
このような構成の液晶パネル20では、バックライト60から発せられた光は、偏光板225で偏光された後、第1の基板220および各画素電極223を介して、液晶層240に入射する。液晶層240に入射した光は、各画素毎に配向状態が制御された液晶により強度変調される。強度変調された各光は、有色層233、対向電極232および第2の基板230を通過した後、偏光板235で偏光され、外部に出射する。これにより、液晶表示装置10では、第2の基板230の液晶層240と反対側から、例えば、文字、数字、図形等のカラー画像(動画および静止画の双方を含む)を視認することができる。
なお、以上の説明では、本発明の電子デバイスとして、アクティブマトリックス駆動方式の透過型液晶表示装置に適用した場合を代表に説明したが、その他、本発明の電子デバイスは、反射型液晶表示装置や、有機または無機のEL表示装置、電気泳動表示装置に適用することもできる。
【0062】
<電子機器>
前述したような液晶表示装置10(本発明の電子デバイス)は、各種電子機器の表示部に用いることができる。
図9は、本発明の電子機器を適用したモバイル型(またはノート型)のパーソナルコンピュータの構成を示す斜視図である。
【0063】
この図において、パーソナルコンピュータ1100は、キーボード1102を備えた本体部1104と、表示ユニット1106とにより構成され、表示ユニット1106は、本体部1104に対しヒンジ構造部を介して回動可能に支持されている。
このパーソナルコンピュータ1100においては、表示ユニット1106が前述の液晶表示装置(電気光学装置)10を備えている。
【0064】
図10は、本発明の電子機器を適用した携帯電話機(PHSも含む)の構成を示す斜視図である。
この図において、携帯電話機1200は、複数の操作ボタン1202、受話口1204および送話口1206とともに、前述の液晶表示装置(電気光学装置)10を表示部に備えている。
【0065】
図11は、本発明の電子機器を適用したディジタルスチルカメラの構成を示す斜視図である。なお、この図には、外部機器との接続についても簡易的に示されている。
ここで、通常のカメラは、被写体の光像により銀塩写真フィルムを感光するのに対し、ディジタルスチルカメラ1300は、被写体の光像をCCD(Charge Coupled Device)などの撮像素子により光電変換して撮像信号(画像信号)を生成する。
【0066】
ディジタルスチルカメラ1300におけるケース(ボディー)1302の背面には、前述の液晶表示装置10が表示部に設けられ、CCDによる撮像信号に基づいて表示を行う構成になっており、被写体を電子画像として表示するファインダとして機能する。
ケースの内部には、回路基板1308が設置されている。この回路基板1308は、撮像信号を格納(記憶)し得るメモリが設置されている。
【0067】
また、ケース1302の正面側(図示の構成では裏面側)には、光学レンズ(撮像光学系)やCCDなどを含む受光ユニット1304が設けられている。
撮影者が表示部に表示された被写体像を確認し、シャッタボタン1306を押下すると、その時点におけるCCDの撮像信号が、回路基板1308のメモリに転送・格納される。
【0068】
また、このディジタルスチルカメラ1300においては、ケース1302の側面に、ビデオ信号出力端子1312と、データ通信用の入出力端子1314とが設けられている。そして、図示のように、ビデオ信号出力端子1312にはテレビモニタ1430が、デ−タ通信用の入出力端子1314にはパーソナルコンピュータ1440が、それぞれ必要に応じて接続される。さらに、所定の操作により、回路基板1308のメモリに格納された撮像信号が、テレビモニタ1430や、パーソナルコンピュータ1440に出力される構成になっている。
【0069】
なお、本発明の電子機器は、図9のパーソナルコンピュータ(モバイル型パーソナルコンピュータ)、図10の携帯電話機、図11のディジタルスチルカメラの他にも、例えば、テレビや、ビデオカメラ、ビューファインダ型、モニタ直視型のビデオテープレコーダ、ラップトップ型パーソナルコンピュータ、カーナビゲーション装置、車載用レーダ探知機、ページャ、電子手帳(通信機能付も含む)、電子辞書、電卓、電子ゲーム機器、ワードプロセッサ、ワークステーション、テレビ電話、防犯用テレビモニタ、電子双眼鏡、POS端末、タッチパネルを備えた機器(例えば金融機関のキャッシュディスペンサー、自動券売機)、医療機器(例えば電子体温計、血圧計、血糖計、心電表示装置、超音波診断装置、内視鏡用表示装置)、魚群探知機、各種測定機器、計器類(例えば、車両、航空機、船舶の計器類)、フライトシュミレータ、その他各種モニタ類、プロジェクター等の投射型表示装置等に適用することができる。
以上、本発明のゲート絶縁膜、ゲート絶縁膜の製造方法、ゲート絶縁膜の評価方法、半導体素子、電子デバイス、電子機器を図示の各実施形態に基づいて説明したが、本発明は、これらに限定されるものではなく、各構成は、同様の機能を発揮し得る任意のものと置換することができ、あるいは、任意の構成のものを付加することもできる。
【実施例】
【0070】
次に、本発明の具体的実施例について説明する。
1.ゲート絶縁膜の作製および評価
1−1.ゲート絶縁膜の作製
以下に示す各実施例および各比較例において、それぞれ、10個のゲート絶縁膜を形成した。
【0071】
(実施例1)
−1− まず、面方位(100)のp型シリコン結晶基板を用意し、熱酸化処理を施した後、CVD法によりシリコン酸窒化膜(下地層)を形成した。
熱酸化処理は、相対湿度33%RHの水蒸気(HO)雰囲気中(大気圧)、750℃で行った。
また、CVD法は、チャンバ内の圧力を0.02Paとし、ジクロロシランアンモニアのガスを供給しつつ、650℃×40分で行った。
なお、このシリコン酸窒化膜は、印加電圧(電界強度)5〜10MV/cmにおけるリーク電流値が極めて高く(1×10−5A/cm以上)、絶縁膜として機能しないものである。
【0072】
−2− 次に、このシリコン酸窒化膜上に、CVD法によりSiO膜を形成した。
なお、CVD法は、チャンバ内の圧力を0.01kPaとし、モノシラン(SiH)およびNOガスの混合ガスを供給しつつ、700℃×10分で行った。
−3− 次に、このSiO膜に対して、相対湿度が90%RHで、雰囲気の圧力が0.1kPaの減圧雰囲気中において、950℃×10分で熱酸化処理を施すことにより、ゲート絶縁膜を得た。
【0073】
(実施例2)
前記工程−3−の熱酸化処理において、相対湿度を95%RHとした以外は、前記実施例1と同様にして、ゲート絶縁膜を得た。
(実施例3)
前記工程−3−の熱酸化処理において、雰囲気の圧力を0.1kPaとした以外は、前記実施例1と同様にして、ゲート絶縁膜を得た。
【0074】
(実施例4)
前記工程−3−の熱酸化処理において、加熱温度を900℃とした以外は、前記実施例1と同様にして、ゲート絶縁膜を得た。
(実施例5)
前記工程−3−の熱酸化処理において、加熱時間を5分とした以外は、前記実施例1と同様にして、ゲート絶縁膜を得た。
【0075】
(比較例1)
前記工程−3−を省略した以外は、前記実施例1と同様にして、ゲート絶縁膜を得た。
(比較例2)
前記工程−3−の熱酸化処理を大気圧雰囲気下で行った以外は、前記実施例1と同様にして、ゲート絶縁膜を得た。
(比較例3)
前記工程−3−の熱酸化処理において、雰囲気の圧力を1.0kPaとし、相対湿度を80%RHとし、加熱時間を15分とした以外は、前記実施例1と同様にして、ゲート絶縁膜を得た。
【0076】
1−2.ゲート絶縁膜の評価
1−2−1.X線反射率測定法による密度の測定
各実施例および各比較例のゲート絶縁膜について、それぞれ、X線反射率測定(GIXR)装置を用いて、膜中の厚さ方向に対する密度の変化を測定した。
なお、X線反射率測定装置による測定条件は、以下の通りである。
・入射X線の角度 :0.05−2.00°
・入射X線の波長 :CuKα線,1.54A
・角度変化 :0.01°
【0077】
各実施例および各比較例のゲート絶縁膜における密度(g/cm)を、以下の表1に示す。なお、厚さ10nm以下の薄膜における密度は、その界面付近では、隣接する膜の影響を大きく受けることから、その厚さ方向の中心(実施例1および比較例3では20Åの位置)における密度を、膜の密度とした。
また、表1中の数値は、ゲート絶縁膜の異なる10個のサンプルにおける平均値である。
また、一例として、実施例4および比較例3のゲート絶縁膜において得られた厚さ方向の密度プロファイルを、それぞれ、図12に示す。
【0078】
【表1】

【0079】
表1、図12に示すように、各実施例のゲート絶縁膜は、いずれも、その密度が2.5g/cm以下であった。
これに対し、各比較例のゲート絶縁膜は、その密度が2.5g/cmを上回るものであった。
【0080】
1−2−2.Qbd値の測定
次に、各実施例および各比較例のゲート絶縁膜について、それぞれ5個ずつ、Qbd値を測定した。
ここで、Qbd値とは、ゲート絶縁膜に電圧を印加したときに、絶縁破壊が生じるまでに流れた総電荷量であり、この値が大きい程、絶縁破壊が生じ難いことを意味する。
このQbd値の測定では、水銀電極を用いてゲート絶縁膜に定電流を供給し、小規模な電圧変化が初めて生じた時点をSBDとし、急激な電圧変化が生じた時点をHBDとした。そして、SBDが生じるまでに流れた総電荷量(Qbd(SBD)値)と、HBDが生じるまでに流れた総電荷量(Qbd(HBD)値)とを測定した。
【0081】
また、各実施例および各比較例のゲート絶縁膜について、それぞれ5個ずつ、水素ガスを10%含むNガス雰囲気中で、400℃×3時間アニール処理した後に、前記と同様にして、Qbd値を測定した。
なお、測定面積は0.02039cm、印加電流は0.01226A/cmとした。
各実施例および各比較例のゲート絶縁膜について、それぞれ、Nガス雰囲気下に晒していないものと晒したものとにおいて測定されたQbd(SBD)値とQbd(HBD)値とを、以下の表2に示す。なお、表2中の数値は、5個のゲート絶縁膜の平均値である。
【0082】
【表2】

【0083】
表2に示すように、各実施例のゲート絶縁膜のQbd(SBD)値は、いずれも、Nガス雰囲気下に晒さない場合と晒した場合とに関らず、各比較例のゲート絶縁膜のQbd(SBD)値よりも大きなものであった。
また、各実施例のゲート絶縁膜のQbd(HBD)値も同様に、いずれも、Nガス雰囲気下に晒さない場合と晒した場合とに関らず、各比較例のゲート絶縁膜のQbd(HBD)値よりも大きなものであった。
【0084】
また、各実施例のゲート絶縁膜のQbd(SBD)値およびQbd(HBD)値は、Nガス雰囲気下に晒した場合であっても、Nガス雰囲気下に晒していない場合と比較して、その低下率が抑制されていた。これに対して、各比較例のゲート絶縁膜のQbd(SBD)値およびQbd(HBD)値は、Nガス雰囲気下に晒した場合、Nガス雰囲気下に晒していないものよりも著しく低下するものであった。
また、膜の密度が小さくなるのにしたがって、ゲート絶縁膜は、その絶縁破壊耐性が向上する傾向を示した。
【0085】
1−2−3.リーク電流値の測定
次に、各実施例および各比較例のゲート絶縁膜について、それぞれ5個ずつ、電界強度(印加電圧)の値を変化させたときのリーク電流値の変化を測定した。
また、各実施例および各比較例のゲート絶縁膜について、それぞれ5個ずつ、水素ガスを10%含むNガス雰囲気中で、400℃×3時間アニール処理した後に、前記と同様にして、リーク電流値の変化を測定した。
なお、測定面積は、0.02039cmとした。
【0086】
各実施例および各比較例のゲート絶縁膜について、それぞれ、Nガス雰囲気下に晒していないものと晒したものとにおいて、電界強度0〜−5MV/cmの範囲で測定されたリーク電流の最大値を、以下の表3に示す。なお、表3中の数値は、5個のゲート絶縁膜の平均値である。
また、一例として、実施例3および比較例4のNガス雰囲気下に晒した場合のゲート絶縁膜において測定された電界強度の値の変化とリーク電流値の変化との関係を示すグラフを、図13に示す。
【0087】
【表3】

【0088】
表3および図13に示すように、各実施例のゲート絶縁膜は、いずれも、Nガス雰囲気下に晒さない場合と晒した場合とに関らず、電界強度0〜−10MV/cmの範囲(特に、0〜−5MV/cmの範囲)において、各比較例のゲート絶縁膜と比較して、リーク電流値が小さく抑えられていた。
また、各実施例のリーク電流値は、Nガス雰囲気下に晒した場合であっても、Nガス雰囲気下に晒していない場合と比較して、その上昇率が抑制されていた。これに対して、各比較例のゲート絶縁膜のリーク電流値は、Nガス雰囲気下に晒した場合、Nガス雰囲気下に晒していないものよりも著しく上昇するものであった。
以上のような各評価結果から、膜の密度が2.5g/cm以下なる関係を満足するゲート絶縁膜(本発明のゲート絶縁膜)は、絶縁破壊耐性に優れることが明らかとなった。
【0089】
2.半導体素子の作製および評価
2−1.半導体素子の作製
図1に示す半導体素子を、前記実施形態で説明したような方法にしたがって作製した。なお、ゲート絶縁膜は、前記各実施例および各比較例と同様にして形成した。
2−2.半導体素子の評価
各半導体素子について、それぞれ、スイッチング特性を調べた。
その結果、各実施例と同様にして形成したゲート絶縁膜を備える半導体素子は、いずれも、長期間に亘り良好なスイッチング特性が得られ、耐久性に優れるものであった。
これに対して、各比較例と同様にして形成したゲート絶縁膜を備える半導体素子は、リーク電流が認められ、スイッチング特性が不安定なものであったり、長期の使用によりゲート絶縁膜に絶縁破壊が生じ、スイッチング素子としての機能が失われ耐久性に劣るものであった。
【図面の簡単な説明】
【0090】
【図1】本発明のゲート絶縁膜を適用した半導体素子の実施形態を示す縦断面図である。
【図2】ゲート絶縁膜の分子構造を示す模式図である。
【図3】ゲート絶縁膜の分子構造を示す模式図である。
【図4】ゲート絶縁膜の分子構造を示す模式図である。
【図5】図1に示す半導体素子の製造方法を説明するための図(縦断面図)である。
【図6】図1に示す半導体素子の製造方法を説明するための図(縦断面図)である。
【図7】図1に示す半導体素子の製造方法を説明するための図(縦断面図)である。
【図8】本発明の電子デバイスを透過型液晶表示装置に適用した場合の実施形態を示す分解斜視図である。
【図9】本発明の電子機器を適用したモバイル型(またはノート型)のパーソナルコンピュータの構成を示す斜視図である。
【図10】本発明の電子機器を適用した携帯電話機(PHSも含む)の構成を示す斜視図である。
【図11】本発明の電子機器を適用したディジタルスチルカメラの構成を示す斜視図である。
【図12】実施例4および比較例3のゲート絶縁膜において得られた厚さ方向の密度プロファイルを示す図である。
【図13】実施例4および比較例3のゲート絶縁膜において測定された印加電圧値の変化とリーク電流値の変化との関係を示す図である。
【符号の説明】
【0091】
1‥‥半導体素子 2‥‥半導体基板 21‥‥チャネル領域 22‥‥ソース領域 23‥‥ドレイン領域 24‥‥トレンチ素子分離構造 3‥‥ゲート絶縁膜 31‥‥Oが3配位するSi−OH構造 32‥‥Siが5配位するSi−H構造 33‥‥Si−H構造 34‥‥Si−OH構造 35‥‥不完全な配位構造 4‥‥層間絶縁膜 5‥‥ゲート電極 41、42、43‥‥コンタクトホール 51‥‥導電膜 61、62、63‥‥導電部 71、72、73‥‥コンタクトプラグ 10‥‥液晶表示装置 20‥‥液晶パネル 220‥‥第1の基板 221‥‥上面 223‥‥画素電極 224‥‥走査線 225‥‥偏光板 228‥‥信号線 230‥‥第2の基板 231‥‥下面 232‥‥対向電極 233‥‥有色層 234‥‥ブラックマトリックス 235‥‥偏光板 240‥‥液晶層 60‥‥バックライト 1100‥‥パーソナルコンピュータ 1102‥‥キーボード 1104‥‥本体部 1106‥‥表示ユニット 1200‥‥携帯電話機 1202‥‥操作ボタン 1204‥‥受話口 1206‥‥送話口 1300‥‥ディジタルスチルカメラ 1302‥‥ケース(ボディー) 1304‥‥受光ユニット 1306‥‥シャッタボタン 1308‥‥回路基板 1312‥‥ビデオ信号出力端子 1314‥‥データ通信用の入出力端子 1430‥‥テレビモニタ 1440‥‥パーソナルコンピュータ

31‥‥Oが3配位するSi−OH構造 32‥‥Siが5配位するSi−H構造 33‥‥Si−H構造 34‥‥Si−OH構造 35‥‥不完全な配位構造

【特許請求の範囲】
【請求項1】
基材上に化学的気相成膜法を用いて成膜され、平均厚さが10nm以下であるゲート絶縁膜であって、
当該ゲート絶縁膜は、シリコン、酸素原子および水素原子で構成され、その密度が2.5g/cm以下なる関係を満足することにより、
ソフトブレークダウンが生じるまでに流れる総電荷量が、40C/cm以上となるよう構成したことを特徴とするゲート絶縁膜。
【請求項2】
前記ゲート絶縁膜の密度は、X線反射率測定法により測定される請求項1に記載のゲート絶縁膜。
【請求項3】
10MV/cm以下の印加電圧で使用される請求項1または2に記載のゲート絶縁膜。
【請求項4】
5MV/cm以下の印加電圧で測定されるリーク電流値が、9×10−9A/cm以下である請求項1ないし3のいずれかに記載のゲート絶縁膜。
【請求項5】
ハードブレークダウンが生じるまでに流れる総電荷量が、100C/cm以上である請求項1ないし4のいずれかに記載のゲート絶縁膜。
【請求項6】
請求項1ないし5のいずれかに記載のゲート絶縁膜の製造方法であって、
前記ゲート絶縁膜は、化学的気相成膜法を用いて、シリコン、酸素原子および水素原子で構成される膜を形成した後、
相対湿度が90%RH以上で、かつ雰囲気の圧力が0.1kPa以下の減圧雰囲気下で熱酸化処理を施すことにより形成されるゲート絶縁膜の製造方法。
【請求項7】
前記熱酸化処理を施す際の雰囲気の温度は、900〜1000℃である請求項6に記載のゲート絶縁膜の製造方法。
【請求項8】
前記熱酸化処理を施す時間は、15分以下である請求項7に記載のゲート絶縁膜の製造方法。
【請求項9】
基材上に化学的気相成膜法を用いて成膜され、平均厚さが10nm以下であり、シリコン、酸素原子および水素原子で構成されるゲート絶縁膜の評価方法であって、
前記ゲート絶縁膜は、X線反射率測定法により測定された、その密度が2.5g/cm以下なる関係を満足するものであった場合、当該ゲート絶縁膜を合格品と判定するゲート絶縁膜の評価方法。
【請求項10】
請求項1ないし5のいずれかに記載のゲート絶縁膜を備えることを特徴とする半導体素子。
【請求項11】
請求項10に記載の半導体素子を備えることを特徴とする電子デバイス。
【請求項12】
請求項11に記載の電子デバイスを備えることを特徴とする電子機器。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate


【公開番号】特開2008−159640(P2008−159640A)
【公開日】平成20年7月10日(2008.7.10)
【国際特許分類】
【出願番号】特願2006−343642(P2006−343642)
【出願日】平成18年12月20日(2006.12.20)
【出願人】(000002369)セイコーエプソン株式会社 (51,324)
【Fターム(参考)】