説明

車両の制御装置

【課題】車両の走行環境や運転指向をより的確に反映した走行特性とすることによりドライバビリティを向上させる。
【解決手段】車両の運動を示す車両パラメータに基づいて該車両の走行状態を示す指標が求められ、該指標に応じて該車両の走行特性を設定する車両の制御装置において、運転者の意図しない運転操作や走行路面の影響に起因して変動する変動成分を減衰させた前記加速度に基づいて前記指標を求めるノイズ除去装置を設けた車両の制御装置である。

【発明の詳細な説明】
【技術分野】
【0001】
この発明は、車両の動力特性や操舵特性あるいは懸架特性などの車両の挙動特性あるいは加減速特性(以下、走行特性という)を、車両の走行環境や運転者の嗜好・走行意図などに適合させるように構成された車両制御装置に関するものである。
【背景技術】
【0002】
車速や走行方向など車両の挙動は、運転者が加減速操作や操舵を行うことによって変化するが、その操作量と挙動の変化量との関係は、燃費などのエネルギ効率のみならず、車両に要求される乗り心地や静粛性あるいは動力性能などの特性によって決められる。
【0003】
一方、車両が走行する環境は、市街地や高速道路、ワインデイング路、登坂路や降坂路など、様々であり、また、運転者の嗜好・走行意図や運転者の車両から受ける印象は様々である。そのため、走行環境や運転者が代わった場合には、必ずしも期待した走行特性とはならず、その結果、いわゆるドライバビリティが低下する場合がある。
【0004】
そこで、動力特性(あるいは加速特性)や懸架特性など車両の挙動に関する走行特性を、モード切替スイッチ操作によって手動選択できるように構成された車両が開発されている。すなわち、加速性に優れ、またサスペンションを幾分硬めに設定するスポーツモード、比較的にゆっくりした加速を行い、また柔らかめの懸架特性とするノーマルモード、燃費を優先したエコモードなどをスイッチ操作によって手動選択するように構成された車両である。
【0005】
また、運転指向を車両の挙動制御に反映するよう構成した装置が種々提案されている。この種の装置によれば、スイッチ操作が不要であるうえに、細かい特性の変更が可能である。その一例が特許文献1に記載されている。この特許文献1に記載された装置は、ニューロコンピュータを使用する駆動力制御装置であって、アクセルストロークおよび車速に対する加速度の関係を要求加速度モデルとして学習し、そのモデルと走りの指向を反映した第2の基準加速度モデルとの偏差、および第2の基準加速度モデルと標準的な第1の基準加速度モデルとの偏差とに基づいてスロットル開度を演算するように構成されている。
【0006】
また、車両の出力操作量に基づいて車両の運転指向を推定するように構成された装置が特許文献2に記載されている。この特許文献2に記載された装置は、車両の出力操作量としてスロットル弁開度の最大値を決定し、そのスロットル弁開度の最大値と、スロットル弁開度の最大値の発生時点から所定時間経過後のスロットル弁開度との偏差が、予め設定された判断基準値よりも大きい場合に、スロットル弁開度に基づく運転指向の推定を禁止するように構成されている。具体的には、例えばアクセルペダルが短時間内に急開閉操作されるような運転者の癖や道路状況によって発生するいわゆるチップイン操作の有無を判定し、そのチップイン操作が行われたことを判定した場合に、運転指向の推定が禁止されるようになっている。
【0007】
また、特許文献3には、路面の勾配(あるいは車両の勾配抵抗)を検出し、勾配の値をローパスフィルタによりフィルタリング処理して、勾配の微小変化による変速制御のハンチングを防止するように構成された無段変速機付き車両の制御装置が記載されている。
【先行技術文献】
【特許文献】
【0008】
【特許文献1】特開平06−249007号公報
【特許文献2】特開平10−77894号公報
【特許文献3】特開平8−28640号公報
【発明の概要】
【発明が解決しようとする課題】
【0009】
上記の特許文献1に記載されている装置は、車両の前後加速度に基づいて、あるいは運転者のアクセル操作に基づいて、運転者の運転指向もしくは走行特性を変更するように構成されている。そのため、車両の加速度の挙動を検出もしくは推定することにより、運転者の運転指向を推定し、それを車両挙動の制御に反映させることができる。しかしながら、例えば、特許文献2の様な運転操作が行われた場合には、そのような運転操作の影響による車両の加速度の変化成分が、いわゆるノイズ成分として取り込まれてしまい、その結果、運転指向の推定精度が低下してしまう可能性がある。これとは別に、例えば大きな凹凸がある路面や勾配に変化がある路面などを走行する場合には、その走行路面の影響による車両の加速度の変化成分が、いわゆるノイズ成分として取り込まれてしまい、その結果、運転指向の推定精度が低下してしまう可能性がある。このように従来では、運転者の運転指向の推定精度を向上させて、運転者の要求や運転指向を走行特性に的確に反映させる点において、未だ改良の余地があった。
【0010】
この発明は上記の技術的状況を背景としなされたものであり、運転者の嗜好・走行意図や車両の走行状況を、車両の挙動や加速などの走行特性に的確に反映させることのできる車両の制御装置を提供することを目的とするものである。
【課題を解決するための手段】
【0011】
上記の目的を達成するために、請求項1の発明は、車両の運動を示す車両パラメータに基づいて該車両の走行状態を示す指標が求められ、該指標に応じて該車両の走行特性を設定する車両の制御装置において、運転者の意図しない操作や走行路面の状態に起因して変動する変動成分を減衰させた前記車両パラメータに基づいて前記指標を求めるノイズ除去装置を備えていることを特徴とする車両の制御装置である。
【0012】
請求項2の発明は、請求項1の発明において、前記車両パラメータは、車両の加速度を含むことを特徴とする車両の制御装置である。
【0013】
請求項3の発明は、請求項1または2の発明において、前記ノイズ除去装置が、前記変動成分の所定周波数のノイズ成分を減衰させる装置を含むことを特徴とする車両の制御装置である。
【0014】
請求項4の発明は、請求項1ないし3のいずれかの発明において、前記ノイズ除去装置が、前記変動成分を所定の周波数特性のローパスフィルタを通すことにより、該各変動成分の相対的に高周波数帯に属する所定周波数のノイズ成分を減衰させる装置を含むことを特徴とする車両の制御装置である。
【0015】
請求項5の発明は、請求項1ないし3のいずれかの発明において、前記ノイズ除去装置が、前記変動成分を所定の周波数特性のバンドパスフィルタを通すことにより、該変動成分の所定の周波数帯に属する所定周波数のノイズ成分を減衰させる装置を含むことを特徴とする車両の制御装置である。
【0016】
請求項6の発明は、請求項4または5の発明において、前記ノイズ除去装置において用いられる前記フィルタは、前記ノイズ除去装置以外の制御に用いられるフィルタとが同じであることを特徴とする車両の制御装置である。
【0017】
請求項7の発明は、請求項4または5の発明において、前記ノイズ除去装置においては用いられる前記フィルタは、前記ノイズ除去装置以外の制御に用いられるフィルタとは異なるものであることを特徴とする車両の制御装置である。
【0018】
請求項8の発明は、請求項4または5の発明において、前記ノイズ除去装置に用いられる前記フィルタにおいて、前後方向成分用のフィルタの特性と横方向成分用のフィルタの特性とでは異なることを特徴とする車両の制御装置である。
【0019】
請求項9の発明は、請求項4または5の発明において、前記ノイズ除去装置に用いられる前記フィルタにおいて、前記車両の速度域に応じて異なるフィルタの特性とすることを特徴とする車両の制御装置である。
【発明の効果】
【0020】
請求項1の発明によれば、例えば、車速や車両の加速度あるいは車輪の回転速度など、車両の運動を示す車両パラメータに基づいて前記指標を求める際に、その車両パラメータの走行路面の状態に起因する変動成分が減衰させられる。言い換えると、例えばアクセルペダルが短時間内に急開閉操作されるような運転者の癖や道路状況によって発生するいわゆるチップイン操作などの運転操作が行われることに起因したり、路面の凹凸や坂路の勾配などの路面状態が変化することに起因して一時的もしくは瞬間的に発生する車両パラメータの変動成分が除去される。そのため、運転者の意図しない車両パラメータの変化が前記指標の決定に影響してしまうことを抑制することができ、その結果、前記指標を、車両の実際の挙動をより的確に反映したものとすることができる。ひいては、走行路などの走行環境や運転指向などに適した走行特性の車両とすることができる。
【0021】
請求項2の発明によれば、車両の加速度に基づいて前記指標を求める際に、その加速度の運転者の運転操作に起因する変動成分が減衰させられる。言い換えると、例えばアクセルペダルが短時間内に急開閉操作、あるいは道路状況によって発生するいわゆるチップイン操作が行われることに起因して一時的もしくは瞬間的に発生する加速度の変動成分が除去される。そのため、運転者の意図しない加速度の変化が前記指標の決定に影響してしまうことを抑制することができ、その結果、前記指標を、車両の実際の挙動をより的確に反映したものとすることができる。ひいては、走行路などの走行環境や運転指向などに適した走行特性の車両とすることができる。
【0022】
請求項3の発明によれば、運転者の運転操作に起因して変動する加速度の変動成分のうち、所定周波数のノイズ成分が減衰させられる。言い換えると、所定周波数の前記変動成分がノイズ成分として除去される。そのため、指標を求める際に支障をきたすような加速度のノイズ成分が除去されて、車両の実際の挙動をより良く反映した指標を求めることができる。
【0023】
請求項4の発明によれば、車両の加速度に基づいて車両の挙動特性が変更される際、あるいは車両の加速度を車両の挙動特性に反映させる際に、運転者の運転操作に起因して一時的もしくは瞬間的に発生する加速度の変動成分、すなわちノイズとなる特定の高周波数帯の変動成分が、その特定の高周波数帯に対応させたローパスフィルタによって除去される。そのため、運転者の意図しない加速度の変化、すなわち変動成分のノイズが前記指標の決定に影響してしまうことを適切に抑制することができ、その結果、前記指標を、車両の実際の挙動をより的確に反映したものとすることができる。
【0024】
請求項5の発明によれば、車両の加速度とに基づいて車両の挙動特性が変更される際、あるいは車両の加速度を車両の挙動特性に反映させる際に、走行路面の状態の変化に起因して一時的もしくは瞬間的に発生する加速度の変動成分、すなわちノイズとなる特定の周波数帯の変動成分が、その特定の周波数帯に対応させたバンドパスフィルタによって除去される。そのため、運転者の意図しない加速度の変化、すなわち変動成分のノイズが前記指標の決定に影響してしまうことを適切に抑制することができ、その結果、前記指標を、車両の実際の挙動をより的確に反映したものとすることができる。
【0025】
また、請求項6の発明のように、ノイズ除去装置におけるフィルタを他の装置のフィルタと同様にものとしてもよく、あるいは請求項7の発明のように、これらのフィルタを互いに異なるものとしてもよい。
【0026】
さらに、請求項8の発明にのように、ノイズ除去装置におけるフィルタの特性は、前後方向成分の除去特性と横方向成分の除去特性とが異なるものとすることができ、あるいはまた請求項9の発明のように速度域で異なる特性のフィルタとすることができる。
【図面の簡単な説明】
【0027】
【図1】この発明のノイズ除去装置によって指示SPIを求めるために検出する各加速度に対して実施するフィルタ処理の手順を示すブロック線図である。
【図2】この発明のノイズ除去装置によって指示SPIを求めるために検出する各加速度に対して実施するフィルタ処理の手順を示すブロック線図であって、図1のブロック線図に続く部分のブロック線図である。
【図3】この発明のノイズ除去装置によって指示SPIを求めるために検出する各加速度に対して実施する別のフィルタ処理の手順を示すブロック線図である。
【図4】図1のブロック線図に示すフィルタ処理における伝達関数の時定数を設定する際に用いるマップの一例である。
【図5】前後加速度および横加速度の検出値をタイヤ摩擦円上にプロットして示す図である。
【図6】瞬時SPIに基づく指示SPIの変化の一例を示す図である。
【図7】瞬時SPIと指示SPIとの偏差の時間積分とその積分値のリセットの状況を説明するための図である。
【図8】指示SPIと要求最大加速度率との関係を示すマップである。
【図9】各要求回転数毎の車速と加速度との関係を示す図に指示SPIに基づく要求最大加速度率を書き加えた図およびその図に基づいて最終指示回転数を求める手順を示す図である。
【図10】各変速段毎の車速と加速度との関係を示す図に指示SPIに基づく要求最大加速度率を書き加えた図およびその図に基づいて最終指示変速段を求める手順を示す図である。
【図11】有段自動変速機を搭載した車両において指示SPIに基づいて求められた補正変速段および補正駆動力を変速制御およびエンジン出力制御に反映させる制御のブロック線図である。
【図12】有段自動変速機を搭載した車両において指示SPIに基づいて求められた補正変速段および補正駆動力を変速制御およびエンジン出力制御に反映させる他の制御のブロック線図である。
【図13】有段自動変速機を搭載した車両において指示SPIに基づいて求められた補正変速段および補正駆動力を変速制御およびエンジン出力制御に反映させる更に他の制御のブロック線図である。
【図14】指示SPIに基づいて求められた補正ギヤ比および補正アシストトルクを操舵特性に反映させる制御のブロック線図である。
【図15】指示SPIに基づいて求められた車高長および補正減衰係数ならびに補正ばね定数を懸架特性に反映させる制御のブロック線図である。
【図16】この発明で対象とすることのできる車両を模式的に示す図である。
【発明を実施するための形態】
【0028】
つぎに、この発明を具体例に基づいて説明する。この発明で制御の対象とする車両は、運転者の操作によって加減速し、また旋回する車両であり、その典型的な例が、内燃機関やモータを駆動力源とした自動車である。その一例を図16に模式的に示してある。ここに示す車両1は、操舵輪である二つの前輪2と、駆動輪である二つの後輪3との四輪を備えた自動車であり、これらの四輪2,3のそれぞれは懸架装置4によって車体(図示せず)に取り付けられている。この懸架装置4は、一般に知られているものと同様に、スプリングとショックアブソーバー(ダンパー)とを主体として構成されており、図16にはそのショックアブソーバー5を示してある。ここに示すショックアブソーバー5は、気体や液体などの流体の流動抵抗を利用して緩衝作用を生じさせるように構成され、モータ6などのアクチュエータによってその流動抵抗を大小に変更できるように構成されている。すなわち、流動抵抗を大きくした場合には、車体が沈み込みにくく、いわゆる硬い感じとなる。そして車両1の挙動としては、コンフォートな感じが少なくなって、スポーティ感が増大する。なお、これらのショックアブソーバー5に加圧気体を給排することによって車高の調整を行うように構成することもできる。
【0029】
前後輪2,3のそれぞれには、図示しないブレーキ装置が設けられており、運転席に配置されているブレーキペダル7を踏み込むことによりブレーキ装置が動作して前後輪2,3に制動力を与えるように構成されている。
【0030】
車両1の駆動力源は、内燃機関やモータあるいはこれらを組み合わせた機構など、一般に知られている構成の駆動力源であり、図16には内燃機関(エンジン)8を搭載している例を示してあり、このエンジン8の吸気管9には、吸気量を制御するためのスロットルバルブ10が配置されている。このスロットルバルブ10は、電子スロットルバルブと称される構成のものであって、例えば電動モータや電磁弁などの電気的に制御されるアクチュエータ11によって開閉動作させられ、かつ開度が調整されるように構成されている。そして、このアクチュエータ11は、運転席に配置されているアクセルペダル12の踏み込み量すなわちアクセル開度に応じて動作し、スロットルバルブ10を所定の開度(スロットル開度)に調整するように構成されている。
【0031】
上記のアクセル開度とスロットル開度との関係は適宜に設定することができ、両者の関係が一対一に近いほどいわゆるダイレクト感が強くなり、車両1の走行特性はスポーティな感じになる。これとは反対に、アクセル開度に対してスロットル開度が相対的に小さくなるように、上記のアクセル開度とスロットル開度との関係を設定すれば、車両1の挙動特性あるいは走行特性はいわゆるマイルドな感じになる。なお、駆動力源としてモータを使用した場合には、スロットルバルブ10に替えてインバータあるいはコンバータなどの電流制御器を設け、アクセル開度に応じてその電流を調整するとともに、アクセル開度に対する電流値の関係すなわち挙動特性もしくは走行特性を適宜に変更するように構成する。
【0032】
エンジン8の出力側には変速機13が連結されている。この変速機13は、入力回転数と出力回転数との比率すなわち変速比を適宜に変更するように構成されており、例えば一般に知られている有段式の自動変速機やベルト式無段変速機あるいはトロイダル型無段変速機などの変速機である。したがって、変速機13は、図示しないアクチュエータを備え、そのアクチュエータを適宜に制御することにより変速比をステップ的(段階的)に、あるいは連続的に変化させるように構成されている。
【0033】
変速機13における変速制御は、車速やアクセル開度などの車両1の状態に対応させて変速比を決めた変速マップを予め用意し、その変速マップに従って変速制御が実行される。あるいは、車速やアクセル開度などの車両1の状態に基づいて目標出力を算出し、その目標出力と最適燃費線とから目標エンジン回転数を求め、その目標エンジン回転数となるように変速制御が実行される。
【0034】
このような基本的な変速制御に対して燃費優先の制御や駆動力を増大させる制御を選択できるように構成されている。燃費を優先する制御は、アップシフトを相対的に低車速で実行する制御もしくは相対的に高速側変速比を低車速側で使用する制御である。一方、駆動力あるいは加速特性を向上させる制御は、アップシフトを相対的に高車速で実行する制御、もしくは相対的に低速側変速比を高車速側で使用する制御である。これらの制御は、変速マップを切り替えたり、駆動要求量を補正したり、あるいは算出された変速比を補正したりするなどのことによって行うことができる。
【0035】
なお、車両1には、エンジン8と変速機13との間に、ロックアップクラッチ付きのトルクコンバータなどの伝動機構を、必要に応じて設けることができる。そして、変速機13の出力軸が終減速機であるデファレンシャルギヤ14を介して後輪3に連結されている。
【0036】
前輪2の向きを変える操舵を行う操舵装置15は、ステアリングホイール16の回転動作を左右の前輪2に伝達するステアリングリンケージ17を備え、またステアリングホイール16の操舵角度もしくは操舵力をアシストするアシスト機構18を備えている。このアシスト機構18は、図示しないアクチュエータを備え、そのアクチュエータによるアシスト量を調整できるように構成されている。具体的には、アシスト量を少なくすることにより、操舵力と前輪2の実際の転舵力とが一対一の関係に近くなり、すなわち、結果的に操舵角と前輪2の実際の転舵角とが一対一の関係に近くなり、その結果、いわゆる操舵のダイレクト感が増して、車両1の走行特性がいわゆるスポーティな感じになるように構成されている。
【0037】
なお、特には図示しないが、車両1には、挙動あるいは姿勢を安定化させるためのシステムとして、アンチロック・ブレーキ・システム(ABS)やトラクションコントロールシステム(TRC)、これらのシステムを統合して制御するビークルスタビリティコントロールシステム(VSC)などが設けられている。これらのシステムは従来知られているものであって、車体速度と車輪速度との偏差に基づいて車輪2,3に掛かる制動力を低下させ、あるいは制動力を付与し、さらにはこれらと併せてエンジントルクを制御することにより、車輪2,3のロックやスリップを防止もしくは抑制して車両1の挙動を安定させるように構成されている。また、走行路や走行予定路に関するデータ(すなわち走行環境)を得ることのできるナビゲーションシステムや、スポーツモードおよびノーマルモードならびに低燃費モード(エコモード)などの走行モードを手動操作で選択するためのスイッチを設けてあっても良い。さらに、登坂性能や加速性能あるいは回頭性などの走行特性を変化させることのできる四輪駆動機構(4WD)を備えていてもよい。
【0038】
そして、車両1には、上記のエンジン8や変速機13、懸架装置4のショックアブソーバー5、アシスト機構18、上述したABSやTRCあるいはVSCなどを制御するためのデータを得る各種のセンサが設けられている。その例を挙げると、前後輪2,3の回転速度(車輪速度)を検出する車輪速センサ19、アクセルペダル12の踏み込み量を検出するアクセル開度センサ20、スロットルバルブ10の開度を検出するスロットル開度センサ21、ブレーキペダル7の踏み込み量を検出するブレーキ開度センサ22、エンジン1の回転数を検出するエンジン回転数センサ23、変速機13の出力回転数を検出する出力回転数センサ24、ステアリングホイール16の操舵角度を検出する操舵角センサ25、車両1の縦方向(前後方向)の加速度(前後加速度Gx)を検出する前後加速度センサ26、車両1の横方向(左右方向)の加速度(横加速度Gy)を検出する横加速度センサ27、車両1のヨーレートを検出するヨーレートセンサ28、走行路面の勾配を検出する傾斜角センサ36などが設けられている。なお、加速度センサ26,27は、上記のABSやVSCなどの車両挙動制御で用いられている加速度センサと共用することができ、あるいはエアバッグを搭載している車両1では、その展開制御のために設けられている加速度センサと共用することができる。さらに、前後左右の加速度Gx,Gyは、水平面上で車両の前後方向に対して所定角度(例えば45°)傾斜させて配置した加速度センサで検出した検出値を、前後加速度および横加速度に分解して得ることとしてもよい。またさらに、前後左右の加速度Gx,Gyはセンサーによって検出することに替えて、アクセル開度や車速、ロードロード、操舵角度などに基づいて演算して求めてもよい。なお、後述する合成加速度は、車両前後方向の加速度成分と、車幅方向(横方向)の加速度成分とを含む加速度等の複数の方向の加速度を成分を含む加速度に限らず、車両前後方向のみなど、いずれか一の方向の加速度を用いても良い。
【0039】
上記の各種センサ19,〜28は、電子制御装置(ECU)29に検出信号(データ)を伝送するように構成されており、また電子制御装置29はそれらのデータおよび予め記憶しているデータならびにプログラムに従って演算を行い、その演算結果を制御指令信号として上述した各システムあるいはそれらのアクチュエータに出力するように構成されている。
【0040】
前述したように、この発明に係る制御装置は、車両1の走行状態を車両1の挙動制御に反映させるように構成されている。ここで車両1の走行状態とは、前後加速度や横加速度あるいはヨーイングやローリングの加速度、もしくはこれら複数方向の加速度を合成した加速度で表される状態である。すなわち、車両1を目標とする速度で走行させたり、目標とする方向に進行させたりする場合、あるいは路面などの走行環境の影響を受けて車両1の挙動を元の状態に戻したりする場合には、通常、車両1には複数方向の加速度が生じる。したがって、このことを考慮すると、車両1の走行状態は走行環境や運転指向をある程度反映していると考えられる。このような背景に基づき、この発明は、車両1の走行状態を車両1の挙動制御に反映させるように構成されている。
【0041】
また、車両1の挙動には、加速性や回頭性(旋回性)、懸架装置4による支持剛性(すなわちバンプ・リバウンドの程度や生じやすさ)、ローリングやピッチングの程度などが含まれ、この発明に係る制御装置は、これらの走行特性を上記のような走行状態に基づいて変更するように構成されている。その場合、上記の走行状態の一例であるいずれかの方向の加速度もしくは合成加速度の値をそのまま使用して走行特性を変更してもよいが、より違和感を減らすため、それらの値を補正した指標を用いてもよい。
【0042】
その指標の一例として、スポーツ度SPIについて説明する。ここで、スポーツ度SPIとは、運転者の意図または車両の走行状態を示す指標である。この発明で採用することのできるスポーツ度SPIは、複数方向の加速度(特にその絶対値)を合成して得られる指標であり、走行方向に対する挙動に大きく関係する加速度として前後加速度Gxと横加速度Gyとを合成した加速度がその例である。例えば、
瞬時SPI=(Gx+Gy)1/2 …(1)
で算出される。ここで、「瞬時SPI」とは、車両1の走行中における瞬間毎に各方向の加速度が求められ、その加速度に基づいて算出される指標という意味であり、いわゆる物理量である。なお、「瞬間毎」とは、加速度の検出およびそれに基づく瞬時SPIの算出が所定のサイクルタイムで繰り返し実行される場合には、その繰り返しの都度を意味している。
【0043】
また、上記の演算式に用いられる前後加速度Gxのうち、加速側加速度もしくは減速側の加速度(すなわち減速度)の少なくともいずれか一方は、正規化あるいは重み付け処理されたものを用いてもよい。すなわち、一般的な車両では、加速側の加速度に対して減速側の加速度の方が大きいが、その相違は運転者にはほとんど体感もしくは認識されず、多くの場合、加速側および減速側の加速度がほぼ同等に生じていると認識されている。正規化処理とは、このような実際の値と運転者が抱く感覚との相違を是正するための処理であり、前後加速度Gxについては、加速側の加速度を大きくする、もしくは減速側の加速度を小さくする処理である。
【0044】
より具体的には、それぞれの加速度の最大値の比率を求め、その比率を加速側あるいは減速側の加速度に掛ける処理である。もしくは横加速度に対する減速側の加速度を補正する重み付け処理である。要は、タイヤで生じさせることのできる前後力および横力がタイヤ摩擦円で表されるのと同様に、各方向の最大加速度が所定半径の円周上に位置するように、前後の少なくともいずれか一方を重み付けするなどの補正を行う処理である。したがって、このような正規化処理と重み付け処理を行うことにより、加速側の加速度と減速側の加速度との走行特性に対する反映の程度が異なることになる。そこで重み付け処理の一例として、車両の前後の減速方向の加速度と、車両の前後の加速方向の加速度とのうち、加速方向の加速度の影響度が、減速方向の加速度の影響度に対して相対的に大きくなるよう、減速方向の加速度と、加速方向の加速度とが重み付け処理しても良い。
【0045】
このように、加速度の実際値と運転者が抱く感覚とには、加速度の方向によって相違がある。例えばヨーイング方向やローリング方向での加速度と前後加速度とには、そのような相違があることが考えられる。そこで本実施形態では、方向が異なる加速度ごとの走行特性に対する反映の程度、言い換えれば、いずれかの方向の加速度に基づく走行特性の変化の程度を、他の方向の加速度に基づく走行特性の変化の程度とは異ならせるように構成することができる。
【0046】
横加速度Gyのセンサ値と、上記の正規化と重み付け処理を行った前後加速度Gxの値とをタイヤ摩擦円上にプロットした例を図5に示してある。これは、一般道を模擬したテストコースを走行した場合の例であり、大きく減速する場合に横加速度Gyも大きくなる頻度が多く、タイヤ摩擦円に沿って前後加速度Gxと横加速度Gyが生じるのは一般的な傾向であることが見て取れる。
【0047】
そして、本実施形態では、上記の瞬時SPIから指示SPIが求められる。この指示SPIは、走行特性を変更する制御に用いられる指標であり、その算出の基になる瞬時SPIの増大に対しては直ちに増大し、これとは反対に、瞬時SPIの低下に対しては遅れて低下するように構成された指標である。特に、この発明では、所定の条件の成立を要因として指示SPIを低下させるように構成されている。図6には、瞬時SPIの変化に基づいて求められた指示SPIの変化を示してある。ここに示す例では、瞬時SPIは上記の図5にプロットしてある値で示され、これに対して、指示SPIは、瞬時SPIの極大値に設定されて、所定の条件が成立するまで、従前の値を維持するようになっている。すなわち、この発明では、指示SPIが、増大側には迅速に変化し、低下側には相対的に遅く変化する指標となるように構成されている。
【0048】
具体的に説明すると、図6における制御の開始から期間T1 の時間帯では、例えば車両が制動旋回した場合など、その加速度の変化によって得られる瞬時SPIが増減するが、前回の極大値を上回る瞬時SPIが、前述した所定の条件の成立に先行して生じるので、指示SPIが段階的に増大する。これに対してt2 時点あるいはt3 時点では、例えば車両が旋回加速から直線加速に移行した場合など、低下のための条件が成立したことにより指示SPIが低下する。このように指示SPIを低下させる条件は、要は、指示SPIを従前の大きい値に保持することが運転者の意図と合わないと考えられる状態が成立することであり、この発明では時間の経過を要因として成立するように構成されている。
【0049】
すなわち、指示SPIを従前の大きい値に保持することが運転者の意図と合わないと考えられる状態は、保持されている指示SPIとその間に生じている瞬時SPIとの乖離が相対的に大きく、かつその状態が継続している状態である。したがって、旋回加速コントロールした場合など、運転者によってアクセルペダル12を一時的に緩めるなどの操作に起因する瞬時SPIによっては指示SPIを低下させずに、緩やかに減速に移行した場合など、運転者によってアクセルペダルを連続して緩めるなどの操作に起因する瞬時SPIが保持されている指示SPIを下回っている状態が所定時間継続した場合に、指示SPIを低下させる条件が成立した、とするようになっている。
【0050】
このように、指示SPIの低下開始条件は、瞬時SPIが指示SPIを下回っている状態の継続時間とすることができる。また実際の走行状態をより的確に指示SPIに反映させるために、保持されている指示SPIと瞬時SPIとの偏差の時間積分値(あるいは累積値)が予め定めたしきい値に達することを指示SPIの低下開始条件とすることができる。なお、そのしきい値は、運転者の意図に沿った走行実験やシミュレーションを行って適宜に設定すればよい。後者の積分値を用いるとすれば、指示SPIと瞬時SPIとの偏差および時間を加味して指示SPIを低下させることになるので、実際の走行状態あるいは挙動をより的確に反映した走行特性の変更制御が可能になる。
【0051】
なお、図6に示す例では、上記のt2 時点に到るまでの指示SPIの保持時間が、t3 時点に到るまでの指示SPIの保持時間より長くなっているが、これは以下の制御を行うように構成されているためである。すなわち、前述した期間T1 の時間帯の終期に指示SPIが所定値に増大させられて保持され、その後、前述した低下開始条件が成立する前のt1 時点に瞬時SPIが増大して、更に保持されている指示SPIと瞬時SPIとの偏差積分値が予め定めた所定値以下となっている。なお、その所定値は、運転者の意図に沿った走行実験やシミュレーションを行って、あるいは瞬時SPIの算出誤差を考慮して適宜に設定すればよい。
【0052】
このように、瞬時SPIが保持されている指示SPIに近くなったということは、保持されている指示SPIの元になった瞬時SPIを生じさせた加減速状態および/または旋回状態もしくはそれに近い状態になっていることを意味している。すなわち指示SPIを保持されている値に増大させた時点からある程度時間が経過しているとしても、走行状態はその時間が経過する前の時点の走行状態と近似しているので、瞬時SPIが保持されている指示SPIを下回る状態であっても、前述した低下開始条件の成立を遅延させ、指示SPIを従前の値に保持させることとしたのである。その遅延のための制御もしくは処理は、前述した経過時間の積算値(累積値)や前述した指示SPIと瞬時SPIとの偏差の積分値をリセットして、経過時間の積算や前記偏差の積分を再開したり、あるいはその積算値もしくは積分値を所定量減じたり、さらには積算もしくは積分を一定時間中断したりするなどのことによって行えばよい。
【0053】
図7は、前述した指示SPIと瞬時SPIとの偏差の積分とそのリセットとのタイミングを説明するためのタイムチャートである。なお、図7にハッチングを施してある部分の面積が偏差積分値に相当している。図7のタイムチャートにおいて、瞬時SPIと指示SPIとの差が所定値Δd以下になったt11時点で積分値がリセットされ、再度、前記偏差の積分が開始される。したがって、指示SPIを所定の値に保持している継続時間が長くなっても、その低下開始条件が成立しないので、指示SPIは従前の値に維持される。そして、積分を再開した後、瞬時SPIが直前の指示SPIより大きい値になると、指示SPIが瞬時SPIに応じた大きい値に更新され、かつ保持され、前述の偏差積分値がリセットされる。
【0054】
上記の積分値に基づいて指示SPIの低下制御開始の条件を判断するよう構成した場合、指示SPIの低下の程度もしくは勾配を異ならせてもよい。上述した積分値は、保持されている指示SPIと瞬時SPIとの偏差を時間積分した値であるから、前記偏差が大きければ短時間に積分値が所定値に達して前記条件が成立し、反対に、前記偏差が小さい場合には、相対的に長い時間を要して上述した積分値が所定値に達して指示SPIの低下制御開始条件が成立する。
【0055】
したがって、例えば、上記に示すような指示SPIの低下制御開始の条件が成立するまでの経過時間の長短に応じて、指示SPIの低下の程度もしくは勾配を異ならせてもよい。短時間で指示SPIの低下制御開始条件が成立したとすれば、保持されている指示SPIに対する瞬時SPIの低下幅が大きいことになり、指示SPIがその時の運転者の意図と大きく乖離していることになる。そこで、このような場合には、指示SPIを大きな割合もしくは大きな勾配で低下させる。これとは反対に、上記の指示SPIの低下制御開始条件が成立するまでの時間が相対的に長い場合には、保持されている指示SPIに対する瞬時SPIの低下幅が小さいことになり、保持されている指示SPIがその時点の運転者の意図と特に大きく乖離しているとは言い得ない。そこで、このような場合には、指示SPIを小さい割合もしくは小さな勾配でゆっくり低下させる。こうすることにより、走行特性を設定するための指示SPIと運転者の意図との乖離を迅速かつ的確に是正し、走行状態に適合した車両1の走行特性を設定することが可能になる。
【0056】
上記の指示SPIは、車両1の走行状態を表しており、これは、路面勾配やコーナの有無あるいはその曲率などの走行環境、さらに運転者の運転指向を含んだものとなっている。走行路の状態によって車両1の加速度が変化するとともに、走行路の状態によって運転者による加減速・操舵操作が行われ、さらにその操作によって加速度が変化するからである。この発明に係る制御装置は、その指示SPIを車両1の走行特性の制御に利用するように構成されている。
【0057】
また、この発明における走行特性には、加速特性や操舵特性、サスペンション特性、音特性などが含まれ、これらの特性は、前述したスロットルバルブ10の制御特性、変速機13の変速特性、懸架装置4におけるショックアブソーバー5の減衰特性、アシスト機構18のアシスト特性などをそれぞれに設けられているアクチュエータによって変化させることにより適宜に設定される。その走行特性の変化の一般的な傾向は、指示SPIが大きいほど、いわゆるスポーティな走行が可能になる特性の変化である。
【0058】
そのような走行特性の変更の一例として、車両1の加速性を指示SPIに応じて変更する例を図8に示して説明する。すなわち、上記のようにして設定される指示SPIに対応させて要求最大加速度率を求める場合の例である。図8において、要求最大加速度率とは、余裕駆動力を規定するものであって、例えば要求最大加速度率が100%とは、車両1が発生し得る最大の加速度を可能にする状態であり、変速機13についてはエンジン回転数が最大になる変速比もしくは最も大きい変速比(最も低車速側の変速比)を設定することである。また、例えば要求最大加速度率が50%とは、車両1が発生し得る最大の加速度の半分の加速度を可能にする状態であり、変速機13については中間の変速比を設定することである。
【0059】
図8に示す例では、指示SPIが大きくなるほど要求最大加速度率が大きくなるように構成されている。図8に実線で示す基本特性は、車両1を実際に走行させて得られたデータに基づいて指示SPIと要求最大加速度率との関係を計算して求めたものであり、実車による走行やシミュレーションを行って適宜に修正を加えたものである。この基本特性に対して要求最大加速度率が大きくなる側に特性線を設定した場合には、車両1の加速度が瞬時に大きく取れるので、いわゆるスポーティな走行特性もしくは加速特性となる。これとは反対に、要求最大加速度率が小さくなる側に特性線を設定した場合には、車両1の加速度が瞬時に小さく取れるので、いわゆるコンフォートな走行特性もしくは加速特性となる。これらの調整(すなわち適合もしくはチューニング)は、車両1に要求される商品性などに応じて適宜行えばよい。なお、基本特性で、指示SPIが0より大きい状態で要求最大加速度率が0となるように設定してあるのは、交通渋滞や車庫入れなどの微速走行状態を、走行特性を設定もしくは変更するための制御に反映させないようにしたためである。
【0060】
上記の要求最大加速度率を変速機13の変速特性に反映させて加速特性を変更する場合の制御について説明する。変速機13として無段変速機を搭載している車両1やエンジン回転数をモータによって制御可能なハイブリッド車では、車速や駆動要求量に基づいて目標出力を算出し、その目標出力を達成するエンジン回転数となるように制御される。その要求回転数毎の車速と加速度との関係を示せば図9のようになり、これに上述した図8に基づいて指示SPIから求められた要求最大加速度率を書き加える。例えば100%と50%との要求最大加速度率を書き加えると図9の太い実線のようになる。したがって、指示SPIから求められた要求最大加速度を示す線と現在時点の車速を示す線との交点を通る線で表される回転数が要求回転数となる。
【0061】
前述した図16を参照して説明したような変速機13を備えている車両1では、その変速機13によって設定するべき変速比を制御するために、基本的な変速マップを備えている。その変速マップは、無段変速機については、車速とエンジン回転数とに応じて変速比を設定したマップである。そのマップを使用し、所定の車速および変速比から求まるエンジン回転数が、いわゆる通常(ノーマルモード)の回転数である。そのいわゆるノーマルモード回転数と、上記の図9から求まる回転数(いわゆるスポーツモード回転数)とが比較(回転数調停)され、その値が大きい方の回転数が選択される。いわゆるマックスセレクトされる。こうして選択された回転数が最終目標値すなわち最終目標回転数として指示される。これは、無段変速機においては、低車速側の変速比(大きい値の変速比)を目標として変速制御を行うことになる。その結果、変速比が大きくなることにより最大駆動力あるいはエンジンブレーキ力が大きくなり、車両1の挙動コントロールが機敏になり、いわゆるスポーティ感のある特性、あるいは運転者の運転指向もしくは走行路の状態などの走行環境に即した特性となる。なお、無段変速機を搭載している車両1についてのこのような制御は、モード選択スイッチが搭載され、そのスイッチによって例えばスポーツモードが選択されている場合に実行し、選択されていない場合に制御を禁止するように構成してもよい。
【0062】
一方、変速機13が有段変速機の場合には、図10に示すように制御する。有段変速機の変速制御は、目標とする変速段を定め、その変速段を設定するように変速機13のアクチュエータに制御指令信号が出力される。したがって、各変速段毎の車速と加速度との関係を示せば図10のようになり、これに指示SPIから求められた要求最大加速度率として100%および50%の要求最大加速度の線を書き加えると図10の太い実線のようになる。したがって、指示SPIから求められた要求最大加速度を示す線と現在時点の車速を示す線との交点に最も近い変速段の線で表される変速段が目標変速段となる。
【0063】
この発明に係る制御装置による制御が実行されている場合、上記の図10で求められた目標変速段と、予め用意されている変速線図に基づく目標変速段(例えば、アクセル操作と、車速に基づいて定まる変速比)とが比較(ギヤ段調停)され、変速比が大きい低車速側の変速段が選択される。いわゆるミニマムセレクトされる。こうして選択された変速段が最終ギヤ段として指示される。これは、有段変速機においては、低車速側の変速段(大きい値の変速比)を目標として変速制御を行うことになる。その結果、変速比が大きくなることにより最大駆動力あるいはエンジンブレーキ力が大きくなり、車両1の挙動コントロールが機敏になり、いわゆるスポーティ感のある特性、あるいは運転者の運転指向もしくは走行路の状態などの走行環境に即した特性となる。なお、有段変速機を搭載している車両1についてのこのような制御は、モード選択スイッチが搭載され、そのスイッチによっていわゆるスポーツモードが選択されている場合に実行するように構成してもよい。
【0064】
つぎに、この発明に係る制御装置を、内燃機関を駆動力源とし、かつ有段変速機を搭載した車両1に適用した場合の変速段および駆動力の補正およびそれに伴う走行特性の変更の制御について説明する。図11は、要求駆動力から目標変速段および目標エンジントルクを求める例であり、その基本的な構成は、先ず、車速とアクセル開度とから要求駆動力が演算される(ブロックB1)。要求駆動力は、車体重量や車両1に付与する動力性能などによって決められるものであるから、ブロックB1での演算は、車速とアクセル開度とに対応させて要求駆動力を定めたマップが用意され、そのマップに基づいて要求駆動力を求めることにより行われる。そしてその要求駆動力に基づいて、変速段(ギヤ段)が演算される(ブロックB2)。
【0065】
有段変速機の変速制御は、車速と要求駆動力とをパラメータとして変速段領域あるいはアップシフト線およびダウンシフト線を設定した変速線図に基づいて行われるので、上記のブロックB2での変速段の演算は、予め用意してある変速線図に基づいて行う。こうして求められた要求変速段が変速制御装置(ECT)B3に制御指令信号として出力され、変速機13での変速制御が実行される。なお、車両1の動力伝達経路にロックアップクラッチ(LU)が設けられている場合には、予め用意したマップに基づいてそのロックアップクラッチの係合・解放を判断するとともに、その係合・解放を制御する指令信号も併せて出力される。
【0066】
一方、上記のブロックB1で求められた要求駆動力と変速機13での実際の変速段とに基づいて要求エンジントルクが演算される(ブロックB4)。すなわち、変速段と車速とに基づいてエンジン回転数が決まるから、そのエンジン回転数と要求駆動力とに基づいて要求エンジントルクを演算することができる。そして、上記のようにして求められたエンジントルクを発生するようにエンジン(ENG)8が制御される(ブロックB5)。具体的にはスロットル開度が制御される。
【0067】
前述したように、この発明に係る制御装置では、前後加速度Gxや横加速度Gyあるいはこれらを合成した合成加速度が大きい場合には指示SPIが増大し、それに伴って要求最大加速度が大きくなる。その要求最大加速度は、図10を参照して説明したように変速制御に反映され、スポーツモードでの指示SPIに基づいて求まる変速段が、ノーマルモードでの変速段よりも低車速側の変速段であれば、その低車速側の変速段が最終指示変速段となる。この図11を参照して説明した基本的な構成は、ノーマルモードでの変速制御を行うものであるから、指示SPIに基づく最終指示変速段がより低車速側の変速段であれば、これを上記のブロックB2で取り込み、要求変速段とする。その結果、相対的に大きい変速比が得られるので、車両1の走行特性として瞬時加速性が増大する。
【0068】
また、指示SPIに応じた加速特性とするためには、エンジン8が出力する動力を増減してもよく、その制御は、上記のブロックB1に補正駆動力を入力し、前述した基本構成で求まる要求駆動力を補正駆動力によって増減する。なお、その補正駆動力は、前述した指示SPIに基づいて求められるように構成されていればよい。例えば、実験やシミュレーションなどによって指示SPIと補正駆動力との関係を定めてこれを予めマップなどの形でデータとして用意しておき、走行中に得られた指示SPIと補正駆動力マップなどのデータとから補正駆動力を求めるようにしてよい。
【0069】
図12に示す例は、車速とアクセル開度とから変速段(ギヤ段)および要求駆動力を並行して求めるように構成した例である。前述したように、有段変速機の変速比は、車速とアクセル開度とによって、変速段もしくはアップシフト線およびダウンシフト線を設定した変速線図に基づいて制御される。したがって、車速とアクセル開度とによって、一方では、変速段が演算され(ブロックB11)、他方で、車速とアクセル開度とから要求駆動力が演算される(ブロックB12)。この要求駆動力の演算は、前述した図11に示すブロックB1での演算と同様である。
【0070】
ブロックB11で求められた要求変速段が、変速制御装置(ECT)B13に伝送され、変速機13での変速制御が実行される。なお、車両1の動力伝達経路にロックアップクラッチ(LU)が設けられている場合には、予め用意したマップに基づいてそのロックアップクラッチの係合・解放を判断するとともに、その係合・解放を制御する指令信号も併せて出力される。
【0071】
一方、上記のブロックB12で求められた要求駆動力と変速機13での実際の変速段とに基づいて要求エンジントルクが演算され(ブロックB14)、こうして求められたエンジントルクを発生するようにエンジン(ENG)8が制御される(ブロックB15)。そのブロックB14での制御は、前述した図11に示すブロックB4での制御と同様であり、また、ブロックB15での制御は、前述した図11に示すブロックB5での制御と同様である。
【0072】
この図12に示すように構成した場合においても、指示SPIに基づく最終指示変速段がより低車速側の変速段であれば、これを上記のブロックB11で取り込み、要求変速段とする。その結果、相対的に大きい変速比が設定されるので、車両1の走行特性として加速性が増大する。また、指示SPIに応じた補正駆動力を上記のブロックB12に入力し、前述した基本構成で求まる要求駆動力を補正駆動力によって増減する。
【0073】
図13に示す例は、車速とアクセル開度とに基づいて、変速機13およびエンジン8をそれぞれ独立して制御するように構成した例である。すなわち、車速とアクセル開度とに基づいて変速段が演算され(ブロックB21)、その演算で求められた要求変速段が変速制御装置(ECT)B22に伝送され、変速機13での変速制御が実行される。これらの制御は、図12に示すブロックB11およびブロックB13での制御と同様である。
【0074】
一方、アクセル開度に基づいてスロットル開度が演算され(ブロックB23)、その要求スロットル開度に応じてエンジン8が制御される(ブロックB24)。なお、電子スロットルバルブを備えている場合には、アクセル開度と要求スロットル開度との関係は非線形とするのが一般的であり、アクセル開度が相対的に小さい状態では、アクセル開度の変化量に対してスロットル開度の変化量が小さく、アクセル開度が相対的に大きい場合には、アクセル開度の変化量とスロットル開度の変化量とが一対一の関係に近くなる。
【0075】
この図13に示すように構成した場合であっても、指示SPIに基づく最終指示変速段がより低車速側の変速段であれば、これを上記のブロックB21で取り込み、要求変速段とする。その結果、相対的に大きい変速比が設定されるので、車両1の走行特性として加速性が増大する。また、指示SPIに応じた補正スロットル開度を上記のブロックB23に入力し、前述した基本構成で求まる要求スロットル開度を補正スロットル開度によって増減する。すなわち、指示SPIが高くなった場合にアクセルに対する駆動源の出力特性を変える(例えば、出力特性を上げる)構成としてもよい。
【0076】
上記のように、この発明に係る制御装置においては、アクセルペダル12を踏み込んで加速した場合や、ブレーキペダル7を踏み込んで減速した場合、あるいはステアリングホイール16を回転させて旋回した場合など、加減速や旋回などの意図に基づいて合成加速度が増大すると、指示SPIが合成加速度の増大に応じて直ちに増大する。そして、その指示SPIの増大に応じて余裕駆動力が増大し、瞬時に要求する加速度が発生し、いわゆるスポーティな走行を行うことのできる走行特性となる。そして、運転者による上記の操作は、通常、走行路の勾配など走行環境に応じた走行を行うべく実行されることから、結局、上記の走行特性の変更は、運転指向や走行環境を反映したものとなる。
【0077】
例えば、登坂路に差し掛かると、車両1は重力加速度が作用する方向とは反対の方向に移動するので、前後加速度センサ26は実加速度に対応する値よりも大きい値を出力する。そのため、傾斜のない平坦路を走行している場合に比較して加速時は瞬時SPIが大きくなる。それに伴って、指示SPIが大きくなるから、車両1の加速特性は加速力が大きくなる方向に変更される。そのため、登坂路では、相対的に大きい駆動力を得ることができる。これとは反対に、降坂路では、前後加速度センサ26が実加速度に対応する値より小さい値を出力するので、減速時は瞬時SPIが相対的に小さくなる。しかしながら、降坂路で車速の増大を抑えるようにブレーキ操作すると、ブレーキ操作に伴う加速度に重力加速度が加わるので、前後加速度センサ26の出力値が相対的に大きくなり、その結果、瞬時SPIが大きくなるとともに、加速特性が最大加速力の増大する方向に変更され、相対的に大きいエンジンブレーキ力を得ることができる。したがって、登坂路走行および降坂路走行のための特別な加減速操作が必要なくなり、あるいは緩和され、一層ドライバビリティが向上する。また、一般に知られている高車速側の変速比を禁止もしくは制限するなどのいわゆる登降坂制御を軽減でき、あるいは不要にすることが可能になる。
【0078】
また、この発明に係る制御装置では、複数方向の加速度に基づいて車両1の走行特性を変化させるにあたり、加速度の発生の程度あるいはその加速度の大きさ、もしくは運転者が抱く運転感覚や挙動に対する影響が、加速度の方向に応じて異なる場合がある。そこでこの発明に係る制御装置では、そのことを考慮して、所定の方向の加速度に基づく走行特性の変化の程度(言い換えれば、走行特性の反映の仕方)を他の方向の加速度とは異ならせたので、複数方向の加速度に基づく走行特性の変更をより的確に行うことが可能になる。
【0079】
なお、上記の具体例では、車両1が走行を開始すると、前後左右いずれかの方向の加速度が生じ、それに応じて指示SPIが増大する。これに対して、指示SPIの低下は相対的に遅延させられるから、指示SPIおよびそれに伴う要求最大加速度率は、走行開始後の経過時間や走行距離に従って増大し、いわゆるスポーティ度を増すことができる。
【0080】
また、車両1の走行特性に影響を与え、また走行特性を決める要因は、上述した変速比を制御することによる加速性だけではなく、アクセル操作に対するエンジントルクの出力特性、操舵角あるいは操舵力に対する前輪2の転舵角の関係である操舵特性、懸架装置4による振動の減衰特性あるいはそのばね定数、四輪駆動車における前輪と後輪とに対するトルク配分率に基づく回頭性(旋回性)などがある。この発明に係る制御装置は、これらの各特性を、加速度から求められる指標に基づいて変更するように構成することができる。その例を挙げると、前述した指示SPIに合わせて、エンジン8の出力応答性を適正にし、すなわちスロットル開度の増大割合を適正にし、また操舵装置15のアシスト機構18によるアシストトルクを適正にしていわゆるダイレクト感を適正にし、さらに操舵装置15におけるギヤ比を適正にして、また後輪3に対するトルク配分量を適正にして回頭性を適正にする。このような各特性を変更する制御は、それぞれの機構に設けられているアクチュエータの出力特性を変更することにより行うことができる。
【0081】
さらに、この発明に係る制御装置は、車両1の加速特性あるいは動力特性を変更する場合以外に、車両1の走行特性の一つである操舵特性や懸架特性などを変更する場合にも使用することができる。図14はその操舵特性を上述した指示SPIに基づいて変更する制御を説明するためのブロック線図であり、例えば、可変歯車比ステアリングギヤ(VGRSギヤ)を用いた電動パワーステアリング機構(EPS)を模式的に示している。操舵力を受けて車両1の幅方向(横方向)に前後動するラック30が設けられ、このラック30にはVGRSギヤユニット31のギヤが噛み合っている。その歯車比を変更するためのVGRSアクチュエータ32が、VGRSギヤユニット31に付設されている。また、操舵された方向へのラック30の移動を補助(アシスト)するEPSギヤモータ33が設けられている。さらに、VGRSアクチュエータ32に指令信号を出力してラック30とVGRSギヤユニット31との間の歯車比を変更するギヤ比演算部34と、上記のEPSギヤモータ33が出力するべきトルク(ラック30に与える推力)を演算して指令信号として出力するアシストトルク演算部35とが設けられている。これら、伝動パワーステアリング機構や各演算部は、従来知られている構成のものを使用することができる。
【0082】
上記の各演算部34,35には、車速、操舵角、操舵トルクの検出値がデータとして入力されている。これらのデータは、それぞれに応じて設けられている各種センサから得ることができる。これに加えて、ギヤ比演算部34には、補正ギヤ比がデータとして入力されている。この補正ギヤ比は、上記のVGRSアクチュエータ32に対する指令信号を補正するためのギヤ比であり、前述した指示SPIに応じた値に設定するように構成されている。具体的には、指示SPIに対応する補正ギヤ比を定めたマップを予め用意し、そのマップによって補正ギヤ比を求めればよい。その指示SPIと補正ギヤ比との関係は必要に応じて適宜に決めておくことができる。
【0083】
一方、アシストトルク演算部35には、上記の車速、操舵角ならびに操舵トルクに加えて、補正アシストトルクがデータとして入力される。この補正アシストトルクは、上記のEPSギヤモータ33に対する指令信号を補正するためのトルクであり、前述した指示SPIに応じた値に設定するように構成されている。具体的には、指示SPIに対応する補正アシストトルクを定めたマップを予め用意し、そのマップによってアシストトルクを求めればよい。その指示SPIと補正アシストトルクとの関係は必要に応じて適宜に決めておくことができる。
【0084】
したがって、この図14に示すように構成した場合には、車両1に生じている加速度に基づいて求められる指示SPIの大小に応じて、VGRSユニット31における歯車比が変更され、また操舵力をアシストするトルクが変更される。
【0085】
また、図15に示す例は、懸架特性を上述した指示SPIに基づいて変更する制御の例であって、可変型の懸架機構(図示せず)による車高長、および振動の減衰係数、ならびにばね定数を制御するように構成した例である。図15において、これら車高長、および振動の減衰係数、ならびにばね定数の要求値を演算する演算部40が設けられている。この演算部40は、一例としてマイクロコンピュータを主体として構成され、入力されたデータおよび予め記憶しているデータを使用して演算を行うことにより、要求車高長、および要求減衰係数、ならびに要求ばね定数を求めるように構成されている。そのデータの例を挙げると、車速、右前輪(FR)ハイトコントロールセンサの検出信号、左前輪(FL)ハイトコントロールセンサの検出信号、右後輪(RR)ハイトコントロールセンサの検出信号、左後輪(RL)ハイトコントロールセンサの検出信号、右前輪(FR)上下G(加速度)センサの検出信号、左前輪(FL)上下G(加速度)センサの検出信号、右後輪(RR)上下G(加速度)センサの検出信号、左後輪(RL)上下G(加速度)センサの検出信号などがデータとして入力されている。これらは、従来知られている装置と同様である。
【0086】
そして、この図15に示す例では、補正車高長、および補正減衰係数、ならびに補正ばね定数が、懸架特性の制御のためのデータとして入力されている。補正車高長は、上述の指示SPIに応じて車高長を補正するためのデータであり、例えば指示SPIに対応する補正車高長を定めたマップを予め用意し、そのマップによって補正車高長を求めるように構成することができる。
【0087】
また、補正減衰係数は、ショックアブソーバーなどの振動減衰作用を行う装置や機構における減衰係数を補正するためのデータであり、例えば指示SPIに対応する補正減衰係数を定めたマップを予め用意し、そのマップによって補正減衰係数を求めるように構成することができる。
【0088】
補正ばね定数も同様であって、懸架装置4におけるばね定数を補正するためのデータであって、例えば指示SPIに対応する補正ばね定数を定めたマップを予め用意し、そのマップによって補正ばね定数を求めるように構成することができる。補正ばね定数は、指示SPIが大きいほど大きい値とされ、懸架装置4がいわゆる硬い感じの特性に設定される。
【0089】
上記の演算部40は、上述した各データを使用して演算を行い、算出された要求車高長を車高長制御部41に制御指令信号として出力し、指示SPIに応じた車高長に制御するように構成されている。具体的には、指示SPIが相対的に大きい場合には、車高が相対的に低くなるように制御される。また、演算部40は、演算の結果得られた要求減衰係数を減衰係数制御部42に制御指令信号として出力し、指示SPIに応じた減衰係数に制御するように構成されている。具体的には、指示SPIが相対的に大きい場合には、減衰係数が相対的に大きくなるように制御される。さらに、演算部40は、演算の結果得られた要求ばね定数をばね定数制御部43に制御指令信号として出力し、指示SPIに応じた減衰ばね定数に制御するように構成されている。具体的には、指示SPIが相対的に大きい場合には、ばね定数が相対的に大きくなるように制御される。
【0090】
このように、この発明に係る制御装置は、走行特性の一例である懸架特性を瞬時加速度(特に前後加速度Gxおよび横加速度Gy)に基づいて求められる指示SPIなどの制御指標に応じて変化させ、車両1の走行状態に適した懸架特性を設定することができる。その結果、前後および/または左右の加速度が相対的に小さいいわゆる滑らかな走行の場合には、懸架特性がいわゆる軟らかい感じの特性となって乗り心地が向上し、また前後および/または左右の加速度が相対的に大きいいわゆる俊敏な走行が要求されている場合には、懸架特性がいわゆる硬い感じの特性となり、ドライバビリティが向上する。
【0091】
上記のように、この発明に係る制御装置では、走行環境や運転指向を的確に反映させて車両1の走行特性を変更することができ、それにより車両1のドライバビリティを向上させることができる。その一方で、上記のようにして走行環境や運転指向を車両1の挙動制御に反映させるために、車両1の合成加速度に基づいて運転指向を推定する際には、例えば運転者の意図しない運転操作が行われたり、あるいは凹凸の大きい悪路や勾配の急な坂路を走行することなどに起因して車両1の合成加速度が瞬間的もしくは一時的に変化したりすると、その合成加速度の変化分がいわゆるノイズ成分として取り込まれてしまう場合がある。その結果、運転者の意向に沿った運転指向を精度良く推定すること、すなわち上述したような指示SPIを適切に設定することができなくなる可能性がある。そこで、この発明に係る制御装置は、指示SPIを設定するための瞬時SPIを求める際に、特に、運転者の意図しない運転操作に起因するノイズ成分を除去するために、加速度のセンサ値あるいはセンサ値を基に正規化処理した演算値にフィルタ処理を施し、そのフィルタ処理された合成加速度に基づいて瞬時SPIを算出するように構成されている。
【0092】
具体的には、図1,図2のブロック線図に示すように、先ず、アクセルペダル12の操作量(アクセル開度)に基づいて、後述のフィルタ処理の際に基準となるいわゆる静的な前後方向の加速度として、基準加速度Gxaccが算出される(ブロックB31)。同様に、ブレーキペダル7の操作量(ブレーキ開度)に基づいて、後述のフィルタ処理の際に基準となるいわゆる静的な前後方向の減速度(すなわち負の加速度)として、基準減速度Gxdecが算出される(ブロックB32)。
【0093】
なお、ここで算出される基準加速度Gxaccおよび基準減速度Gxdecの少なくともいずれか一方は、前述したような正規化処理されたものを用いることが好ましい。すなわち、前述したように、一般的な車両では加速側の加速度に対して減速側の加速度(すなわち減速度)の方が大きくなる。したがって、ここでは、基準加速度Gxaccに対して、その値を大きくするように補正する正規化処理が行われる。
【0094】
算出された基準加速度Gxaccおよび基準減速度Gxdecのそれぞれに対して、フィルタ処理が施される。すなわち、基準加速度Gxaccに対しては、例えば、下記の伝達関数
f(s)=1/(1+s・T21)
で表されるローパスフィルタによるフィルタ処理が施される(ブロックB33)。ここで、T21は、運転者によるアクセル操作に対するエンジン8の応答遅れなどのエンジン8の応答特性を考慮して予め定めた時定数であり、例えば図4に示すような、エンジン8の回転数に応じて設定した時定数T21を示すマップから求めることもできる。
【0095】
また、基準減速度Gxdecに対しては、例えば、下記の伝達関数
f(s)=1/(1+s・T22)
で表されるローパスフィルタによるフィルタ処理が施される(ブロックB34)。ここで、T22は、運転者によるブレーキペダル操作に対するブレーキ装置の応答遅れなどのブレーキ装置の応答特性を考慮して予め定めた時定数である。
【0096】
前述したように、運転者による急激なアクセル操作やブレーキ操作が行われると、基準加速度Gxaccおよび基準減速度Gxdecに、瞬間的もしくは一時的に大きな変動成分、すなわち相対的に高周波数の変動成分であるノイズが生じる。それに対して、上記のように、基準加速度Gxaccおよび基準減速度Gxdecにローパスフィルタ(言い換えると、ハイカットフィルタ)によるフィルタ処理を行うことにより、運転者の荒いアクセル操作やブレーキ操作などに起因して生じる前後加速度における高周波数のノイズ成分を除去することができる。
【0097】
そして、上記のようにしてそれぞれフィルタ処理された加速度と減速度とから、前後加速度の仮目標値Gxが算出される(ブロックB35)。すなわち、
Gx=Gxacc−Gxdec
で示すように、基準加速度Gxaccのフィルタ処理値から基準減速度Gxdecのフィルタ処理値が減算されて、前後加速度の仮目標値Gxが算出される。
【0098】
一方、ステアリングホイール16の操舵角度に基づいて、フィルタ処理の際に基準となるいわゆる静的な横方向の加速度として、基準横加速度Gyyawが算出される(ブロックB36)。この基準横加速度Gyyawは、例えば、
Gyyaw=Gδ(0)・(1+T・s)/(1+2・ζ・s/ω+s/ω) …(2)
で算出される。
【0099】
上記の(2)式において、ωは車両1の二次振動系における固有振動数、ζは減衰係数、Gδ(0)は周波数伝達関数、Tは時定数を示しており、ここで、車両1の慣性質量をm、ヨー慣性半径をk、車速をV、ホイールベースをl、車両重心点と前輪車軸との間の距離をl、車両重心点と前輪車軸との間の距離をl、前輪2のコーナリングパワーをK、後輪3のコーナリングパワーをK、車両1の操縦安定性を示すスタビリティファクタをAとすると、上記の固有振動数ωは、
ω={2・(K+K)/(m・V)}・(l・l/k)1/2・(1+A・V)1/2
となり、また減衰係数ζは、
ζ={1+k/(l・l)}/[2・{k/(l・l)}1/2・(1+A・V)1/2]
となり、さらに周波数伝達関数Gδ(0)は、
δ(0)={1/(1+A・V)}・V/l
となり、そして時定数Tは、
=m・l・V/(2・l・K)
となる。
【0100】
そして、上記の(2)式により算出した基準横加速度Gyyawに対して、例えば、下記の伝達関数
f(s)=1/(1+s・T23)
で表されるローパスフィルタによるフィルタ処理が施され(ブロックB37)、そのフィルタ処理された横方向の加速度が、横加速度の仮目標値Gyとして設定される。ここで、T23は、運転者によるステアリング操作に対する操舵装置15の応答遅れなどの操舵装置15の応答特性を考慮して予め定めた時定数である。
【0101】
上述の基準加速度Gxaccおよび基準減速度Gxdecの場合と同様に、運転者の意図しないステアリング操作が行われると、基準横加速度Gyyawに、瞬間的もしくは一時的に大きな変動成分、すなわち相対的に高周波数の変動成分であるノイズが生じる。それに対して、上記のように、基準横加速度Gyyawにローパスフィルタ(言い換えると、ハイカットフィルタ)によるフィルタ処理を行うことにより、運転者の意図しないステアリング操作などに起因して生じる横加速度における高周波数のノイズ成分を除去することができる。
【0102】
このようにして前後加速度の仮目標値Gxおよび横加速度の仮目標値Gyが求められると、それら前後加速度の仮目標値Gxおよび横加速度の仮目標値Gyのそれぞれに対して、更にフィルタ処理を行うことにより、前後加速度の目標値Gxfiltおよび横加速度の目標値Gyfiltが求められる。
【0103】
すなわち、図2に続けて示すように、前後加速度の目標値Gxfiltに対して、更に、下記の伝達関数
f(s)=1/(1+s・T24)
で表されるローパスフィルタによるフィルタ処理が施され(ブロックB38)、そのフィルタ処理された前後加速度が、前後加速度の目標値Gxfiltとして設定される。ここで、T24は、車両1のピッチング方向の挙動に対するピッチング共振周波数を考慮して予め定めた時定数である。
【0104】
一方、横加速度の仮目標値Gyに対して、更に、下記の伝達関数
f(s)=1/(1+s・T25)
で表されるローパスフィルタによるフィルタ処理が施され(ブロックB39)、そのフィルタ処理された横加速度が、横加速度の目標値Gyfiltとして設定される。ここで、T25は、車両1のローリング方向の挙動に対するローリング共振周波数を考慮して予め定めた時定数である。
【0105】
車両1には、車両1の車体剛性や懸架装置4の減衰特性、あるいは操舵装置15の応答特性などに応じた車両1に特有の、ピッチング方向およびローリング方向における共振周波数が存在する。前述したように、スポーツモードでの走行時には、懸架装置4の特性が硬めに設定され、また操舵装置15の応答性が高められる。そのため、例えば運転者の意図しないアクセル操作やブレーキ操作、あるいはステアリング操作が行われると、ピッチング方向あるいはローリング方向における共振がノイズ成分となって、車両1の前後加速度あるいは横加速度において、相対的に高い周波数帯で発生する。それに対して、上記のように、前後加速度および横加速度の仮目標値Gx,Gyに、ピッチング共振周波数およびローリング共振周波数を考慮したローパスフィルタ(言い換えると、ハイカットフィルタ)によるフィルタ処理を行うことにより、スポーツモードでの走行時における高周波数のノイズ成分を除去することができる。
【0106】
そして、上記のようにして求められた前後加速度の目標値Gxfiltと横加速度の目標値Gyfiltとから、この発明における瞬時SPIが算出される(ブロックB40)。具体的には、前述の(1)式における前後加速度Gxと横加速度Gyとに、それぞれ、上記の前後加速度の目標値Gxfiltと横加速度の目標値Gyfiltとを代入することにより、瞬時SPIを求めることができる。すなわち、瞬時SPIが
瞬時SPI=(Gxfilt+Gyfilt)1/2 …(3)
で算出される。そしてその後、上記のようなフィルタリングによりノイズ成分が除去された各加速度の目標値Gxfilt,Gyfiltから算出された瞬時SPIに基づいて、前述した内容と同様に、この発明における指示SPIが求められる。
【0107】
次に、走行中の路面状態が変化することに起因して車両1の加速度が瞬間的もしくは一時的に変化したりして加速度の変化分がノイズ成分として取り込まれてしまう場合への対策としてのノイズ成分除去について説明する。前述の如く、この発明に係る制御装置では、走行環境や運転指向を的確に反映させて車両1の走行特性を変更することができ、それにより車両1のドライバビリティを向上させることができる。その一方で、上記のようにして走行環境や運転指向を車両1の挙動制御に反映させるために、車両1の加速度に基づいて運転指向を推定する際には、凹凸の大きい悪路や勾配の急な坂路を走行することなどに起因して車両1の加速度が瞬間的もしくは一時的に変化すると、その加速度の変化分がいわゆるノイズ成分として取り込まれてしまう場合がある。その結果、運転者の意向に沿った運転指向を精度良く推定すること、すなわち上述したような指示SPIを適切に設定することができなくなる可能性がある。そこで、以下に説明する制御装置では、指示SPIを設定するための瞬時SPIを求める際に、特に、走行中の路面状態が変化することに起因して発生するノイズ成分を除去するために、加速度センサ26,27や車輪速センサ19の出力値から求めた加速度等の車両1の運動を示す車両パラメータに特定の周波数帯のノイズを除去するバンドパスフィルタによるフィルタ処理を施し、そのフィルタ処理された車両パラメータに基づいて瞬時SPIを算出するように構成される。
【0108】
具体的には、図3のブロック線図に示すように、先ず、車輪速センサ19の出力値の微分値dvxが演算され、そして、その微分値dvxに対してフィルタ処理が施される(ブロックB41)。具体的には、微分値dvxに対して、例えば下記の伝達関数
f(s)=1/(1+s・T)
で表されるローパスフィルタによるフィルタ処理が施される。ここで、Tは、例えば図16に示すエンジン8の出力軸から後輪3までの駆動系統における動力伝達特性などを考慮して予め定めた時定数である。
【0109】
また、前後加速度センサ26の出力値Gxsensが求められ、その出力値Gxsensに対してフィルタ処理が施される(ブロックB42)。具体的には、前後加速度センサ26の出力値Gxsensに対して、例えば下記の伝達関数
f(s)=T/(1+s・T)
で表されるハイパスフィルタによるフィルタ処理が施される。
【0110】
前述したように、車両1には前後加速度センサ26が装備されており、その前後加速度センサ26の出力値から車両1の前後加速度を求めることができる。車両1が坂路を走行する場合には、車両1が平坦路を走行していた場合と比較して、前後加速度の低周波数の変動成分が生じる。
【0111】
したがって、前後加速度センサ26の出力値をそのまま車両1の前後加速度として採用すると、上記の場合のように、車両1が走行する路面の勾配によっては、通常は想定していない前後加速度の低周波数の変動成分が、いわゆるノイズ成分として発生する場合がある。それに対して、上記のように前後加速度センサ26の出力値Gxsensをハイパスフィルタ(言い換えると、ローカットフィルタ)に通すことにより、出力値Gxsensの特定の低周波数帯の変動成分をノイズとして除去することができる。なお、ハイパスフィルタによってノイズを除去する特定の低周波数帯は、例えば、傾斜角センサ36により検出した路面勾配の大きさに応じて適宜設定するようにしてもよい。
【0112】
上記のようにしてそれぞれフィルタ処理された車輪速センサ19の出力値の微分値dvxと前後加速度センサ26の出力値Gxsensとから、前後加速度の仮目標値Gxが算出される(ブロックB43)。すなわち、
Gx=dvx+Gxsens
で示すように、車輪速センサ19出力値の微分値dvxのフィルタ処理値dvxと、前後加速度センサ26の出力値Gxsensのフィルタ処理値Gxsensとが加算されて、前後加速度の仮目標値Gxが算出される。このようにして微分値dvxのフィルタ処理値dvxと出力値Gxsensのフィルタ処理値Gxsensとを加算することにより、微分値dvxと出力値Gxsensとの間のゲインおよび位相のずれを補償することができる。
【0113】
そして、上記のようにして算出された前後加速度の仮目標値Gxに対して、更にフィルタ処理が施される(ブロックB44)。具体的には、前後加速度の仮目標値Gxに対して、例えば下記の伝達関数
f(s)=1/(1+s・T)
で表されるローパスフィルタによるフィルタ処理が施され、そのフィルタ処理された前後加速度が、前後加速度の目標値Gxfiltとして設定される。ここで、Tは、走行路面の凹凸によるノイズや、前後加速度センサ26の出力値Gxsensに含まれるノイズを考慮して予め定めた時定数である。
【0114】
すなわち、前述したように、車両1が走行する路面の凹凸が大きい場合には、車両1の加速度が瞬間的もしくは一時的に変動し、その変動成分が高周波数のノイズ成分として取り込まれてしまう場合がある。また、前後加速度センサ26の出力値Gxsensにセンサの構成上不可避的に含まれるノイズ成分が取り込まれてしまう場合がある。それに対して、上記のように微分値dvxのフィルタ処理値dvxと出力値Gxsensのフィルタ処理値Gxsensとから算出された前後加速度の仮目標値Gxを更にローパスフィルタ(言い換えると、ハイカットフィルタ)に通すことにより、前後加速度の仮目標値Gxの特定の高周波数帯の変動成分をノイズとして除去することができる。
【0115】
一方、横加速度センサ27の出力値Gysensが求められ、その出力値Gysensに対してフィルタ処理が施される(ブロックB45)。具体的には、横加速度センサ27の出力値Gysensに対して、例えば下記の伝達関数
f(s)=1/(1+s・T)
で表されるローパスフィルタによるフィルタ処理が施され、そのフィルタ処理された横加速度が、横加速度の目標値Gyfiltとして設定される。ここで、Tは、横加速度センサ27の出力値Gysensに含まれるノイズを考慮して予め定めた時定数である。
【0116】
すなわち、上述した前後加速度センサ26の出力値Gxsensの場合と同様に、横加速度センサ27の出力値Gysensにセンサの構成上、不可避的に含まれる高周波数のノイズ成分が取り込まれてしまう場合がある。それに対して、上記のように横加速度センサ27の出力値Gysensをローパスフィルタ(言い換えると、ハイカットフィルタ)に通すことにより、横加速度センサ27の出力値Gysensの特定の高周波数帯の変動成分をノイズとして除去することができる。
【0117】
そして、上記のようにして求められた前後加速度の目標値Gxfiltと横加速度の目標値Gyfiltとから、この発明における瞬時SPIが算出される(ブロックB46)。具体的には、前述の(1)式における前後加速度Gxと横加速度Gyとに、それぞれ、上記の前後加速度の目標値Gxfiltと横加速度の目標値Gyfiltとを代入することにより、瞬時SPIを求めることができる。すなわち、瞬時SPIが
瞬時SPI=(Gxfilt+Gyfilt)1/2 …(4)
で算出される。そしてその後、上記のようなフィルタリングによりノイズ成分が除去された各加速度の目標値Gxfilt,Gyfiltから算出された瞬時SPIに基づいて、前述した内容と同様に、この発明における指示SPIが求められる。
【0118】
以上説明してきたフィルタ処理は、種々の様態を採ることが可能である。例えば、加速度成分のうち横加速度成分に対するフィルタと、前後加速度成分に対するフィルタとは同程度の強さのフィルタ特性であっても良いし、異ならせても良い。ここで、フィルタの強さとは、処理により入力信号のうち波形成分を低減する程度をいい、フィルタが強いほど、出力信号の波形がフラットに近づくように入力信号が処理される。例えば、横加速度成分に対するフィルタ特性が、前後加速度成分に対するフィルタ特性よりも強くする構成を採っても良い。このような構成によれば、前後方向よりも横方向のノイズ成分が大きい走行環境下で有効に機能する。また、前後加速度成分については、制動方向の加速度成分のフィルタ特性を、加速側(進行方向に正)の加速度成分のフィルタ特性よりも強くしても良い。このような構成によれば、ブレーキの制御応答性が、駆動源の制御応答性よりも敏感な車両において有効に機能する。
【0119】
また、指示SPIの生成に用いる加速度のフィルタは、加速度を用いる他の制御と共通のフィルタを用いても良いし、異ならせても良い。例えば、ABSや、トラクションコントロール制御(スリップ抑制制御)、横滑り抑制制御(例えばVSC)等の他の制御においても加速度を用いるが、それらの制御で利用する第1のフィルタよりも強いフィルタ特性の第2のフィルタによって処理された加速度にて指示SPIを生成しても良い。ここで、フィルタ特性は強ければ応答遅れが出るという特性を有するが、上記構成によれば、スポーツ度に適したノイズ除去機能と、他の制御で必要とされるノイズ除去機能や応答性等との両立を好適に図ることができる。なお、指示SPIの生成に当たり、第2のフィルタ処理に先立って、第1のフィルタによって処理することとしても良い。
【0120】
また、フィルタは、速度に拘わらず同じフィルタを用いても良いし、速度域に応じて異なるフィルタ特性のフィルタを用いても良い。例えば、低速域ほど強いフィルタ特性を用いることとしても良い。このような構成によれば、荒い運転や路面の影響が出易い発進から低速域で好適に制御できる。
【0121】
以上のように、この発明に係る制御装置によれば、車両1の走行状態を示す指標として求められる指示SPIが、車両1の加速性を増大させる方向には、低下させる方向よりも相対的に速く変化させられる。指示SPIによって車両1の挙動制御に的確に反映させることができる。
【0122】
また、この発明に係る制御装置によれば、車両1の車両パラメータ、例えば、車両1の複数方向の加速度、具体的には車両1の前後加速度と横加速度とに基づいて、上記の指示SPIが求められ、車両1の挙動制御に反映させられる。より具体的には、エンジン8の出力を制御するアクチュエータ、変速機13の変速制御を実行させるアクチュエータ、懸架装置4の動作を制御するアクチュエータ、操舵装置15の動作を制御するアクチュエータ等の動作状態あるいは動作特性が、車両1の前後加速度および横加速度に基づいて変化させられて、車両1の走行特性が変更される。
【0123】
車両1は前後加速度のみを受けて走行しているわけではなく、横加速度や旋回方向の加速度などを受けて走行しているので、車両1の車両パラメータとして、これらの複数方向の合成加速度を上記の指示SPIに反映させることにより、その指示SPIを、車両1の実際の挙動をより良く反映したものとすることができる。そのため、車両1の実際の挙動をより良く反映して走行特性を設定することができる。
【0124】
さらに、この発明に係る制御装置によれば、車両1の車両パラメータ、例えば、車両1の前後加速度と横加速度とに基づいて指示SPIを求める際に、それら前後加速度および横加速度の変動成分が減衰させられる。具体的には、例えば運転者の意図しない運転操作などに起因して発生する一時的もしくは瞬間的に大きな加速度の変動成分、すなわちノイズとなる高周波数の加速度の変動成分が、ローパスフィルタによって除去される。また、例えば路面の凹凸が大きくなったり、あるいは平坦路から急勾配の坂路に差し掛かったりするなどの走行路面の状態が変化することに起因して発生する一時的もしくは瞬間的に大きな加速度の変動成分、すなわち、ノイズとなる特定の周波数帯の変動成分が、ローパスフィルタおよび/またはハイパスフィルタによって除去される。そのため、運転者の意図しない加速度の変化が指示SPIの決定に影響してしまうことを適切に抑制することができる。その結果、指示SPIを、車両1の実際の挙動をより的確に反映したものとすることができる。
【0125】
なお、この発明における指示SPIは、いわゆる車両の操作特性や走行特性を変更する際のパラメータである。例えば、車両の操作特性には、操作子(例えば、ステアリング、アクセル、ブレーキなど)に対するアクチュエータ(例えば、モータ、エンジン、変速装置、ブレーキ装置、電動パワーステアリング装置など)の制御量や制御速度といった制御特性が含まれる。また車両の走行特性としては、所定の指令値に基づいて制御される走行に関わる個所のアクチュエータ(例えば、アクティブスタビライザやアクティブサスペンションなど)の制御特性が含まれる。また、前述した図6には、指示SPIを増大させる場合、瞬時SPIの新最大値に素早く増大させる例を示してあるが、段階的に増大させてもよく、あるいは、緩やかに増大させる構成でもよい。
【0126】
また、上述したようなこの発明の制御装置による制御と、従来技術とを組み合わせて実施することもできる。例えば、前述した特許文献1に記載されている装置におけるニューロコンピュータやニューラルネットワークなどの従来技術をこの発明の制御技術に適用して、この発明による制御を実施することもできる。
【符号の説明】
【0127】
1…車両、 2…前輪、 3…後輪、 4…懸架装置、 5…ショックアブソーバー、 6…モータ、 7…ブレーキペダル、 8…内燃機関(エンジン)、 10…スロットルバルブ、 11…アクチュエータ、 12…アクセルペダル、 13…変速機、 15…操舵機構、 16…ステアリングホイール、 17…ステアリングリンケージ、 18…アシスト機構、 19…車輪速センサ、 20…アクセル開度センサ、 21…スロットル開度センサ、 22…ブレーキ開度センサ、 23…エンジン回転数センサ、 24…出力回転数センサ、 25…操舵角センサ、 26…前後加速度センサ、 27…横加速度センサ、 28…ヨーレートセンサ、 29…電子制御装置(ECU)、 36…傾斜角センサ。

【特許請求の範囲】
【請求項1】
車両の運動を示す車両パラメータに基づいて該車両の走行状態を示す指標が求められ、該指標に応じて該車両の走行特性を設定する車両の制御装置において、
走行路面の状態に起因して変動する変動成分を減衰させた前記車両パラメータに基づいて前記指標を求めるノイズ除去装置を備えていることを特徴とする車両の制御装置。
【請求項2】
前記車両パラメータは、前記車両の加速度を含むことを特徴とする請求項1に記載の車両の制御装置。
【請求項3】
前記ノイズ除去装置は、前記変動成分の所定周波数のノイズ成分を減衰させる装置を含むことを特徴とする請求項1または2に記載の車両の制御装置。
【請求項4】
前記ノイズ除去装置は、前記変動成分を所定の周波数特性のローパスフィルタを通すことにより、該変動成分の相対的に高周波数帯に属する所定周波数のノイズ成分を減衰させる装置を含むことを特徴とする請求項1ないし3のいずれかに記載の車両の制御装置。
【請求項5】
前記ノイズ除去装置は、前記変動成分を所定の周波数特性のバンドパスフィルタを通すことにより、該変動成分の所定の周波数帯に属する所定周波数のノイズ成分を減衰させる装置を含むことを特徴とする請求項1ないし3のいずれかに記載の車両の制御装置。
【請求項6】
前記ノイズ除去装置においては用いられる前記フィルタは、前記ノイズ除去装置以外の制御に用いられるフィルタとは同じものであることを特徴とする請求項4または5に記載の車両の制御装置。
【請求項7】
前記ノイズ除去装置においては用いられる前記フィルタは、前記ノイズ除去装置以外の制御に用いられるフィルタとは異なるものであることを特徴とする請求項4または5に記載の車両の制御装置。
【請求項8】
前記ノイズ除去装置に用いられる前記フィルタにおいて、前後方向成分用のフィルタの特性と横方向成分用のフィルタの特性とでは異なることを特徴とする請求項4または5に記載の車両の制御装置。
【請求項9】
前記ノイズ除去装置に用いられる前記フィルタにおいて、前記車両の速度域に応じて異なるフィルタの特性とすることを特徴とする請求項4または5に記載の車両の制御装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate

【図14】
image rotate

【図15】
image rotate

【図16】
image rotate


【公開番号】特開2011−207466(P2011−207466A)
【公開日】平成23年10月20日(2011.10.20)
【国際特許分類】
【出願番号】特願2010−182978(P2010−182978)
【出願日】平成22年8月18日(2010.8.18)
【出願人】(000003207)トヨタ自動車株式会社 (59,920)
【Fターム(参考)】