説明

半導体装置

【課題】電気特性及び信頼性の高い薄膜トランジスタを有する半導体装置を提案することを課題とする。
【解決手段】基板上に形成されたゲート電極と、ゲート電極上に形成された酸素過剰のSiO膜と、SiO膜上に形成された酸化物半導体膜と、を有する半導体装置。

【発明の詳細な説明】
【技術分野】
【0001】
本発明はチャネル形成領域に酸化物半導体膜を用いた薄膜トランジスタ(以下、TFTと
いう)で構成された回路を有する半導体装置およびその作製方法に関する。例えば、液晶
表示パネルに代表される電気光学装置や有機発光素子を有する発光表示装置を部品として
搭載した電子機器に関する。
【0002】
なお、本明細書中において半導体装置とは、半導体特性を利用することで機能しうる装
置全般を指し、電気光学装置、半導体回路および電子機器は全て半導体装置である。
【背景技術】
【0003】
近年、マトリクス状に配置された表示画素毎にTFTからなるスイッチング素子を設けた
アクティブマトリクス型の表示装置(液晶表示装置や発光表示装置や電気泳動式表示装置
)が盛んに開発されている。アクティブマトリクス型の表示装置は、画素(又は1ドット
)毎にスイッチング素子が設けられており、単純マトリクス方式に比べて画素密度が増え
た場合に低電圧駆動できるので有利である。
【0004】
また、チャネル形成領域に酸化物半導体膜を用いて薄膜トランジスタ(TFT)などを作
製し、電子デバイスや光デバイスに応用する技術が注目されている。例えば、酸化物半導
体膜として酸化亜鉛(ZnO)を用いるTFTや、InGaO(ZnO)を用いるT
FTが挙げられる。これらの酸化物半導体膜を用いたTFTを、透光性を有する基板上に
形成し、画像表示装置のスイッチング素子などに用いる技術が特許文献1及び特許文献2
で開示されている。
【先行技術文献】
【特許文献】
【0005】
【特許文献1】特開2007−123861号公報
【特許文献2】特開2007−96055号公報
【発明の概要】
【発明が解決しようとする課題】
【0006】
チャネル形成領域に酸化物半導体膜を用いる薄膜トランジスタには、動作速度が速く、製
造工程が比較的簡単であり、十分な信頼性が求められている。
【0007】
薄膜トランジスタを形成するにあたり、ソース電極及びドレイン電極は、低抵抗な金属材
料を用いる。特に、大面積の表示を行う表示装置を製造する際、配線の抵抗による信号の
遅延問題が顕著になってくる。従って、配線や電極の材料としては、電気抵抗値の低い金
属材料を用いることが望ましい。電気抵抗値の低い金属材料からなるソース電極及びドレ
イン電極と、酸化物半導体膜とが直接接する薄膜トランジスタ構造とすると、コンタクト
抵抗が高くなる恐れがある。コンタクト抵抗が高くなる原因は、ソース電極及びドレイン
電極と、酸化物半導体膜との接触面でショットキー接合が形成されることが要因の一つと
考えられる。
【0008】
加えて、ソース電極及びドレイン電極と、酸化物半導体膜とが直接接する部分には容量が
形成され、周波数特性(f特性と呼ばれる)が低くなり、薄膜トランジスタの高速動作を
妨げる恐れがある。
【0009】
本発明の一態様は、インジウム(In)、ガリウム(Ga)、及び亜鉛(Zn)を含む酸
化物半導体膜を用いる薄膜トランジスタにおいて、ソース電極またはドレイン電極のコン
タクト抵抗を低減した薄膜トランジスタ及びその作製方法を提供することを課題の一つと
する。
【0010】
また、In、Ga、及びZnを含む酸化物半導体膜を用いる薄膜トランジスタの動作特性
や信頼性を向上させることも課題の一つとする。
【0011】
また、In、Ga、及びZnを含む酸化物半導体膜を用いる薄膜トランジスタの電気特性
のバラツキを低減することも課題の一つとする。特に、液晶表示装置においては、個々の
素子間でのバラツキが大きい場合、そのTFT特性のバラツキに起因する表示むらが発生
する恐れがある。
【0012】
また、発光素子を有する表示装置においても、画素電極に一定の電流が流れるように配置
されたTFT(駆動回路または画素に配置される発光素子に電流を供給するTFT)のオ
ン電流(Ion)のバラツキが大きい場合、表示画面において輝度のバラツキが生じる恐
れがある。
【0013】
以上、本発明の一態様は、上記課題の少なくとも一つを解決することを目的とする。
【課題を解決するための手段】
【0014】
本発明の一態様は、半導体層としてIn、Ga、及びZnを含む酸化物半導体膜を用い、
半導体層とソース電極層及びドレイン電極層との間にバッファ層が設けられた逆スタガ型
(ボトムゲート構造)の薄膜トランジスタを含むことを要旨とする。
【0015】
本明細書において、In、Ga、及びZnを含む酸化物半導体膜を用いて形成された半導
体層を「IGZO半導体層」とも記す。
【0016】
ソース電極層とIGZO半導体層とはオーミック性のコンタクトが必要であり、さらに、
そのコンタクト抵抗は極力低減することが望まれる。同様に、ドレイン電極層とIGZO
半導体層とはオーミック性のコンタクトが必要であり、さらに、そのコンタクト抵抗は極
力低減することが望まれる。
【0017】
そこで、ソース電極層及びドレイン電極層とIGZO半導体層との間に、IGZO半導体
層よりもキャリア濃度の高いバッファ層を意図的に設けることによってオーミック性のコ
ンタクトを形成する。
【0018】
バッファ層としては、n型の導電型を有する金属酸化物層を用いる。金属酸化物層として
、酸化チタン、酸化モリブデン、酸化亜鉛、酸化インジウム、酸化タングステン、酸化マ
グネシウム、酸化カルシウム、酸化スズ、酸化ガリウム、等を用いることができる。また
、金属酸化物層の替わりに活性層に用いるインジウム、ガリウム、及び亜鉛を含む酸化物
半導体層よりもキャリア濃度の高いインジウム、ガリウム、及び亜鉛を含む酸化物半導体
層を用いることもできる。
また、バッファ層にn型又はp型を付与する不純物元素を含ませてもよい。不純物元素
として、例えば、インジウム、ガリウム、亜鉛、マグネシウム、アルミニウム、チタン、
鉄、錫、カルシウム、スカンジウム、イットリウム、ジルコニウム、ハフニウム、ホウ素
、タリウム、ゲルマニウム、鉛などを用いることができる。これらの不純物元素などをバ
ッファ層に含ませると、成膜後の加熱処理によって半導体層から酸素が抜け出ることを防
ぐ効果がある。また、不純物添加により金属酸化物中のキャリア濃度を高めることができ
る。
【0019】
バッファ層は、n層として機能し、ドレイン領域またはソース領域とも呼ぶことができ
る。
【0020】
本発明の一態様に係る半導体装置は、ゲート電極層と、ゲート電極層上にゲート絶縁層と
、ゲート絶縁層上に半導体層と、半導体層上にn型の導電型を有するバッファ層と、バッ
ファ層上にソース電極層及びドレイン電極層とを含む薄膜トランジスタを有し、半導体層
はインジウム、ガリウム、及び亜鉛を含む酸化物半導体層であり、バッファ層は金属酸化
物層であり、半導体層とソース電極層及びドレイン電極層とはバッファ層を介して電気的
に接続する。
【0021】
本発明の一態様に係る半導体装置は、ゲート電極層と、ゲート電極層上にゲート絶縁層と
、ゲート絶縁層上に半導体層と、半導体層上にn型の導電型を有するバッファ層と、バッ
ファ層上にソース電極層及びドレイン電極層とを含む薄膜トランジスタを有し、半導体層
はインジウム、ガリウム、及び亜鉛を含む酸化物半導体層であり、半導体層はソース電極
層とドレイン電極層との間に膜厚の薄い領域を含み、バッファ層は金属酸化物層であり、
半導体層とソース電極層及びドレイン電極層とはバッファ層を介して電気的に接続する。
【0022】
本発明の一態様において、金属酸化物層として、酸化チタン、酸化モリブデン、酸化亜鉛
、酸化インジウム、酸化タングステン、酸化マグネシウム、酸化カルシウム、酸化スズ又
は酸化ガリウムを用いることが好ましく、特に酸化チタンが好適である。
【0023】
上記構成において、半導体層とバッファ層との間にキャリア濃度が半導体層より高く、バ
ッファ層より低い第2のバッファ層を設けてもよい。第2のバッファ層はn層として機
能する。第2のバッファ層として、In、Ga、及びZnを含む酸化物半導体層と金属酸
化物層との混合層を用いることができる。第2のバッファ層に含まれる金属酸化物層は、
バッファ層に用いることができる金属酸化物層と同一材料のものを用いることができる。
【0024】
In、Ga、及びZnを含む酸化物半導体膜(IGZO膜)はキャリア濃度が高くなるに
つれ、ホール移動度も高くなる特性を有している。よって、In、Ga、及びZnを含む
酸化物半導体膜のキャリア濃度とホール移動度の関係は図27に示すようになる。本発明
の一態様において、半導体層のチャネルとして適するIGZO膜のキャリア濃度範囲(チ
ャネル用濃度範囲1)は1×1017atoms/cm未満(より好ましくは1×10
11atoms/cm以上)であることが好ましい。一方、IGZO膜をバッファ層と
して用いる場合には、IGZO膜のキャリア濃度範囲(バッファ層濃度範囲2)は、1×
1018atoms/cm以上(1×1022atoms/cm以下)とすることが
好ましい。上記IGZO膜のキャリア濃度は、半導体層として用いた場合、室温で、ソー
ス、ドレイン、及びゲート電圧を印加しない状態での値である。
【0025】
チャネル用のIGZO膜のキャリア濃度範囲が上記範囲を越えると、薄膜トランジスタと
してノーマリーオンになる恐れがある。よって本発明の一態様のキャリア濃度範囲のIG
ZO膜を半導体層のチャネルとして用いることでより信頼性の高い薄膜トランジスタとす
ることができる。
【0026】
また、ソース電極層及びドレイン電極層にチタン膜を用いることが好ましい。例えば、チ
タン膜、アルミニウム膜、チタン膜の積層を用いると低抵抗であり、かつアルミニウム膜
にヒロックが発生しにくい。
【0027】
本発明の一態様に係る半導体装置の作製方法は、基板上にゲート電極層を形成し、ゲート
電極層上にゲート絶縁層を形成し、ゲート絶縁層上に半導体層を形成し、半導体層上にn
型の導電型を有するバッファ層を形成し、バッファ層上にソース電極層及びドレイン電極
層を形成し、半導体層はインジウム、ガリウム、及び亜鉛を含む酸化物半導体層を用いて
形成し、バッファ層は金属酸化物層を用いて形成し、半導体層とソース電極層及びドレイ
ン電極層とはバッファ層を介して電気的に接続する。
【0028】
ゲート絶縁層、半導体層、n型の導電型を有するバッファ層、ソース電極層及びドレイン
電極層は大気に曝さずに連続的に形成することができる。連続して成膜すると、ごみとな
る大気中の不純物が界面に混入することによる不良を軽減することができる。
【0029】
ゲート絶縁層、半導体層、n型の導電型を有するバッファ層、ソース電極層及びドレイン
電極層はスパッタリング法で形成すればよい。ゲート絶縁層及び半導体層は酸素雰囲気下
(又は酸素90%以上、希ガス(アルゴン又はヘリウム)10%以下)で、n型の導電型
を有するバッファ層は希ガス(アルゴン又はヘリウム)雰囲気下で成膜することが好まし
い。
【0030】
このようにスパッタリング法を用いて連続的に成膜すると、生産性が高く、薄膜界面の信
頼性が安定する。また、ゲート絶縁層と半導体層を酸素雰囲気下で成膜し、酸素を多く含
ませるようにすると、劣化による信頼性の低下や、薄膜トランジスタ特性のノーマリーオ
ン側へのシフトなどを軽減することができる。
【0031】
本発明の一態様に係る半導体装置の作製方法は、基板上にゲート電極層を形成し、ゲート
電極層上にゲート絶縁層を形成し、ゲート絶縁層上に半導体層を形成し、半導体層上にn
型の導電型を有するバッファ層を形成し、バッファ層上にソース電極層及びドレイン電極
層を形成し、半導体層はインジウム、ガリウム、及び亜鉛を含む酸化物半導体層を用いて
形成し、バッファ層は金属酸化物層を用いて形成し、半導体層とソース電極層及びドレイ
ン電極層とはバッファ層を介して電気的に接続し、ゲート絶縁層、半導体層、バッファ層
、ソース電極層、及びドレイン電極層は大気に曝さずに連続的に形成する。
【発明の効果】
【0032】
本発明の一態様によって、光電流が少なく、寄生容量が小さく、オンオフ比の高い薄膜ト
ランジスタを得ることができ、良好な動特性を有する薄膜トランジスタを作製できる。よ
って、電気特性が高く信頼性のよい薄膜トランジスタを有する半導体装置を提供すること
ができる。
【図面の簡単な説明】
【0033】
【図1】本発明の一態様に係る半導体装置を説明する図。
【図2】本発明の一態様に係る半導体装置を説明する図。
【図3】本発明の一態様に係る半導体装置の作製方法を説明する図。
【図4】本発明の一態様に係る半導体装置の作製方法を説明する図。
【図5】本発明の一態様に係る半導体装置を説明する図。
【図6】本発明の一態様に係る半導体装置を説明する図。
【図7】本発明の一態様に係る半導体装置を説明する図。
【図8】本発明の一態様に係る半導体装置を説明する図。
【図9】本発明の一態様に係る半導体装置を説明する図。
【図10】本発明の一態様に係る半導体装置の作製方法を説明する図。
【図11】本発明の一態様に係る半導体装置を説明する図。
【図12】本発明の一態様に係るマルチチャンバー型の製造装置の上面模式図。
【図13】本発明の一態様に係る表示装置のブロック図を説明する図。
【図14】本発明の一態様に係る信号線駆動回路の構成を説明する図。
【図15】本発明の一態様に係る信号線駆動回路の動作を説明するタイミングチャート。
【図16】本発明の一態様に係る信号線駆動回路の動作を説明するタイミングチャート。
【図17】本発明の一態様に係るシフトレジスタの構成を説明する図。
【図18】図17に示すフリップフロップの接続構成を説明する図。
【図19】本発明の一態様に係るアクティブマトリクス型の液晶表示装置を説明する図。
【図20】本発明の一態様に係る液晶表示パネルを説明する図。
【図21】本発明の一態様に係る液晶表示モジュールを説明する図。
【図22】本発明の一態様に係るアクティブマトリクス型の発光表示装置を説明する図。
【図23】図22に示す発光表示装置の等価回路を説明する図。
【図24】本発明の一態様に係る発光素子の構成を説明する図。
【図25】本発明の一態様に係る発光表示パネルを説明する図。
【図26】本発明の一態様に係るアクティブマトリクス型の電子ペーパーを説明する図。
【図27】In、Ga、及びZnを含む酸化物半導体膜のキャリア濃度とホール移動度の関係を説明する図。
【図28】電子ペーパーの使用形態の例を説明する図。
【図29】電子書籍の一例を示す外観図。
【図30】テレビジョン装置およびデジタルフォトフレームの例を示す外観図。
【図31】遊技機の例を示す外観図。
【図32】携帯電話機の一例を示す外観図。
【発明を実施するための形態】
【0034】
本発明の実施の形態について、図面を用いて詳細に説明する。但し、本発明は以下の説明
に限定されず、本発明の趣旨及びその範囲から逸脱することなくその形態及び詳細を様々
に変更し得ることは当業者であれば容易に理解される。従って、本発明は以下に示す実施
の形態の記載内容に限定して解釈されるものではない。なお、以下に説明する本発明の構
成において、同一部分又は同様な機能を有する部分には同一の符号を異なる図面間で共通
して用い、その繰り返しの説明は省略する場合がある。
【0035】
(実施の形態1)
本実施の形態では、薄膜トランジスタ及びその作製工程について、図1乃至図4を用いて
説明する。
【0036】
本実施の形態のボトムゲート構造の薄膜トランジスタ170a、170b、170cを図
1及び図2に示す。図1(A1)は平面図であり、図1(A2)は図1(A1)における
線A1−A2の断面図である。図1(B1)は平面図であり、図1(B2)は図1(B1
)における線B1−B2の断面図である。図2(A1)は平面図であり、図2(A2)は
図2(A1)における線C1−C2の断面図である。
【0037】
図1において、基板100上に、ゲート電極層101、ゲート絶縁層102、半導体層1
03、n型の導電型を有するバッファ層104a、104b、ソース電極層又はドレイン
電極層105a、105bを有する薄膜トランジスタ170a、170bが設けられてい
る。
【0038】
半導体層103としてIn、Ga、及びZnを含む酸化物半導体膜を用い、ソース電極層
又はドレイン電極層105a、105bとIGZO半導体層である半導体層103との間
に、半導体層103よりもキャリア濃度の高いバッファ層104a、104bを意図的に
設けることによってオーミック性のコンタクトを形成する。薄膜トランジスタの電気特性
のバラツキを低減するためには、In、Ga、及びZnを含む酸化物半導体層はアモルフ
ァス状態であることが好ましい。
【0039】
バッファ層104a、104bとしては、n型の導電型を有する金属酸化物層を用いる。
金属酸化物層として、酸化チタン、酸化モリブデン、酸化亜鉛、酸化インジウム、酸化タ
ングステン、酸化マグネシウム、酸化カルシウム、酸化スズ、酸化ガリウム等を用いるこ
とができる。また、金属酸化物層の替わりに半導体層103よりもキャリア濃度の高いイ
ンジウム、ガリウム、及び亜鉛を含む酸化物半導体層を用いることもできる。
また、バッファ層にn型又はp型を付与する不純物元素を含ませてもよい。不純物元素
として、例えば、インジウム、ガリウム、亜鉛、マグネシウム、アルミニウム、チタン、
鉄、錫、カルシウムなどを用いることができる。これらの不純物元素などをバッファ層に
含ませると、成膜後の加熱処理によって半導体層から酸素が抜け出ることを防ぐ効果があ
る。また、不純物添加により金属酸化物中のキャリア濃度を高めることができる。
【0040】
バッファ層104a、104bは、n層として機能し、ドレイン領域またはソース領域
とも呼ぶことができる。
【0041】
図1(A1)(A2)の薄膜トランジスタ170aは、バッファ層104a、104bと
ソース電極層又はドレイン電極層105a、105bとを別のマスクを用いてエッチング
加工した例であり、バッファ層104a、104bとソース電極層又はドレイン電極層1
05a、105bとは形状が異なる。
【0042】
図1(B1)(B2)の薄膜トランジスタ170bは、バッファ層104a、104bと
ソース電極層又はドレイン電極層105a、105bとを同じマスクを用いてエッチング
加工した例であり、バッファ層104a、104bとソース電極層又はドレイン電極層1
05a、105bとは同様な形状を反映している。
【0043】
また、図1(A1)(A2)(B1)(B2)の薄膜トランジスタ170a、170bは
、半導体層103上において、ソース電極層又はドレイン電極層105a、105bの端
部とバッファ層104a、104bの端部が一致せず、バッファ層104a、104bが
一部露出している例である。
【0044】
一方、図2(A1)(A2)の薄膜トランジスタ170cは、半導体層103とバッファ
層104a、104bとを同じマスクを用いてエッチング加工する例であり半導体層10
3とバッファ層104a、104bの端部は一致している。なお、図2(A1)(A2)
の薄膜トランジスタ170cは、半導体層103上において、ソース電極層又はドレイン
電極層105a、105bの端部とバッファ層104a、104bの端部も一致する例で
ある。
【0045】
さらに、ソース電極層又はドレイン電極層が積層構造である薄膜トランジスタ170dを
図11に示す。薄膜トランジスタ170dはソース電極層又はドレイン電極層105a1
、105a2、105a3の積層、ソース電極層又はドレイン電極層105b1、105
b2、105b3の積層を有している。例えば、ソース電極層又はドレイン電極層105
a1、105b1としてチタン膜、105a2、105b2としてアルミニウム膜、10
5a3、105b3としてチタン膜を用いることができる。
【0046】
薄膜トランジスタ170dでは、ソース電極層又はドレイン電極層105a1、105b
1をエッチングストッパーとして用いて、ソース電極層又はドレイン電極層105a2、
105a3、105b2、105b3をウエットエッチングによってエッチングして形成
する。上記ウエットエッチングと同じマスクを用いて、ソース電極層又はドレイン電極層
105a1、105b1、バッファ層104a、104bをドライエッチングによってエ
ッチングして形成する。
【0047】
したがって、ソース電極層又はドレイン電極層105a1はバッファ層104aの端部と
、ソース電極層又はドレイン電極層105b1はバッファ層104bの端部とそれぞれ一
致しており、ソース電極層又はドレイン電極層105a2、105a3、ソース電極層又
はドレイン電極層105b2、105b3は、ソース電極層又はドレイン電極層105a
1、105b1より端部が後退している。
【0048】
このように、ソース電極層及びドレイン電極層に用いる導電膜と、バッファ層及び半導体
層とがエッチング工程において選択比が低い場合は、エッチングストッパーとして機能す
る導電膜を積層して別のエッチング条件で複数回エッチング工程を行えばよい。
【0049】
図1(A1)(A2)の薄膜トランジスタ170aの作製方法を図3(A)乃至(G)を
用いて説明する。
【0050】
基板100上にゲート電極層101、ゲート絶縁層102、半導体膜111を形成する(
図3(A)参照。)。基板100は、バリウムホウケイ酸ガラス、アルミノホウケイ酸ガ
ラス、若しくはアルミノシリケートガラスなど、フュージョン法やフロート法で作製され
る無アルカリガラス基板、セラミック基板の他、本作製工程の処理温度に耐えうる耐熱性
を有するプラスチック基板等を用いることができる。また、ステンレス合金などの金属基
板の表面に絶縁膜を設けた基板を適用しても良い。基板100の大きさは、320mm×
400mm、370mm×470mm、550mm×650mm、600mm×720m
m、680mm×880mm、730mm×920mm、1000mm×1200mm、
1100mm×1250mm、1150mm×1300mm、1500mm×1800m
m、1900mm×2200mm、2160mm×2460mm、2400mm×280
0mm、又は2850mm×3050mm等を用いることができる。
【0051】
また基板100上に下地膜として絶縁膜を形成してもよい。下地膜としては、CVD法や
スパッタリング法等を用いて、酸化珪素膜、窒化珪素膜、酸化窒化珪素膜、または窒化酸
化珪素膜の単層、又は積層で形成すればよい。
【0052】
ゲート電極層101は、チタン、モリブデン、クロム、タンタル、タングステン、アルミ
ニウムなどの金属材料またはその合金材料を用いて形成する。ゲート電極層101は、ス
パッタリング法や真空蒸着法で基板100上に導電膜を形成し、当該導電膜上にフォトリ
ソグラフィ技術またはインクジェット法によりマスクを形成し、当該マスクを用いて導電
膜をエッチングすることで、形成することができる。また、銀、金、銅などの導電性ナノ
ペーストを用いてインクジェット法により吐出し焼成して、ゲート電極層101を形成す
ることができる。なお、ゲート電極層101の密着性向上と基板や下地膜への拡散を防ぐ
バリアメタルとして、上記金属材料の窒化物膜を、基板100及びゲート電極層101の
間に設けてもよい。また、ゲート電極層101は単層構造としても積層構造としてもよく
、例えば基板100側からモリブデン膜とアルミニウム膜との積層、モリブデン膜とアル
ミニウムとネオジムとの合金膜との積層、チタン膜とアルミニウム膜との積層、チタン膜
、アルミニウム膜及びチタン膜との積層などを用いることができる。
【0053】
なお、ゲート電極層101上には半導体膜や配線を形成するので、段切れ防止のため端部
がテーパー状になるように加工することが望ましい。
【0054】
ゲート絶縁層102、及び半導体膜111は大気に曝さずに連続的に形成することができ
る。連続して成膜すると、大気成分や大気中に浮遊する汚染不純物元素に汚染されること
なく各積層界面を形成することができる。
【0055】
アクティブマトリクス型の表示装置においては、回路を構成する薄膜トランジスタの電気
特性が重要であり、この電気特性が表示装置の性能を左右する。特に、薄膜トランジスタ
の電気特性のうち、しきい値電圧(Vth)が重要である。電界効果移動度が高くともし
きい値電圧値が高い、或いはしきい値電圧値がマイナスであると、回路として制御するこ
とが困難である。しきい値電圧値が高く、しきい値電圧の絶対値が大きい薄膜トランジス
タの場合には、駆動電圧が低い状態では薄膜トランジスタとしてのスイッチング機能を果
たすことができず、負荷となる恐れがある。また、しきい値電圧値がマイナスであると、
ゲート電圧が0Vでもソース電極とドレイン電極の間に電流が流れる、所謂ノーマリーオ
ンとなりやすい。
【0056】
nチャネル型の薄膜トランジスタの場合、ゲート電圧に正の電圧を印加してはじめてチャ
ネルが形成されて、ドレイン電流が流れ出すトランジスタが望ましい。駆動電圧を高くし
ないとチャネルが形成されないトランジスタや、負の電圧状態でもチャネルが形成されて
ドレイン電流が流れるトランジスタは、回路に用いる薄膜トランジスタとしては不向きで
ある。
【0057】
よって、In、Ga、及びZnを含む酸化物半導体膜を用いる薄膜トランジスタのゲート
電圧が0Vにできるだけ近い正のしきい値電圧でチャネルが形成されることが望ましい。
【0058】
薄膜トランジスタのしきい電圧値は、酸化物半導体層の界面、即ち、酸化物半導体層とゲ
ート絶縁層の界面に大きく影響すると考えられる。
【0059】
そこで、これらの界面を清浄な状態で形成することによって、薄膜トランジスタの電気特
性を向上させるとともに、製造工程の複雑化を防ぐことができ、量産性と高性能の両方を
備えた薄膜トランジスタを実現する。
【0060】
特に酸化物半導体層とゲート絶縁層との界面に大気中の水分が存在すると、薄膜トランジ
スタの電気的特性の劣化、しきい値電圧のばらつき、ノーマリーオンになりやすいといっ
た問題を招く。酸化物半導体層とゲート絶縁層とを連続成膜することで、このような水素
化合物を排除することができる。
【0061】
よって、大気に曝すことなくゲート絶縁層102と、半導体膜111をスパッタリング法
により、減圧下で連続成膜することで良好な界面を有し、リーク電流が低く、且つ、電流
駆動能力の高い薄膜トランジスタを実現することができる。
【0062】
また、ゲート絶縁層102及びIn、Ga、及びZnを含む酸化物半導体膜である半導体
膜111は酸素雰囲気下(又は酸素90%以上、希ガス(アルゴン)10%以下)で成膜
することが好ましい。
【0063】
このようにスパッタリング法を用いて連続的に成膜すると、生産性が高く、薄膜界面の信
頼性が安定する。また、ゲート絶縁層と半導体層を酸素雰囲気下で成膜し、酸素を多く含
ませるようにすると、劣化による信頼性の低下や、薄膜トランジスタがノーマリーオンと
なることを軽減することができる。
【0064】
ゲート絶縁層102は、CVD法やスパッタリング法等を用いて、酸化珪素膜、窒化珪素
膜、酸化窒化珪素膜、または窒化酸化珪素膜で形成することができる。図2(A1)(A
2)に示す薄膜トランジスタ170cはゲート絶縁層102を積層する例である。
【0065】
ゲート絶縁層102として、窒化珪素膜または窒化酸化珪素膜と、酸化珪素膜または酸化
窒化珪素膜との順に積層して形成することができる。なお、ゲート絶縁層を2層とせず、
基板側から窒化珪素膜または窒化酸化珪素膜と、酸化珪素膜または酸化窒化珪素膜と、窒
化珪素膜または窒化酸化珪素膜との順に3層積層して形成することができる。また、ゲー
ト絶縁層を、酸化珪素膜、窒化珪素膜、酸化窒化珪素膜、または窒化酸化珪素膜の単層で
形成することができる。
【0066】
また、ゲート絶縁層102として、プラズマCVD法によりゲート電極層101上に窒化
珪素膜を形成し、窒化珪素膜上にスパッタリング法により酸化珪素膜を積層してもよい。
プラズマCVD法によりゲート電極層101上に窒化珪素膜と酸化珪素膜を順に積層し、
酸化珪素膜上にさらにスパッタリング法により酸化珪素膜を積層してもよい。
【0067】
ここでは、酸化窒化珪素膜とは、その組成として、窒素よりも酸素の含有量が多いもので
あって、濃度範囲として酸素が55〜65原子%、窒素が1〜20原子%、Siが25〜
35原子%、水素が0.1〜10原子%の範囲で含まれるものをいう。また、窒化酸化珪
素膜とは、その組成として、酸素よりも窒素の含有量が多いものであって、濃度範囲とし
て酸素が15〜30原子%、窒素が20〜35原子%、Siが25〜35原子%、水素が
15〜25原子%の範囲で含まれるものをいう。
【0068】
また、ゲート絶縁層102として、アルミニウム、イットリウム、マグネシウム又はハフ
ニウムの酸化物、窒化物、酸化窒化物、又は窒化酸化物の一種又はそれらの化合物を少な
くとも2種以上含む化合物を用いることもできる。
【0069】
また、ゲート絶縁層102に、塩素、フッ素などのハロゲン元素を含ませてもよい。ゲー
ト絶縁層102中のハロゲン元素の濃度は、濃度ピークにおいて1×1015atoms
/cm以上1×1020atoms/cm以下とすればよい。
【0070】
半導体膜111としては、In、Ga、及びZnを含む酸化物半導体膜を形成する。半導
体膜111はエッチング後の膜厚のうち、薄い領域の膜厚が2nm以上200nm以下(
好ましくは20nm以上150nm以下)の厚さとなるように形成するとよい。例えば、
半導体膜111として、スパッタリング法を用いて、In、Ga、及びZnを含む酸化物
半導体膜を膜厚50nmで形成すればよい。具体的な条件例としては、直径8インチのI
n、Ga、及びZnを含む酸化物半導体ターゲットを用いて、基板とターゲットの間との
距離を170mm、圧力0.4Pa、直流(DC)電源0.5kW、アルゴン又は酸素雰
囲気下で成膜することができる。また、パルス直流(DC)電源を用いると、ゴミが軽減
でき、膜厚分布も均一となるために好ましい。
【0071】
次に半導体膜111をマスク113を用いてエッチングにより加工し、半導体層103を
形成する(図3(B)参照。)。半導体層103は、フォトリソグラフィ技術または液滴
吐出法によりマスク113を形成し、当該マスク113を用いて半導体膜111をエッチ
ングすることで、形成することができる。
【0072】
半導体層103の端部をテーパーを有する形状にエッチングすることで、段差形状による
配線の段切れを防ぐことができる。
【0073】
次に、ゲート絶縁層102、半導体層103上にn型の導電型を有する金属酸化物膜11
4を形成する(図3(C)参照。)。n型の導電型を有する金属酸化物膜114上にマス
ク116を形成する。マスク116は、フォトリソグラフィ技術またはインクジェット法
により形成する。n型の導電型を有する金属酸化物膜114をマスク116を用いてエッ
チングにより加工し、n型の導電型を有する金属酸化物膜115を形成する(図3(D)
参照。)。n型の導電型を有する金属酸化物膜115は膜厚2nm以上100nm以下(
好ましくは20nm以上50nm以下)とすればよい。n型の導電型を有する金属酸化物
膜114は希ガス(好ましくはアルゴン)雰囲気下で成膜することが好ましい。ここでは
、金属酸化物膜114に酸化チタン膜を用いる。そのエッチング方法の一例として、希釈
したフッ酸、塩酸又は硫酸もしくは、アンモニア水と過酸化水素水と純水を1:1:5の
体積比で混合した溶液をエッチャントに用いることができる。
【0074】
半導体膜111やn型の導電型を有する金属酸化物膜115などのスパッタリング法以外
の他の成膜方法としては、パルスレーザー蒸着法(PLD法)及び電子ビーム蒸着法など
の気相法を用いることができる。気相法の中でも、材料系の組成を制御しやすい点では、
PLD法が、量産性の点からは、上述したようにスパッタリング法が適している。
【0075】
n型の導電型を有する金属酸化物膜115上に導電膜117を形成する(図3(E)参照
。)。
【0076】
導電膜117は、アルミニウム、若しくは銅、シリコン、チタン、ネオジム、スカンジウ
ム、モリブデンなどの耐熱性向上元素若しくはヒロック防止元素が添加されたアルミニウ
ム合金の単層または積層で形成することが好ましい。また、n型の導電型を有する金属酸
化物膜と接する側の膜を、チタン、タンタル、モリブデン、タングステン、またはこれら
の元素の窒化物で形成し、その上にアルミニウムまたはアルミニウム合金を形成した積層
構造としても良い。更には、アルミニウムまたはアルミニウム合金の上面及び下面を、チ
タン、タンタル、モリブデン、タングステン、またはこれらの元素の窒化物で挟んだ積層
構造としてもよい。ここでは、導電膜117として、チタン膜、アルミニウム膜、及びチ
タン膜の積層導電膜を用いる。かかる積層導電膜は過酸化水素水または加熱塩酸をエッチ
ャントとしてエッチングできる。
【0077】
チタン膜、アルミニウム膜、チタン膜の積層を用いると低抵抗であり、かつアルミニウム
膜にヒロックが発生しにくい。
【0078】
導電膜117は、スパッタリング法や真空蒸着法で形成する。また、導電膜117は、銀
、金、銅などの導電性ナノペーストを用いてスクリーン印刷法、インクジェット法等を用
いて吐出し焼成して形成しても良い。
【0079】
次に、導電膜117上にマスク118を形成する。マスク118を用いて導電膜117を
エッチングし分離して、ソース電極層又はドレイン電極層105a、105bを形成する
(図3(F)参照。)。本実施の形態の図3(F)のように導電膜117をウエットエッ
チングすると、導電膜117は等方的にエッチングされるため、ソース電極層又はドレイ
ン電極層105a、105bの端部はマスク118の端部と一致せずより後退している。
次に、マスク118を用いてn型の導電型を有する金属酸化物膜115をエッチングして
、バッファ層104a、104bを形成する(図3(G)参照。)。なお、エッチング条
件にもよるがn型の導電型を有する金属酸化物膜115のエッチング工程において、半導
体層103の露出領域も一部エッチングされ得る。この場合、図示しないがバッファ層1
04a、104bの間の半導体層103のチャネル領域は膜厚の薄い領域となる。なお、
本実施の形態においては、バッファ層104a、104bの形成とソース電極層及びドレ
イン電極層105a、105bの形成を分けて行うため、バッファ層104a、104b
とソース電極層及びドレイン電極層105a、105bの端部における重ならない領域の
長さを容易に制御できる。
【0080】
さらに、半導体層103にプラズマ処理を行ってもよい。プラズマ処理を行うことにより
、半導体層103のエッチングによるダメージを回復することができる。プラズマ処理は
、NO、好ましくは酸素を含むN、He、Ar雰囲気下で行うことが好ましい。
また、上記雰囲気にCl、CFを加えた雰囲気下で行ってもよい。なお、プラズマ処
理は、無バイアスで行うことが好ましい。
【0081】
半導体層103上のソース電極層又はドレイン電極層105a、105bの端部と、バッ
ファ層104a、104bの端部は一致せずずれており、ソース電極層又はドレイン電極
層105a、105bの端部の外側に、バッファ層104a、104bの端部が形成され
る。
【0082】
この後、マスク118を除去する。以上の工程により、薄膜トランジスタ170aを形成
することができる。
【0083】
次に図1(B1)(B2)に示す薄膜トランジスタ170bの作製工程を図4に示す。
【0084】
図4(A)は図3(B)の工程においてマスク113を除去した状態である。半導体層1
03上にn型の導電型を有する金属酸化物膜114と導電膜121とを順に積層する(図
4(B)参照。)。この場合n型の導電型を有する金属酸化物膜114と導電膜121と
を大気に曝さないでスパッタリング法で連続的に成膜することができる。
【0085】
n型の導電型を有する金属酸化物膜114と導電膜121上にマスク122を形成し、マ
スク122を用いて導電膜121をウエットエッチング加工してソース電極層又はドレイ
ン電極層105a、105bを形成する(図4(C)参照。)。
【0086】
次に、n型の導電型を有する金属酸化物膜114をドライエッチング加工してバッファ層
104a、104bを形成する(図4(D)参照。)。図4のように、バッファ層104
a、104bとソース電極層又はドレイン電極層105a、105bとを形成するエッチ
ングに同じマスクを用いると、マスク数を減らすことができるため、工程簡略化、低コス
ト化が計れる。
【0087】
薄膜トランジスタ170a、170b上に保護膜として絶縁膜を形成してもよい。保護膜
としてはゲート絶縁層と同様に形成することができる。なお、保護膜は、大気中に浮遊す
る有機物や金属物、水蒸気などの汚染不純物の侵入を防ぐためのものであり、緻密な膜が
好ましい。例えば、薄膜トランジスタ170a、170b上に保護膜として酸化珪素膜と
窒化珪素膜との積層を形成すればよい。
【0088】
また、半導体層103は成膜後に加熱処理を行うことが好ましい。加熱処理は成膜後であ
ればどの工程で行ってもよいが、成膜直後、導電膜117の形成後、保護膜の形成後など
で行うことができる。また、他の加熱処理と兼ねて行ってもよい。また加熱温度は300
℃以上400℃以下、好ましくは350℃とすればよい。図2のように半導体層103及
びバッファ層104a、104bを連続成膜する場合、積層した後に加熱処理を行っても
よい。加熱処理は半導体層103とバッファ層104a、104bと別工程で複数回行っ
てもよい。
【0089】
ソース電極層又はドレイン電極層105a、105bの端部と、バッファ層104a、1
04bの端部は一致せずずれた形状となることで、ソース電極層又はドレイン電極層10
5a、105bの端部の距離が離れるため、ソース電極層又はドレイン電極層105a、
105b間のリーク電流やショートを防止することができる。このため、信頼性が高く、
且つ耐圧の高い薄膜トランジスタを作製することができる。
【0090】
また、図2(A1)(A2)の薄膜トランジスタ170cのようにバッファ層104a、
104bの端部とソース電極及びドレイン電極の端部を一致する形状としてもよい。ソー
ス電極層又はドレイン電極層105a、105bを形成するためのエッチング及びバッフ
ァ層104a、104bを形成するためのエッチングをドライエッチングで行うと図2(
A1)(A2)の薄膜トランジスタ170cのような形状にすることができる。また、n
型の導電型を有する金属酸化物膜114をソース電極及びドレイン電極をマスクとしてエ
ッチングし、バッファ層104a、104bを形成しても図2(A1)(A2)の薄膜ト
ランジスタ170cのような形状にすることができる。
【0091】
バッファ層(n型の導電型を有する金属酸化物層)を設けない、ゲート電極層、ゲート絶
縁層、半導体層(In、Ga、及びZnを含む酸化物半導体層)、ソース電極層及びドレ
イン電極層という積層構造であると、ゲート電極層とソース電極層又はドレイン電極層と
の距離が近くなり、間に生じる寄生容量が増加してしまう。さらに、この寄生容量の増加
は、半導体層の薄膜化によってより顕著になる。本実施の形態では、n型の導電型を有す
る金属酸化物層というようなキャリア濃度が高いバッファ層を設ける、ゲート電極層、ゲ
ート絶縁層、半導体層、バッファ層、ソース電極層及びドレイン電極層という積層構造を
有する薄膜トランジスタとしているため、半導体層の膜厚が薄膜であっても寄生容量を抑
制することができる。
【0092】
本実施の形態によって、光電流が少なく、寄生容量が小さく、オンオフ比の高い薄膜トラ
ンジスタを得ることができ、良好な動特性を有する薄膜トランジスタを作製できる。よっ
て、電気特性が高く信頼性のよい薄膜トランジスタを有する半導体装置を提供することが
できる。
【0093】
(実施の形態2)
本実施の形態は、本発明の一態様に係るマルチゲート構造の薄膜トランジスタの例である
。従って、他は実施の形態1と同様に行うことができ、実施の形態1と同一部分又は同様
な機能を有する部分、及び工程の繰り返しの説明は省略する。
【0094】
本実施の形態では、半導体装置に用いられる薄膜トランジスタについて、図5乃至図7(
A)(B)を用いて説明する。
【0095】
図5(A)は、薄膜トランジスタ171aを示す平面図であり、図5(B)は、図5(A
)における線E1−E2の薄膜トランジスタ171aを示す断面図に相当する。
【0096】
図5(A)(B)に示すように、基板150上に、ゲート電極層151a、151b、半
導体層153a、153b、バッファ層154a、154b、154c、ソース電極層又
はドレイン電極層155a、155bを含むマルチゲート構造の薄膜トランジスタ171
aが設けられている。
【0097】
半導体層153a、153bは、In、Ga、及びZnを含む酸化物半導体層であり、バ
ッファ層154a、154b、154cはn型の導電型を有する金属酸化物層である。ソ
ース領域又はドレイン領域(n層)として機能するバッファ層154a、154b、1
54cは、半導体層153a、153bよりキャリア濃度が高い。
【0098】
半導体層153aと半導体層153bとは、一方をバッファ層154cを介して電気的に
接続しており、他方でそれぞれ半導体層153aはバッファ層154aを介してソース電
極層又はドレイン電極層155aと、半導体層153bはバッファ層154bを介してソ
ース電極層又はドレイン電極層155bと電気的に接続している。
【0099】
図6に他の構成のマルチゲート構造の薄膜トランジスタ171bを示す。図6(A)は、
薄膜トランジスタ171bを示す平面図であり、図6(B)は、図6(A)における線F
1−F2の薄膜トランジスタ171bを示す断面図に相当する。図6の薄膜トランジスタ
171bにおいてはバッファ層154c上にソース電極層又はドレイン電極層155a、
155bと同工程で形成される配線層156が設けられ、半導体層153aと半導体層1
53bとはバッファ層154cと配線層156によって電気的に接続されている。
【0100】
図7に他の構成のマルチゲート構造の薄膜トランジスタ171cを示す。図7(A)は、
薄膜トランジスタ171cを示す平面図であり、図7(B)は、図7(A)における線G
1−G2の薄膜トランジスタ171cを示す断面図に相当する。図7の薄膜トランジスタ
171cにおいては、半導体層153aと半導体層153bとが連続した一層の半導体層
153として形成されている例である。半導体層153はゲート絶縁層152を介して、
ゲート電極層151a、151bを跨るように設けられる。
【0101】
このように、本発明の一態様に係るマルチゲート構造の薄膜トランジスタにおいては、各
ゲート電極層上に形成される半導体層は連続して設けられてもよいし、バッファ層及び配
線層などを介して複数の半導体層が電気的に接続して設けられてもよい。
【0102】
本発明の一態様に係るマルチゲート構造の薄膜トランジスタは、オフ電流が少なく、その
ような薄膜トランジスタを含む半導体装置は高い電気特性及び高信頼性を付与することが
できる
【0103】
本実施の形態では、マルチゲート構造としてゲート電極層が2つのダブルゲート構造の例
を示すが、本発明はより多くのゲート電極層を有するトリプルゲート構造などにも適用す
ることができる。
【0104】
(実施の形態3)
本実施の形態は、本発明の一態様に係る薄膜トランジスタにおいてバッファ層を積層する
例である。従って、他は実施の形態1又は実施の形態2と同様に行うことができ、実施の
形態1又は実施の形態2と同一部分又は同様な機能を有する部分、及び工程の繰り返しの
説明は省略する。
【0105】
本実施の形態では、半導体装置に用いられる薄膜トランジスタ173について、図8を用
いて説明する。
【0106】
図8に示すように、基板100上に、ゲート電極層101、半導体層103、バッファ層
106a、106b、バッファ層104a、104b、ソース電極層又はドレイン電極層
105a、105bを含む薄膜トランジスタ173が設けられている。
【0107】
本実施の形態の薄膜トランジスタ173は、半導体層103とバッファ層104a、10
4bとの間にそれぞれ第2のバッファ層としてバッファ層106a、106bが設けられ
ている。
【0108】
半導体層103は、In、Ga、及びZnを含む酸化物半導体層であり、バッファ層10
4a、104bは金属酸化物層であり、バッファ層106a、106bはIn、Ga、及
びZnを含む酸化物半導体層と金属酸化物層との混合層である。バッファ層106a、1
06bは、金属酸化物ターゲットとIn、Ga、及びZnを含む酸化物半導体ターゲット
の共スパッタリングにより形成することができる。金属酸化物層として、酸化チタン、酸
化モリブデン、酸化亜鉛、酸化インジウム、酸化タングステン、酸化マグネシウム、酸化
カルシウム、酸化錫、酸化ガリウム等を用いることができるが、特に酸化チタンが好適で
ある。また、バッファ層104a、104b、バッファ層106a、106bにはn型又
はp型の不純物元素を含ませてもよい。不純物元素として例えば、インジウム、ガリウム
、亜鉛、マグネシウム、アルミニウム、チタン、鉄、錫、カルシウム、スカンジウム、イ
ットリウム、ジルコニウム、ハフニウム、ホウ素、タリウム、ゲルマニウム、鉛などを挙
げることができる。異種金属により金属酸化物中のキャリア濃度を高めることができる。
【0109】
半導体層103とバッファ層104a、104bとの間に設けられる第2のバッファ層(
バッファ層106a、106b)は、キャリア濃度が半導体層103より高く、バッファ
層104a、104bより低い。バッファ層104a、104bがn層として機能する
のに対して、第2のバッファ層(バッファ層106a、106b)はn層として機能す
る。
【0110】
このように、半導体層とソース電極層又はドレイン電極層との間に設けられるバッファ層
は積層構造としてもよく、そのキャリア濃度は半導体層からソース電極層又はドレイン電
極層へ向かって高くなるように制御する。
【0111】
本発明の一態様に係る積層バッファ層を有する薄膜トランジスタは、オフ電流が少なく、
そのような薄膜トランジスタを含む半導体装置は高い電気特性及び高信頼性を付与するこ
とができる。また、半導体層103からソース電極層又はドレイン電極層に向かってキャ
リア密度が上昇するように勾配をつけることにより、半導体層103とソース電極層又は
ドレイン電極層との間の接触抵抗を低減することができる。また、第2のバッファ層を設
けることにより半導体層103との接合界面に集中する電界をより緩和することができる

【0112】
本実施の形態は他の実施の形態と適宜組み合わせて実施することができる。
【0113】
(実施の形態4)
本実施の形態は、実施の形態1において、薄膜トランジスタの形状及び作製方法が一部異
なる例である。従って、他は実施の形態1と同様に行うことができ、実施の形態1と同一
部分又は同様な機能を有する部分、及び工程の繰り返しの説明は省略する。
【0114】
本実施の形態では、表示装置に用いられる薄膜トランジスタ174及びその作製工程につ
いて、図9及び図10を用いて説明する。図9(A1)は薄膜トランジスタ174の平面
図、図9(A2)及び図10は図9(A1)における線D1−D2の薄膜トランジスタ及
びその作製工程を示す断面図に相当する。
【0115】
図9(A)(B)に示すように、基板100上に、ゲート電極層101、半導体層103
、バッファ層104a、104b、ソース電極層又はドレイン電極層105a、105b
を含む薄膜トランジスタ174が設けられている。
【0116】
半導体層103は、In、Ga、及びZnを含む酸化物半導体層であり、バッファ層10
4a、104bはn型の導電型を有する金属酸化物層である。ソース領域又はドレイン領
域(n層)として機能するバッファ層104a、104bは、半導体層103よりキャ
リア濃度が高い。
【0117】
半導体層103はバッファ層104aを介してソース電極層又はドレイン電極層105a
と、バッファ層104bを介してソース電極層又はドレイン電極層105bと電気的に接
続している。
【0118】
図10を用いて薄膜トランジスタ174の作製工程を説明する。基板100上にゲート電
極層101を形成する。次に、ゲート電極層101上に、ゲート絶縁層102、In、G
a、及びZnを含む酸化物半導体膜である半導体膜131、n型の導電型を有する金属酸
化物膜132、導電膜133を順に形成する(図10(A)参照。)。
【0119】
ゲート絶縁層102、In、Ga、及びZnを含む酸化物半導体膜である半導体膜131
、n型の導電型を有する金属酸化物膜132、導電膜133を大気に触れさせることなく
連続的に形成することができる。大気に触れさせることなく連続成膜することで、大気成
分や大気中に浮遊する汚染不純物元素に汚染されることなく各積層界面を形成することが
できるので、薄膜トランジスタ特性のばらつきを低減することができる。
【0120】
本実施の形態では、マスク135を形成するために高階調マスクを用いた露光を行う例を
示す。マスク135を形成するためレジストを形成する。レジストは、ポジ型レジストま
たはネガ型レジストを用いることができる。ここでは、ポジ型レジストを用いて示す。
【0121】
次に、フォトマスクとして多階調マスクを用いて、レジストに光を照射して、レジストを
露光する。
【0122】
多階調マスクとは、露光部分、中間露光部分、及び未露光部分に3つの露光レベルを行う
ことが可能なマスクであり、一度の露光及び現像工程により、複数(代表的には二種類)
の厚さの領域を有するレジストマスクを形成することが可能である。このため、多階調マ
スクを用いることで、フォトマスクの枚数を削減することが可能である。
【0123】
多階調マスクの代表例としては、グレートーンマスク、ハーフトーンマスクがある。
【0124】
グレートーンマスクは、透光性を有する基板及びその上に形成される遮光部並びに回折格
子で構成される。遮光部においては、光の透過率が0%である。一方、回折格子はスリッ
ト、ドット、メッシュ等の光透過部の間隔を、露光に用いる光の解像度限界以下の間隔と
することにより、光の透過率を制御することができる。なお、回折格子は、周期的なスリ
ット、ドット、メッシュ、または非周期的なスリット、ドット、メッシュどちらも用いる
ことができる。
【0125】
透光性を有する基板は、石英等の透光性を有する基板を用いることができる。遮光部及び
回折格子は、クロムや酸化クロム等の光を吸収する遮光材料を用いて形成することができ
る。
【0126】
グレートーンマスクに露光光を照射した場合、遮光部においては、光の透過率は0%であ
り、遮光部及び回折格子が設けられていない領域では光の透過率は100%である。また
、回折格子においては、10〜70%の範囲で調整可能である。回折格子における光の透
過率の調整は、回折格子のスリット、ドット、またはメッシュの間隔及びピッチの調整に
より可能である。
【0127】
ハーフトーンマスクは、透光性を有する基板及びその上に形成される半透過部並びに遮光
部で構成される。半透過部は、MoSiN、MoSi、MoSiO、MoSiON、Cr
Siなどを用いることができる。遮光部は、クロムや酸化クロム等の光を吸収する遮光材
料を用いて形成することができる。
【0128】
ハーフトーンマスクに露光光を照射した場合、遮光部においては、光の透過率は0%であ
り、遮光部及び半透過部が設けられていない領域では光の透過率は100%である。また
、半透過部においては、10〜70%の範囲で調整可能である。半透過部に於ける光の透
過率の調整は、半透過部の材料により調整により可能である。
【0129】
多階調マスクを用いて露光した後、現像することで、図10(B)に示すように、膜厚の
異なる領域を有するマスク135を形成することができる。
【0130】
次に、マスク135により、半導体膜131、金属酸化物膜132、導電膜133をエッ
チングし分離する。この結果、半導体層103、n型の導電型を有する金属酸化物膜13
7、及び導電膜138を形成することができる(図10(B)参照。)。
【0131】
次に、マスク135をアッシングする。この結果、マスクの面積が縮小し、厚さが薄くな
る。このとき、膜厚の薄い領域のマスクのレジスト(ゲート電極層101の一部と重畳す
る領域)は除去され、分離されたマスク139を形成することができる(図10(C)参
照。)。
【0132】
マスク139を用いて導電膜138をエッチングし、ソース電極層又はドレイン電極層1
05a、105bを形成する。本実施の形態のように導電膜138をウエットエッチング
すると、導電膜138は等方的にエッチングされるため、マスク139の端部と、ソース
電極層又はドレイン電極層105a、105bの端部は一致せずより後退し、ソース電極
層又はドレイン電極層105a、105bの外側にn型の導電型を有する金属酸化物膜1
37及び半導体層103が突出した形状となる。次に、マスク139を用いてn型の導電
型を有する金属酸化物膜137をエッチングして、バッファ層104a、104bを形成
する(図10(D)参照。)。なお、半導体層103に対する金属酸化物膜137のエッ
チング選択比が小さい場合には、金属酸化物膜137がエッチングされる際に半導体層1
03の露出する領域が一部エッチングされ、図示しない溝部を有する。
【0133】
この後、マスク139を除去する。
【0134】
以上の工程で、図9(A)(B)に示す薄膜トランジスタ174を作製することができる

【0135】
本実施の形態のように、多階調マスクにより形成した複数(代表的には二種類)の厚さの
領域を有するレジストマスクを用いると、レジストマスクの数を減らすことができるため
、工程簡略化、低コスト化が計れる。
【0136】
本実施の形態は他の実施の形態と適宜組み合わせて実施することができる。
【0137】
(実施の形態5)
ここでは、少なくともゲート絶縁膜と酸化物半導体層の積層を大気に触れることなく、連
続成膜を行う逆スタガ型の薄膜トランジスタの作製例を以下に示す。ここでは、連続成膜
を行う工程までの工程を示し、その後の工程は、実施の形態1乃至4のいずれか一に従っ
て薄膜トランジスタを作製すればよい。
【0138】
本明細書中で連続成膜とは、スパッタ法で行う第1の成膜工程からスパッタ法で行う第2
の成膜工程までの一連のプロセス中、被処理基板の置かれている雰囲気が大気等の汚染雰
囲気に触れることなく、常に真空中または不活性ガス雰囲気(窒素雰囲気または希ガス雰
囲気)で制御されていることを言う。連続成膜を行うことにより、清浄化された被処理基
板の水分等の再付着を回避して成膜を行うことができる。
【0139】
同一チャンバー内で第1の成膜工程から第2の成膜工程までの一連のプロセスを行うこと
は本明細書における連続成膜の範囲にあるとする。
【0140】
また、異なるチャンバーで第1の成膜工程から第2の成膜工程までの一連のプロセスを行
う場合、第1の成膜工程を終えた後、大気にふれることなくチャンバー間を基板搬送して
第2の成膜を施すことも本明細書における連続成膜の範囲にあるとする。
【0141】
なお、第1の成膜工程と第2の成膜工程の間に、基板搬送工程、アライメント工程、徐冷
工程、または第2の工程に必要な温度とするため基板を加熱または冷却する工程等を有し
ても、本明細書における連続成膜の範囲にあるとする。
【0142】
ただし、洗浄工程、ウエットエッチング、レジスト形成といった液体を用いる工程が第1
の成膜工程と第2の成膜工程の間にある場合、本明細書でいう連続成膜の範囲には当ては
まらないとする。
【0143】
大気に触れることなく連続成膜を行う場合、図12に示すようなマルチチャンバー型の製
造装置を用いることが好ましい。
【0144】
製造装置の中央部には、基板を搬送する搬送機構(代表的には搬送ロボット81)を備え
た搬送室80が設けられ、搬送室80には、搬送室80内へ搬入および搬出する基板を複
数枚収納するカセットケースをセットするカセット室82が連結されている。
【0145】
また、搬送室80には、それぞれゲートバルブ84〜88を介して複数の処理室が連結さ
れる。ここでは、上面形状が六角形の搬送室80に5つの処理室を連結する例を示す。な
お、搬送室の上面形状を変更することで、連結できる処理室の数を変えることができ、例
えば、四角形とすれば3つの処理室が連結でき、八角形とすれば7つの処理室が連結でき
る。
【0146】
5つの処理室のうち、少なくとも1つの処理室はスパッタリングを行うスパッタチャンバ
ーとする。スパッタチャンバーは、少なくともチャンバー内部に、スパッタターゲット、
ターゲットをスパッタするための電力印加機構やガス導入手段、所定位置に基板を保持す
る基板ホルダー等が設けられている。また、スパッタチャンバー内を減圧状態とするため
、チャンバー内の圧力を制御する圧力制御手段がスパッタチャンバーに設けられている。
【0147】
スパッタ法にはスパッタ用電源に高周波電源を用いるRFスパッタ法と、DCスパッタ法
があり、さらにパルス的にバイアスを与えるパルスDCスパッタ法もある。RFスパッタ
法は主に絶縁膜を成膜する場合に用いられ、DCスパッタ法は主に金属膜を成膜する場合
に用いられる。
【0148】
また、材料の異なるターゲットを複数設置できる多元スパッタ装置もある。多元スパッタ
装置は、同一チャンバーで異なる材料膜を積層成膜することも、同一チャンバーで複数種
類の材料を同時に放電させて成膜することもできる。
【0149】
また、チャンバー内部に磁石機構を備えたマグネトロンスパッタ法を用いるスパッタ装置
や、グロー放電を使わずマイクロ波を用いて発生させたプラズマを用いるECRスパッタ
法を用いるスパッタ装置がある。
【0150】
スパッタチャンバーとしては、上述した様々なスパッタ法を適宜用いる。
【0151】
また、成膜方法として、成膜中にターゲット物質とスパッタガス成分とを化学反応させて
それらの化合物薄膜を形成するリアクティブスパッタ法や、成膜中に基板にも電圧をかけ
るバイアススパッタ法もある。
【0152】
また、5つの処理室のうち、他の処理室の一つはスパッタリングの前に基板の予備加熱な
どを行う加熱チャンバー、スパッタリング後に基板を冷却する冷却チャンバー、或いはプ
ラズマ処理を行うチャンバーとする。
【0153】
次に製造装置の動作の一例について説明する。
【0154】
被成膜面を下向きとした基板94を収納した基板カセットをカセット室82にセットして
、カセット室82に設けられた真空排気手段によりカセット室を減圧状態とする。なお、
予め、各処理室および搬送室80内部をそれぞれに設けられた真空排気手段により減圧し
ておく。こうしておくことで、各処理室間を基板が搬送されている間、大気に触れること
なく清浄な状態を維持することができる。
【0155】
なお、被成膜面を下向きとした基板94は、少なくともゲート電極が予め設けられている
。例えば、基板とゲート電極の間にプラズマCVD法で得られる窒化シリコン膜、窒化酸
化シリコン膜などの下地絶縁膜を設けてもよい。基板94としてアルカリ金属を含むガラ
ス基板を用いる場合、下地絶縁膜は、基板からナトリウム等の可動イオンがその上の半導
体領域中に侵入して、TFTの電気特性が変化することを抑制する作用を有する。
【0156】
ここでは、ゲート電極を覆う窒化シリコン膜をプラズマCVD法で形成し、1層目のゲー
ト絶縁膜を形成した基板を用いる。プラズマCVD法で成膜された窒化シリコン膜は緻密
であり、1層目のゲート絶縁膜とすることでピンホールなどの発生を抑えることができる
。なお、ここではゲート絶縁膜を積層とする例を示すが特に限定されず、単層または3層
以上の積層を用いてもよい。
【0157】
次いで、ゲートバルブ83を開いて搬送ロボット81により1枚目の基板94をカセット
から抜き取り、ゲートバルブ84を開いて第1の処理室89内に搬送し、ゲートバルブ8
4を閉める。第1の処理室89では、加熱ヒータやランプ加熱で基板を加熱して基板94
に付着している水分などを除去する。特に、ゲート絶縁膜に水分が含まれるとTFTの電
気特性が変化する恐れがあるため、スパッタ成膜前の加熱は有効である。なお、カセット
室82に基板をセットした段階で十分に水分が除去されている場合には、この加熱処理は
不要である。
【0158】
また、第1の処理室89にプラズマ処理手段を設け、1層目のゲート絶縁膜の表面にプラ
ズマ処理を行ってもよい。また、カセット室82に加熱手段を設けてカセット室82で水
分を除去する加熱を行ってもよい。
【0159】
次いで、ゲートバルブ84を開いて搬送ロボット81により基板を搬送室80に搬送し、
ゲートバルブ85を開いて第2の処理室90内に搬送し、ゲートバルブ85を閉める。
【0160】
ここでは、第2の処理室90は、RFマグネトロンスパッタ法を用いたスパッタチャンバ
ーとする。第2の処理室90では、2層目のゲート絶縁膜として酸化シリコン膜(SiO
x膜)の成膜を行う。2層目のゲート絶縁膜として、酸化シリコン膜の他に、酸化アルミ
ニウム膜(Al膜)、酸化マグネシウム膜(MgOx膜)、窒化アルミニウム膜(
AlNx膜)、酸化イットリウム膜(YOx膜)などを用いることができる。
【0161】
また、2層目のゲート絶縁膜にハロゲン元素、例えばフッ素、塩素などを膜中に少量添加
し、ナトリウム等の可動イオンの固定化をさせてもよい。その方法としては、チャンバー
内にハロゲン元素を含むガスを導入してスパッタリングを行う。ただし、ハロゲン元素を
含むガスを導入する場合にはチャンバーの排気手段に除害設備を設ける必要がある。ゲー
ト絶縁膜に含ませるハロゲン元素の濃度は、SIMS(二次イオン質量分析計)を用いた
分析により得られる濃度ピークが1×1015cm−3以上1×1020cm−3以下の
範囲内とすることが好ましい。
【0162】
SiOx膜を得る場合、ターゲットとして人工石英を用い、希ガス、代表的にはアルゴン
を用いるスパッタ方法や、ターゲットとして単結晶シリコンを用い、酸素ガスと化学反応
させてSiOx膜を得るリアクティブスパッタ法を用いることができる。ここでは酸素を
限りなく多くSiOx膜中に含ませるために、ターゲットとして人工石英を用い、酸素の
みの雰囲気下、または酸素が90%以上、且つ、Arが10%以下の雰囲気下でスパッタ
リングを行い、酸素過剰のSiOx膜を形成する。
【0163】
SiOx膜の成膜後、大気に触れることなく、ゲートバルブ85を開いて搬送ロボット8
1により基板を搬送室80に搬送し、ゲートバルブ86を開いて第3の処理室91内に搬
送し、ゲートバルブ86を閉める。
【0164】
ここでは、第3の処理室91は、DCマグネトロンスパッタ法を用いたスパッタチャンバ
ーとする。第3の処理室91では、半導体層としてIn、Ga、及びZnを含む酸化物半
導体膜(IGZO膜)の成膜を行う。In、Ga、及びZnを含む酸化物半導体ターゲッ
トを用いて、希ガス雰囲気下、または酸素雰囲気下で成膜することができる。ここでは酸
素を限りなく多くIGZO膜中に含ませるために、ターゲットとしてIn、Ga、及びZ
nを含む酸化物半導体を用い、酸素のみの雰囲気下、または酸素が90%以上、且つ、A
rが10%以下の雰囲気下でパルスDCスパッタ法のスパッタリングを行い、酸素過剰の
IGZO膜を形成する。
【0165】
このように、大気に触れることなく、酸素過剰のSiOx膜と酸素過剰のIGZO膜とを
連続成膜することにより、酸素過剰の膜同士のため界面状態を安定させ、TFTの信頼性
を向上させることができる。IGZO膜の成膜前に基板が大気に触れた場合、水分などが
付着し、界面状態に悪影響を与え、しきい値のバラツキや、電気特性の劣化、ノーマリー
オンのTFTになってしまう症状などを引き起こす恐れがある。水分は水素化合物であり
、大気に触れることなく、連続成膜することによって、水素化合物が界面に存在すること
を排除することができる。従って、連続成膜することにより、しきい値のバラツキの低減
や、電気特性の劣化の防止や、TFTがノーマリーオン側にシフトすることを低減、望ま
しくはシフトをなくすことができる。
【0166】
また、第2の処理室90のスパッタチャンバーに人工石英のターゲットと、In、Ga、
及びZnを含む酸化物半導体ターゲットとの両方を設置し、シャッターを用いて順次積層
して連続成膜することによって同一チャンバー内で積層を行うこともできる。シャッター
は、ターゲットと基板の間に設け、成膜を行うターゲットはシャッターを開け、成膜を行
わないターゲットはシャッターにより閉じる。同一チャンバー内で積層する利点としては
、使用するチャンバーの数を減らせる点と、異なるチャンバー間を基板搬送する間にパー
ティクル等が基板に付着することを防止できる点である。
【0167】
次いで、大気に触れることなく、ゲートバルブ86を開いて搬送ロボット81により基板
を搬送室80に搬送する。
【0168】
グレートーンマスクを用いる工程でなければ、この段階で製造装置からカセット室を介し
て基板を搬出し、フォトリソグラフィ技術を用いて酸素過剰のIGZO膜のパターニング
を行うが、グレートーンマスクを用いる工程であれば引き続き、以下に示す連続成膜を行
う。
【0169】
次いで、大気に触れることなく、ゲートバルブ87を開いて第4の処理室92内に搬送し
、ゲートバルブ87を閉める。
【0170】
ここでは、第4の処理室92は、DCマグネトロンスパッタ法を用いたスパッタチャンバ
ーとする。第4の処理室92では、バッファ層の成膜を行う。ここでは、バッファ層に用
いるn型の導電型を示す金属酸化物膜として酸化チタン膜(TiOx膜)を成膜する例を
示す。第4の処理室92のスパッタチャンバーに酸素ガスを導入してチタンのターゲット
を用いてリアクティブスパッタリングを行い、TiOx膜を形成する。チタンのターゲッ
トにIn、Ga、またはZnを添加したターゲットを用いてもよい。また、チタンのター
ゲットにMgやAlを添加したターゲットを用いてもよい。このTiOx膜はソース領域
またはドレイン領域として機能する。
【0171】
なお、In、Ga、及びZnを含む酸化物半導体膜とバッファ層との間に、半導体層より
もキャリア濃度が高く、かつ、バッファ層よりもキャリア濃度の低い第2のバッファ層(
層)を連続成膜により形成してもよい。第2のバッファ層として、In、Ga、及び
Znを含む酸化物半導体層とバッファ層の混合層を用いる場合、同一処理室内にIn、G
a、及びZnを含む酸化物半導体ターゲットと、チタンのターゲットの両方を設置し、シ
ャッターを用いて順次積層して連続成膜する。まずチタンターゲットのシャッターを閉め
、In、Ga、及びZnを含む酸化物半導体膜を成膜する。次いで、チタンターゲットの
シャッターを開いてIn、Ga、及びZnを含む酸化物半導体膜とTiOxを同時に成膜
する。次いで、In、Ga、及びZnを含む酸化物半導体のターゲットのシャッターを閉
じ、TiOxを成膜することにより、半導体層上にn層、n層を順に形成することが
できる。
【0172】
次いで、大気に触れることなく、ゲートバルブ87を開いて搬送ロボット81により基板
を搬送室80に搬送し、ゲートバルブ88を開いて第5の処理室93内に搬送し、ゲート
バルブ88を閉める。
【0173】
ここでは、第5の処理室93は、DCマグネトロンスパッタ法を用いたスパッタチャンバ
ーとする。第5の処理室93では、ソース電極またはドレイン電極となる金属多層膜の成
膜を行う。第5の処理室93のスパッタチャンバーにチタンのターゲットと、アルミニウ
ムのターゲットとの両方を設置し、シャッターを用いて順次積層して連続成膜することに
よって同一チャンバー内で積層を行う。ここでは、チタン膜上にアルミニウム膜を積層し
、さらにアルミニウム膜上にチタン膜を積層する。
【0174】
このように、グレートーンマスクを用いる場合、大気に触れることなく、酸素過剰のSi
Ox膜と酸素過剰のIGZO膜と金属酸化物膜と金属多層膜とを連続成膜することができ
る。特に、酸素過剰のIGZO膜の界面状態がより安定し、TFTの信頼性を向上させる
ことができる。IGZO膜の成膜前後に基板が大気に触れた場合、水分などが付着し、界
面状態に悪影響を与え、しきい値のバラツキや、電気特性の劣化、ノーマリーオンのTF
Tになってしまう症状などを引き起こす恐れがある。水分は水素化合物であり、大気に触
れることなく、連続成膜することによって、水素化合物がIGZO膜の界面に存在するこ
とを排除することができる。従って、4層を連続成膜することにより、しきい値のバラツ
キの低減や、電気特性の劣化の防止や、TFTがノーマリーオン側にシフトすることを低
減、望ましくはシフトをなくすことができる。
【0175】
また、大気に触れることなく、金属酸化物膜と金属多層膜とを連続成膜することにより、
金属酸化物膜と金属多層膜との間で良好な界面状態を実現でき、接触抵抗を低減できる。
【0176】
また、第4の処理室92を用いずに、第5の処理室93でTiOx膜と金属多層膜の成膜
とを連続成膜することもできる。この場合、シャッターを用いて順次積層して連続成膜す
ることによって同一チャンバー内で積層を行う。ここでは、シャッターでアルミニウムの
ターゲットを遮蔽し、酸素ガスを導入してリアクティブスパッタリングを行い、酸化チタ
ン膜(TiOx膜)を形成する。次いで、第5の処理室93から酸素ガスを排出し、アル
ゴンガスを導入して、スパッタリングを行い、チタン膜を成膜する。次いで、チタンのタ
ーゲットをシャッターで遮蔽し、チタン膜上にアルミニウム膜を積層し、その後、シャッ
ターでアルミニウムのターゲットを遮蔽し、アルミニウム膜上にチタン膜を積層する。同
一チャンバー内で積層する利点としては、使用するチャンバーの数を減らせる点と、異な
るチャンバー間を基板搬送する間にパーティクル等が基板に付着することを防止できる点
である。
【0177】
以上の工程を繰り返してカセットケース内の基板に成膜処理を行って複数の基板の処理を
終えた後、カセット室の真空を大気に開放して、基板およびカセットを取り出す。
【0178】
また、第1の処理室89で、酸素過剰のIGZO膜の成膜後の加熱処理、具体的には30
0℃〜400℃の加熱処理、好ましくは350℃以上の加熱処理を行うことができる。こ
の加熱処理を行うことにより逆スタガ型の薄膜トランジスタの電気特性を向上させること
ができる。この加熱処理は、酸素過剰のIGZO膜の成膜後であれば特に限定されず、例
えば、酸素過剰のIGZO膜の成膜直後や、金属多層膜成膜直後に行うことができる。
【0179】
次いで、グレートーンマスクを用いて各積層膜をパターニングする。ドライエッチングや
ウェットエッチングを用いて形成してもよいし、複数回のエッチングに分けてそれぞれ選
択的にエッチングしてもよい。
【0180】
以降の工程は、上述した実施の形態4に従えば、逆スタガ型の薄膜トランジスタが作製で
きる。
【0181】
ここではマルチチャンバー方式の製造装置を例に説明を行ったが、スパッタチャンバーを
直列に連結するインライン方式の製造装置を用いて大気に触れることなく連続成膜を行っ
てもよい。
【0182】
また、図12に示す装置は被成膜面を下向きに基板をセットする、所謂フェイスダウン方
式の処理室としたが、基板を垂直に立て、縦置き方式の処理室としてもよい。縦置き方式
の処理室は、フェイスダウン方式の処理室よりもフットプリントが小さいメリットがあり
、さらに基板の自重により撓む恐れのある大面積の基板を用いる場合に有効である。
【0183】
(実施の形態6)
本実施の形態では、同一基板上に少なくとも駆動回路の一部と、画素部に配置する薄膜
トランジスタを作製する例について以下に説明する。
【0184】
画素部に配置する薄膜トランジスタは、実施の形態1乃至4に従って形成する。また、実
施の形態1乃至4に示す薄膜トランジスタはnチャネル型TFTであるため、駆動回路の
うち、nチャネル型TFTで構成することができる駆動回路の一部を画素部の薄膜トラン
ジスタと同一基板上に形成する。
【0185】
アクティブマトリクス型液晶表示装置のブロック図の一例を図13(A)に示す。図13
(A)に示す表示装置は、基板5300上に表示素子を備えた画素を複数有する画素部5
301と、各画素を選択する走査線駆動回路5302と、選択された画素へのビデオ信号
の入力を制御する信号線駆動回路5303とを有する。画素部5301は、信号線駆動回
路5303から列方向に伸張して配置された複数の信号線S1〜Sm(図示せず。)によ
り信号線駆動回路5303と接続され、走査線駆動回路5302から行方向に伸張して配
置された複数の走査線G1〜Gn(図示せず。)により走査線駆動回路5302と接続さ
れ、信号線S1〜Sm並びに走査線G1〜Gnに対応してマトリクス状に配置された複数
の画素(図示せず。)を有する。そして、各画素は、信号線Sj(信号線S1〜Smのう
ちいずれか一)、走査線Gi(走査線G1〜Gnのうちいずれか一)と接続される。
【0186】
また、実施の形態1乃至4に示す薄膜トランジスタは、nチャネル型TFTであり、nチ
ャネル型TFTで構成する信号線駆動回路について図14を用いて説明する。
【0187】
図14に示す信号線駆動回路は、ドライバIC5601、スイッチ群5602_1〜56
02_M、第1の配線5611、第2の配線5612、第3の配線5613及び配線56
21_1〜5621_Mを有する。スイッチ群5602_1〜5602_Mそれぞれは、
第1の薄膜トランジスタ5603a、第2の薄膜トランジスタ5603b及び第3の薄膜
トランジスタ5603cを有する。
【0188】
ドライバIC5601は第1の配線5611、第2の配線5612、第3の配線5613
及び配線5621_1〜5621_Mに接続される。そして、スイッチ群5602_1〜
5602_Mそれぞれは、第1の配線5611、第2の配線5612、第3の配線561
3及びスイッチ群5602_1〜5602_Mそれぞれに対応した配線5621_1〜5
621_Mに接続される。そして、配線5621_1〜5621_Mそれぞれは、第1の
薄膜トランジスタ5603a、第2の薄膜トランジスタ5603b及び第3の薄膜トラン
ジスタ5603cを介して、3つの信号線に接続される。例えば、J列目の配線5621
_J(配線5621_1〜配線5621_Mのうちいずれか一)は、スイッチ群5602
_Jが有する第1の薄膜トランジスタ5603a、第2の薄膜トランジスタ5603b及
び第3の薄膜トランジスタ5603cを介して、信号線Sj−1、信号線Sj、信号線S
j+1に接続される。
【0189】
なお、第1の配線5611、第2の配線5612、第3の配線5613には、それぞれ信
号が入力される。
【0190】
なお、ドライバIC5601は、単結晶基板上に形成されていることが望ましい。さらに
、スイッチ群5602_1〜5602_Mは、実施の形態1乃至4に示した画素部と同一
基板上に形成されていることが望ましい。したがって、ドライバIC5601とスイッチ
群5602_1〜5602_MとはFPCなどを介して接続するとよい。
【0191】
次に、図14に示した信号線駆動回路の動作について、図15のタイミングチャートを参
照して説明する。なお、図15のタイミングチャートは、i行目の走査線Giが選択され
ている場合のタイミングチャートを示している。さらに、i行目の走査線Giの選択期間
は、第1のサブ選択期間T1、第2のサブ選択期間T2及び第3のサブ選択期間T3に分
割されている。さらに、図14の信号線駆動回路は、他の行の走査線が選択されている場
合でも図15と同様の動作をする。
【0192】
なお、図15のタイミングチャートは、J列目の配線5621_Jが第1の薄膜トランジ
スタ5603a、第2の薄膜トランジスタ5603b及び第3の薄膜トランジスタ560
3cを介して、信号線Sj−1、信号線Sj、信号線Sj+1に接続される場合について
示している。
【0193】
なお、図15のタイミングチャートは、i行目の走査線Giが選択されるタイミング、第
1の薄膜トランジスタ5603aのオン・オフのタイミング5703a、第2の薄膜トラ
ンジスタ5603bのオン・オフのタイミング5703b、第3の薄膜トランジスタ56
03cのオン・オフのタイミング5703c及びJ列目の配線5621_Jに入力される
信号5721_Jを示している。
【0194】
なお、配線5621_1〜配線5621_Mには第1のサブ選択期間T1、第2のサブ選
択期間T2及び第3のサブ選択期間T3において、それぞれ別のビデオ信号が入力される
。例えば、第1のサブ選択期間T1において配線5621_Jに入力されるビデオ信号は
信号線Sj−1に入力され、第2のサブ選択期間T2において配線5621_Jに入力さ
れるビデオ信号は信号線Sjに入力され、第3のサブ選択期間T3において配線5621
_Jに入力されるビデオ信号は信号線Sj+1に入力される。さらに、第1のサブ選択期
間T1、第2のサブ選択期間T2及び第3のサブ選択期間T3において、配線5621_
Jに入力されるビデオ信号をそれぞれData_j−1、Data_j、Data_j+
1とする。
【0195】
図15に示すように、第1のサブ選択期間T1において第1の薄膜トランジスタ5603
aがオンし、第2の薄膜トランジスタ5603b及び第3の薄膜トランジスタ5603c
がオフする。このとき、配線5621_Jに入力されるData_j−1が、第1の薄膜
トランジスタ5603aを介して信号線Sj−1に入力される。第2のサブ選択期間T2
では、第2の薄膜トランジスタ5603bがオンし、第1の薄膜トランジスタ5603a
及び第3の薄膜トランジスタ5603cがオフする。このとき、配線5621_Jに入力
されるData_jが、第2の薄膜トランジスタ5603bを介して信号線Sjに入力さ
れる。第3のサブ選択期間T3では、第3の薄膜トランジスタ5603cがオンし、第1
の薄膜トランジスタ5603a及び第2の薄膜トランジスタ5603bがオフする。この
とき、配線5621_Jに入力されるData_j+1が、第3の薄膜トランジスタ56
03cを介して信号線Sj+1に入力される。
【0196】
以上のことから、図14の信号線駆動回路は、1ゲート選択期間を3つに分割することで
、1ゲート選択期間中に1つの配線5621から3つの信号線にビデオ信号を入力するこ
とができる。したがって、図14の信号線駆動回路は、ドライバIC5601が形成され
る基板と、画素部が形成されている基板との接続数を信号線の数に比べて約1/3にする
ことができる。接続数が約1/3になることによって、図14の信号線駆動回路は、信頼
性、歩留まりなどを向上できる。
【0197】
なお、図14のように、1ゲート選択期間を複数のサブ選択期間に分割し、複数のサブ選
択期間それぞれにおいて、ある1つの配線から複数の信号線それぞれにビデオ信号を入力
することができれば、薄膜トランジスタの配置や数、駆動方法などは限定されない。
【0198】
例えば、3つ以上のサブ選択期間それぞれにおいて1つの配線から3つ以上の信号線それ
ぞれにビデオ信号を入力する場合は、薄膜トランジスタ及び薄膜トランジスタを制御する
ための配線を追加すればよい。ただし、1ゲート選択期間を4つ以上のサブ選択期間に分
割すると、1つのサブ選択期間が短くなる。したがって、1ゲート選択期間は、2つ又は
3つのサブ選択期間に分割されることが望ましい。
【0199】
別の例として、図16のタイミングチャートに示すように、1つの選択期間をプリチャー
ジ期間Tp、第1のサブ選択期間T1、第2のサブ選択期間T2、第3のサブ選択期間T
3に分割してもよい。さらに、図16のタイミングチャートは、i行目の走査線Giが選
択されるタイミング、第1の薄膜トランジスタ5603aのオン・オフのタイミング58
03a、第2の薄膜トランジスタ5603bのオン・オフのタイミング5803b、第3
の薄膜トランジスタ5603cのオン・オフのタイミング5803c及びJ列目の配線5
621_Jに入力される信号5821_Jを示している。図16に示すように、プリチャ
ージ期間Tpにおいて第1の薄膜トランジスタ5603a、第2の薄膜トランジスタ56
03b及び第3の薄膜トランジスタ5603cがオンする。このとき、配線5621_J
に入力されるプリチャージ電圧Vpが第1の薄膜トランジスタ5603a、第2の薄膜ト
ランジスタ5603b及び第3の薄膜トランジスタ5603cを介してそれぞれ信号線S
j−1、信号線Sj、信号線Sj+1に入力される。第1のサブ選択期間T1において第
1の薄膜トランジスタ5603aがオンし、第2の薄膜トランジスタ5603b及び第3
の薄膜トランジスタ5603cがオフする。このとき、配線5621_Jに入力されるD
ata_j−1が、第1の薄膜トランジスタ5603aを介して信号線Sj−1に入力さ
れる。第2のサブ選択期間T2では、第2の薄膜トランジスタ5603bがオンし、第1
の薄膜トランジスタ5603a及び第3の薄膜トランジスタ5603cがオフする。この
とき、配線5621_Jに入力されるData_jが、第2の薄膜トランジスタ5603
bを介して信号線Sjに入力される。第3のサブ選択期間T3では、第3の薄膜トランジ
スタ5603cがオンし、第1の薄膜トランジスタ5603a及び第2の薄膜トランジス
タ5603bがオフする。このとき、配線5621_Jに入力されるData_j+1が
、第3の薄膜トランジスタ5603cを介して信号線Sj+1に入力される。
【0200】
以上のことから、図16のタイミングチャートを適用した図14の信号線駆動回路は、サ
ブ選択期間の前にプリチャージ選択期間を設けることによって、信号線をプリチャージで
きるため、画素へのビデオ信号の書き込みを高速に行うことができる。なお、図16にお
いて、図15と同様なものに関しては共通の符号を用いて示し、同一部分又は同様な機能
を有する部分の詳細な説明は省略する。
【0201】
また、走査線駆動回路の構成について説明する。走査線駆動回路は、シフトレジスタ、バ
ッファを有している。また場合によってはレベルシフタを有していても良い。走査線駆動
回路において、シフトレジスタにクロック信号(CLK)及びスタートパルス信号(SP
)が入力されることによって、選択信号が生成される。生成された選択信号はバッファに
おいて緩衝増幅され、対応する走査線に供給される。走査線には、1ライン分の画素のト
ランジスタのゲート電極が接続されている。そして、1ライン分の画素のトランジスタを
一斉にONにしなくてはならないので、バッファは大きな電流を流すことが可能なものが
用いられる。
【0202】
走査線駆動回路の一部に用いるシフトレジスタの一形態について図17及び図18を用い
て説明する。
【0203】
図17にシフトレジスタの回路構成を示す。図17に示すシフトレジスタは、複数のフリ
ップフロップ(フリップフロップ5701_1〜5701_n)で構成される。また、第
1のクロック信号、第2のクロック信号、スタートパルス信号、リセット信号が入力され
て動作する。
【0204】
図17のシフトレジスタの接続関係について説明する。図17のシフトレジスタは、i段
目のフリップフロップ5701_i(フリップフロップ5701_1〜5701_nのい
ずれか一)は、図18に示した第1の配線5501が第7の配線5717_i−1に接続
され、図18に示した第2の配線5502が第7の配線5717_i+1に接続され、図
18に示した第3の配線5503が第7の配線5717_iに接続され、図18に示した
第6の配線5506が第5の配線5715に接続される。
【0205】
また、図18に示した第4の配線5504が奇数段目のフリップフロップでは第2の配線
5712に接続され、偶数段目のフリップフロップでは第3の配線5713に接続され、
図18に示した第5の配線5505が第4の配線5714に接続される。
【0206】
ただし、1段目のフリップフロップ5701_1の図18に示す第1の配線5501は第
1の配線5711に接続され、n段目のフリップフロップ5701_nの図18に示す第
2の配線5502は第6の配線5716に接続される。
【0207】
なお、第1の配線5711、第2の配線5712、第3の配線5713、第6の配線57
16を、それぞれ第1の信号線、第2の信号線、第3の信号線、第4の信号線と呼んでも
よい。さらに、第4の配線5714、第5の配線5715を、それぞれ第1の電源線、第
2の電源線と呼んでもよい。
【0208】
次に、図17に示すフリップフロップの詳細について、図18に示す。図18に示すフリ
ップフロップは、第1の薄膜トランジスタ5571、第2の薄膜トランジスタ5572、
第3の薄膜トランジスタ5573、第4の薄膜トランジスタ5574、第5の薄膜トラン
ジスタ5575、第6の薄膜トランジスタ5576、第7の薄膜トランジスタ5577及
び第8の薄膜トランジスタ5578を有する。なお、第1の薄膜トランジスタ5571、
第2の薄膜トランジスタ5572、第3の薄膜トランジスタ5573、第4の薄膜トラン
ジスタ5574、第5の薄膜トランジスタ5575、第6の薄膜トランジスタ5576、
第7の薄膜トランジスタ5577及び第8の薄膜トランジスタ5578は、nチャネル型
トランジスタであり、ゲート・ソース間電圧(Vgs)がしきい値電圧(Vth)を上回
ったとき導通状態になるものとする。
【0209】
次に、図17に示すフリップフロップの接続構成について、以下に示す。
【0210】
第1の薄膜トランジスタ5571の第1の電極(ソース電極またはドレイン電極の一方)
が第4の配線5504に接続され、第1の薄膜トランジスタ5571の第2の電極(ソー
ス電極またはドレイン電極の他方)が第3の配線5503に接続される。
【0211】
第2の薄膜トランジスタ5572の第1の電極が第6の配線5506に接続され、第2の
薄膜トランジスタ5572の第2の電極が第3の配線5503に接続される。
【0212】
第3の薄膜トランジスタ5573の第1の電極が第5の配線5505に接続され、第3の
薄膜トランジスタ5573の第2の電極が第2の薄膜トランジスタ5572のゲート電極
に接続され、第3の薄膜トランジスタ5573のゲート電極が第5の配線5505に接続
される。
【0213】
第4の薄膜トランジスタ5574の第1の電極が第6の配線5506に接続され、第4の
薄膜トランジスタ5574の第2の電極が第2の薄膜トランジスタ5572のゲート電極
に接続され、第4の薄膜トランジスタ5574のゲート電極が第1の薄膜トランジスタ5
571のゲート電極に接続される。
【0214】
第5の薄膜トランジスタ5575の第1の電極が第5の配線5505に接続され、第5の
薄膜トランジスタ5575の第2の電極が第1の薄膜トランジスタ5571のゲート電極
に接続され、第5の薄膜トランジスタ5575のゲート電極が第1の配線5501に接続
される。
【0215】
第6の薄膜トランジスタ5576の第1の電極が第6の配線5506に接続され、第6の
薄膜トランジスタ5576の第2の電極が第1の薄膜トランジスタ5571のゲート電極
に接続され、第6の薄膜トランジスタ5576のゲート電極が第2の薄膜トランジスタ5
572のゲート電極に接続される。
【0216】
第7の薄膜トランジスタ5577の第1の電極が第6の配線5506に接続され、第7の
薄膜トランジスタ5577の第2の電極が第1の薄膜トランジスタ5571のゲート電極
に接続され、第7の薄膜トランジスタ5577のゲート電極が第2の配線5502に接続
される。第8の薄膜トランジスタ5578の第1の電極が第6の配線5506に接続され
、第8の薄膜トランジスタ5578の第2の電極が第2の薄膜トランジスタ5572のゲ
ート電極に接続され、第8の薄膜トランジスタ5578のゲート電極が第1の配線550
1に接続される。
【0217】
なお、第1の薄膜トランジスタ5571のゲート電極、第4の薄膜トランジスタ5574
のゲート電極、第5の薄膜トランジスタ5575の第2の電極、第6の薄膜トランジスタ
5576の第2の電極及び第7の薄膜トランジスタ5577の第2の電極の接続箇所をノ
ード5543とする。さらに、第2の薄膜トランジスタ5572のゲート電極、第3の薄
膜トランジスタ5573の第2の電極、第4の薄膜トランジスタ5574の第2の電極、
第6の薄膜トランジスタ5576のゲート電極及び第8の薄膜トランジスタ5578の第
2の電極の接続箇所をノード5544とする。
【0218】
なお、第1の配線5501、第2の配線5502、第3の配線5503及び第4の配線5
504を、それぞれ第1の信号線、第2の信号線、第3の信号線、第4の信号線と呼んで
もよい。さらに、第5の配線5505を第1の電源線、第6の配線5506を第2の電源
線と呼んでもよい。
【0219】
また、信号線駆動回路及び走査線駆動回路を実施の形態1乃至4に示すnチャネル型TF
Tのみで作製することも可能である。実施の形態1乃至4に示すnチャネル型TFTはト
ランジスタの移動度が大きいため、駆動回路の駆動周波数を高くすることが可能となる。
また、実施の形態1乃至4に示すnチャネル型TFTは金属酸化物層でなるバッファ層に
より寄生容量が低減されるため、周波数特性(f特性と呼ばれる)が高い。例えば、実施
の形態1乃至4に示すnチャネル型TFTを用いた走査線駆動回路は、高速に動作させる
ことが出来るため、フレーム周波数を高くすること、または、黒画面挿入なども実現する
ことが出来る。
【0220】
さらに、走査線駆動回路のトランジスタのチャネル幅を大きくすることや、複数の走査線
駆動回路を配置することなどによって、さらに高いフレーム周波数を実現することが出来
る。複数の走査線駆動回路を配置する場合は、偶数行の走査線を駆動する為の走査線駆動
回路を片側に配置し、奇数行の走査線を駆動するための走査線駆動回路をその反対側に配
置することにより、フレーム周波数を高くすることを実現することが出来る。
【0221】
また、アクティブマトリクス型発光表示装置を作製する場合、少なくとも一つの画素に複
数の薄膜トランジスタを配置するため、走査線駆動回路を複数配置することが好ましい。
アクティブマトリクス型発光表示装置のブロック図の一例を図13(B)に示す。
【0222】
図13(B)に示す表示装置は、基板5400上に表示素子を備えた画素を複数有する画
素部5401と、各画素を選択する第1の走査線駆動回路5402及び第2の走査線駆動
回路5404と、選択された画素へのビデオ信号の入力を制御する信号線駆動回路540
3とを有する。
【0223】
図13(B)に示す表示装置の画素に入力されるビデオ信号をデジタル形式とする場合、
画素はトランジスタのオンとオフの切り替えによって、発光もしくは非発光の状態となる
。よって、面積階調法または時間階調法を用いて階調の表示を行うことができる。面積階
調法は、1画素を複数の副画素に分割し、各副画素を独立にビデオ信号に基づいて駆動さ
せることによって、階調表示を行う駆動法である。また時間階調法は、画素が発光する期
間を制御することによって、階調表示を行う駆動法である。
【0224】
発光素子は、液晶素子などに比べて応答速度が高いので、液晶素子よりも時間階調法に適
している。具体的に時間階調法で表示を行なう場合、1フレーム期間を複数のサブフレー
ム期間に分割する。そしてビデオ信号に従い、各サブフレーム期間において画素の発光素
子を発光または非発光の状態にする。複数のサブフレーム期間に分割することによって、
1フレーム期間中に画素が実際に発光する期間のトータルの長さを、ビデオ信号により制
御することができ、階調を表示することができる。
【0225】
なお、図13(B)に示す発光装置では、一つの画素にスイッチング用TFTと、電流制
御用TFTとの2つを配置する場合、スイッチング用TFTのゲート配線である第1の走
査線に入力される信号を第1走査線駆動回路5402で生成し、電流制御用TFTのゲー
ト配線である第2の走査線に入力される信号を第2の走査線駆動回路5404で生成して
いる例を示しているが、第1の走査線に入力される信号と、第2の走査線に入力される信
号とを、共に1つの走査線駆動回路で生成するようにしても良い。また、例えば、スイッ
チング素子が有する各トランジスタの数によって、スイッチング素子の動作を制御するの
に用いられる第1の走査線が、各画素に複数設けられることもあり得る。この場合、複数
の第1の走査線に入力される信号を、全て1つの走査線駆動回路で生成しても良いし、複
数の各走査線駆動回路で生成しても良い。
【0226】
また、発光装置においても、駆動回路のうち、nチャネル型TFTで構成することができ
る駆動回路の一部を画素部の薄膜トランジスタと同一基板上に形成することができる。ま
た、信号線駆動回路及び走査線駆動回路を実施の形態1乃至4に示すnチャネル型TFT
のみで作製することも可能である。
【0227】
また、上述した駆動回路は、液晶表示装置や発光装置に限らず、スイッチング素子と電気
的に接続する素子を利用して電子インクを駆動させる電子ペーパーに用いてもよい。電子
ペーパーは、電気泳動表示装置(電気泳動ディスプレイ)も呼ばれており、紙と同じ読み
やすさ、他の表示装置に比べ低消費電力、薄くて軽い形状とすることが可能という利点を
有している。
【0228】
電気泳動ディスプレイは、様々な形態が考えられ得るが、プラスの電荷を有する第1の
粒子と、マイナスの電荷を有する第2の粒子とを含むマイクロカプセルが溶媒または溶質
に複数分散されたものであり、マイクロカプセルに電界を印加することによって、マイク
ロカプセル中の粒子を互いに反対方向に移動させて一方側に集合した粒子の色のみを表示
するものである。なお、第1の粒子または第2の粒子は染料を含み、電界がない場合にお
いて移動しないものである。また、第1の粒子の色と第2の粒子の色は異なるもの(無色
を含む)とする。
【0229】
このように、電気泳動ディスプレイは、誘電定数の高い物質が高い電界領域に移動する
、いわゆる誘電泳動的効果を利用したディスプレイである。電気泳動ディスプレイは、液
晶表示装置には必要な偏光板、対向基板も必要なく、厚さや重さが半減する。
【0230】
上記マイクロカプセルを溶媒中に分散させたものが電子インクと呼ばれるものであり、
この電子インクはガラス、プラスチック、布、紙などの表面に印刷することができる。ま
た、カラーフィルタや色素を有する粒子を用いることによってカラー表示も可能である。
【0231】
また、アクティブマトリクス基板上に適宜、二つの電極の間に挟まれるように上記マイ
クロカプセルを複数配置すればアクティブマトリクス型の表示装置が完成し、マイクロカ
プセルに電界を印加すれば表示を行うことができる。
【0232】
なお、マイクロカプセル中の第1の粒子および第2の粒子は、導電体材料、絶縁体材料
、半導体材料、磁性材料、液晶材料、強誘電性材料、エレクトロルミネセント材料、エレ
クトロクロミック材料、磁気泳動材料から選ばれた一種の材料、またはこれらの複合材料
を用いればよい。
【0233】
(実施の形態7)
本発明の一態様に係る薄膜トランジスタを作製し、該薄膜トランジスタを画素部、さらに
は駆動回路に用いて表示機能を有する半導体装置(表示装置ともいう)を作製することが
できる。また、本発明の一態様に係る薄膜トランジスタを駆動回路の一部または全体を、
画素部と同じ基板上に一体形成し、システムオンパネルを形成することができる。
【0234】
表示装置は表示素子を含む。表示素子としては液晶素子(液晶表示素子ともいう)、発光
素子(発光表示素子ともいう)を用いることができる。発光素子は、電流または電圧によ
って輝度が制御される素子をその範疇に含んでおり、具体的には無機EL(Electr
o Luminescence)、有機EL等が含まれる。また、電子インクなど、電気
的作用によりコントラストが変化する表示媒体も適用することができる。
【0235】
また、表示装置は、表示素子が封止された状態にあるパネルと、該パネルにコントローラ
を含むIC等を実装した状態にあるモジュールとを含む。さらに本発明の一態様は、該表
示装置を作製する過程における、表示素子が完成する前の一形態に相当する素子基板に関
し、該素子基板は、電流を表示素子に供給するための手段を複数の各画素に備える。素子
基板は、具体的には、表示素子の画素電極のみが形成された状態であっても良いし、画素
電極となる導電膜を成膜した後であって、エッチングして画素電極を形成する前の状態で
あっても良いし、あらゆる形態があてはまる。
【0236】
なお、本明細書中における表示装置とは、画像表示デバイス、表示デバイス、もしくは光
源(照明装置含む)を指す。また、コネクター、例えばFPC(Flexible pr
inted circuit)もしくはTAB(Tape Automated Bon
ding)テープもしくはTCP(Tape Carrier Package)が取り
付けられたモジュール、TABテープやTCPの先にプリント配線板が設けられたモジュ
ール、または表示素子にCOG(Chip On Glass)方式によりIC(集積回
路)が直接実装されたモジュールも全て表示装置に含むものとする。
【0237】
本実施の形態では、本発明の一態様に係る半導体装置として液晶表示装置の例を示す。
【0238】
図19(A)(B)に、本発明の一態様を適用したアクティブマトリクス型の液晶表示装
置を示す。図19(A)は液晶表示装置の平面図であり、図19(B)は図19(A)に
おける線V−Xの断面図である。半導体装置に用いられる薄膜トランジスタ201として
は、実施の形態2で示す薄膜トランジスタと同様に作製でき、IGZO半導体層及びn型
の導電型を有する金属酸化物層を含む信頼性の高い薄膜トランジスタである。また、実施
の形態1、実施の形態3、又は実施の形態4で示す薄膜トランジスタも本実施の形態の薄
膜トランジスタ201として適用することもできる。
【0239】
図19(A)の本実施の形態の液晶表示装置は、ソース配線層202、マルチゲート構造
の逆スタガ型の薄膜トランジスタ201、ゲート配線層203、容量配線層204を含む

【0240】
また、図19(B)において、本実施の形態の液晶表示装置は、マルチゲート構造の薄膜
トランジスタ201、保護膜として機能する絶縁層211、保護膜として機能する絶縁層
212、平坦化膜として機能する絶縁層213、及び表示素子に用いる電極層255、配
向膜として機能する絶縁層261、偏光板268が設けられた基板200と、配向膜とし
て機能する絶縁層263、表示素子に用いる電極層265、カラーフィルタとして機能す
る着色層264、偏光板267が設けられた基板266とが液晶層262を挟持して対向
しており、液晶表示素子260を有している。
【0241】
ここでは、薄膜トランジスタ201の表面凹凸を低減するため、及び薄膜トランジスタ
201の信頼性を向上させるため、実施の形態2で得られた薄膜トランジスタを保護膜と
して機能する絶縁層211、212または平坦化膜として機能する絶縁層213で覆う。
なお、保護膜は、大気中に浮遊する有機物や金属物、水蒸気などの汚染不純物の侵入を防
ぐためのものであり、緻密な膜が好ましい。保護膜は、CVD法等を用いて、酸化珪素膜
、窒化珪素膜、酸化窒化珪素膜、または窒化酸化珪素膜の単層、又は積層で形成すればよ
い。また、保護膜として、プロセスガスに有機シランガスと酸素を用いて、プラズマCV
D法で酸化珪素膜を形成してもよい。
【0242】
有機シランとは、珪酸エチル(TEOS:化学式Si(OC)、テトラメチ
ルシラン(TMS:化学式Si(CH)、テトラメチルシクロテトラシロキサン(
TMCTS)、オクタメチルシクロテトラシロキサン(OMCTS)、ヘキサメチルジシ
ラザン(HMDS)、トリエトキシシラン(SiH(OC)、またはトリスジ
メチルアミノシラン(SiH(N(CH)などの化合物である。
【0243】
保護膜の一層目として絶縁層211を形成する。絶縁層211は、アルミニウム膜のヒロ
ック防止に効果がある。ここでは、絶縁層211として、プラズマCVD法を用いて酸化
珪素膜を形成する。酸化珪素膜の成膜用プロセスガスには、TEOS、およびOを用い
、その流量比は、TEOS\O=15(sccm)\750(sccm)である。成膜
工程の基板温度は300℃である。
【0244】
また、保護膜の二層目として絶縁層212を形成する。ここでは、絶縁層212として、
プラズマCVD法を用いて窒化珪素膜を形成する。窒化珪素膜の成膜用プロセスガスには
、SiH、N、NHおよびHを用いる。保護膜の一層として窒化珪素膜を用いる
と、ナトリウム等の可動イオンが半導体領域中に侵入して、TFTの電気特性を変化させ
ることを抑制することができる。
【0245】
また、保護膜を形成した後に、IGZO半導体層のアニール(300℃〜400℃)を行
ってもよい。
【0246】
また、平坦化膜として機能する絶縁膜として絶縁層213を形成する。絶縁層213とし
ては、ポリイミド、アクリル、ベンゾシクロブテン、ポリアミド、エポキシ等の、耐熱性
を有する有機材料を用いることができる。また上記有機材料の他に、低誘電率材料(lo
w−k材料)、シロキサン系樹脂、PSG(リンガラス)、BPSG(リンボロンガラス
)等を用いることができる。シロキサン系樹脂は、置換基に水素の他、フッ素、アルキル
基、またはアリール基のうち少なくとも1種を有していてもよい。なお、これらの材料で
形成される絶縁膜を複数積層させることで、絶縁層213を形成してもよい。
【0247】
なおシロキサン系樹脂とは、シロキサン系材料を出発材料として形成されたSi−O−
Si結合を含む樹脂に相当する。シロキサン系樹脂は、置換基に水素の他、フッ素、アル
キル基、または芳香族炭化水素のうち、少なくとも1種を有していてもよい。
【0248】
絶縁層213の形成には、その材料に応じて、CVD法、スパッタ法、SOG法、スピン
コート、ディップ、スプレー塗布、液滴吐出法(インクジェット法、スクリーン印刷、オ
フセット印刷等)、ドクターナイフ、ロールコーター、カーテンコーター、ナイフコータ
ー等を用いることができる。絶縁層213を材料液を用いて形成する場合、ベークする工
程で同時に、IGZO半導体層のアニール(300℃〜400℃)を行ってもよい。絶縁
層213の焼成工程とIGZO半導体層のアニールを兼ねることで効率よく表示装置を作
製することが可能となる。
【0249】
なお図19は透過型液晶表示装置の例であるが、本発明の一態様は反射型液晶表示装置で
も半透過型液晶表示装置でも適用できる。
【0250】
また、図19の液晶表示装置では、基板266の外側(視認側)に偏光板267を設け、
内側に着色層264、表示素子に用いる電極層265という順に設ける例を示すが、偏光
板267は基板266の内側に設けてもよい。また、偏光板と着色層の積層構造も図19
に限定されず、偏光板及び着色層の材料や作製工程条件によって適宜設定すればよい。ま
た、ブラックマトリクスとして機能する遮光膜を設けてもよい。
【0251】
画素電極層として機能する電極層255、265は、酸化タングステンを含むインジウム
酸化物、酸化タングステンを含むインジウム亜鉛酸化物、酸化チタンを含むインジウム酸
化物、酸化チタンを含むインジウム錫酸化物、インジウム錫酸化物(以下、ITOと示す
。)、インジウム亜鉛酸化物、酸化ケイ素を添加したインジウム錫酸化物などの透光性を
有する導電性材料を用いることができる。
【0252】
また、電極層255、265として、導電性高分子(導電性ポリマーともいう)を含む導
電性組成物を用いて形成することができる。導電性組成物を用いて形成した画素電極は、
シート抵抗が10000Ω/□以下、波長550nmにおける透光率が70%以上である
ことが好ましい。また、導電性組成物に含まれる導電性高分子の抵抗率が0.1Ω・cm
以下であることが好ましい。
【0253】
導電性高分子としては、いわゆるπ電子共役系導電性高分子が用いることができる。例え
ば、ポリアニリンまたはその誘導体、ポリピロールまたはその誘導体、ポリチオフェンま
たはその誘導体、若しくはこれらの2種以上の共重合体などがあげられる。
【0254】
液晶層262の液晶材料としては、リオトロピック液晶、サーモトロピック液晶、低分
子液晶、高分子液晶、ディスコチック液晶、強誘電液晶、反強誘電液晶等を用いる。また
、上記液晶材料は、条件により、ネマチック相、コレステリック相、コレステリックブル
ー相、スメクチック相、スメクチックブルー相、キュービック相、スクメチックD相、カ
イラル・ネマチック相、等方相等を示す。コレステリックブルー相及びスメクチックブル
ー相は、螺旋ピッチが500nm以下で比較的短いコレステリック相またはスメクチック
相を有する液晶材料にみられる。液晶材料の配向は二重ねじれ構造を有する。光学波長以
下の秩序を有しているため、透明であり、電圧印加によって配向秩序が変化して光学的変
調作用が生じる。ブルー相は光学的に等方であるため視野角依存性がなく、配向膜を形成
しなくとも良いため、表示画像の質の向上及びコスト削減が可能である。
【0255】
以上の工程により、半導体装置として信頼性の高い液晶表示装置を作製することができる

【0256】
本実施の形態は、他の実施の形態に記載した構成と適宜組み合わせて実施することが可能
である。
【0257】
(実施の形態8)
本実施の形態では、本発明の一態様に係る半導体装置として電子ペーパーの例を示す。
【0258】
図26は、本発明の一態様を適用した半導体装置の例としてアクティブマトリクス型の電
子ペーパーを示す。半導体装置に用いられる薄膜トランジスタ581としては、実施の形
態2で示す薄膜トランジスタと同様に作製でき、IGZO半導体層及びn型の導電型を有
する金属酸化物層を含む信頼性の高い薄膜トランジスタである。また、実施の形態1、実
施の形態3、又は実施の形態4で示す薄膜トランジスタも本実施の形態の薄膜トランジス
タ581として適用することもできる。
【0259】
図26の電子ペーパーは、ツイストボール表示方式を用いた表示装置の例である。ツイス
トボール表示方式とは、白と黒に塗り分けられた球形粒子を表示素子に用いる電極層であ
る第1の電極層及び第2の電極層の間に配置し、第1の電極層及び第2の電極層に電位差
を生じさせての球形粒子の向きを制御することにより、表示を行う方法である。
【0260】
基板580上の薄膜トランジスタ581はマルチゲート構造の逆スタガ型の薄膜トランジ
スタであり、ソース電極層又はドレイン電極層によって第1の電極層587と、絶縁層5
85、絶縁層584、及び絶縁層583に形成された開口で接しており電気的に接続して
いる。第1の電極層587と基板596に設けられた第2の電極層588との間には黒色
領域590a及び白色領域590bを有し、周りに液体で満たされているキャビティ59
4を含む球形粒子589が設けられており、球形粒子589の周囲は樹脂等の充填材59
5で充填されている(図26参照。)。
【0261】
また、ツイストボールの代わりに、電気泳動素子を用いることも可能である。透明な液体
と、正に帯電した白い微粒子と負に帯電した黒い微粒子とを封入した直径10μm〜20
0μm程度のマイクロカプセルを用いる。第1の電極層と第2の電極層との間に設けられ
るマイクロカプセルは、第1の電極層と第2の電極層によって、電場が与えられると、白
い微粒子と、黒い微粒子が逆の方向に移動し、白または黒を表示することができる。この
原理を応用した表示素子が電気泳動表示素子であり、一般的に電子ペーパーとよばれてい
る。電気泳動表示素子は、液晶表示素子に比べて反射率が高いため、補助ライトは不要で
あり、また消費電力が小さく、薄暗い場所でも表示部を認識することが可能である。また
、表示部に電源が供給されない場合であっても、一度表示した像を保持することが可能で
あるため、電波発信源から表示機能付き半導体装置(単に表示装置、又は表示装置を具備
する半導体装置ともいう)を遠ざけた場合であっても、表示された像を保存しておくこと
が可能となる。
【0262】
以上の工程により、半導体装置として信頼性の高い電子ペーパーを作製することができる

【0263】
本実施の形態は、他の実施の形態に記載した構成と適宜組み合わせて実施することが可能
である。
【0264】
(実施の形態9)
本実施の形態では、本発明の一態様に係る半導体装置として発光表示装置の例を示す。表
示装置の有する表示素子としては、ここではエレクトロルミネッセンスを利用する発光素
子を用いて示す。エレクトロルミネッセンスを利用する発光素子は、発光材料が有機化合
物であるか、無機化合物であるかによって区別され、一般的に、前者は有機EL素子、後
者は無機EL素子と呼ばれている。
【0265】
有機EL素子は、発光素子に電圧を印加することにより、一対の電極から電子および正孔
がそれぞれ発光性の有機化合物を含む層に注入され、電流が流れる。そして、それらキャ
リア(電子および正孔)が再結合することにより、発光性の有機化合物が励起状態を形成
し、その励起状態が基底状態に戻る際に発光する。このようなメカニズムから、このよう
な発光素子は、電流励起型の発光素子と呼ばれる。
【0266】
無機EL素子は、その素子構成により、分散型無機EL素子と薄膜型無機EL素子とに分
類される。分散型無機EL素子は、発光材料の粒子をバインダ中に分散させた発光層を有
するものであり、発光メカニズムはドナー準位とアクセプター準位を利用するドナー−ア
クセプター再結合型発光である。薄膜型無機EL素子は、発光層を誘電体層で挟み込み、
さらにそれを電極で挟んだ構造であり、発光メカニズムは金属イオンの内殻電子遷移を利
用する局在型発光である。なお、ここでは、発光素子として有機EL素子を用いて説明す
る。
【0267】
図22(A)(B)は、本発明の一態様を適用した半導体装置の例としてアクティブマト
リクス型の発光表示装置を示す。図22(A)は発光表示装置の平面図であり、図22(
B)は図22(A)における線Y−Zの断面図である。なお、図23に、図22に示す発
光表示装置の等価回路を示す。
【0268】
半導体装置に用いられる薄膜トランジスタ301、302としては、実施の形態1及び実
施の形態2で示す薄膜トランジスタと同様に作製でき、IGZO半導体層と金属酸化物層
でなるn型の導電型を有するバッファ層とを含む信頼性の高い薄膜トランジスタである。
また、実施の形態3、又は実施の形態4で示す薄膜トランジスタも本実施の形態の薄膜ト
ランジスタ301、302として適用することもできる。
【0269】
図22(A)及び図23に示す本実施の形態の発光表示装置は、マルチゲート構造の薄膜
トランジスタ301、薄膜トランジスタ302、発光素子303、容量素子304、ソー
ス配線層305、ゲート配線層306、電源線308を含む。薄膜トランジスタ301、
302はnチャネル型薄膜トランジスタである。
【0270】
また、図22(B)において、本実施の形態の発光表示装置は、基板300、薄膜トラン
ジスタ302、絶縁層311、絶縁層312、絶縁層313、隔壁321、及び発光素子
303に用いる第1の電極層320、電界発光層322、第2の電極層323を有してい
る。
【0271】
絶縁層313は、アクリル、ポリイミド、ポリアミドなどの有機樹脂、またはシロキサン
を用いて形成することが好ましい。
【0272】
本実施の形態では画素の薄膜トランジスタ302がn型であるので、画素電極層である第
1の電極層320として、陰極を用いるのが望ましい。具体的には、陰極としては、仕事
関数が小さい材料、例えば、Ca、Al、CaF、MgAg、AlLi等を用いることが
できる。
【0273】
隔壁321は、有機樹脂膜、無機絶縁膜または有機ポリシロキサンを用いて形成する。特
に感光性の材料を用い、第1の電極層320上に開口部を形成し、その開口部の側壁が連
続した曲率を持って形成される傾斜面となるように形成することが好ましい。
【0274】
電界発光層322は、単数の層で構成されていても、複数の層が積層されるように構成さ
れていてもどちらでも良い。
【0275】
電界発光層322を覆うように、陽極として用いた第2の電極層323を形成する。第2
の電極層323は、実施の形態7に画素電極層として列挙した透光性を有する導電性材料
を用いた透光性導電膜で形成することができる。上記透光性導電膜の他に、窒化チタン膜
またはチタン膜を用いても良い。第1の電極層320と電界発光層322と第2の電極層
323とが重なり合うことで、発光素子303が形成されている。この後、発光素子30
3に酸素、水素、水分、二酸化炭素等が侵入しないように、第2の電極層323及び隔壁
321上に保護膜を形成してもよい。保護膜としては、窒化珪素膜、窒化酸化珪素膜、D
LC膜等を形成することができる。
【0276】
さらに、実際には、図22(B)まで完成したら、さらに外気に曝されないように気密性
が高く、脱ガスの少ない保護フィルム(貼り合わせフィルム、紫外線硬化樹脂フィルム等
)やカバー材でパッケージング(封入)することが好ましい。
【0277】
次に、発光素子の構成について、図24を用いて説明する。ここでは、駆動用TFTがn
型の場合を例に挙げて、画素の断面構造について説明する。図24(A)(B)(C)の
半導体装置に用いられる駆動用TFT7001、7011、7021は、実施の形態1で
示す薄膜トランジスタと同様に作製でき、IGZO半導体層及びn型の導電型を有する金
属酸化物層を含む信頼性の高い薄膜トランジスタである。また、実施の形態2、実施の形
態3、又は実施の形態4で示す薄膜トランジスタを駆動用TFT7001、7011、7
021として適用することもできる。
【0278】
発光素子は発光を取り出すために少なくとも陽極又は陰極の一方が透明であればよい。そ
して、基板上に薄膜トランジスタ及び発光素子を形成し、基板とは逆側の面から発光を取
り出す上面射出や、基板側の面から発光を取り出す下面射出や、基板側及び基板とは反対
側の面から発光を取り出す両面射出構造の発光素子があり、本発明の一態様に係る画素構
成はどの射出構造の発光素子にも適用することができる。
【0279】
上面射出構造の発光素子について図24(A)を用いて説明する。
【0280】
図24(A)に、駆動用TFT7001がn型で、発光素子7002から発せられる光が
陽極7005側に抜ける場合の、画素の断面図を示す。図24(A)では、発光素子70
02の陰極7003と駆動用TFT7001が電気的に接続されており、陰極7003上
に発光層7004、陽極7005が順に積層されている。陰極7003は仕事関数が小さ
く、なおかつ光を反射する導電膜であれば様々の材料を用いることができる。例えば、C
a、Al、CaF、MgAg、AlLi等が望ましい。そして発光層7004は、単数の
層で構成されていても、複数の層が積層されるように構成されていてもどちらでも良い。
複数の層で構成されている場合、陰極7003上に電子注入層、電子輸送層、発光層、ホ
ール輸送層、ホール注入層の順に積層する。なおこれらの層を全て設ける必要はない。陽
極7005は光を透過する透光性を有する導電性材料を用いて形成し、例えば酸化タング
ステンを含むインジウム酸化物、酸化タングステンを含むインジウム亜鉛酸化物、酸化チ
タンを含むインジウム酸化物、酸化チタンを含むインジウム錫酸化物、インジウム錫酸化
物(以下、ITOと示す。)、インジウム亜鉛酸化物、酸化ケイ素を添加したインジウム
錫酸化物などの透光性を有する導電性導電膜を用いても良い。
【0281】
陰極7003及び陽極7005で発光層7004を挟んでいる領域が発光素子7002に
相当する。図24(A)に示した画素の場合、発光素子7002から発せられる光は、矢
印で示すように陽極7005側に射出する。
【0282】
次に、下面射出構造の発光素子について図24(B)を用いて説明する。駆動用TFT7
011がn型で、発光素子7012から発せられる光が陰極7013側に射出する場合の
、画素の断面図を示す。図24(B)では、駆動用TFT7011と電気的に接続された
透光性を有する導電膜7017上に、発光素子7012の陰極7013が成膜されており
、陰極7013上に発光層7014、陽極7015が順に積層されている。なお、陽極7
015が透光性を有する場合、陽極上を覆うように、光を反射または遮蔽するための遮蔽
膜7016が成膜されていてもよい。陰極7013は、図24(A)の場合と同様に、仕
事関数が小さい導電性材料であれば様々な材料を用いることができる。ただしその膜厚は
、光を透過する程度(好ましくは、5nm〜30nm程度)とする。例えば20nmの膜
厚を有するアルミニウム膜を、陰極7013として用いることができる。そして発光層7
014は、図24(A)と同様に、単数の層で構成されていても、複数の層が積層される
ように構成されていてもどちらでも良い。陽極7015は光を透過する必要はないが、図
24(A)と同様に、透光性を有する導電性材料を用いて形成することができる。そして
遮蔽膜7016は、例えば光を反射する金属等を用いることができるが、金属膜に限定さ
れない。例えば黒の顔料添加した樹脂等を用いることもできる。
【0283】
陰極7013及び陽極7015で、発光層7014を挟んでいる領域が発光素子7012
に相当する。図24(B)に示した画素の場合、発光素子7012から発せられる光は、
矢印で示すように陰極7013側に射出する。
【0284】
次に、両面射出構造の発光素子について、図24(C)を用いて説明する。図24(C)
では、駆動用TFT7021と電気的に接続された透光性を有する導電膜7027上に、
発光素子7022の陰極7023が成膜されており、陰極7023上に発光層7024、
陽極7025が順に積層されている。陰極7023は、図24(A)の場合と同様に、仕
事関数が小さい導電性材料であれば様々な材料を用いることができる。ただしその膜厚は
、光を透過する程度とする。例えば20nmの膜厚を有するAlを、陰極7023として
用いることができる。そして発光層7024は、図24(A)と同様に、単数の層で構成
されていても、複数の層が積層されるように構成されていてもどちらでも良い。陽極70
25は、図24(A)と同様に、光を透過する透光性を有する導電性材料を用いて形成す
ることができる。
【0285】
陰極7023と、発光層7024と、陽極7025とが重なっている部分が発光素子70
22に相当する。図24(C)に示した画素の場合、発光素子7022から発せられる光
は、矢印で示すように陽極7025側と陰極7023側の両方に射出する。
【0286】
なお、ここでは、発光素子として有機EL素子について述べたが、発光素子として無機E
L素子を設けることも可能である。
【0287】
なお本実施の形態では、発光素子の駆動を制御する薄膜トランジスタ(駆動用TFT)と
発光素子が電気的に接続されている例を示したが、駆動用TFTと発光素子との間に電流
制御用TFTが接続されている構成であってもよい。
【0288】
なお本実施の形態で示す半導体装置は、図24に示した構成に限定されるものではなく、
本発明の技術的思想に基づく各種の変形が可能である。
【0289】
以上の工程により、半導体装置として信頼性の高い発光表示装置を作製することができる

【0290】
本実施の形態は、他の実施の形態に記載した構成と適宜組み合わせて実施することが可能
である。
【0291】
(実施の形態10)
次に、本発明の半導体装置の一形態である表示パネルの構成について、以下に示す。本実
施の形態では、表示素子として液晶素子を有する液晶表示装置の一形態である液晶表示パ
ネル(液晶パネルともいう)、表示素子として発光素子を有する半導体装置の一形態であ
る発光表示パネル(発光パネルともいう)について説明する。
【0292】
本発明の半導体装置の一形態に相当する発光表示パネルの外観及び断面について、図25
を用いて説明する。図25は、第1の基板上に形成されたIGZO半導体層及びn型の導
電型を有する金属酸化物層を含む信頼性の高い薄膜トランジスタ及び発光素子を、第2の
基板との間にシール材によって封止した、パネルの上面図であり、図25(B)は、図2
5(A)のH−Iにおける断面図に相当する。
【0293】
第1の基板4501上に設けられた画素部4502、信号線駆動回路4503a、450
3b、及び走査線駆動回路4504a、4504bを囲むようにして、シール材4505
が設けられている。また画素部4502、信号線駆動回路4503a、4503b、及び
走査線駆動回路4504a、4504bの上に第2の基板4506が設けられている。よ
って画素部4502、信号線駆動回路4503a、4503b、及び走査線駆動回路45
04a、4504bは、第1の基板4501とシール材4505と第2の基板4506と
によって、充填材4507と共に密封されている。
【0294】
また第1の基板4501上に設けられた画素部4502、信号線駆動回路4503a、4
503b、及び走査線駆動回路4504a、4504bは、薄膜トランジスタを複数有し
ており、図25(B)では、画素部4502に含まれる薄膜トランジスタ4510と、信
号線駆動回路4503aに含まれる薄膜トランジスタ4509とを例示している。
【0295】
薄膜トランジスタ4509、4510は、IGZO半導体層及びn型の導電型を有する金
属酸化物層を含む薄膜トランジスタに相当し、実施の形態1、実施の形態2、実施の形態
3、又は実施の形態4に示す薄膜トランジスタを適用することができる。本実施の形態に
おいて、薄膜トランジスタ4509、4510はnチャネル型薄膜トランジスタである。
【0296】
また4511は発光素子に相当し、発光素子4511が有する画素電極である第1の電極
層4517は、薄膜トランジスタ4510のソース電極層またはドレイン電極層と電気的
に接続されている。なお発光素子4511の構成は、本実施の形態に示した構成に限定さ
れない。発光素子4511から取り出す光の方向などに合わせて、発光素子4511の構
成は適宜変えることができる。
【0297】
また、信号線駆動回路4503a、4503b、走査線駆動回路4504a、4504b
、または画素部4502に与えられる各種信号及び電位は、FPC4518a、4518
bから供給されている。
【0298】
本実施の形態では、接続端子4515が、第2の電極層4512と同じ導電膜から形成さ
れ、配線4516は、発光素子4511が有する第1の電極層4517と同じ導電膜から
形成されている。
【0299】
接続端子4515は、FPC4518aが有する端子と、異方性導電膜4519を介して
電気的に接続されている。
【0300】
発光素子4511からの光の取り出し方向に位置する第2の基板は透光性でなければなら
ない。その場合には、ガラス板、プラスチック板、ポリエステルフィルムまたはアクリル
フィルムのような透光性を有する材料を用いる。
【0301】
また、充填材4507としては窒素やアルゴンなどの不活性な気体の他に、紫外線硬化樹
脂または熱硬化樹脂を用いることができ、PVC(ポリビニルクロライド)、アクリル、
ポリイミド、エポキシ樹脂、シリコーン樹脂、PVB(ポリビニルブチラル)またはEV
A(エチレンビニルアセテート)を用いることができる。本実施の形態は充填材4507
として窒素を用いた。
【0302】
また、必要であれば、発光素子の射出面に偏光板、又は円偏光板(楕円偏光板を含む)、
位相差板(λ/4板、λ/2板)、カラーフィルタなどの光学フィルムを適宜設けてもよ
い。また、偏光板又は円偏光板に反射防止膜を設けてもよい。例えば、表面の凹凸により
反射光を拡散し、映り込みを低減できるアンチグレア処理を施すことができる。
【0303】
信号線駆動回路4503a、4503b、及び走査線駆動回路4504a、4504bは
、別途用意された基板上に単結晶半導体膜又は多結晶半導体膜によって形成された駆動回
路で実装されていてもよい。また、信号線駆動回路のみ、或いは一部、又は走査線駆動回
路のみ、或いは一部のみを別途形成して実装しても良く、本実施の形態は図25の構成に
限定されない。
【0304】
次に、本発明の半導体装置の一形態に相当する液晶表示パネルの外観及び断面について、
図20を用いて説明する。図20は、第1の基板4001上に形成されたIGZO半導体
層及びn型の導電型を有する金属酸化物層を含む信頼性の高い薄膜トランジスタ4010
、4011、及び液晶素子4013を、第2の基板4006との間にシール材4005に
よって封止した、パネルの上面図であり、図20(B)は、図20(A1)(A2)のM
−Nにおける断面図に相当する。
【0305】
第1の基板4001上に設けられた画素部4002と、走査線駆動回路4004とを囲む
ようにして、シール材4005が設けられている。また画素部4002と、走査線駆動回
路4004の上に第2の基板4006が設けられている。よって画素部4002と、走査
線駆動回路4004とは、第1の基板4001とシール材4005と第2の基板4006
とによって、液晶層4008と共に封止されている。また第1の基板4001上のシール
材4005によって囲まれている領域とは異なる領域に、別途用意された基板上に単結晶
半導体膜又は多結晶半導体膜で形成された信号線駆動回路4003が実装されている。
【0306】
なお、別途形成した駆動回路の接続方法は、特に限定されるものではなく、COG方法、
ワイヤボンディング方法、或いはTAB方法などを用いることができる。図20(A1)
は、COG方法により信号線駆動回路4003を実装する例であり、図20(A2)は、
TAB方法により信号線駆動回路4003を実装する例である。
【0307】
また第1の基板4001上に設けられた画素部4002と、走査線駆動回路4004は、
薄膜トランジスタを複数有しており、図20(B)では、画素部4002に含まれる薄膜
トランジスタ4010と、走査線駆動回路4004に含まれる薄膜トランジスタ4011
とを例示している。
【0308】
薄膜トランジスタ4010、4011は、IGZO半導体層及びn型の導電型を有する金
属酸化物層を含む薄膜トランジスタに相当し、実施の形態1乃至4に示す薄膜トランジス
タを適用することができる。本実施の形態において、薄膜トランジスタ4010、401
1はnチャネル型薄膜トランジスタである。
【0309】
また、液晶素子4013が有する画素電極層4030は、薄膜トランジスタ4010と電
気的に接続されている。そして液晶素子4013の対向電極層4031は第2の基板40
06上に形成されている。画素電極層4030と対向電極層4031と液晶層4008と
が重なっている部分が、液晶素子4013に相当する。なお、画素電極層4030、対向
電極層4031はそれぞれ配向膜として機能する絶縁層4032、4033が設けられ、
絶縁層4032、4033を介して液晶層4008を挟持している。
【0310】
なお、第1の基板4001、第2の基板4006としては、ガラス、金属(代表的にはス
テンレス)、セラミックス、プラスチックを用いることができる。プラスチックとしては
、FRP(Fiberglass−Reinforced Plastics)板、PV
F(ポリビニルフルオライド)フィルム、ポリエステルフィルムまたはアクリル樹脂フィ
ルムを用いることができる。また、アルミニウムホイルをPVFフィルムやポリエステル
フィルムで挟んだ構造のシートを用いることもできる。
【0311】
また4035は絶縁膜を選択的にエッチングすることで得られる柱状のスペーサであり、
画素電極層4030と対向電極層4031との間の距離(セルギャップ)を制御するため
に設けられている。なお球状のスペーサを用いていても良い。
【0312】
また別途形成された信号線駆動回路4003と、走査線駆動回路4004または画素部4
002に与えられる各種信号及び電位は、FPC4018から供給されている。
【0313】
本実施の形態では、接続端子4015が、液晶素子4013が有する画素電極層4030
と同じ導電膜から形成され、配線4016は、薄膜トランジスタ4010、4011のゲ
ート電極層と同じ導電膜で形成されている。
【0314】
接続端子4015は、FPC4018が有する端子と、異方性導電膜4019を介して電
気的に接続されている。
【0315】
また図20においては、信号線駆動回路4003を別途形成し、第1の基板4001に実
装している例を示しているが、本実施の形態はこの構成に限定されない。走査線駆動回路
を別途形成して実装しても良いし、信号線駆動回路の一部または走査線駆動回路の一部の
みを別途形成して実装しても良い。
【0316】
図21は、本発明の一態様を適用して作製されるTFT基板2600を用いて半導体装置
として液晶表示モジュールを構成する一例を示している。
【0317】
図21は液晶表示モジュールの一例であり、TFT基板2600と対向基板2601がシ
ール材2602により固着され、その間にTFT等を含む画素部2603、液晶層を含む
表示素子2604、着色層2605が設けられ表示領域を形成している。着色層2605
はカラー表示を行う場合に必要であり、RGB方式の場合は、赤、緑、青の各色に対応し
た着色層が各画素に対応して設けられている。TFT基板2600と対向基板2601の
外側には偏光板2606、偏光板2607、拡散板2613が配設されている。光源は冷
陰極管2610と反射板2611により構成され、回路基板2612は、フレキシブル配
線基板2609によりTFT基板2600の配線回路部2608と接続され、コントロー
ル回路や電源回路などの外部回路が組みこまれている。また偏光板と、液晶層との間に位
相差板を有した状態で積層してもよい。
【0318】
液晶表示モジュールには、TN(Twisted Nematic)モード、IPS(I
n−Plane−Switching)モード、FFS(Fringe Field S
witching)モード、MVA(Multi−domain Vertical A
lignment)モード、PVA(Patterned Vertical Alig
nment)、ASM(Axially Symmetric aligned Mic
ro−cell)モード、OCB(Optical Compensated Bire
fringence)モード、FLC(Ferroelectric Liquid C
rystal)モード、AFLC(AntiFerroelectric Liquid
Crystal)などを用いることができる。
【0319】
以上の工程により、半導体装置として信頼性の高い表示パネルを作製することができる。
【0320】
本実施の形態は、他の実施の形態に記載した構成と適宜組み合わせて実施することが可能
である。
【0321】
(実施の形態11)
本発明の一態様に係る半導体装置は、電子ペーパーに適用することができる。電子ペーパ
ーは、情報を表示するものであればあらゆる分野の電子機器に用いることが可能である。
例えば、電子ペーパーを用いて、電子書籍(電子ブック)、ポスター、電車などの乗り物
の車内広告、クレジットカード等の各種カードにおける表示等に適用することができる。
電子機器の一例を図28、図29に示す。
【0322】
図28(A)は、電子ペーパーで作られたポスター2631を示している。広告媒体が紙
の印刷物である場合には、広告の交換は人手によって行われるが、本発明の一態様に係る
半導体装置を適用した電子ペーパーを用いれば短時間で広告の表示を変えることができる
。また、表示も崩れることなく安定した画像が得られる。なお、ポスターは無線で情報を
送受信できる構成としてもよい。
【0323】
また、図28(B)は、電車などの乗り物の車内広告2632を示している。広告媒体が
紙の印刷物である場合には、広告の交換は人手によって行われるが、本発明の一態様に係
る半導体装置を適用した電子ペーパーを用いれば人手を多くかけることなく短時間で広告
の表示を変えることができる。また表示も崩れることなく安定した画像が得られる。なお
、車内広告は無線で情報を送受信できる構成としてもよい。
【0324】
また、図29は、電子書籍2700の一例を示している。例えば、電子書籍2700は、
筐体2701および筐体2703の2つの筐体で構成されている。筐体2701および筐
体2703は、軸部2711により一体化されており、該軸部2711を軸として開閉動
作を行うことができる。このような構成により、紙の書籍のような動作を行うことが可能
となる。
【0325】
筐体2701には表示部2705が組み込まれ、筐体2703には表示部2707が組
み込まれている。表示部2705および表示部2707は、続き画面を表示する構成とし
てもよいし、異なる画面を表示する構成としてもよい。異なる画面を表示する構成とする
ことで、例えば右側の表示部(図29では表示部2705)に文章を表示し、左側の表示
部(図29では表示部2707)に画像を表示することができる。
【0326】
また、図29では、筐体2701に操作部などを備えた例を示している。例えば、筐体
2701において、電源2721、操作キー2723、スピーカ2725などを備えてい
る。操作キー2723により、頁を送ることができる。なお、筐体の表示部と同一面にキ
ーボードやポインティングディバイスなどを備える構成としてもよい。また、筐体の裏面
や側面に、外部接続用端子(イヤホン端子、USB端子、またはACアダプタおよびUS
Bケーブルなどの各種ケーブルと接続可能な端子など)、記録媒体挿入部などを備える構
成としてもよい。さらに、電子書籍2700は、電子辞書としての機能を持たせた構成と
してもよい。
【0327】
また、電子書籍2700は、無線で情報を送受信できる構成としてもよい。無線により
、電子書籍サーバから、所望の書籍データなどを購入し、ダウンロードする構成とするこ
とも可能である。
【0328】
(実施の形態12)
本発明の一態様に係る半導体装置は、さまざまな電子機器(遊技機も含む)に適用する
ことができる。電子機器としては、例えば、テレビジョン装置(テレビ、またはテレビジ
ョン受信機ともいう)、コンピュータ用などのモニタ、デジタルカメラやデジタルビデオ
カメラ等のカメラ、デジタルフォトフレーム、携帯電話機(携帯電話、携帯電話装置とも
いう)、携帯型ゲーム機、携帯情報端末、音響再生装置、パチンコ機などの大型ゲーム機
などが挙げられる。
【0329】
図30(A)は、テレビジョン装置9600の一例を示している。テレビジョン装置9
600は、筐体9601に表示部9603が組み込まれている。表示部9603により、
映像を表示することが可能である。また、ここでは、スタンド9605により筐体960
1を支持した構成を示している。
【0330】
テレビジョン装置9600の操作は、筐体9601が備える操作スイッチや、別体のリ
モコン操作機9610により行うことができる。リモコン操作機9610が備える操作キ
ー9609により、チャンネルや音量の操作を行うことができ、表示部9603に表示さ
れる映像を操作することができる。また、リモコン操作機9610に、当該リモコン操作
機9610から出力する情報を表示する表示部9607を設ける構成としてもよい。
【0331】
なお、テレビジョン装置9600は、受信機やモデムなどを備えた構成とする。受信機
により一般のテレビ放送の受信を行うことができ、さらにモデムを介して優先または無線
による通信ネットワークに接続することにより、一方向(送信者から受信者)または双方
向(送信者と受信者間、あるいは受信者間同士など)の情報通信を行うことも可能である

【0332】
図30(B)は、デジタルフォトフレーム9700の一例を示している。例えば、デジ
タルフォトフレーム9700は、筐体9701に表示部9703が組み込まれている。表
示部9703は、各種画像を表示することが可能であり、例えばデジタルカメラなどで撮
影した画像データを表示させることで、通常の写真立てと同様に機能させることができる

【0333】
なお、デジタルフォトフレーム9700は、操作部、外部接続用端子(USB端子、U
SBケーブルなどの各種ケーブルと接続可能な端子など)、記録媒体挿入部などを備える
構成とする。これらの構成は、表示部と同一面に組み込まれていてもよいが、側面や裏面
に備えるとデザイン性が向上するため好ましい。例えば、デジタルフォトフレームの記録
媒体挿入部に、デジタルカメラで撮影した画像データを記憶したメモリを挿入して画像デ
ータを取り込み、取り込んだ画像データを表示部9703に表示させることができる。
【0334】
また、デジタルフォトフレーム9700は、無線で情報を送受信出来る構成としてもよ
い。無線により、所望の画像データを取り込み、表示させる構成とすることもできる。
【0335】
図31(A)は携帯型遊技機であり、筐体9881と筐体9891の2つの筐体で構成
されており、連結部9893により、開閉可能に連結されている。筐体9881には表示
部9882が組み込まれ、筐体9891には表示部9883が組み込まれている。また、
図31(A)に示す携帯型遊技機は、その他、スピーカ部9884、記録媒体挿入部98
86、LEDランプ9890、入力手段(操作キー9885、接続端子9887、センサ
9888(力、変位、位置、速度、加速度、角速度、回転数、距離、光、液、磁気、温度
、化学物質、音声、時間、硬度、電場、電流、電圧、電力、放射線、流量、湿度、傾度、
振動、におい又は赤外線を測定する機能を含むもの)、マイクロフォン9889)等を備
えている。もちろん、携帯型遊技機の構成は上述のものに限定されず、少なくとも本発明
の一態様に係るIn、Ga、及びZnを含む酸化物半導体層及びn型の導電型を有する金
属酸化物層を含む薄膜トランジスタを備えた構成であればよく、その他付属設備が適宜設
けられた構成とすることができる。図31(A)に示す携帯型遊技機は、記録媒体に記録
されているプログラム又はデータを読み出して表示部に表示する機能や、他の携帯型遊技
機と無線通信を行って情報を共有する機能を有する。なお、図31(A)に示す携帯型遊
技機が有する機能はこれに限定されず、様々な機能を有することができる。
【0336】
図31(B)は大型遊技機であるスロットマシン9900の一例を示している。スロッ
トマシン9900は、筐体9901に表示部9903が組み込まれている。また、スロッ
トマシン9900は、その他、スタートレバーやストップスイッチなどの操作手段、コイ
ン投入口、スピーカなどを備えている。もちろん、スロットマシン9900の構成は上述
のものに限定されず、少なくとも本発明の一態様に係るIn、Ga、及びZnを含む酸化
物半導体層及びn型の導電型を有する金属酸化物層を含む薄膜トランジスタを備えた構成
であればよく、その他付属設備が適宜設けられた構成とすることができる。
【0337】
図32は、携帯電話機1000の一例を示している。携帯電話機1000は、筐体10
01に組み込まれた表示部1002の他、操作ボタン1003、外部接続ポート1004
、スピーカ1005、マイク1006などを備えている。
【0338】
図32に示す携帯電話機1000は、表示部1002を指などで触れることで、情報を
入力ことができる。また、電話を掛ける、或いはメールを打つなどの操作は、表示部10
02を指などで触れることにより行うことができる。
【0339】
表示部1002の画面は主として3つのモードがある。第1は、画像の表示を主とする
表示モードであり、第2は、文字等の情報の入力を主とする入力モードである。第3は表
示モードと入力モードの2つのモードが混合した表示+入力モードである。
【0340】
例えば、電話を掛ける、或いはメールを作成する場合は、表示部1002を文字の入力
を主とする文字入力モードとし、画面に表示させた文字の入力操作を行えばよい。この場
合、表示部1002の画面のほとんどにキーボードまたは番号ボタンを表示させることが
好ましい。
【0341】
また、携帯電話機1000内部に、ジャイロ、加速度センサ等の傾きを検出するセンサ
を有する検出装置を設けることで、携帯電話機1000の向き(縦か横か)を判断して、
表示部1002の画面表示を自動的に切り替えるようにすることができる。
【0342】
また、画面モードの切り替えは、表示部1002を触れること、又は筐体1001の操
作ボタン1003の操作により行われる。また、表示部1002に表示される画像の種類
によって切り替えるようにすることもできる。例えば、表示部に表示する画像信号が動画
のデータであれば表示モード、テキストデータであれば入力モードに切り替える。
【0343】
また、入力モードにおいて、表示部1002の光センサで検出される信号を検知し、表
示部1002のタッチ操作による入力が一定期間ない場合には、画面のモードを入力モー
ドから表示モードに切り替えるように制御してもよい。
【0344】
表示部1002は、イメージセンサとして機能させることもできる。例えば、表示部1
002に掌や指を触れることで、掌紋、指紋等を撮像することで、本人認証を行うことが
できる。また、表示部に近赤外光を発光するバックライトまたは近赤外光を発光するセン
シング用光源を用いれば、指静脈、掌静脈などを撮像することもできる。
【符号の説明】
【0345】
100 基板
101 ゲート電極層
102 ゲート絶縁層
103 半導体層
104a バッファ層
104b バッファ層
105a ソース電極層又はドレイン電極層
105b ソース電極層又はドレイン電極層
105a1 ソース電極層又はドレイン電極層
105a2 ソース電極層又はドレイン電極層
105a3 ソース電極層又はドレイン電極層
105b1 ソース電極層又はドレイン電極層
105b2 ソース電極層又はドレイン電極層
105b3 ソース電極層又はドレイン電極層
106a バッファ層
106b バッファ層
111 半導体膜
113 マスク
114 金属酸化物膜
115 金属酸化物膜
116 マスク
117 導電膜
118 マスク
121 導電膜
122 マスク
131 半導体膜
132 金属酸化物膜
133 導電膜
135 マスク
137 金属酸化物膜
138 導電膜
139 マスク
150 基板
151a ゲート電極層
152 ゲート絶縁層
153 半導体層
153a 半導体層
153b 半導体層
154a バッファ層
154b バッファ層
154c バッファ層
155a ソース電極層又はドレイン電極層
155b ソース電極層又はドレイン電極層
156 配線層
170a 薄膜トランジスタ
170b 薄膜トランジスタ
170c 薄膜トランジスタ
170d 薄膜トランジスタ
171a 薄膜トランジスタ
171b 薄膜トランジスタ
171c 薄膜トランジスタ
173 薄膜トランジスタ
174 薄膜トランジスタ

【特許請求の範囲】
【請求項1】
基板上に形成されたゲート電極と、
前記ゲート電極上に形成された酸素過剰のSiO膜と、
前記SiO膜上に形成された酸化物半導体膜と、
を有することを特徴とする半導体装置。
【請求項2】
基板上に形成されたゲート電極と、
前記ゲート電極上に形成された酸素過剰のSiO膜と、
前記SiO膜上に形成された酸素過剰の酸化物半導体膜と、
を有することを特徴とする半導体装置。
【請求項3】
基板上に形成されたゲート電極と、
前記ゲート電極上に形成された窒化シリコン膜を有する第1のゲート絶縁膜と、
前記第1のゲート絶縁膜上に形成された酸素過剰のSiO膜を有する第2のゲート絶縁膜と、
前記第2のゲート絶縁膜上に形成された酸化物半導体膜と、
を有することを特徴とする半導体装置。
【請求項4】
基板上に形成されたゲート電極と、
前記ゲート電極上に形成された窒化シリコン膜を有する第1のゲート絶縁膜と、
前記第1のゲート絶縁膜上に形成された酸素過剰のSiO膜を有する第2のゲート絶縁膜と、
前記第2のゲート絶縁膜上に形成された酸素過剰の酸化物半導体膜と、
を有することを特徴とする半導体装置。
【請求項5】
請求項2または請求項4において、
前記酸素過剰の酸化物半導体とは、酸素原子の組成比が酸化物半導体膜の酸素原子の化学量論的組成比よりも大きい酸化物半導体膜であることを特徴とする半導体装置。
【請求項6】
請求項1乃至請求項5のいずれか一項において、
前記酸素過剰のSiO膜とは、酸素原子の組成比がSiO膜の酸素原子の化学量論的組成比よりも大きいSiO膜であることを特徴とする半導体装置。
【請求項7】
請求項1乃至請求項5のいずれか一項において、
前記Xは2よりも大きいことを特徴とする半導体装置。
【請求項8】
請求項1乃至請求項7のいずれか一項において、
前記酸化物半導体膜上に形成された保護膜と、をさらに有することを特徴とする半導体装置。
【請求項9】
請求項8において、
前記保護膜は、SiO膜と、当該SiO膜上に形成された窒化珪素膜との積層構造を有することを特徴とする半導体装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate

【図14】
image rotate

【図15】
image rotate

【図16】
image rotate

【図17】
image rotate

【図18】
image rotate

【図19】
image rotate

【図20】
image rotate

【図21】
image rotate

【図22】
image rotate

【図23】
image rotate

【図24】
image rotate

【図25】
image rotate

【図26】
image rotate

【図27】
image rotate

【図28】
image rotate

【図29】
image rotate

【図30】
image rotate

【図31】
image rotate

【図32】
image rotate


【公開番号】特開2012−89879(P2012−89879A)
【公開日】平成24年5月10日(2012.5.10)
【国際特許分類】
【出願番号】特願2012−3824(P2012−3824)
【出願日】平成24年1月12日(2012.1.12)
【分割の表示】特願2009−176495(P2009−176495)の分割
【原出願日】平成21年7月29日(2009.7.29)
【出願人】(000153878)株式会社半導体エネルギー研究所 (5,264)
【Fターム(参考)】