説明

半導体装置の製造方法

【課題】ポリメタルゲート配線のシリコン膜のパターニングに際して、ダミーウエハを用いずに、且つ、チャンバー内の下部電極のダメージを伴うことなく、チャンバーのドライクリーニングを行う半導体装置の製造方法を提供する。
【解決手段】ポリシリコン膜の表面にシリコン窒化膜を有するウエハをチャンバー内に搬送し(ステップS1)、下部電極上に搭載した後に、まず、チャンバーのドライクリーニングを行い(ステップS2)、チャンバー内壁に付着したシリコン系の反応生成物を除去する。次いで、ウエハのドライエッチングを行い、シリコン窒化膜およびポリシリコン膜をパターニングする(ステップS3)。パターニング後に下部電極からウエハを取り外し、チャンバー外に搬出する(ステップS4)。この処理をウエハ毎に繰り返す。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、半導体装置の製造方法に関し、特に、半導体装置のポリメタル配線中のポリシリコン膜をエッチングする工程を有する半導体装置の製造方法に関する。
【背景技術】
【0002】
半導体記憶装置であるDRAMやFlashメモリーでは、近年ゲート配線材料として、図4に示すような、ポリシリコン膜とタングステン(W)などのメタル配線とを積層した積層膜から成るポリメタル構造が採用されるようになっている。ゲート電極は、シリコン基板10上に形成されたゲート酸化膜11上に形成され、ポリシリコン膜12、タングステン窒化膜(以下、WN膜と記す)13、および、タングステン膜(以下、W膜と記す)14から構成される。ゲート電極を覆ってハードマスクとして用いられたシリコン窒化膜15およびシリコン酸化膜16がゲート電極上に形成され、ゲート電極の全体を覆って薄いシリコン窒化膜17が形成されている。
【0003】
上記ゲート配線構造において、抵抗率が低いWなどの金属を配線として用いると、微細なゲート配線についても、その配線抵抗を低く保つことができる。しかし、ゲート酸化膜11上に直接にWを成膜すると、金属Wによる界面準位の変動などにより、トランジスタ特性に影響があるため、金属膜14とゲート酸化膜11との間にポリシリコン膜12を挿入し、金属/ポリシリコン膜のポリメタル構造を採用するものである。
【0004】
また、図4の構造では、W膜14とポリシリコン膜12との間には、Wの膜質を維持し且つ界面抵抗の制御のため、薄いWN膜13が挿入されている。更に、Wが表面に露出していると、エッチング中や洗浄(wet処理)工程などで、W元素がゲート酸化膜11に付着するという汚染問題が発生するため、W膜14を含むゲート電極の側面は、薄いシリコン窒化膜17で覆われた構造としている。
【0005】
上記ポリメタル構造を採用したゲート電極は、以下の工程で得られる。まず、ゲート酸化膜11上にポリシリコン膜12、WN膜13、W膜14、シリコン窒化膜15、および、シリコン酸化膜16を堆積し、レジストマスクにより、W膜14上のシリコン窒化膜15およびシリコン酸化膜16をエッチングしてハードマスクに形成する。次いで、レジストマスクを剥離し、或いは、そのままの状態でハードマスク15、16を用いてW膜14をエッチングし、ポリシリコン膜12をある程度掘り込んだ状態で、エッチングをストップする(図5)。
【0006】
その後に、薄いシリコン窒化膜17aを全面に成膜する(図6)。更に、ポリシリコン膜12の表面が露出するまで、シリコン窒化膜17aを異方性エッチングし、ゲート電極の側壁にサイドウオールシリコン窒化膜17を形成する(図7)。その後、表面が露出したポリシリコン膜12を異方性エッチングし、ゲート電極を形成する(図8)。なお、シリコン窒化膜17aとポリシリコン膜12のエッチングでは、チャンバーを分ける必要はなく、同一チャンバーにおいて一度の処理で行う。ただし、エッチング条件は異なるので、シリコン窒化膜17aをエッチングした後に、プラズマ放電を一旦止め、再度レシピを変えてプラズマ放電を開始し、ポリシリコン膜12をエッチングする。プラズマエッチング装置を用いた異方性エッチング工程は、例えば特許文献1に記載されている。
【特許文献1】特開平9−64017号公報
【発明の開示】
【発明が解決しようとする課題】
【0007】
一般に、エッチング処理を行うと、エッチングチャンバー内には反応生成物が蓄積していく。ゲートポリシリコン膜のエッチングにおいては、Si系の反応生成物が蓄積する。エッチングチャンバーに付着する反応生成物の様子を図1の断面図に示す。チャンバー21の壁や天井には、反応生成物26が蓄積している旨が示されている。反応生成物26の蓄積によって、主として以下のような不具合が発生する。
【0008】
まず、プロセス条件の変動が挙げられる。エッチングの進行により、チャンバー21内の雰囲気、つまりプロセス条件が徐々に変化するため、形成される膜の寸法や形状などがロット内で、或いは、ロット間で変化してしまうことである。例えば、チャンバー21内の反応生成物26の増加に伴い、一般に、ウエハ上の配線幅は拡大し、また、配線の垂直形状がテーパー形状となる方向に変化する。
【0009】
次に、パーティクルの落下が挙げられる。エッチングでの反応生成物が、チャンバー21の内壁や天井などに、過剰に蓄積すると、その蓄積した反応生成物26が、ウエハ上に落下し、或いは、ウエハ内を汚染するパーティクルとなる。これらを避けるために、チャンバー21のドライクリーニング処理が一般に行われている。エッチング装置のドライクリーニングでは、ウエハ内の膜をエッチングするエッチング条件とは異なる、反応生成物を除去しやすい条件を用いて、チャンバー内でプラズマ放電を行い、反応生成物を除去する。
【0010】
ドライクリーニングの方法としては、以下に示す2つの方法がある。まず、ロット毎にダミーウエハを使用してドライクリーニングを行う方法である。この方法を図9のフローチャートに示した。つまり、例えばウエハ25枚から成る製品ロットのエッチング工程(ステップS22)の開始前に、Siダミーウエハを使用し、チャンバー内の汚染物質を除去するドライクリーニング(ステップS21)が行われる。この方法は、1ロット分のドライクリーニングをまとめて行う手法である。ウエハが搭載される電極22(図1)は、ダミーウエハでカバーされているので、長いドライクリーニング処理を行っても電極22は損傷しないという特徴がある。しかし、この方法の欠点として、1つにはダミーウエハを使用することで、コストが増大することが挙げられる。もう1つは、1ロット分をまとめてドライクリーニングするために、ロットの前半よりは後半の方に反応生成物がチャンバー内により蓄積することである。これは、ロット内のプロセス条件の変動を引き起こすことから好ましくない。
【0011】
ドライクリーニングの別の方法は、ウエハ1枚ごとにドライクリーニングをウエハレスで行う方法である。これを図10のフローチャートに示した。つまり、製品ウエハ1枚ごとのエッチング工程(ステップS32)に先だって、そのエッチング開始前にドライクリーニング(ステップS31)を行うものである。ダミーウエハを使用しないウエハレス状態でこのクリーニングを行う。これをin−situクリーニングとも呼ぶ。この方法では、直前の製品ウエハの処理1枚で発生した反応生成物を、ウエハのエッチングに先立って除去する。この手法を用いると、ダミーウエハのコストが削減でき、ロット内でのプロセス条件の変動も抑制しやすい。
【0012】
現状では、上記ダミーウエハを使用する方法も用いられているが、ウエハレス(in−situ)ドライクリーニングに移行しつつある。ウエハレスドライクリーニングを行うときには、以下の問題が発生する。まず、ウエハを搭載する電極へのダメージがある。ウエハレスであるために、ウエハが搭載される電極が直接にプラズマにさらされ、ダメージが蓄積され、電極寿命が短くなる原因となる。ダメージとは、電極自体がエッチングされることで、表面に微細な傷やクラックが発生したり、表面のフラットネスが損なわれたりすることを指す。こうしたことが起こると、電極の静電吸着力が減少し、ウエハずれによる搬送トラブルなどの原因となる。
【0013】
ウエハレスドライクリーニングにおける第2の問題は、電極からの金属汚染が発生することである。電極表面の材質はセラミックが一般的であり、このセラミックに、メーカーにより含有量は異なるものの、Ti,Znなどの重金属が含まれている。ドライクリーニングによって、これら重金属がチャンバー内壁や天井に付着し、製品処理中に製品に再付着し、汚染をひきおこす。汚染問題は、特にゲートポリシリコン膜のプラズマエッチング工程の場合には、避けなければらない問題である。これは、ゲート酸化膜が露出した状態に行われるので、金属元素が付着するとトランジスタ特性に影響しやすいためである。
【0014】
本発明の目的は、上記従来技術の問題に鑑み、プラズマエッチング装置において、電極がダメージを受ける問題や、電極が金属汚染の発生原因となる問題を回避したプラズマエッチング装置のドライクリーニング工程を有する半導体装置の製造方法を提供することにある。
【課題を解決するための手段】
【0015】
上記目的を達成するために、本発明の半導体装置の製造方法は、第1の態様において、プラズマエッチング装置のチャンバー内に設けられた電極上に、シリコン膜の表面を含むウエハ表面を第1の膜で覆ったウエハを搭載する工程と、
シリコン膜と前記第1の膜とのエッチ選択比が所定値以上となるプラズマエッチング条件を選択し、チャンバー内をドライクリーニングする工程と、
所定のプラズマエッチング条件を選択し、前記ウエハ上の第1の膜およびシリコン膜を順次に異方性エッチングする工程と、
前記異方性エッチング後のウエハをチャンバーから取り出す工程と、
を順次に有する処理を、ウエハ毎に繰り返すことを特徴とする。
【0016】
本発明の半導体装置の製造方法は、第2の態様において、ウエハ表面にゲート酸化膜を形成する工程と、
前記ゲート酸化膜上にポリシリコン膜、金属膜、絶縁膜を順次に形成する工程と、
前記絶縁膜、金属膜およびポリシリコン膜の一部を所定のパターンに異方性エッチングする工程と、
前記ウエハ上の全面にシリコン窒化膜を形成する工程と、
前記シリコン窒化膜が形成されたウエハを、プラズマエッチング装置のチャンバー内に設けられた電極に搭載する工程と、
前記チャンバー内をドライクリーニングする工程と、
前記ドライクリーニングした後、前記チャンバー内で、前記シリコン窒化膜を異方性エッチングする工程と、
記シリコン窒化膜を異方性エッチングした後、前記チャンバー内で、前記ポリシリコン膜を異方性エッチングする工程と、
前記ポリシリコン膜が異方性エッチングされたウエハをチャンバーから取り出す工程と、
を少なくとも含み、且つ上記の順に処理することを特徴とする。
【発明の効果】
【0017】
本発明の半導体装置の製造方法によると、製品となるウエハをチャンバー内の電極に搭載した状態でチャンバー内壁のドライクリーニングを行うので、電極に生ずるダメージが低減できる。また、そのドライクリーニングに際して、シリコン膜と第1の膜又はシリコン窒化膜のエッチ選択比が所定値以上となる条件を採用するので、製品ウエハでの第1の膜又はシリコン窒化膜のエッチングが抑えられ、製品ウエハの品質に与える影響が無視できる程度となる。従って、ウエハの汚染が抑えられると共に製品品質が高いウエハが得られる。
【0018】
ここで、本発明の第1の態様の半導体装置の製造方法では、前記第1の膜がシリコン窒化膜である構成が採用できる。DRAMなどでは、シリコン窒化膜でシリコン膜を覆った状態で、シリコン窒化膜とシリコン膜を連続してプラズマエッチングする工程が採用されているので、特に本発明のプロセスの採用が好適である。
【0019】
前記チャンバーに付属するコイルにプラズマ励起用電力を印加し、前記電極にバイアス電力を印加して、シリコン窒化膜とシリコン膜のエッチ選択比が100以上の条件で前記ドライクリーニングを行うことが好ましい。100以上のエッチ選択比を有するエッチングを行うことで、第1の膜に生ずるエッチングは実質的に無視できる。
【0020】
前記ドライクリーニングする工程は、前記プラズマ励起用電力が400W以上、前記バイアス電力が0以上で5W以下、チャンバー内の圧力が4.5mTorr以上、チャンバー内に供給するOガスの流量、又は、OガスおよびNガスの流量の和と、Clガスの流量との比が1.5%以上の条件を採用することができる。シリコン窒化膜とシリコン膜のエッチ選択比について、具体的に100以上のエッチ選択比が可能な条件が得られる。
【0021】
前記ドライクリーニングする工程では、例えば、前記シリコン窒化膜は1nm以下のエッチング量で抑えることが好ましい。ウエハの品質が確保できる。
【0022】
本発明では、製品ウエハをチャンバー内に搬送し、エッチングステップを開始する前に、クリーニングステップを挿入するという構成を採用している。クリーニング条件としては、例えば第1の膜がシリコン窒化膜である場合には、エッチ選択比(シリコン膜/シリコン窒化膜)が100以上となる条件を選ぶ。これにより、シリコン窒化膜で覆われているウエハ表面は、ほとんどエッチングされずに、チャンバー内のSi系反応生成物をクリーニングできる。またウエハレスクリーニングでないため、ウエハが搭載される電極へのダメージも防ぐことが出来る。
【0023】
本発明の第2の態様の半導体装置の製造方法は、前記金属膜が、純金属膜、金属窒化膜、及び、金属シリサイド膜の少なくとも1つを含む半導体装置の製造に適用でき、また、前記絶縁膜が、シリコン酸化膜、及び、シリコン窒化膜の少なくとも1つを含む半導体装置の製造に適用できる。
【発明を実施するための最良の形態】
【0024】
以下、図面を参照し、本発明の実施形態について詳細に説明する。図6は、ポリメタルゲートのシリコン窒化膜およびポリシリコン膜のエッチング工程における、エッチング前のウエハ状態の断面図を示している。
【0025】
最初に、ウエハ10の表面に熱酸化法により厚さ3.6nmのゲート酸化膜11を形成する。その後、モノシラン(SiH)とホスフィン(PH)を原料ガスとするCVD法(Chemical Vapor Deposition)により厚さ70nmのリンを含有するポリシリコン膜12を形成する。このポリシリコン膜12は、非晶質状態で成膜した後、熱処理して多結晶状態のポリシリコン膜とすることが望ましい。すなわち、430℃の成膜温度で非晶質状態のシリコン膜を形成し、700℃の熱処理を施して多結晶状態のポリシリコン膜とする。この方法で形成したポリシリコン膜は、成膜時に多結晶状態となる条件で形成したポリシリコン膜に比べて、表面が著しく平滑になり、微細加工に好適となる。また、700℃の結晶化熱処理により、膜中に含有されているリンが活性化して導電性を有し、n型半導体となる。また、成膜時にホスフィンを導入せずに、非晶質のシリコン膜を形成し、イオン打ち込み法によってp型不純物を導入し、その後、結晶化熱
処理を行なえばp型半導体を得ることができる。
【0026】
次に、ポリシリコン膜12上に積層する金属膜として、厚さ10nmのWN膜13および厚さ55nmのW膜14をスパッタ法により形成する。ポリシリコン膜12とWN膜13の間にタングステンシリサイド膜(WSi)を介在させることもできる。タングステンシリサイド膜を介在させると、ポリシリコン膜12とWN膜13の接触に起因する接触抵抗低減に効果的である。
【0027】
次に、金属膜上に積層する絶縁膜として、厚さ140nmのシリコン窒化膜15および厚さ80nmのシリコン酸化膜16を順次形成する。シリコン窒化膜15の原料ガスにはモノシランとアンモニア(NH)を用い、シリコン酸化膜16の原料ガスにはモノシランと一酸化二窒素(NO)を用い、プラズマCVD法により形成する。
【0028】
次に、シリコン酸化膜16の表面に所定のホトレジストパターンをリソグラフィ法により形成する。続いて、ホトレジストをマスクとして、シリコン酸化膜16およびシリコン窒化膜15をプラズマエッチング法により異方性エッチングする。このプラズマエッチングにはフッ素含有プラズマを用いる。エッチングガスにはオクタフロロシクロペンタン(C)などを主成分として用いることができる。
【0029】
次に、マスクとして用いたホトレジストを除去し、シリコン酸化膜16およびシリコン窒化膜15を新たなマスクとして、W膜14およびWN膜13を塩素(Cl)含有プラズマを用いて異方性エッチングする。この時、ポリシリコン膜が初期の表面から20〜30nm堀り下がるように、WN膜をオーバーエッチする。
【0030】
次に、厚さ13nmのシリコン窒化膜17を全面に形成する。シリコン窒化膜17の形成には、ジクロロシラン(SiHCl)とアンモニアを原料ガスとするCVD法により形成する。W膜は極めて酸化されやすいので、シリコン窒化膜17が形成されるまでにW膜が酸化されないように配慮した機構を有する成膜装置が必要である。
【0031】
また、CVD法に代えてALD法(Atomic Layer Deposition)を用いることができる。ALD法ではCVD法より低温で形成できるのでW膜の酸化抑制に効果的である。
【0032】
図1に、ゲートポリシリコン膜のプラズマエッチング装置の一例を示している。装置構成を説明すると、チャンバー21の直上に設置したコイル23に、高周波電源装置24から高周波電力(rf)を供給してプラズマを生成する。また、ウエハを搭載する下部電極22に高周波電源装置25から高周波電力を印加し、この印加した高周波電力によって、プラズマ中のイオンをウエハに引き込んでエッチングを行う。コイル23に印加する高周波電力をプラズマ励起用電力、下部電極22に印加する高周波電力をバイアス電力と呼ぶ。
【0033】
次に、図2を参照して第1の実施例の製造方法を説明する。製品ウエハを処理する際に、従来のようにウエハレスドライクリーニングは行わず、まず、ステップS1で、製品ウエハの1枚目をチャンバー内に搬送し、電極上に搭載する。この状態で、通常のエッチングステップS3を開始する前に、ドライクリーニングステップを実施する(ステップS2)。その後は、ウエハに対して通常のエッチング処理を行い(ステップS3)、終了後に製品ウエハを搬出する(ステップS4)。これによって、1枚目の処理が終了する(ステップSA)。製品ウエハの2枚目以降についてもこの処理を繰り返し(ステップSB)、次いで、1ロット(25枚)分のウエハについて同様な処理を行う。
【0034】
ドライクリーニングステップS2では、エッチ選択比(ポリシリコン膜/シリコン窒化膜)が非常に大きい条件を用いる。これは、ウエハ最表面のシリコン窒化膜17は出来るだけエッチングせずに、チャンバー内に付着したSi系の反応生成物を選択的にエッチングするためである。なお、シリコン系反応生成物とポリシリコン膜のエッチングレートは同等と見なせる。エッチ選択比(ポリシリコン膜/シリコン窒化膜)は、例えば100以上あればよい。このエッチ選択比を達成するために、例えば、以下のようなクリーニング条件を用いる。つまり、供給ガスのガス流量比:Cl/O=270/3sccm、チャンバー内の圧力:4.5mTorr、プラズマ励起用電力:400W、バイアス電力:0Wを用いる。本条件を選択する際には以下の点を考慮した。
【0035】
バイアス電力について:
一般にバイアス電力を下げるほど、エッチ選択比(ポリシリコン膜/シリコン窒化膜)は高くなる。また、高周波電力が低いほどその依存性は急激である。本条件でのエッチ選択比(ポリシリコン膜/シリコン窒化膜)のバイアス電力依存性を図3の実線に示した。目標であるエッチ選択比≧100は、バイアス電力≦5Wで達成される。
【0036】
(O+N)/Cl流量比について:
を増加しても、エッチ選択比は高くなる。Oの流量を3sccmから6sccmに増加したときのバイアス電力依存性を図3の点線に示す。この場合には、エッチ選択比≧100は、バイアス電力≦20Wで達成される。ここで、重要なのは、O流量の絶対値ではなく、Oの流量のClの流量に対する比率(%)である。Oの流量が3sccmの場合には、流量比は3/270=1.1%、Oの流量が6sccmの場合には、流量比は6/270=2.2%となる。また、Oを一部Nに置換しても、(O+N)のトータル流量が変わらなければ、ほぼ同じ結果が得られる。
【0037】
その他のパラメータについて:
一般に、圧力およびプラズマ励起用電力が高いほど、エッチ選択比は高くなることが知られている。従って、目標性能のエッチ選択比である(ポリシリコン膜/シリコン窒化膜)≧100が達成される条件範囲を示すと、以下のようになる。つまり、O/Cl≧1.5%、圧力≧4.5mTorr、プラズマ励起用電力≧400W、0≦バイアス電力≦5Wである。ただしOとNの総流量を変えずに、Oを一部Nに置換してもよい。
【0038】
エッチ選択比(ポリシリコン膜/シリコン窒化膜)の目安は、以下のように考えられる。まず、シリコン窒化膜17については、エッチング量を1nm以下にすれば、ゲートエッチングの微細加工の寸法制御性は保てる。これは、エッチング量が1nm以下の膜厚であれば、エッチング量のばらつき(ウエハ内、ウエハ間、ロット間を含む)は1nm以下になり、従来技術で得られているエッチングばらつきである膜厚4〜5nmを十分に下回るからである。また、ポリシリコン膜については、1枚の製品ウエハあたりで100nm程度以下の膜厚のポリシリコン膜をエッチングすることから、これが全て反応生成物となってチャンバーに付着したとしても、polysiliconの100nm分が除去できるクリーニングを行えば十分である。従って、エッチ選択比(ポリシリコン膜/シリコン窒化膜)>100が得られれば、十分に目的が達成できる。
【0039】
上記条件を採用することにより、以下の効果が得られる。まず、第一の効果は、シリコン窒化膜で覆われた製品ウエハ表面をほとんどエッチングせずに、チャンバー内をドライクリーニングできることである。従って、ゲートエッチングにおける微細な寸法制御性への悪影響を防ぐことが出来る。第二の効果は、ドライクリーニングの際に、電極へのダメージが発生しないことである。これに伴い、電極の静電吸着力低下によるウエハずれなどのトラブルを防ぐことができる。また電極の寿命が延び、電極交換コストを低減すること
が出来る。第三の効果は、電極から製品への重金属汚染を防ぐことが出来る点である。
【0040】
本発明の半導体装置の製造方法は、例えば、ポリメタル構造のゲートを使用するDRAM、Flashメモリー、およびこれらを搭載した半導体装置の製造に特に適している。
【0041】
以上、本発明をその好適な実施態様に基づいて説明したが、本発明の半導体装置の製造方法は、上記実施態様の構成にのみ限定されるものではなく、上記実施態様の構成から種々の修正及び変更を施したものも、本発明の範囲に含まれる。
【図面の簡単な説明】
【0042】
【図1】本発明方法を使用するプラズマエッチング装置の構成を例示する断面図。
【図2】本発明の一実施形態に係る半導体装置の製造方法のフローチャート。
【図3】本発明の一実施形態に係る方法で採用されるプロセス条件で、シリコンとシリコン窒化膜のエッチ選択比のバイアス電力依存性を示すグラフ。
【図4】本発明方法でエッチングされるウエハ内の、ゲート配線構造の最終膜構成を示す断面図。
【図5】図4の膜構成を得るためのプロセスにおける一工程段階を示す断面図。
【図6】図4の膜構成を得るためのプロセスにおける一工程段階を示す断面図。
【図7】図4の膜構成を得るためのプロセスにおける一工程段階を示す断面図。
【図8】図4の膜構成を得るためのプロセスにおける一工程段階を示す断面図。
【図9】従来のドライクリーニングの処理を示すフローチャート。
【図10】従来のドライクリーニングの別の処理を示すフローチャート。
【符号の説明】
【0043】
10:シリコン基板
11:ゲート酸化膜
12:ポリシリコン膜
13:WN膜
14:W膜
15:シリコン窒化膜
16:シリコン酸化膜
17:シリコン窒化膜
21:チャンバー
22:電極(下部電極)
23:コイル
24:高周波電源装置
25:高周波電源装置

【特許請求の範囲】
【請求項1】
プラズマエッチング装置のチャンバー内に設けられた電極上に、シリコン膜の表面を含むウエハ表面を第1の膜で覆ったウエハを搭載する工程と、
シリコン膜と前記第1の膜とのエッチ選択比が所定値以上となるプラズマエッチング条件を選択し、チャンバー内をドライクリーニングする工程と、
所定のプラズマエッチング条件を選択し、前記ウエハ上の第1の膜およびシリコン膜を順次に異方性エッチングする工程と、
前記異方性エッチング後にウエハをチャンバーから取り出す工程と、
を順次に有する処理を、ウエハ毎に繰り返すことを特徴とする半導体装置の製造方法。
【請求項2】
前記第1の膜がシリコン窒化膜であることを特徴とする、請求項1に記載の半導体装置の製造方法。
【請求項3】
ウエハ表面にゲート酸化膜を形成する工程と、
前記ゲート酸化膜上にポリシリコン膜、金属膜、絶縁膜を順次に形成する工程と、
前記絶縁膜、金属膜およびポリシリコン膜の一部を所定のパターンに異方性エッチングする工程と、
前記ウエハ上の全面にシリコン窒化膜を形成する工程と、
前記シリコン窒化膜が形成されたウエハを、プラズマエッチング装置のチャンバー内に設けられた電極に搭載する工程と、
前記チャンバー内をドライクリーニングする工程と、
前記ドライクリーニングした後、前記チャンバー内で、前記シリコン窒化膜を異方性エッチングする工程と、
前記シリコン窒化膜を異方性エッチングした後、前記チャンバー内で、前記ポリシリコン膜を異方性エッチングする工程と、
前記ポリシリコン膜が異方性エッチングされたウエハをチャンバーから取り出す工程と、
を少なくとも含み、且つ上記の順に処理することを特徴とする半導体装置の製造方法。
【請求項4】
前記の各工程を、複数のウエハにわたって順次に繰り返すことを特徴とする、請求項3に記載の半導体装置の製造方法。
【請求項5】
前記金属膜は、純金属膜、金属窒化膜、及び、金属シリサイド膜の少なくとも1つを含むことを特徴とする、請求項3又は4に記載の半導体装置の製造方法。
【請求項6】
前記絶縁膜は、シリコン酸化膜、及び、シリコン窒化膜の少なくとも1つを含むことを特徴とする、請求項3に記載の半導体装置の製造方法。
【請求項7】
前記ドライクリーニングする工程は、前記チャンバーに付属するコイルにプラズマ励起用電力を印加し、前記電極にバイアス電力を印加して、前記シリコン窒化膜とシリコン膜のエッチ選択比が100以上の条件で行うことを特徴とする、請求項2〜6の何れか一に記載の半導体装置の製造方法。
【請求項8】
前記ドライクリーニングする工程は、前記プラズマ励起用電力が400W以上、前記バイアス電力が0以上で5W以下、チャンバー内の圧力が4.5mTorr以上、チャンバー内に供給するOガスの流量、又は、OガスおよびNガスの流量の和と、Clガスの流量との比が1.5%以上である条件で行うことを特徴とする、請求項7に記載の半導体装置の製造方法。
【請求項9】
前記ドライクリーニングする工程は、前記シリコン窒化膜を1nm以下のエッチング量でエッチングする条件で行う、請求項1〜8の何れか一に記載の半導体装置の製造方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate


【公開番号】特開2008−4632(P2008−4632A)
【公開日】平成20年1月10日(2008.1.10)
【国際特許分類】
【出願番号】特願2006−170376(P2006−170376)
【出願日】平成18年6月20日(2006.6.20)
【出願人】(500174247)エルピーダメモリ株式会社 (2,599)
【Fターム(参考)】