説明

半導体素子基板

【課題】低誘電率特性、低リーク電流特性、および高絶縁破壊電圧特性に優れ、しかも、透明性が高い樹脂膜を備える半導体素子基板を提供すること。
【解決手段】バインダー樹脂(A)、酸性基を有する化合物(B)、架橋剤(C)を含有してなる樹脂組成物からなる樹脂膜を有する半導体素子基板であって、前記架橋剤(C)は、分子量が100〜500であり、かつ、前記架橋剤(C)のSP値をSPとし、SP値が19620(J/CUM)1/2であるアリルグリシジルエーテルのSP値をSPとした場合に、SP−SP=−1900〜5400(J/CUM)1/2の関係にあるSP値を有し、前記バインダー樹脂(A)100重量部に対する、前記架橋剤(C)の含有量が1〜500重量部であり、前記樹脂膜は、前記半導体素子基板に実装されている半導体素子表面、または前記半導体素子に含まれる半導体層と接触して形成されており、該樹脂膜中の無機イオン含有量が1〜1000ppbであることを特徴とする半導体素子基板を提供する。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、半導体素子基板に係り、さらに詳しくは、低誘電率特性、低リーク電流特性、および高絶縁破壊電圧特性に優れ、しかも、透明性が高い樹脂膜を備える半導体素子基板に関する。
【背景技術】
【0002】
有機EL素子や液晶表示素子などの各種表示素子、集積回路素子、固体撮像素子、カラーフィルター、ブラックマトリックス等の電子部品には、その劣化や損傷を防止するための保護膜、素子表面や配線を平坦化するための平坦化膜、電気絶縁性を保つための電気絶縁膜等として種々の樹脂膜が設けられている。また、有機EL素子には、発光体部を分離するために画素分離膜としての樹脂膜が設けられており、さらに、薄膜トランジスタ型液晶用の表示素子や集積回路素子等の素子には、層状に配置される配線の間を絶縁するために層間絶縁膜としての樹脂膜が設けられている。
【0003】
従来、これらの樹脂膜を形成するための樹脂材料としては、エポキシ樹脂等の熱硬化性樹脂材料が汎用されていた。近年においては、配線やデバイスの高密度化に伴い、これらの樹脂材料にも、低誘電性等の電気特性に優れた新しい樹脂材料の開発が求められている。
【0004】
これらの要求に対応するため、例えば、特許文献1には、バインダー樹脂と、脂肪族化合物、芳香族化合物、および複素環化合物からなる群より選ばれる1種の酸性基を有する化合物と、有機溶媒と、ケイ素原子、チタン原子、アルミニウム原子、またはジルコニウム原子に結合したヒドロカルビルオキシ基またはヒドロキシ基を有する化合物と、を含有する樹脂組成物が開示されている。しかしながら、この特許文献1に記載の樹脂組成物を用いて得られる保護膜は、低リーク電流特性が必ずしも十分なでなく、そのため、低リーク電流特性の改善が望まれていた。
【先行技術文献】
【特許文献】
【0005】
【特許文献1】国際公開第2009/133843号
【発明の概要】
【発明が解決しようとする課題】
【0006】
本発明は、低誘電率特性、低リーク電流特性、および高絶縁破壊電圧特性に優れ、しかも、透明性が高い樹脂膜を備える半導体素子基板を提供することを目的とする。
【課題を解決するための手段】
【0007】
本発明者は、上記目的を達成するために鋭意研究した結果、半導体素子基板に実装される半導体素子表面、または半導体素子に含まれる半導体層と接触して用いられる樹脂膜を、バインダー樹脂と、酸性基を有する化合物と、分子量およびSP値が特定の範囲にある架橋剤とを含有する組成物を用いて形成するとともに、樹脂膜中の無機イオン含有量を特定の範囲とすることにより、上記目的を達成できることを見出し、本発明を完成させるに至った。
【0008】
すなわち、本発明によれば、バインダー樹脂(A)、酸性基を有する化合物(B)、架橋剤(C)を含有してなる樹脂組成物からなる樹脂膜を有する半導体素子基板であって、前記架橋剤(C)は、分子量が100〜500であり、かつ、前記架橋剤(C)のSP値をSPとし、SP値が19620(J/CUM)1/2であるアリルグリシジルエーテルのSP値をSPとした場合に、SP−SP=−1900〜5400(J/CUM)1/2の関係にあるSP値を有し、 前記バインダー樹脂(A)100重量部に対する、前記架橋剤(C)の含有量が1〜500重量部であり、前記樹脂膜が、前記半導体素子基板に実装されている半導体素子表面、または前記半導体素子に含まれる半導体層と接触して形成されており、該樹脂膜中の無機イオン含有量が1〜1000ppbであることを特徴とする半導体素子基板が提供される。
【0009】
好ましくは、前記バインダー樹脂(A)が、プロトン性極性基を有する環状オレフィン重合体である。
好ましくは、前記半導体素子基板は、アクティブマトリックス基板または有機EL素子基板である。
【発明の効果】
【0010】
本発明によれば、半導体素子基板に実装される半導体素子表面、または半導体素子に含まれる半導体層と接触して用いられる樹脂膜を、バインダー樹脂と、酸性基を有する化合物と、分子量およびSP値が特定の範囲にある架橋剤とを含有する組成物を用いて形成するとともに、樹脂膜中の無機イオン含有量を特定の範囲とするため、半導体素子基板を、低誘電率特性、低リーク電流特性、および高絶縁破壊電圧特性に優れたものとし、かつ、半導体素子基板に含まれる樹脂膜を、透明性が高いものとすることができ、その結果として、電気特性に優れ、かつ、高性能化が可能な半導体素子基板を提供することができる。
【発明を実施するための形態】
【0011】
本発明の半導体素子基板は、バインダー樹脂(A)、酸性基を有する化合物(B)、後述する特定の分子量およびSP値を有する架橋剤(C)を含有してなる樹脂組成物からなる樹脂膜を有し、前記樹脂膜が、前記半導体素子基板に実装されている半導体素子表面、または前記半導体素子に含まれる半導体層と接触して形成されており、該樹脂膜中の無機イオン含有量が1〜1000ppbであることを特徴とする。
以下においては、まず、本発明で用いる樹脂組成物について説明する。
【0012】
(樹脂組成物)
本発明で用いる樹脂組成物は、本発明の半導体素子基板に実装される半導体素子表面、または半導体素子に含まれる半導体層と接触して形成される樹脂膜を形成するための樹脂組成物であり、バインダー樹脂(A)、酸性基を有する化合物(B)、後述する特定の分子量およびSP値を有する架橋剤(C)を含有する。
【0013】
(バインダー樹脂(A))
本発明で用いるバインダー樹脂(A)としては、特に限定されないが、プロトン性極性基を有する環状オレフィン重合体(A1)、アクリル樹脂(A2)、カルド樹脂(A3)、ポリシロキサン(A4)またはポリイミド(A5)であることが好ましく、これらの中でも、プロトン性極性基を有する環状オレフィン重合体(A1)が特に好ましい。
これらのバインダー樹脂(A)は、それぞれ単独で用いてもよく、または2種以上を併用してもよい。
【0014】
プロトン性極性基を有する環状オレフィン重合体(A1)(以下、単に「環状オレフィン重合体(A1)」とする。)としては、1または2以上の環状オレフィン単量体の重合体、または、1または2以上の環状オレフィン単量体と、これと共重合可能な単量体との共重合体が挙げられるが、本発明においては、環状オレフィン重合体(A1)を形成するための単量体として、少なくともプロトン性極性基を有する環状オレフィン単量体(a)を用いることが好ましい。
【0015】
ここで、プロトン性極性基とは、周期律表第15族又は第16族に属する原子に水素原子が直接結合している原子を含む基をいう。周期律表第15族または第16族に属する原子のなかでも、周期律表第15族または第16族の第1または第2周期に属する原子が好ましく、より好ましくは酸素原子、窒素原子又は硫黄原子であり、特に好ましくは酸素原子である。
【0016】
このようなプロトン性極性基の具体例としては、水酸基、カルボキシ基(ヒドロキシカルボニル基)、スルホン酸基、リン酸基等の酸素原子を有する極性基;第一級アミノ基、第二級アミノ基、第一級アミド基、第二級アミド基(イミド基)等の窒素原子を有する極性基;チオール基等の硫黄原子を有する極性基;等が挙げられる。これらの中でも、酸素原子を有するものが好ましく、より好ましくはカルボキシ基である。
本発明において、プロトン性極性基を有する環状オレフィン樹脂に結合しているプロトン性極性基の数に特に限定はなく、また、相異なる種類のプロトン性極性基が含まれていてもよい。
【0017】
プロトン性極性基を有する環状オレフィン単量体(a)(以下、適宜、「単量体(a)」という。)の具体例としては、5−ヒドロキシカルボニルビシクロ[2.2.1]ヘプト−2−エン、5−メチル−5−ヒドロキシカルボニルビシクロ[2.2.1]ヘプト−2−エン、5−カルボキシメチル−5−ヒドロキシカルボニルビシクロ[2.2.1]ヘプト−2−エン、5,6−ジヒドロキシカルボニルビシクロ[2.2.1]ヘプト−2−エン、8−ヒドロキシカルボニルテトラシクロ[4.4.0.12,5.17,10]ドデカ−3−エン、9−ヒドロキシカルボニルテトラシクロ[6.2.1.13,6.02,7]ドデカ−4−エン、9−メチル−9−ヒドロキシカルボニルテトラシクロ[6.2.1.13,6.02,7]ドデカ−4−エン、9,10−ジヒドロキシカルボニルテトラシクロ[6.2.1.13,6.02,7]ドデカ−4−エン等のカルボキシ基含有環状オレフィン;5−(4−ヒドロキシフェニル)ビシクロ[2.2.1]ヘプト−2−エン、5−メチル−5−(4−ヒドロキシフェニル)ビシクロ[2.2.1]ヘプト−2−エン、9−(4−ヒドロキシフェニル)テトラシクロ[6.2.1.13,6.02,7]ドデカ−4−エン、9−メチル−9−(4−ヒドロキシフェニル)テトラシクロ[6.2.1.13,6.02,7]ドデカ−4−エン等の水酸基含有環状オレフィン等が挙げられる。これらのなかでも、得られる樹脂膜の密着性が高くなるという点より、カルボキシ基含有環状オレフィンが好ましく、8−ヒドロキシカルボニルテトラシクロ[4.4.0.12,5.17,10]ドデカ−3−エンが特に好ましい。これら単量体(a)は、それぞれ単独で用いてもよく、2種以上を組み合わせて用いてもよい。
【0018】
環状オレフィン重合体(A1)中における、単量体(a)の単位の含有割合は、全単量体単位に対して、好ましくは10〜90モル%である。単量体(a)の単位の含有割合が少なすぎると、感放射線性化合物を添加した際における、感放射線性が不十分となったり、現像時に溶解残渣が発生するおそれがあり、多すぎると、環状オレフィン重合体(A1)の極性溶剤への溶解性が不十分となるおそれがある。
【0019】
なお、単量体(a)の単位の含有割合のより好ましい範囲は、本発明で用いる樹脂組成物により構成する樹脂膜の種類により異なる。具体的には、該樹脂膜が、アクティブマトリックス基板の保護膜や有機EL素子基板の封止膜である場合など、フォトリソグラフィによるパターン化が行なわれる樹脂膜である場合には、単量体(a)の単位の含有割合は、40〜70モル%であることがより好ましく、50〜60モル%であることが特に好ましい。一方、樹脂膜が、アクティブマトリックス基板のゲート絶縁膜や有機EL素子基板の画素分離膜である場合など、フォトリソグラフィによるパターン化が行なわれない樹脂膜である場合には、単量体(a)の単位の含有割合は、20〜80モル%であることがより好ましく、30〜70モル%であることが特に好ましい。
【0020】
また、本発明で用いる環状オレフィン重合体(A1)は、プロトン性極性基を有する環状オレフィン単量体(a)と、これと共重合可能な単量体(b)とを共重合して得られる共重合体であってもよい。このような共重合可能な単量体としては、プロトン性極性基以外の極性基を有する環状オレフィン単量体(b1)、極性基を持たない環状オレフィン単量体(b2)、および環状オレフィン以外の単量体(b3)(以下、適宜、「単量体(b1)」、「単量体(b2)」、「単量体(b3)」という。)が挙げられる。
【0021】
プロトン性極性基以外の極性基を有する環状オレフィン単量体(b1)としては、たとえば、N−置換イミド基、エステル基、シアノ基またはハロゲン原子を有する環状オレフィンが挙げられる。
【0022】
N−置換イミド基を有する環状オレフィンとしては、たとえば、下記式(1)で表される単量体、または下記式(2)で表される単量体が挙げられる。
【化1】

(上記式(1)中、Rは炭素数5〜16の分岐状アルキル基またはフェニル基を表す。)
【化2】

(上記式(2)中、Rは炭素数1〜3の2価のアルキレン基、Rは、炭素数1〜10の1価のアルキル基、または、炭素数1〜10の1価のハロゲン化アルキル基を表す。)
【0023】
上記式(1)中において、Rは炭素数5〜16の分岐状アルキル基又はフェニル基であり、炭素数5〜16の分岐状アルキル基としては、例えば、1−メチルブチル基、2−メチルブチル基、1−メチルペンチル基、1−エチルブチル基、2−メチルヘキシル基、2−エチルヘキシル基、4−メチルヘプチル基、1−メチルノニル基、1−メチルトリデシル基、1−メチルテトラデシル基などが挙げられる。これらの中でも、耐熱性および極性溶剤への溶解性により優れることから、炭素数6〜14の分岐状アルキル基が好ましく、炭素数7〜10の分岐状アルキル基がより好ましい。炭素数が4以下であると極性溶剤への溶解性に劣り、炭素数が17以上であると耐熱性に劣り、さらに樹脂膜をパターン化した場合に、熱により溶融しパターンを消失してしまうという問題がある。
【0024】
上記式(1)で表される単量体の具体例としては、N−フェニル−ビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド、N−(1−メチルブチル)−ビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド、N−(2−メチルブチル)−ビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド、N−(1−メチルペンチル)−ビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド、N−(2−メチルペンチル)−ビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド、N−(1−エチルブチル)−ビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド、N−(2−エチルブチル)−ビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド、N−(1−メチルヘキシル)−ビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド、N−(2−メチルヘキシル)−ビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド、N−(3−メチルヘキシル)−ビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド、N−(1−ブチルペンチル)−ビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド、N−(2−ブチルペンチル)−ビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド、N−(1−メチルヘプチル)−ビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド、N−(2−メチルヘプチル)−ビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド、N−(3−メチルヘプチル)−ビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド、N−(4−メチルヘプチル)−ビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド、N−(1−エチルヘキシル)−ビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド、N−(2−エチルヘキシル)−ビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド、N−(3−エチルヘキシル)−ビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド、N−(1−プロピルペンチル)−ビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド、N−(2−プロピルペンチル)−ビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド、N−(1−メチルオクチル)−ビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド、N−(2−メチルオクチル)−ビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド、N−(3−メチルオクチル)−ビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド、N−(4−メチルオクチル)−ビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド、N−(1−エチルヘプチル)−ビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド、N−(2−エチルヘプチル)−ビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド、N−(3−エチルヘプチル)−ビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド、N−(4−エチルヘプチル)−ビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド、N−(1−プロピルヘキシル)−ビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド、N−(2−プロピルヘキシル)−ビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド、N−(3−プロピルヘキシル)−ビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド、N−(1−メチルノニル)−ビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド、N−(2−メチルノニル)−ビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド、N−(3−メチルノニル)−ビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド、N−(4−メチルノニル)−ビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド、N−(5−メチルノニル)−ビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド、N−(1−エチルオクチル)−ビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド、N−(2−エチルオクチル)−ビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド、N−(3−エチルオクチル)−ビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド、N−(4−エチルオクチル)−ビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド、N−(1−メチルデシル)−ビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド、N−(1−メチルドデシル)−ビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド、N−(1−メチルウンデシル)−ビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド、N−(1−メチルドデシル)−ビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド、N−(1−メチルトリデシル)−ビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド、N−(1−メチルテトラデシル)−ビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド、N−(1−メチルペンタデシル)−ビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド、等が挙げられる。なお、これらはそれぞれ単独で用いてもよく、2種以上を組み合わせて用いてもよい。
【0025】
一方、上記式(2)において、Rは炭素数1〜3の2価のアルキレン基であり、炭素数1〜3の2価のアルキレン基としては、メチレン基、エチレン基、プロピレン基およびイソプロピレン基が挙げられる。これらの中でも、重合活性が良好であるため、メチレン基およびエチレン基が好ましい。
【0026】
また、上記式(2)において、Rは、炭素数1〜10の1価のアルキル基、または、炭素数1〜10の1価のハロゲン化アルキル基である。炭素数1〜10の1価のアルキル基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、sec−ブチル基、tert−ブチル基、ヘキシル基およびシクロヘキシル基などが挙げられる。炭素数1〜10の1価のハロゲン化アルキル基としては、例えば、フルオロメチル基、クロロメチル基、ブロモメチル基、ジフルオロメチル基、ジクロロメチル基、ジフルオロメチル基、トリフルオロメチル基、トリクロロメチル基、2,2,2−トリフルオロエチル基、ペンタフルオロエチル基、ヘプタフルオロプロピル基、パーフルオロブチル基およびパーフルオロペンチル基などが挙げられる。これら中でも、極性溶剤への溶解性に優れるため、Rとしては、メチル基およびエチル基が好ましい。
【0027】
なお、上記式(1)、(2)で表される単量体は、たとえば、対応するアミンと、5−ノルボルネン−2,3−ジカルボン酸無水物とのアミド化反応により得ることができる。また、得られた単量体は、アミド化反応の反応液を公知の方法で分離・精製することにより効率よく単離できる。
【0028】
エステル基を有する環状オレフィンとしては、例えば、5−アセトキシビシクロ[2.2.1]ヘプト−2−エン、5−メトキシカルボニルビシクロ[2.2.1]ヘプト−2−エン、5−メチル−5−メトキシカルボニルビシクロ[2.2.1]ヘプト−2−エン、9−アセトキシテトラシクロ[6.2.1.13,6.02,7]ドデカ−4−エン、9−メトキシカルボニルテトラシクロ[6.2.1.13,6.02,7]ドデカ−4−エン、9−エトキシカルボニルテトラシクロ[6.2.1.13,6.02,7]ドデカ−4−エン、9−n−プロポキシカルボニルテトラシクロ[6.2.1.13,6.02,7]ドデカ−4−エン、9−イソプロポキシカルボニルテトラシクロ[6.2.1.13,6.02,7]ドデカ−4−エン、9−n−ブトキシカルボニルテトラシクロ[6.2.1.13,6.02,7]ドデカ−4−エン、9−メチル−9−メトキシカルボニルテトラシクロ[6.2.1.13,6.02,7]ドデカ−4−エン、9−メチル−9−エトキシカルボニルテトラシクロ[6.2.1.13,6.02,7]ドデカ−4−エン、9−メチル−9−n−プロポキシカルボニルテトラシクロ[6.2.1.13,6.02,7]ドデカ−4−エン、9−メチル−9−イソプロポキシカルボニルテトラシクロ[6.2.1.13,6.02,7]ドデカ−4−エン、9−メチル−9−n−ブトキシカルボニルテトラシクロ[6.2.1.13,6.02,7]ドデカ−4−エン、9−(2,2,2−トリフルオロエトキシカルボニル)テトラシクロ[6.2.1.13,6.02,7]ドデカ−4−エン、9−メチル−9−(2,2,2−トリフルオロエトキシカルボニル)テトラシクロ[6.2.1.13,6.02,7]ドデカ−4−エン等が挙げられる。
【0029】
シアノ基を有する環状オレフィンとしては、例えば、9−シアノテトラシクロ[6.2.1.13,6.02,7]ドデカ−4−エン、9−メチル−9−シアノテトラシクロ[6.2.1.13,6.02,7]ドデカ−4−エン、5−シアノビシクロ[2.2.1]ヘプト−2−エン等が挙げられる。
【0030】
ハロゲン原子を有する環状オレフィンとしては、例えば、9−クロロテトラシクロ[6.2.1.13,6.02,7]ドデカ−4−エン、9−メチル−9−クロロテトラシクロ[6.2.1.13,6.02,7]ドデカ−4−エン等が挙げられる。
【0031】
これら単量体(b1)は、それぞれ単独で用いてもよく、2種以上を組み合わせて用いてもよい。
【0032】
極性基を持たない環状オレフィン単量体(b2)としては、ビシクロ[2.2.1]ヘプト−2−エン(「ノルボルネン」ともいう。)、5−エチル−ビシクロ[2.2.1]ヘプト−2−エン、5−ブチル−ビシクロ[2.2.1]ヘプト−2−エン、5−エチリデン−ビシクロ[2.2.1]ヘプト−2−エン、5−メチリデン−ビシクロ[2.2.1]ヘプト−2−エン、5−ビニル−ビシクロ[2.2.1]ヘプト−2−エン、トリシクロ[5.2.1.02,6]デカ−3,8−ジエン(慣用名:ジシクロペンタジエン)、テトラシクロ[10.2.1.02,11.04,9]ペンタデカ−4,6,8,13−テトラエン、テトラシクロ[6.2.1.13,6.02,7]ドデカ−4−エン(「テトラシクロドデセン」ともいう。)、9−メチル−テトラシクロ[6.2.1.13,6.02,7]ドデカ−4−エン、9−エチル−テトラシクロ[6.2.1.13,6.02,7]ドデカ−4−エン、9−メチリデン−テトラシクロ[6.2.1.13,6.02,7]ドデカ−4−エン、9−エチリデン−テトラシクロ[6.2.1.13,6.02,7]ドデカ−4−エン、9−ビニル−テトラシクロ[6.2.1.13,6.02,7]ドデカ−4−エン、9−プロペニル−テトラシクロ[6.2.1.13,6.02,7]ドデカ−4−エン、ペンタシクロ[9.2.1.13,9.02,10]ペンタデカ−5,12−ジエン、シクロペンテン、シクロペンタジエン、9−フェニル−テトラシクロ[6.2.1.13,6.02,7]ドデカ−4−エン、テトラシクロ[9.2.1.02,10.03,8]テトラデカ−3,5,7,12−テトラエン、ペンタシクロ[9.2.1.13,9.02,10]ペンタデカ−12−エン等が挙げられる。
これら単量体(b2)は、それぞれ単独で用いてもよく、2種以上を組み合わせて用いてもよい。
【0033】
環状オレフィン以外の単量体(b3)の具体例としては、エチレン;プロピレン、1−ブテン、1−ペンテン、1−ヘキセン、3−メチル−1−ブテン、3−メチル−1−ペンテン、3−エチル−1−ペンテン、4−メチル−1−ペンテン、4−メチル−1−ヘキセン、4,4−ジメチル−1−ヘキセン、4,4−ジメチル−1−ペンテン、4−エチル−1−ヘキセン、3−エチル−1−ヘキセン、1−オクテン、1−デセン、1−ドデセン、1−テトラデセン、1−ヘキサデセン、1−オクタデセン、1−エイコセン等の炭素数2〜20のα−オレフィン;1,4−ヘキサジエン、4−メチル−1,4−ヘキサジエン、5−メチル−1,4−ヘキサジエン、1,7−オクタジエン等の非共役ジエン、及びこれらの誘導体;シクロブテン、シクロペンテン、シクロヘキセン、シクロオクテン、3a,5,6,7a−テトラヒドロ−4,7−メタノ−1H−インデンなどのシクロオレフィン等が挙げられる。これらの中でも、α−オレフィン、特にエチレンが好ましい。
これら単量体(b3)は、それぞれ単独で用いてもよく、2種以上を組み合わせて用いてもよい。
【0034】
これら単量体(b1)〜(b3)のなかでも、本発明の効果がより一層顕著となるという観点より、プロトン性極性基以外の極性基を有する環状オレフィン単量体(b1)が好ましく、N−置換イミド基を有する環状オレフィンが特に好ましい。
【0035】
環状オレフィン重合体(A1)中における、共重合可能な単量体(b)の単位の含有割合は、全単量体単位に対して、好ましくは10〜90モル%である。共重合可能な単量体(b)の単位の含有割合が少なすぎると、環状オレフィン重合体(A1)の極性溶剤への溶解性が不十分となるおそれがあり、多すぎると、感放射線性化合物を添加した際における、感放射線性が不十分となったり、現像時に溶解残渣が発生するおそれがある。
【0036】
なお、共重合可能な単量体(b)の単位の含有割合のより好ましい範囲は、本発明で用いる樹脂組成物により構成する樹脂膜の種類により異なる。具体的には、該樹脂膜が、アクティブマトリックス基板の保護膜や有機EL素子基板の封止膜である場合など、フォトリソグラフィによるパターン化が行なわれる樹脂膜である場合には、共重合可能な単量体(b)の単位の含有割合は、30〜60モル%であることがより好ましく、40〜50モル%であることが特に好ましい。一方、樹脂膜が、アクティブマトリックス基板のゲート絶縁膜や有機EL素子基板の画素分離膜である場合など、フォトリソグラフィによるパターン化が行なわれない樹脂膜である場合には、共重合可能な単量体(b)の単位の含有割合は、20〜80モル%であることがより好ましく、30〜70モル%であることが特に好ましい。
【0037】
なお、本発明においては、プロトン性極性基を有しない環状オレフィン系重合体に、公知の変性剤を利用してプロトン性極性基を導入することで、環状オレフィン重合体(A1)としてもよい。
プロトン性極性基を有しない重合体は、上述した単量体(b1)および(b2)のうち少なくとも一種と、必要に応じて単量体(b3)とを任意に組み合わせて重合することによって得ることができる。
【0038】
プロトン性極性基を導入するための変性剤としては、通常、一分子内にプロトン性極性基と反応性の炭素−炭素不飽和結合とを有する化合物が用いられる。
このような化合物の具体例としては、アクリル酸、メタクリル酸、アンゲリカ酸、チグリン酸、オレイン酸、エライジン酸、エルカ酸、ブラシジン酸、マレイン酸、フマル酸、シトラコン酸、メサコン酸、イタコン酸、アトロパ酸、ケイ皮酸等の不飽和カルボン酸;アリルアルコール、メチルビニルメタノール、クロチルアルコール、メタリルアルコール、1−フェニルエテン−1−オール、2−プロペン−1−オール、3−ブテン−1−オール、3−ブテン−2−オール、3−メチル−3−ブテン−1−オール、3−メチル−2−ブテン−1−オール、2−メチル−3−ブテン−2−オール、2−メチル−3−ブテン−1−オール、4−ペンテン−1−オール、4−メチル−4−ぺンテン−1−オール、2−ヘキセン−1−オール等の不飽和アルコール;等が挙げられる。
これら変性剤を用いた重合体の変性反応は、常法に従えばよく、通常、ラジカル発生剤の存在下で行われる。
【0039】
なお、本発明で用いる環状オレフィン重合体(A1)は、上述した単量体を開環重合させた開環重合体であってもよいし、あるいは、上述した単量体を付加重合させた付加重合体であってもよいが、本発明の効果がより一層顕著になるという点より、開環重合体であることが好ましい。
【0040】
開環重合体は、プロトン性極性基を有する環状オレフィン単量体(a)および必要に応じて用いられる共重合可能な単量体(b)を、メタセシス反応触媒の存在下に開環メタセシス重合することにより製造することができる。
【0041】
メタセシス反応触媒は、周期表第3〜11族遷移金属化合物であって、プロトン性極性基を有する環状オレフィン単量体(a)を開環メタセシス重合する触媒であればどのようなものでもよい。例えば、メタセシス反応触媒として、Olefin Metathesis and Metathesis Polymerization(K.J.Ivinand J.C.Mol,Academic Press,San Diego 1997)に記載されているようなものが使用できる。
【0042】
メタセシス反応触媒としては、例えば、周期表第3〜11族遷移金属−カルベン錯体触媒、が挙げられる。これらの中でも、ルテニウムカルベン錯体触媒の使用が好ましい。
【0043】
周期表第3〜11族遷移金属−カルベン錯体触媒としては、例えば、タングステンアルキリデン錯体触媒、モリブデンアルキリデン錯体触媒、レニウムアルキリデン錯体触媒、ルテニウムカルベン錯体触媒等が挙げられる。
【0044】
タングステンアルキリデン錯体触媒の具体例としては、W(N−2,6−Pr)(CHBu)(OBu、W(N−2,6−Pr)(CHBu)(OCMeCF、W(N−2,6−Pr)(CHBu)(OCMe(CF、W(N−2,6−Pr)(CHCMePh)(OBuW(N−2,6−Pr)(CHCMePh)(OCMeCF、W(N−2,6−Pr)(CHCMePh)(OCMe(CF等が挙げられる。
【0045】
モリブデンアルキリデン錯体触媒の具体例としては、Mo(N−2,6−Pr)(CHBu)(OBu、Mo(N−2,6−Pr)(CHBu)(OCMeCF、Mo(N−2,6−Pr)(CHBu)(OCMe(CF、Mo(N−2,6−Pr)(CHCMePh)(OBuMo(N−2,6−Pr)(CHCMePh)(OCMeCF、Mo(N−2,6−Pr)(CHCMePh)(OCMe(CF、Mo(N−2,6−Pr)(CHCMePh)(BIPHEN)、Mo(N−2,6−Pr)(CHCMePh)(BINO)(THF)等が挙げられる。
【0046】
レニウムアルキリデン錯体触媒の具体例としては、Re(CBu)(CHBu)(O−2,6−Pr、Re(CBu)(CHBu)(O−2−Bu、Re(CBu)(CHBu)(OCMeCF、Re(CBu)(CHBu)(OCMe(CF、Re(CBu)(CHBu)(O−2,6−Me等が挙げられる。
【0047】
上記式中、Prはイソプロピル基を、Buはtert−ブチル基を、Meはメチル基を、Phはフェニル基を、BIPHENは、5,5’,6,6’−テトラメチル−3,3’−ジ−tert−ブチル−1,1’−ビフェニル−2,2’−ジオキシ基を、BINOは、1,1’−ジナフチル−2,2’−ジオキシ基を、THFはテトラヒドロフランをそれぞれ表す。
【0048】
また、ルテニウムカルベン錯体触媒の具体例としては、下記式(3)または(4)で表される化合物が挙げられる。
【0049】
【化3】

【化4】

【0050】
上記式(3)および(4)中、=CR、および=C=CRは、反応中心のカルベン炭素を含むカルベン化合物である。RおよびRは、それぞれ独立して水素原子、またはハロゲン原子、酸素原子、窒素原子、硫黄原子、リン原子もしくは珪素原子を含んでもよい炭素数1〜20の炭化水素基を表し、これらのカルベン化合物はヘテロ原子を含有していてもいなくてもよい。Lはヘテロ原子含有カルベン化合物を表し、Lはヘテロ原子含有カルベン化合物または任意の中性の電子供与性化合物を表す。
【0051】
ここで、ヘテロ原子含有カルベン化合物とは、カルベン炭素及びヘテロ原子とを含有する化合物をいう。LおよびLの両方またはLは、ヘテロ原子含有カルベン化合物であり、これらに含まれるカルベン炭素にはルテニウム金属原子が直接に結合しており、ヘテロ原子を含む基が結合している。
【0052】
およびLは、それぞれ独立して任意のアニオン性配位子を示す。また、R、R、L、L、LおよびLの2個、3個、4個、5個または6個は、互いに結合して多座キレート化配位子を形成してもよい。また、ヘテロ原子の具体例としては、N、O、P、S、As、Se原子等を挙げることができる。これらの中でも、安定なカルベン化合物が得られる観点から、N、O、P、S原子等が好ましく、N原子が特に好ましい。
【0053】
上記式(3)および(4)において、アニオン(陰イオン)性配位子L、Lは、中心金属から引き離されたときに負の電荷を持つ配位子であり、例えば、フッ素原子、塩素原子、臭素原子、ヨウ素原子等のハロゲン原子;ジケトネート基、アルコキシ基、アリールオキシ基やカルボキシル基等の酸素を含む炭化水素基;塩化シクロペンタジエニル基等のハロゲン原子で置換された脂環式炭化水素基等を挙げることができる。これらの中でもハロゲン原子が好ましく、塩素原子がより好ましい。
【0054】
が中性の電子供与性化合物の場合は、Lは中心金属から引き離されたときに中性の電荷を持つ配位子であればいかなるものでもよい。その具体例としては、カルボニル類、アミン類、ピリジン類、エーテル類、ニトリル類、エステル類、ホスフィン類、チオエーテル類、芳香族化合物、オレフィン類、イソシアニド類、チオシアネート類等が挙げられる。これらの中でも、ホスフィン類やピリジン類が好ましく、トリアルキルホスフィンがより好ましい。
【0055】
上記式(3)で表されるルテニウム錯体触媒としては、例えば、ベンジリデン(1,3−ジメシチルイミダゾリジン−2−イリデン)(トリシクロヘキシルホスフィン)ルテニウムジクロリド、(1,3−ジメシチルイミダゾリジン−2−イリデン)(3−メチル−2−ブテン−1−イリデン)(トリシクロペンチルホスフィン)ルテニウムジクロリド、ベンジリデン(1,3−ジメシチル−オクタヒドロベンズイミダゾール−2−イリデン)(トリシクロヘキシルホスフィン)ルテニウムジクロリド、ベンジリデン[1,3−ジ(1−フェニルエチル)−4−イミダゾリン−2−イリデン](トリシクロヘキシルホスフィン)ルテニウムジクロリド、ベンジリデン(1,3−ジメシチル−2,3−ジヒドロベンズイミダゾール−2−イリデン)(トリシクロヘキシルホスフィン)ルテニウムジクロリド、ベンジリデン(トリシクロヘキシルホスフィン)(1,3,4−トリフェニル−2,3,4,5−テトラヒドロ−1H−1,2,4−トリアゾール−5−イリデン)ルテニウムジクロリド、(1,3−ジイソプロピルヘキサヒドロピリミジン−2−イリデン)(エトキシメチレン)(トリシクロヘキシルホスフィン)ルテニウムジクロリド、ベンジリデン(1,3−ジメシチルイミダゾリジン−2−イリデン)ピリジンルテニウムジクロリド等のヘテロ原子含有カルベン化合物と中性の電子供与性化合物が結合したルテニウムカルベン錯体;ベンジリデンビス(1,3−ジシクロヘキシルイミダゾリジン−2−イリデン)ルテニウムジクロリド、ベンジリデンビス(1,3−ジイソプロピル−4−イミダゾリン−2−イリデン)ルテニウムジクロリド等の2つのヘテロ原子含有カルベン化合物が結合したルテニウムカルベン錯体;等が挙げられる。
【0056】
上記式(4)で表されるルテニウムカルベン錯体触媒としては、例えば、(1,3−ジメシチルイミダゾリジン−2−イリデン)(フェニルビニリデン)(トリシクロヘキシルホスフィン)ルテニウムジクロリド、(t−ブチルビニリデン)(1,3−ジイソプロピル−4−イミダゾリン−2−イリデン)(トリシクロペンチルホスフィン)ルテニウムジクロリド、ビス(1,3−ジシクロヘキシル−4−イミダゾリン−2−イリデン)フェニルビニリデンルテニウムジクロリド等が挙げられる。
【0057】
メタセシス反応触媒の使用量は、触媒に対する単量体のモル比で、触媒:単量体=1:100〜1:2,000,000、好ましくは1:500〜1:1,000,000、より好ましくは1:1,000〜1:500,000である。触媒量が多すぎると触媒除去が困難となることがあり、少なすぎると十分な重合活性が得られないことがある。
【0058】
メタセシス反応触媒を用いる開環重合は、溶剤中または無溶剤で行なうことができる。重合反応終了後、生成した重合体を単離することなく、そのまま水素化反応を行う場合は、溶剤中で重合するのが好ましい。
【0059】
溶剤は生成する重合体を溶解し、かつ重合反応を阻害しない溶剤であれば特に限定されない。用いる溶剤としては、例えば、n−ペンタン、n−ヘキサン、n−ヘプタン等の脂肪族炭化水素;シクロペンタン、シクロヘキサン、メチルシクロヘキサン、ジメチルシクロヘキサン、トリメチルシクロヘキサン、エチルシクロヘキサン、ジエチルシクロヘキサン、デカヒドロナフタレン、ビシクロヘプタン、トリシクロデカン、ヘキサヒドロインデン、シクロオクタン等の脂環族炭化水素;ベンゼン、トルエン、キシレン、メシチレン等の芳香族炭化水素;ニトロメタン、ニトロベンゼン、アセトニトリル、プロピオニトリル、ベンゾニトリル等の含窒素系炭化水素;ジエチルエーテル、テトラヒドロフラン、ジオキサン等のエーテル類;アセトン、エチルメチルケトン、メチルイソブチルケトン、シクロペンタノン、シクロヘキサノン等のケトン類;酢酸メチル、酢酸エチル、プロピオン酸エチル、安息香酸メチル等のエステル類;クロロホルム、ジクロロメタン、1,2−ジクロロエタン、クロロベンゼン、ジクロロベンゼン、トリクロロベンゼン等のハロゲン化炭化水素;等が挙げられる。これらの中でも、芳香族炭化水素、脂環族炭化水素、エーテル類、ケトン類又はエステル類の使用が好ましい。
【0060】
溶剤中の単量体混合物の濃度は、好ましくは1〜50重量%、より好ましくは2〜45重量%、さらに好ましくは5〜40重量%である。単量体混合物の濃度が1重量%未満では重合体の生産性が悪くなることがあり、50重量%を超えると重合後の粘度が高すぎて、その後の水素化等が困難となることがある。
【0061】
メタセシス反応触媒は溶剤に溶解して反応系に添加してもよいし、溶解させることなくそのまま添加してもよい。触媒溶液を調製する溶剤としては、前記重合反応に用いる溶剤と同様の溶剤が挙げられる。
【0062】
また、重合反応においては、重合体の分子量を調整するために分子量調整剤を反応系に添加することができる。分子量調整剤としては、1−ブテン、1−ペンテン、1−ヘキセン、1−オクテン等のα−オレフィン;スチレン、ビニルトルエン等のスチレン類;エチルビニルエーテル、イソブチルビニルエーテル、アリルグリシジルエーテル等のエーテル類;アリルクロライド等のハロゲン含有ビニル化合物;酢酸アリル、アリルアルコール、グリシジルメタクリレート等酸素含有ビニル化合物;アクリロ二トリル、アクリルアミド等の窒素含有ビニル化合物等を用いることができる。プロトン性極性基を有する環状オレフィン単量体(a)を含む単量体混合物に対して、分子量調整剤を0.05〜50モル%使用することにより、所望の分子量を有する重合体を得ることができる。
【0063】
重合温度は特に制限はないが、通常、−100℃〜+200℃、好ましくは−50℃〜+180℃、より好ましくは−30℃〜+160℃、さらに好ましくは0℃〜+140℃である。重合時間は、通常1分から100時間であり、反応の進行状況に応じて適宜調節することができる。
【0064】
一方、付加重合体は、プロトン性極性基を有する環状オレフィン単量体(a)および必要に応じて用いられる共重合可能な単量体(b)を、公知の付加重合触媒、例えば、チタン、ジルコニウム又はバナジウム化合物と有機アルミニウム化合物とからなる触媒を用いて重合させて得ることができる。これらの重合触媒は、それぞれ単独で又は2種以上を組み合わせて用いることができる。重合触媒の量は、重合触媒中の金属化合物:単量体のモル比で、通常、1:100〜1:2,000,000の範囲である。
【0065】
また、本発明で用いる環状オレフィン重合体(A1)が、開環重合体である場合には、さらに水素添加反応を行い、主鎖に含まれる炭素−炭素二重結合が水素添加された水素添加物とすることが好ましい。環状オレフィン重合体(A1)が水素添加物である場合における、水素化された炭素−炭素二重結合の割合(水素添加率)は、通常50%以上であり、耐熱性の観点から、70%以上であるのが好ましく、90%以上であるのがより好ましく、95%以上であるのがさらに好ましい。
【0066】
水素添加物の水素添加率は、例えば、開環重合体のH−NMRスペクトルにおける炭素−炭素二重結合に由来するピーク強度と、水素添加物のH−NMRスペクトルにおける炭素−炭素二重結合に由来するピーク強度とを比較することにより求めることができる。
【0067】
水素添加反応は、例えば、水素化触媒の存在下に水素ガスを用いて、開環重合体の主鎖中の炭素−炭素二重結合を飽和単結合に変換することにより行なうことができる。
【0068】
用いる水素化触媒は、均一系触媒、不均一系触媒等、特に限定されず、オレフィン化合物の水素化に際して一般的に用いられているものを適宜使用することができる。
【0069】
均一系触媒としては、例えば、酢酸コバルトとトリエチルアルミニウム、ニッケルアセチルアセトナートとトリイソブチルアルミニウム、チタノセンジクロリドとn−ブチルリチウムの組み合わせ、ジルコノセンジクロリドとsec−ブチルリチウム、テトラブトキシチタネートとジメチルマグネシウム等の遷移金属化合物とアルカリ金属化合物の組み合わせからなるチーグラー系触媒;前記開環メタセシス反応触媒の項で記述したルテニウムカルベン錯体触媒、ジクロロトリス(トリフェニルホスフィン)ロジウム、特開平7−2929号公報、特開平7−149823号公報、特開平11−109460号公報、特開平11−158256号公報、特開平11−193323号公報、特開平11−109460号公報等に記載されているルテニウム化合物からなる貴金属錯体触媒;等が挙げられる。
【0070】
不均一系触媒としては、例えば、ニッケル、パラジウム、白金、ロジウム、ルテニウム等の金属を、カーボン、シリカ、ケイソウ土、アルミナ、酸化チタン等の担体に担持させた水素化触媒が挙げられる。より具体的には、例えば、ニッケル/シリカ、ニッケル/ケイソウ土、ニッケル/アルミナ、パラジウム/カーボン、パラジウム/シリカ、パラジウム/ケイソウ土、パラジウム/アルミナ等を用いることができる。これらの水素化触媒は単独で、あるいは2種以上を組み合わせて用いることができる。
【0071】
これらの中でも、開環重合体に含まれる官能基の変性等の副反応を起こすことなく、該重合体中の炭素−炭素二重結合を選択的に水素添加できる点から、ロジウム、ルテニウム等の貴金属錯体触媒およびパラジウム/カーボン等のパラジウム担持触媒の使用が好ましく、ルテニウムカルベン錯体触媒またはパラジウム担持触媒の使用がより好ましい。
【0072】
上述したルテニウムカルベン錯体触媒は、開環メタセシス反応触媒および水素添加触媒として使用することができる。この場合には、開環メタセシス反応と水素添加反応を連続的に行なうことができる。
【0073】
また、ルテニウムカルベン錯体触媒を使用して開環メタセシス反応と水素添加反応を連続的に行う場合、エチルビニルエーテル等のビニル化合物やα−オレフィン等の触媒改質剤を添加して該触媒を活性化させてから、水素添加反応を開始する方法も好ましく採用される。さらに、トリエチルアミン、N,N−ジメチルアセトアミド等の塩基を添加して活性を向上させる方法を採用するのも好ましい。
【0074】
水素添加反応は、通常、有機溶剤中で行なわれる。有機溶剤としては、生成する水素化物の溶解性により適宜選択することができ、前記重合溶剤と同様の有機溶剤を使用することができる。したがって、重合反応後、溶剤を入れ替えることなく、反応液または該反応液からメタセシス反応触媒をろ別して得られるろ液に水素化触媒を添加して反応させることもできる。
【0075】
水素添加反応の条件は、使用する水素化触媒の種類に応じて適宜選択すればよい。水素化触媒の使用量は、開環重合体100重量部に対して,通常0.01〜50重量部、好ましくは0.05〜20重量部、より好ましくは0.1〜10重量部である。反応温度は、通常−10℃〜+250℃、好ましくは−10℃〜+210℃、より好ましくは0℃〜+200℃である。この範囲より低い温度では反応速度が遅くなり、逆に高い温度では副反応が起こりやすくなる。水素の圧力は、通常0.01〜10.0MPa、好ましくは0.05〜8.0MPa、より好ましくは0.1〜6.0MPaである。
【0076】
水素添加反応の時間は、水素添加率を制御するために適宜選択される。反応時間は、通常0.1〜50時間の範囲であり、重合体中の主鎖の炭素−炭素二重結合のうち50%以上、好ましくは70%以上、より好ましくは90%以上、最も好ましくは95%以上を水素添加することができる。
【0077】
また、本発明で使用するアクリル樹脂(A2)は、特に限定されないが、アクリル基を有するカルボン酸、アクリル基を有するカルボン酸無水物、またはエポキシ基含有アクリレート化合物から選ばれる少なくとも1つを必須成分とする単独重合体または共重合体が好ましい。
【0078】
アクリル基を有するカルボン酸の具体例としては、(メタ)アクリル酸〔アクリル酸および/またはメタクリル酸の意。以下、メチル(メタ)アクリレートなども同様。〕、マイレン酸、フマル酸、シトラコン酸、メサコン酸、グルタコン酸等が挙げられる。
アクリル基を有するカルボン酸無水物の具体例としては、無水マレイン酸、シトラコン酸無水物等が挙げられる。
エポキシ基含有アクリレート化合物の具体例としては、アクリル酸グリシジル、メタクリル酸グリシジル、α−エチルアクリル酸グリシジル、α−n−プロピルアクリル酸グリシジル、α−n−ブチルアクリル酸グリシジル、アクリル酸−3,4−エポキシブチル、メタクリル酸−3,4−エポキシブチル、アクリル酸−6,7−エポキシヘプチル、メタクリル酸−6,7−エポキシヘプチル、α−エチルアクリル酸−6,7−エポキシヘプチル等が挙げられる。
これらのうち、(メタ)アクリル酸、無水マレイン酸、メタクリル酸グリシジル、メタクリル酸−6,7−エポキシヘプチル等が好ましい。
【0079】
アクリル樹脂(A2)は、不飽和カルボン酸、不飽和カルボン酸無水物およびエポキシ基含有不飽和化合物から選ばれる少なくとも一つと、その他のアクリレート系単量体またはアクリレート以外の共重合可能な単量体との共重合体であってもよい。
【0080】
その他のアクリレート系単量体としては、メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、イソプロピル(メタ)アクリレート、ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、t−ブチル(メタ)アクリレート、ペンチル(メタ)アクリレート、アミル(メタ)アクリレート、イソアミル(メタ)アクリレート、ヘキシル(メタ)アクリレート、ヘプチル(メタ)アクリレート、オクチル(メタ)アクリレート、イソオクチル(メタ)アクリレート、エチルヘキシル(メタ)アクリレート、ノニル(メタ)アクリレート、デシル(メタ)アクリレート、イソデシル(メタ)アクリレート、ウンデシル(メタ)アクリレート、ドデシル(メタ)アクリレート、ラウリル(メタ)アクリレート、ステアリル(メタ)アクリレート、イソステアリル(メタ)アクリレート等のアルキル(メタ)アクリレート;ヒドロキシエチル(メタ)アクリレート、2−ヒドロキシプロピル(メタ)アクリレート、3−ヒドロキシプロピル(メタ)アクリレート、2−ヒドロキシブチル(メタ)アクリレート、3−ヒドロキシブチル(メタ)アクリレート、4−ヒドロキシブチル(メタ)アクリレート等のヒドロキシアルキル(メタ)アクリレート;フェノキシエチル(メタ)アクリレート、2−ヒドロキシ−3−フェノキシプロピル(メタ)アクリレート等のフェノキシアルキル(メタ)アクリレート;2−メトキシエチル(メタ)アクリレート、2−エトキシエチル(メタ)アクリレート、2−プロポキシエチル(メタ)アクリレート、2−ブトキシエチル(メタ)アクリレート、2−メトキシブチル(メタ)アクリレート等のアルコキシアルキル(メタ)アクリレート;ポリエチレングリコールモノ(メタ)アクリレート、エトキシジエチレングリコール(メタ)アクリレート、メトキシポリエチレングリコール(メタ)アクリレート、フェノキシポリエチレングリコール(メタ)アクリレート、ノニルフェノキシポリエチレングリコール(メタ)アクリレート、ポリプロピレングリコールモノ(メタ)アクリレート、メトキシポリプロピレングリコール(メタ)アクリレート、エトキシポリプロピレングリコール(メタ)アクリレート、ノニルフェノキシポリプロピレングリコール(メタ)アクリレート等のポリアルキレングリコール(メタ)アクリレート;シクロヘキシル(メタ)アクリレート、4−ブチルシクロヘキシル(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート、ジシクロペンテニル(メタ)アクリレート、ジシクロペンタジエニル(メタ)アクリレート、ボルニル(メタ)アクリレート、イソボルニル(メタ)アクリレート、トリシクロデカニル(メタ)アクリレート等のシクロアルキル(メタ)アクリレート;ベンジル(メタ)アクリレート、テトラヒドロフルフリル(メタ)アクリレート等;が挙げられる。
これらのなかでも、ブチル(メタ)アクリレート、エチルヘキシル(メタ)アクリレート、ラウリル(メタ)アクリレート、イソデシル(メタ)アクリレート及び2−エトキシエチル(メタ)アクリレート等が好ましい。
【0081】
アクリレート以外の共重合可能な単量体としては、上記アクリル基を有するカルボン酸、アクリル基を有するカルボン酸無水物またはエポキシ基含有アクリレート化合物と共重合可能な化合物ならば特に制限はないが、例えば、ビニルベンジルメチルエーテル、ビニルグリシジルエーテル、スチレン、α−メチルスチレン、ブタジエン、イソプレン等のビニル基含有ラジカル重合性化合物が挙げられる。
これらの化合物は、それぞれ単独で用いてもよく、2種以上を組み合わせて用いてもよい。
上記単量体の重合方法は、常法に従えばよく、例えば、懸濁重合法,乳化重合法,溶液重合法等が採用される。
【0082】
本発明で用いるカルド樹脂(A3)は、カルド構造、すなわち、環状構造を構成している4級炭素原子に二つの環状構造が結合した骨格構造、を有する樹脂である。カルド構造の一般的なものはフルオレン環にベンゼン環が結合したものである。
環状構造を構成している4級炭素原子に二つの環状構造が結合した骨格構造の具体例としては、フルオレン骨格、ビスフェノールフルオレン骨格、ビスアミノフェニルフルオレン骨格、エポキシ基を有するフルオレン骨格、アクリル基を有するフルオレン骨格等が挙げられる。
本発明で用いるカルド樹脂(A3)は、このカルド構造を有する骨格がそれに結合している官能基間の反応等により重合して形成される。カルド樹脂(A3)は、主鎖と嵩高い側鎖が一つの元素で繋がれた構造(カルド構造)をもち、主鎖に対してほぼ垂直方向に環状構造を有している。
【0083】
カルド構造の一例として、エポキシグリシジルエーテル構造を有するカルド構造の例を、下記式(5)に示す。
【化5】

(上記式(5)中、nは0〜10の整数である。)
【0084】
カルド構造を有する単量体は、例えば、ビス(グリシジルオキシフェニル)フルオレン型エポキシ樹脂;ビスフェノールフルオレン型エポキシ樹脂とアクリル酸との縮合物;9,9−ビス(4−ヒドロキシフェニル)フルオレン、9,9−ビス(4−ヒドロキシ−3−メチルフェニル)フルオレン等のカルド構造含有ビスフェノ−ル類;9,9−ビス(シアノメチル)フルオレン等の9,9−ビス(シアノアルキル)フルオレン類;9,9−ビス(3−アミノプロピル)フルオレン等の9,9−ビス(アミノアルキル)フルオレン類;等が挙げられる。
カルド樹脂(A3)は、カルド構造を有する単量体を重合して得られる重合体であるが、その他の共重合可能な単量体との共重合体であってもよい。
上記単量体の重合方法は、常法に従えばよく、例えば、開環重合法や付加重合法等が採用される。
【0085】
本発明で用いるポリシロキサン(A4)としては、特に限定されないが、好ましくは下記式(6)で表されるオルガノシランの1種または2種以上を混合、反応させることによって得られる重合体が挙げられる。
(R−Si−(OR4−m (6)
【0086】
上記式(6)中、Rは水素原子、炭素数1〜10のアルキル基、炭素数2〜10のアルケニル基、または炭素数6〜15のアリール基であり、複数のRはそれぞれ同じであっても異なっていてもよい。なお、これらのアルキル基、アルケニル基、アリール基はいずれも置換基を有していてもよく、また置換基を有していない無置換体であってもよく、組成物の特性に応じて選択できる。アルキル基の具体例としては、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、t−ブチル基、n−ヘキシル基、n−デシル基、トリフルオロメチル基、2,2,2−トリフルオロエチル基、3,3,3−トリフルオロプロピル基、3−グリシドキシプロピル基、2−(3,4−エポキシシクロヘキシル)エチル基、3−アミノプロピル基、3−メルカプトプロピル基、3−イソシアネートプロピル基が挙げられる。アルケニル基の具体例としては、ビニル基、3−アクリロキシプロピル基、3−メタクリロキシプロピル基が挙げられる。アリール基の具体例としては、フェニル基、トリル基、p−ヒドロキシフェニル基、1−(p−ヒドロキシフェニル)エチル基、2−(p−ヒドロキシフェニル)エチル基、4−ヒドロキシ−5−(p−ヒドロキシフェニルカルボニルオキシ)ペンチル基、ナフチル基が挙げられる。
【0087】
また、上記式(6)中、Rは水素原子、炭素数1〜6のアルキル基、炭素数1〜6のアシル基、または炭素数6〜15のアリール基であり、複数のRはそれぞれ同じであっても異なっていてもよい。なお、これらのアルキル基、アシル基はいずれも置換基を有していてもよく、また置換基を有していない無置換体であってもよく、組成物の特性に応じて選択できる。アルキル基の具体例としては、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基が挙げられる。アシル基の具体例としては、アセチル基が挙げられる。アリール基の具体例としてはフェニル基が挙げられる。
【0088】
さらに、上記式(7)中、mは0〜3の整数であり、m=0の場合は4官能性シラン、m=1の場合は3官能性シラン、m=2の場合は2官能性シラン、m=3の場合は1官能性シランとなる。
【0089】
上記式(7)で表されるオルガノシランの具体例としては、テトラメトキシシラン、テトラエトキシシラン、テトラアセトキシシラン、テトラフェノキシシランなどの4官能性シラン;メチルトリメトキシシラン、メチルトリエトキシシラン、メチルトリイソプロポキシシラン、メチルトリn−ブトキシシラン、エチルトリメトキシシラン、エチルトリエトキシシラン、エチルトリイソプロポキシシラン、エチルトリn−ブトキシシラン、n−プロピルトリメトキシシラン、n−プロピルトリエトキシシラン、n−ブチルトリメトキシシラン、n−ブチルトリエトキシシラン、n−へキシルトリメトキシシラン、n−へキシルトリエトキシシラン、デシルトリメトキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、3−メタクリロキシプロピルトリメトキシシラン、3−メタクリロキシプロピルトリエトキシシラン、3−アクリロキシプロピルトリメトキシシラン、フェニルトリメトキシシラン、フェニルトリエトキシシラン、p−ヒドロキシフェニルトリメトキシシラン、1−(p−ヒドロキシフェニル)エチルトリメトキシシラン、2−(p−ヒドロキシフェニル)エチルトリメトキシシラン、4−ヒドロキシ−5−(p−ヒドロキシフェニルカルボニルオキシ)ペンチルトリメトキシシラン、トリフルオロメチルトリメトキシシラン、トリフルオロメチルトリエトキシシラン、3,3,3−トリフルオロプロピルトリメトキシシラン、3−アミノプロピルトリメトキシシラン、3−アミノプロピルトリエトキシシラン、3−グリシドキシプロピルトリメトキシシラン、2−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン、3−メルカプトプロピルトリメトキシシランなどの3官能性シラン;ジメチルジメトキシシラン、ジメチルジエトキシシラン、ジメチルジアセトキシシラン、ジn−ブチルジメトキシシラン、ジフェニルジメトキシシランなどの2官能性シラン;トリメチルメトキシシラン、トリn−ブチルエトキシシランなどの1官能性シラン;が挙げられる。
これらのオルガノシランのうち、得られる樹脂膜の耐クラック性や硬度の点から3官能性シランが好ましく用いられる。これらのオルガノシランは単独で使用しても、2種以上を組み合わせて使用してもよい。
【0090】
本発明で用いるポリシロキサン(A4)は、上述のオルガノシランを加水分解および部分縮合させることにより得られる。加水分解および部分縮合には一般的な方法を用いることができる。例えば、混合物に溶媒、水、必要に応じて触媒を添加し、加熱攪拌する。攪拌中、必要に応じて蒸留によって加水分解副生物(メタノールなどのアルコール)や縮合副生物(水)を留去してもよい。
【0091】
本発明で用いるポリイミド(A5)は、テトラカルボン酸無水物とジアミンを反応させて得たポリイミド前駆体を熱処理することで得ることができる。ポリイミドを得るための前駆体としては、ポリアミド酸、ポリアミド酸エステル、ポリイソイミド、ポリアミド酸スルホンアミド等が挙げられる。
ポリイミド(A5)を得るための原料として使用できる酸二無水物としては、具体的には、ピロメリット酸二無水物、3,3’,4,4’−ビフェニルテトラカルボン酸二無水物、2,3,3’,4’−ビフェニルテトラカルボン酸二無水物、2,2’,3,3’−ビフェニルテトラカルボン酸二無水物、3,3’,4,4’−ベンゾフェノンテトラカルボン酸二無水物、2,2’,3,3’−ベンゾフェノンテトラカルボン酸二無水物、2,2−ビス(3,4−ジカルボキシフェニル)プロパン二無水物、2,2−ビス(2,3−ジカルボキシフェニル)プロパン二無水物、1,1−ビス(3,4−ジカルボキシフェニル)エタン二無水物、1,1−ビス(2,3−ジカルボキシフェニル)エタン二無水物、ビス(3,4−ジカルボキシフェニル)メタン二無水物、ビス(2,3−ジカルボキシフェニル)メタン二無水物、ビス(3,4−ジカルボキシフェニル)スルホン二無水物、ビス(3,4−ジカルボキシフェニル)エーテル二無水物、1,2,5,6−ナフタレンテトラカルボン酸二無水物、2,3,6,7−ナフタレンテトラカルボン酸二無水物、2,3,5,6−ピリジンテトラカルボン酸二無水物、3,4,9,10−ペリレンテトラカルボン酸二無水物、2,2−ビス(3,4−ジカルボキシフェニル)ヘキサフルオロプロパン二無水物等の芳香族テトラカルボン酸二無水物や、ブタンテトラカルボン酸二無水物、1,2,3,4−シクロペンタンテトラカルボン酸二無水物等の脂肪族のテトラカルボン酸二無水物等を挙げることができる。これらの酸二無水物は、単独または2種以上を組み合わせて使用できる。
【0092】
ポリイミド(A5)を得るための原料として使用できるジアミンの具体的な例としては、3,4’−ジアミノジフェニルエーテル、4,4’−ジアミノジフェニルエーテル、3,4’−ジアミノジフェニルメタン、4,4’−ジアミノジフェニルメタン、3,4’−ジアミノジフェニルスルホン、4,4’−ジアミノジフェニルスルホン、3,4’−ジアミノジフェニルスルフィド、4,4’−ジアミノジフェニルスルフィド、1,4−ビス(4−アミノフェノキシ)ベンゼン、ベンジン、m−フェニレンジアミン、p−フェニレンジアミン、1,5−ナフタレンジアミン、2,6−ナフタレンジアミン、ビス(4−アミノフェノキシフェニル)スルホン、ビス(3−アミノフェノキシフェニル)スルホン、ビス(4−アミノフェノキシ)ビフェニル、ビス{4−(4−アミノフェノキシ)フェニル}エーテル、1,4−ビス(4−アミノフェノキシ)ベンゼン、2,2’−ジメチル−4,4’−ジアミノビフェニル、2,2’−ジエチル−4,4’−ジアミノビフェニル、3,3’−ジメチル−4,4’−ジアミノビフェニル、3,3’−ジエチル−4,4’−ジアミノビフェニル、2,2’,3,3’−テトラメチル−4,4’−ジアミノビフェニル、3,3’,4,4’−テトラメチル−4,4’−ジアミノビフェニル、2,2’−ジ(トリフルオロメチル)−4,4’−ジアミノビフェニル;あるいはこれらの化合物の芳香族環にアルキル基やハロゲン原子で置換した化合物;や、脂肪族のシクロヘキシルジアミン、メチレンビスシクロヘキシルアミン;等が挙げられる。これらのジアミンは、単独又は2種以上を組み合わせて使用できる。
【0093】
本発明で用いるポリイミド(A5)は公知の方法によって合成される。すなわち、テトラカルボン酸二無水物とジアミンとを選択的に組み合わせ、これらをN−メチル−2−ピロリドン、N,N−ジメチルアセトアミド、N,N−ジメチルホルムアミド、ジメチルスルホキシド、ヘキサメチルホスホロトリアミド、γ−ブチロラクトン、シクロペンタノン等の極性溶媒中で反応させる等、公知の方法によって合成される。
【0094】
本発明で使用されるバインダー樹脂(A)の重量平均分子量(Mw)は、通常、1,000〜1,000,000、好ましくは1,500〜100,000、より好ましくは2,000〜10,000の範囲である。
また、バインダー樹脂(A)の分子量分布は、重量平均分子量/数平均分子量(Mw/Mn)比で、通常、4以下、好ましくは3以下、より好ましくは2.5以下である。
バインダー樹脂(A)の重量平均分子量(Mw)や分子量分布(Mw/Mn)は、テトラヒドロフラン等の溶媒を溶離液としたゲル・パーミエーション・クロマトグラフィー(GPC)により、ポリスチレン換算値として求められる値である。
【0095】
(酸性基を有する化合物(B))
本発明で用いる酸性基を有する化合物(B)は、酸性基を有するものであればよく、特に限定されないが、好ましくは脂肪族化合物、芳香族化合物、複素環化合物であり、さらに好ましくは芳香族化合物、複素環化合物である。
これらの酸性基を有する化合物(B)は、それぞれ単独でまたは2種以上を組み合わせて用いることができる。また、酸性基は熱潜在性でもよい。
【0096】
酸性基を有する化合物(B)の酸性基の数は、特に限定されないが、2つ以上の酸性基を有するものが好ましく、特に2つの酸性基を有するものが好ましい。酸性基は、互いに同一であっても異なっていてもよい。
酸性基としては、酸性の官能基であればよく、その具体例としては、スルホン酸基、リン酸基等の強酸性基;カルボキシ基、チオール基およびカルボキシメチレンチオ基等の弱酸性基;が挙げられる。これらの中でも、カルボキシ基、チオール基またはカルボキシメチレンチオ基が好ましく、カルボキシ基が特に好ましい。また、これらの酸性基の中でも、酸解離定数pKaが3.5以上5.0以下の範囲にあるものが好ましい。なお、酸性基が2つ以上ある場合は第一解離定数pKa1を酸解離定数とし、第一解離定数pKa1が上記範囲にあるものが好ましい。また、pKaは、希薄水溶液条件下で、酸解離定数Ka=[H][B]/[BH]を測定し、pKa=−logKaにしたがって、求められる。ここでBHは、有機酸を表し、Bは有機酸の共役塩基を表す。
また、pKaの測定方法は、例えばpHメータを用いて水素イオン濃度を測定し、該当物質の濃度と水素イオン濃度から算出することができる。
本発明において、上述したような酸性基を有する化合物(B)を使用することにより、樹脂組成物から形成される樹脂膜と基板との密着性をより高めること、及び耐薬品性・耐熱性をより高めることができるという効果を得ることができる。
【0097】
また、酸性基を有する化合物(B)は、酸性基以外の置換基を有していてもよい。
このような置換基としては、アルキル基、アリール基等の炭化水素基のほか、ハロゲン原子;アルコキシ基、アリールオキシ基、アシルオキシ基、ヘテロ環オキシ基;アルキル基又はアリール基又は複素環基で置換されたアミノ基、アシルアミノ基、ウレイド基、スルファモイルアミノ基、アルコキシカルボニルアミノ基、アリールオキシカルボニルアミノ基;アルキルチオ基、アリールチオ基、ヘテロ環チオ基;等のプロトンを有しない極性基、これらのプロトンを有しない極性基で置換された炭化水素基、等を挙げることができる。
【0098】
このような酸性基を有する化合物(B)の具体例としては、メタン酸、エタン酸、プロパン酸、ブタン酸、ペンタン酸、ブタン酸、ペンタン酸、ヘキサン酸、ヘプタン酸、オクタン酸、ノナン酸、デカン酸、グリコール酸、グリセリン酸、エタン二酸(「シュウ酸」ともいう。)、プロパン二酸(「マロン酸」ともいう。)、ブタン二酸(「コハク酸」ともいう。)、ペンタン二酸、ヘキサン二酸(「アジピン酸」ともいう。)、1、2―シクロヘキサンジカルボン酸、2−オキソプロパン酸、2−ヒドロキシブタン二酸、2−ヒドロキシプロパントリカルボン酸、メルカプトこはく酸、ジメルカプトこはく酸、2,3−ジメルカプト−1−プロパノール、1,2,3−トリメルカプトプロパン、2,3,4−トリメルカプト−1−ブタノール、2,4−ジメルカプト−1,3−ブタンジオール、1,3,4−トリメルカプト−2−ブタノール、3,4−ジメルカプト−1,2−ブタンジオール、1,5−ジメルカプト−3−チアペンタン等の脂肪族化合物;
【0099】
安息香酸、p−ヒドロキシベンゼンカルボン酸、o−ヒドロキシベンゼンカルボン酸、2−ナフタレンカルボン酸、メチル安息香酸、ジメチル安息香酸、トリメチル安息香酸、3−フェニルプロパン酸、2−ヒドロキシ安息香酸、ジヒドロキシ安息香酸、ジメトキシ安息香酸、ベンゼン−1,2−ジカルボン酸(「フタル酸」ともいう。)、ベンゼン−1,3−ジカルボン酸(「イソフタル酸」ともいう。)、ベンゼン−1,4−ジカルボン酸(「テレフタル酸」ともいう。)、ベンゼン−1,2,3−トリカルボン酸、ベンゼン−1,2,4−トリカルボン酸、ベンゼン−1,3,5−トリカルボン酸、ベンゼンヘキサカルボン酸、ビフェニル−2,2’−ジカルボン酸、2−(カルボキシメチル)安息香酸、3−(カルボキシメチル)安息香酸、4−(カルボキシメチル)安息香酸、2−(カルボキシカルボニル)安息香酸、3−(カルボキシカルボニル)安息香酸、4−(カルボキシカルボニル)安息香酸、2−メルカプト安息香酸、4−メルカプト安息香酸、2−メルカプト−6−ナフタレンカルボン酸、2−メルカプト−7−ナフタレンカルボン酸、1,2−ジメルカプトベンゼン、1,3−ジメルカプトベンゼン、1,4−ジメルカプトベンゼン、1,4−ナフタレンジチオール、1,5−ナフタレンジチオール、2,6−ナフタレンジチオール、2,7−ナフタレンジチオール、1,2,3−トリメルカプトベンゼン、1,2,4−トリメルカプトベンゼン、1,3,5−トリメルカプトベンゼン、1,2,3−トリス(メルカプトメチル)ベンゼン、1,2,4−トリス(メルカプトメチル)ベンゼン、1,3,5−トリス(メルカプトメチル)ベンゼン、1,2,3−トリス(メルカプトエチル)ベンゼン、1,2,4−トリス(メルカプトエチル)ベンゼン、1,3,5−トリス(メルカプトエチル)ベンゼン等の芳香族化合物;
【0100】
ニコチン酸、イソニコチン酸、2−フロ酸、ピロール−2,3−ジカルボン酸、ピロール−2,4−ジカルボン酸、ピロール−2,5−ジカルボン酸、ピロール−3,4−ジカルボン酸、イミダゾール−2,4−ジカルボン酸、イミダゾール−2,5−ジカルボン酸、イミダゾール−4,5−ジカルボン酸、ピラゾール−3,4−ジカルボン酸、ピラゾール−3,5−ジカルボン酸等の窒素原子を含む五員複素環化合物;チオフェン−2,3−ジカルボン酸、チオフェン−2,4−ジカルボン酸、チオフェン−2,5−ジカルボン酸、チオフェン−3,4−ジカルボン酸、チアゾール−2,4−ジカルボン酸、チアゾール−2,5−ジカルボン酸、チアゾール−4,5−ジカルボン酸、イソチアゾール−3,4−ジカルボン酸、イソチアゾール−3,5−ジカルボン酸、1,2,4−チアジアゾール−2,5−ジカルボン酸、1,3,4−チアジアゾール−2,5−ジカルボン酸、3−アミノ−5−メルカプト−1,2,4−チアジアゾール、2−アミノ−5−メルカプト−1,3,4−チアジアゾール、3,5−ジメルカプト−1,2,4−チアジアゾール、2,5−ジメルカプト−1,3,4−チアジアゾール、3−(5−メルカプト−1,2,4−チアジアゾール−3−イルスルファニル)こはく酸、2−(5−メルカプト−1,3,4−チアジアゾール−2−イルスルファニル)こはく酸、(5−メルカプト−1,2,4−チアジアゾール−3−イルチオ)酢酸、(5−メルカプト−1,3,4−チアジアゾール−2−イルチオ)酢酸、3−(5−メルカプト−1,2,4−チアジアゾール−3−イルチオ)プロピオン酸、2−(5−メルカプト−1,3,4−チアジアゾール−2−イルチオ)プロピオン酸、3−(5−メルカプト−1,2,4−チアジアゾール−3−イルチオ)コハク酸、2−(5−メルカプト−1,3,4−チアジアゾール−2−イルチオ)コハク酸、4−(3−メルカプト−1,2,4−チアジアゾール−5−イル)チオブタンスルホン酸、4−(2−メルカプト−1,3,4−チアジアゾール−5−イル)チオブタンスルホン酸等の窒素原子と硫黄原子を含む五員複素環化合物;
【0101】
ピリジン−2,3−ジカルボン酸、ピリジン−2,4−ジカルボン酸、ピリジン−2,5−ジカルボン酸、ピリジン−2,6−ジカルボン酸、ピリジン−3,4−ジカルボン酸、ピリジン−3,5−ジカルボン酸、ピリダジン−3,4−ジカルボン酸、ピリダジン−3,5−ジカルボン酸、ピリダジン−3,6−ジカルボン酸、ピリダジン−4,5−ジカルボン酸、ピリミジン−2,4−ジカルボン酸、ピリミジン−2,5−ジカルボン酸、ピリミジン−4,5−ジカルボン酸、ピリミジン−4,6−ジカルボン酸、ピラジン−2,3−ジカルボン酸、ピラジン−2,5−ジカルボン酸、ピリジン−2,6−ジカルボン酸、トリアジン−2,4−ジカルボン酸、2−ジエチルアミノ−4,6−ジメルカプト−s−トリアジン、2−ジプロピルアミノ−4,6−ジメルカプト−s−トリアジン、2−ジブチルアミノ−4,6−ジメルカプト−s−トリアジン、2−アニリノ−4,6−ジメルカプト−s−トリアジン、2,4,6−トリメルカプト−s−トリアジン等の窒素原子を含む六員複素環化合物;が挙げられる。
これらの中でも、得られる樹脂膜の密着性をより高めることができるという観点から、酸性基の数は、2つ以上であることが好ましく、2つが特に好ましい。
【0102】
酸性基を2つ有する化合物としては、エタン二酸、プロパン二酸、ブタン二酸、ペンタン二酸、ヘキサン二酸、1,2―シクロヘキサンジカルボン酸等の2つの酸性基を有する脂肪族化合物;ベンゼン−1,2−ジカルボン酸(「フタル酸」ともいう。)、ベンゼン−1,3−ジカルボン酸(「イソフタル酸」ともいう。)、ベンゼン−1,4−ジカルボン酸(「テレフタル酸」ともいう。)、ビフェニル−2,2’−ジカルボン酸、2−(カルボキシメチル)安息香酸、3−(カルボキシメチル)安息香酸、4−(カルボキシメチル)安息香酸、2−メルカプト安息香酸、4−メルカプト安息香酸、2−メルカプト−6−ナフタレンカルボン酸、2−メルカプト−7−ナフタレンカルボン酸、1,2−ジメルカプトベンゼン、1,3−ジメルカプトベンゼン、1,4−ジメルカプトベンゼン、1,4−ナフタレンジチオール、1,5−ナフタレンジチオール、2,6−ナフタレンジチオール、2,7−ナフタレンジチオール等の2つの酸性基を有する芳香族化合物;ピロール−2,3−ジカルボン酸、ピロール−2,4−ジカルボン酸、ピロール−2,5−ジカルボン酸、ピロール−3,4−ジカルボン酸、イミダゾール−2,4−ジカルボン酸-、イミダゾール−2,5−ジカルボン酸、イミダゾール−4,5−ジカルボン酸、ピラゾール−3,4−ジカルボン酸、ピラゾール−3,5−ジカルボン酸、チオフェン−2,3−ジカルボン酸、チオフェン−2,4−ジカルボン酸、チオフェン−2,5−ジカルボン酸、チオフェン−3,4−ジカルボン酸、チアゾール−2,4−ジカルボン酸、チアゾール−2,5−ジカルボン酸、チアゾール−4,5−ジカルボン酸、イソチアゾール−3,4−ジカルボン酸、イソチアゾール−3,5−ジカルボン酸、1,2,4−チアジアゾール−2,5−ジカルボン酸、1,3,4−チアジアゾール−2,5−ジカルボン酸、(5−メルカプト−1,2,4−チアジアゾール−3−イルチオ)酢酸、(5−メルカプト−1,3,4−チアジアゾール−2−イルチオ)酢酸、ピリジン−2,3−ジカルボン酸、ピリジン−2,4−ジカルボン酸、ピリジン−2,5−ジカルボン酸、ピリジン−2,6−ジカルボン酸、ピリジン−3,4−ジカルボン酸、ピリジン−3,5−ジカルボン酸、ピリダジン−3,4−ジカルボン酸、ピリダジン−3,5−ジカルボン酸、ピリダジン−3,6−ジカルボン酸、ピリダジン−4,5−ジカルボン酸、ピリミジン−2,4−ジカルボン酸、ピリミジン−2,5−ジカルボン酸、ピリミジン−4,5−ジカルボン酸、ピリミジン−4,6−ジカルボン酸、ピラジン−2,3−ジカルボン酸、ピラジン−2,5−ジカルボン酸、ピリジン−2,6−ジカルボン酸、トリアジン−2,4−ジカルボン酸の2つの酸性基を有する複素環化合物;が好ましい。
これらの化合物を使用することにより、樹脂組成物から形成される樹脂膜と基板との密着性をより高めることと、耐薬品性・耐熱性をより高めることができるという効果を得ることができる。
【0103】
本発明においては、酸性基を有する化合物(B)として、前記同様な効果が得られることから、潜在的酸発生剤を用いることができる。潜在的酸発生剤としては、加熱により酸を発生するカチオン重合触媒である、スルホニウム塩、ベンゾチアゾリウム塩、アンモニウム塩、ホスホニウム塩、ブロックカルボン酸(商品名「ノフキュアー TN1」「ノフキュアー TN2」、日油社製)等が挙げられる。これらの中でも、ブロックカルボン酸が好ましい。
【0104】
本発明で用いる樹脂組成物中における、酸性基を有する化合物(B)の含有量は、バインダー樹脂(A)100重量部に対して、好ましくは1〜45重量部、より好ましくは2〜40重量部、さらに好ましくは3〜30重量部の範囲である。酸性基を有する化合物(B)の使用量を上記範囲とすることで、樹脂組成物を液状安定性に優れたものとすることができる。
【0105】
(架橋剤(C))
本発明で用いる架橋剤(C)は、分子量が100〜500であり、かつ、架橋剤(C)のSP値をSPとし、SP値が19620(J/CUM)1/2であるアリルグリシジルエーテルのSP値をSPとした場合に、SP−SP=−1900〜5400(J/CUM)1/2の関係にあるSP値を有するものである。前記SP値は、シミュレーションソフトである「ASPEN PLUS」を用いて求めることができ、同シュミレーションソフトにより求めた前記の差(SP−SP)が前記範囲にあれば本発明の架橋剤(C)に該当する。
【0106】
本発明で用いる架橋剤(C)の分子量は、100〜500であり、好ましくは120〜450、より好ましくは150〜300である。架橋剤(C)の分子量が低すぎると、得られる樹脂膜の平坦性が低下するおそれがあり、一方、分子量が高すぎると、得られる半導体素子基板のリーク電流が大きくなってしまうおそれがある。
【0107】
また、本発明で用いる架橋剤(C)のSP値は、架橋剤(C)のSP値をSPとした場合に、SP値が19620(J/CUM)1/2であるアリルグリシジルエーテルのSP値であるSPに対する差(SP−SP)が−1900〜5400(J/CUM)1/2の範囲であり、好ましくは−1900〜4000(J/CUM)1/2の範囲、より好ましくは、−1900〜3000(J/CUM)1/2の範囲である。前記差(SP−SP)がこの範囲を外れると、得られる半導体素子基板のリーク電流が大きくなるおそれがある。
【0108】
本発明では、分子量およびSP値が上記特定の範囲にある架橋剤(C)を用いることにより、半導体素子基板を、電気特性、特に低リーク電流特性に優れたものとすることができる。
特に、架橋剤(C)は、上述したような分子量およびSP値を有するため、架橋剤(C)を含む樹脂組成物を用いて樹脂膜とした際に、樹脂膜中において、架橋剤(C)は、半導体素子との界面付近において局在化しやすく、そのため、半導体素子との界面付近において架橋剤(C)の濃度が比較的高いものとなる。そして、その結果、樹脂膜における架橋反応の際に、樹脂膜の半導体素子との界面付近に膜密度の高い層が形成される。これにより、半導体素子表面の保護機能がより向上し、リーク電流の増大現象を有効に防止することができる。
【0109】
このような架橋剤(C)としては、バインダー樹脂(A)と反応し得る官能基を、分子内に2つ以上、好ましくは3つ以上有するものが挙げられる。また、架橋剤(C)としては、特に、プロトン性極性基と反応し得る官能基を有するものが好ましく用いられる。このような官能基としては、たとえば、アミノ基、水酸基、エポキシ基、イソシアネート基等が挙げられ、これらのなかでも、アミノ基、エポキシ基およびイソシアネート基が好ましく、特にエポキシ基が好ましい。
【0110】
架橋剤(C)の具体例としては、1,2,8,9−ジエポキシリモネン(商品名「セロキサイド3000」、ダイセル化学工業社製)、(3’,4’−エポキシシクロヘキサン)メチル3,4−エポキシシクロヘキサンカルボキシレート(商品名「セロキサイド2021」、ダイセル化学工業社製)、トリメチロールプロパンポリグリシジルエーテル(商品名「SR−TMP」、坂本薬品工業社製)、グリセリンポリグリシジルエーテル(商品名「SR−GLG」、坂本薬品工業社製)、1,4‐ビス{〔(3−エチル−3−オキセタニル)メトキシ〕メチル}ベンゼン(商品名「アロンオキセタンOXT−121」、東亞合成社製)、などが挙げられる。これらのなかでも、低リーク電流特性の向上効果がより高いという点より、1,2,8,9−ジエポキシリモネン、(3’,4’−エポキシシクロヘキサン)メチル3,4−エポキシシクロヘキサンカルボキシレートが好ましい。これらは単独で、または2種以上組み合わせて用いることができる。
【0111】
本発明においては、架橋剤(C)に、以下の架橋剤を組み合わせて用いてもよい。架橋剤(C)と組み合わせて使用する架橋剤としては、2以上の反応性基を有する化合物が挙げられる。このような反応性基としては、例えば、アミノ基、カルボキシ基、水酸基、エポキシ基、イソシアネート基等が挙げられ、より好ましくはアミノ基、エポキシ基及びイソシアネート基であり、さらに好ましくはアミノ基及びエポキシ基である。また、エポキシ基としては、末端エポキシ基、脂環式エポキシ基が好ましく、脂環式エポキシ基がより好ましい。
【0112】
具体例としては、ヘキサメチレンジアミン等の脂肪族ポリアミン類;4,4’−ジアミノジフェニルエーテル、ジアミノジフェニルスルフォン等の芳香族ポリアミン類;2,6−ビス(4’−アジドベンザル)シクロヘキサノン、4,4’−ジアジドジフェニルスルフォン等のアジド類;ナイロン、ポリヘキサメチレンジアミンテレレフタルアミド、ポリヘキサメチレンイソフタルアミド等のポリアミド類;N,N,N’,N’,N’’,N’’−(ヘキサアルコキシアルキル)メラミン等のメチロール基やイミノ基等を有していても良いメラミン類(商品名「サイメル303、サイメル325、サイメル370、サイメル350、サイメル232、サイメル235、サイメル272、サイメル212、マイコート506」{以上、サイテックインダストリーズ社製}等のサイメルシリーズ、マイコートシリーズ);N,N’,N’’,N’’’−(テトラアルコキシアルキル)グリコールウリル等のメチロール基やイミノ基等を有していても良いグリコールウリル類(商品名「サイメル1170」{以上、サイテックインダストリーズ社製}等のサイメルシリーズ);エチレングリコールジ(メタ)アクリレート等のアクリレート化合物;ヘキサメチレンジイソシアネート系ポリイソシアネート、イソホロンジイソシアネート系ポリイソシアネート、トリレンジイソシアネート系ポリイソシアネート、水添ジフェニルメタンジイソシアネート等のイソシアネート系化合物;1,4−ジ−(ヒドロキシメチル)シクロヘキサン、1,4−ジ−(ヒドロキシメチル)ノルボルナン;1,3,4−トリヒドロキシシクロヘキサン;ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ポリフェノール型エポキシ樹脂、環状脂肪族エポキシ樹脂、脂肪族グリシジルエーテル、エポキシアクリレート重合体等のエポキシ化合物;フルオレン系エポキシ樹脂;トリアジン核含有エポキシを挙げることができる。
【0113】
エポキシ化合物の具体例としては、ジシクロペンタジエンを骨格とする3官能性のエポキシ化合物(商品名「XD−1000」、日本化薬社製)、2,2−ビス(ヒドロキシメチル)1−ブタノールの1,2−エポキシ−4−(2−オキシラニル)シクロヘキサン付加物(シクロヘキサン骨格及び末端エポキシ基を有する15官能性の脂環式エポキシ樹脂、商品名「EHPE3150」、ダイセル化学工業社製)、エポキシ化3−シクロヘキセン−1,2−ジカルボン酸ビス(3−シクロヘキセニルメチル)修飾ε−カプロラクトン(脂肪族環状3官能性のエポキシ樹脂、商品名「エポリードGT301」、ダイセル化学工業社製)、エポキシ化ブタンテトラカルボン酸テトラキス(3−シクロヘキセニルメチル)修飾ε−カプロラクトン(脂肪族環状4官能性のエポキシ樹脂、商品名「エポリードGT401」、ダイセル化学工業社製)等の脂環構造を有するエポキシ化合物;
【0114】
ビスフェノールA型多官能エポキシ化合物(商品名 コンポセラン「E103」「E103A」「E102」「E102B」「E201」「E202C」「SQ506」「SQ502−8」、荒川化学工業社製);フルオレン系エポキシ樹脂(商品名 オンコート「EX−1010」「EX−1011」「EX−1012」「EX−1020」「EX−1030」「EX−1040」「EX−1050」「EX−1051」「EX−1060」、ナガセケムテックス社製)、(商品名「オグゾール PG100」「オグゾール EG−200」、大阪ガスケミカル社製)、複素環含有エポキシ化合物(商品名「TEPIC」、日産化学工業社製)、芳香族アミン型多官能エポキシ化合物(商品名「H−434」、東都化成工業社製)、クレゾールノボラック型多官能エポキシ化合物(商品名「EOCN−1020」、日本化薬社製)、フェノールノボラック型多官能エポキシ化合物(エピコート152、154、ジャパンエポキシレジン社製)、ナフタレン骨格を有する多官能エポキシ化合物(商品名EXA−4700、大日本インキ化学株式会社製)、鎖状アルキル多官能エポキシ化合物(商品名「SR−MK3」、坂本薬品工業社製)、多官能エポキシポリブタジエン(商品名「エポリードPB3600」、ダイセル化学工業社製)、グリセリンのグリシジルポリエーテル化合物(商品名「SR−GLG」、阪本薬品工業株式会社製)、ジグリセリンポリグリシジルエーテル化合物(商品名「SR−DGE」、阪本薬品工業株式会社製、ポリグリセリンポリグリシジルエーテル化合物(商品名「SR−4GL」、阪本薬品工業株式会社製)等の脂環構造を有さないエポキシ化合物;を挙げることができる。
【0115】
本発明で用いる樹脂組成物中における、架橋剤(C)の含有量は、バインダー樹脂(A)100重量部に対して、1〜500重量部、好ましくは2〜300重量部、より好ましくは3〜150重量部、さらに好ましくは3〜80重量部である。架橋剤(C)の含有量が少なすぎると、得られる樹脂膜の膜密度が低くなってしまい、半導体素子基板のリーク電流が大きくなるおそれがあり、一方、含有量が多すぎると、樹脂膜の応力が増加して半導体素子基板との密着性が低下するおそれがある。
【0116】
(その他の配合剤)
また、本発明で用いる樹脂組成物は、バインダー樹脂(A)、酸性基を有する化合物(B)および架橋剤(C)に加えて、感放射線化合物をさらに含有するものであってもよい。感放射線化合物は、紫外線や電子線等の放射線の照射により、化学反応を引き起こすことのできる化合物である。本発明において感放射線化合物は、樹脂組成物から形成されてなる樹脂膜のアルカリ溶解性を制御できるものが好ましく、特に、光酸発生剤を使用することが好ましい。
【0117】
このような感放射線化合物としては、例えば、アセトフェノン化合物、トリアリールスルホニウム塩、キノンジアジド化合物等のアジド化合物等が挙げられるが、好ましくはアジド化合物、特に好ましくはキノンジアジド化合物である。
【0118】
キノンジアジド化合物としては、例えば、キノンジアジドスルホン酸ハライドとフェノール性水酸基を有する化合物とのエステル化合物を用いることができる。キノンジアジドスルホン酸ハライドの具体例としては、1,2−ナフトキノンジアジド−5−スルホン酸クロライド、1,2−ナフトキノンジアジド−4−スルホン酸クロライド、1,2−ベンゾキノンジアジド−5−スルホン酸クロライド等が挙げられる。フェノール性水酸基を有する化合物の代表例としては、1,1,3−トリス(2,5−ジメチル−4−ヒドロキシフェニル)−3−フェニルプロパン、4,4’−[1−[4−[1−[4−ヒドロキシフェニル]−1−メチルエチル]フェニル]エチリデン]ビスフェノール等が挙げられる。これら以外のフェノール性水酸基を有する化合物としては、2,3,4−トリヒドロキシベンゾフェノン、2,3,4,4’−テトラヒドロキシベンゾフェノン、2−ビス(4−ヒドロキシフェニル)プロパン、トリス(4−ヒドロキシフェニル)メタン、1,1,1−トリス(4−ヒドロキシ−3−メチルフェニル)エタン、1,1,2,2−テトラキス(4−ヒドロキシフェニル)エタン、ノボラック樹脂のオリゴマー、フェノール性水酸基を1つ以上有する化合物とジシクロペンタジエンとを共重合して得られるオリゴマー等が挙げられる。
これらの中でも、1,2−ナフトキノンジアジド−5−スルホン酸クロライドとフェノール性水酸基を有する化合物との縮合物が好ましく、1,1,3−トリス(2,5−ジメチル−4−ヒドロキシフェニル)−3−フェニルプロパン(1モル)と1,2−ナフトキノンジアジド−5−スルホン酸クロライド(1.9モル)との縮合物がより好ましい。
【0119】
また、光酸発生剤としては、キノンジアジド化合物の他、オニウム塩、ハロゲン化有機化合物、α,α’−ビス(スルホニル)ジアゾメタン系化合物、α−カルボニル−α’−スルホニルジアゾメタン系化合物、スルホン化合物、有機酸エステル化合物、有機酸アミド化合物、有機酸イミド化合物等、公知のものを用いることができる。
これらの感放射線化合物は、それぞれ単独で、または2種以上を組み合わせて用いることができる。
【0120】
本発明で用いる樹脂組成物中における感放射線化合物の含有量は、バインダー樹脂(A)100重量部に対して、好ましくは10〜100重量部、より好ましくは15〜70重量部、さらに好ましくは20〜50重量部の範囲である。感放射線化合物の含有量がこの範囲にあれば、樹脂組成物からなる樹脂膜をパターン化する際に、放射線照射部と放射線未照射部との現像液への溶解度差が大きくなり、放射線感度も高くなり、現像によるパターン化が容易であるので好適である。
【0121】
さらに、本発明で用いる樹脂組成物には、溶剤が含有されていてもよい。溶剤としては、特に限定されず、樹脂組成物の溶剤として公知のもの、例えばアセトン、メチルエチルケトン、シクロペンタノン、2−ヘキサノン、3−ヘキサノン、2−ヘプタノン、3−ヘプタノン、4−ヘプタノン、2−オクタノン、3−オクタノン、4−オクタノンなどの直鎖のケトン類;n−プロピルアルコール、イソプロピルアルコール、n−ブチルアルコール、シクロヘキサノールなどのアルコール類;エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、ジオキサンなどのエーテル類;エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテルなどのアルコールエーテル類;ギ酸プロピル、ギ酸ブチル、酢酸プロピル、酢酸ブチル、プロピオン酸メチル、プロピオン酸エチル、酪酸メチル、酪酸エチル、乳酸メチル、乳酸エチルなどのエステル類;セロソルブアセテート、メチルセロソルブアセテート、エチルセロソルブアセテート、プロピルセロソルブアセテート、ブチルセロソルブアセテートなどのセロソルブエステル類;プロピレングリコール、プロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテート、プロピレングリコールモノブチルエーテルなどのプロピレングリコール類;ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールメチルエチルエーテルなどのジエチレングリコール類;γ−ブチロラクトン、γ−バレロラクトン、γ−カプロラクトン、γ−カプリロラクトンなどの飽和γ−ラクトン類;トリクロロエチレンなどのハロゲン化炭化水素類;トルエン、キシレンなどの芳香族炭化水素類;ジメチルアセトアミド、ジメチルホルムアミド、N−メチルアセトアミドなどの極性溶媒などが挙げられる。これらの溶剤は、単独でも2種以上を組み合わせて用いてもよい。溶剤の含有量は、バインダー樹脂(A)100重量部に対して、好ましくは10〜10000重量部、より好ましくは50〜5000重量部、さらに好ましくは100〜1000重量部の範囲である。なお、樹脂組成物に溶剤を含有させる場合には、溶剤は、通常、樹脂膜形成後に除去されることとなる。
【0122】
また、本発明で用いる樹脂組成物は、本発明の効果が阻害されない範囲であれば、所望により、界面活性剤、酸性化合物、カップリング剤またはその誘導体、増感剤、潜在的酸発生剤、酸化防止剤、光安定剤、消泡剤、顔料、染料、フィラー等のその他の配合剤;等を含有していてもよい。
【0123】
界面活性剤は、ストリエーション(塗布筋あと)の防止、現像性の向上等の目的で使用される。界面活性剤の具体例としては、ポリオキシエチレンラウリルエーテル、ポリオキシエチレンステアリルエーテル、ポリオキシエチレンオレイルエーテル等のポリオキシエチレンアルキルエーテル類;ポリオキシエチレンオクチルフェニルエーテル、ポリオキシエチレンノニルフェニルエーテル等のポリオキシエチレンアリールエーテル類;ポリオキシエチレンジラウレート、ポリオキシエチレンジステアレート等のポリオキシエチレンジアルキルエステル類等のノニオン系界面活性剤;フッ素系界面活性剤;シリコーン系界面活性剤;メタクリル酸共重合体系界面活性剤;アクリル酸共重合体系界面活性剤;等が挙げられる。
【0124】
カップリング剤またはその誘導体は、樹脂組成物からなる樹脂膜と、半導体素子基板を構成する半導体層を含む各層との密着性をより高める効果を有する。カップリング剤またはその誘導体としては、ケイ素原子、チタン原子、アルミニウム原子、ジルコニウム原子から選ばれる1つの原子を有し、該原子に結合したヒドロカルビルオキシ基またはヒドロキシ基を有する化合物等が使用できる。
【0125】
カップリング剤またはその誘導体としては、例えば、
テトラメトキシシラン、テトラエトキシシラン、テトラ−n−プロポキシシラン、テトラ−i−プロポキシシラン、テトラ−n−ブトキシシランなどのテトラアルコキシシラン類、
メチルトリメトキシシラン、メチルトリエトキシシラン、エチルトリメトキシシラン、エチルトリエトキシシラン、n−プロピルトリメトキシシラン、n-プロピルトリエトキシシラン、i−プロピルトリメトキシシラン、i−プロピルトリエトキシシラン、n−ブチルトリメトキシシラン、n−ブチルトリエトキシシラン、n−ペンチルトリメトキシシラン、n−ヘキシルトリメトキシシラン、n−ヘプチルトリメトキシシラン、n−オクチルトリメトキシシラン、n−デシルトリメトキシシラン、p−スチリルトリメトキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、シクロヘキシルトリメトキシシラン、シクロヘキシルトリメトキシシラン、シクロヘキシルトリエトキシシラン、フェニルトリメトキシシラン、フェニルトリエトキシシラン、3−クロロプロピルトリメトキシシラン、3−クロロプロピルトリエトキシシラン、3,3,3−トリフルオロプロピルトリメトキシシラン、3,3,3−トリフルオロプロピルトリエトキシシラン、3−アミノプロピルトリメトキシシラン、3−アミノプロピルトリエトキシシラン、N−2−(アミノエチル)−3−アミノプロピルトリメトキシシラン、N−フェニル−3−アミノプロピルトリメトキシシラン、2−ヒドロキシエチルトリメトキシシラン、2−ヒドロキシエチルトリエトキシシラン、2−ヒドロキシプロピルトリメトキシシラン、2−ヒドロキシプロピルトリエトキシシラン、3−ヒドロキシプロピルトリメトキシシラン、3−ヒドロキシプロピルトリエトキシシラン、3−メルカプトプロピルトリメトキシシラン、3−メルカプトプロピルトリエトキシシラン、3−イソシアナートプロピルトリメトキシシラン、3−イソシアナートプロピルトリエトキシシラン、3−グリシドキシプロピルトリメトキシシラン、3−グリシドキシプロピルトリエトキシシラン、2−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン、2−(3,4−エポキシシクロヘキシル)エチルトリエトキシシラン、3−(メタ)アクリルオキシプロピルトリメトキシシラン、3−(メタ)アクリルオキシプロピルトリエトキシシラン、3−ウレイドプロピルトリメトキシシラン、3−ウレイドプロピルトリエトキシシラン、3−エチル(トリメトキシシリルプロポキシメチル)オキセタン、3−エチル(トリエトキシシリルプロポキシメチル)オキセタン、3−トリエトキシシリル−N−(1,3−ジメチル−ブチリデン)プロピルアミン、ビス(トリエトキシシリルプロピル)テトラスルフィドなどのトリアルコキシシラン類、
ジメチルジメトキシシラン、ジメチルジエトキシシラン、ジエチルジメトキシシラン、ジエチルジエトキシシラン、ジ−n−プロピルジメトキシシラン、ジ−n−プロピルジエトキシシラン、ジ−i−プロピルジメトキシシラン、ジ−i−プロピルジエトキシシラン、ジ−n−ブチルジメトキシシラン、ジ−n−ペンチルジメトキシシラン、ジ−n−ペンチルジエトキシシラン、ジ−n−ヘキシルジメトキシシラン、ジ−n−ヘキシルジエトキシシラン、ジ−n−へプチルジメトキシシラン、ジ−n−ヘプチルジエトキシシラン、ジ−n−オクチルジメトキシシラン、ジ−n−オクチルジエトキシシラン、ジ−n−シクロヘキシルジメトキシシラン、ジ−n−シクロヘキシルジエトキシシラン、ジフェニルジメトキシシラン、ジフェニルジエトキシシラン、3−グリシドキシプロピルメチルジエトキシシラン、3−メタクリルオキシプロピルメチルジメトキシシラン、3−アクリルオキシプロピルメチルジメトキシシラン、3−メタクリルオキシプロピルメチルジエトキシシラン、3−アクリルオキシプロピルメチルジエトキシシラン、N−2−(アミノエチル)−3−アミノプロピルメチルジメトキシシランなどのジアルコキシシラン類の他、
メチルトリアセチルオキシシラン、ジメチルジアセチルオキシシラン、商品名X−12−414、KBP−44(信越化学工業株式会社製)、217FLAKE、220FLAKE、233FLAKE、z6018(東レダウコーニング株式会社製)等のケイ素原子含有化合物;フェノール樹脂−シリカハイブリッド(商品名「コンポセラン P501」「コンポセラン P502」、荒川化学工業社製)、シルセスキオキサン(商品名「コンポセラン SQ−506」、荒川化学工業社製)等のフェノール基及びシラノール基を有する化合物;
【0126】
(テトラ−i−プロポキシチタン、テトラ−n−ブトキシチタン、テトラキス(2−エチルヘキシルオキシ)チタン、チタニウム−i−プロポキシオクチレングリコレート、ジ−i−プロポキシ・ビス(アセチルアセトナト)チタン、プロパンジオキシチタンビス(エチルアセトアセテート)、トリ−n−ブトキシチタンモノステアレート、ジ−i−プロポキシチタンジステアレート、チタニウムステアレート、ジ−i−プロポキシチタンジイソステアレート、(2−n−ブトキシカルボニルベンゾイルオキシ)トリブトキシチタン、ジ−n−ブトキシ・ビス(トリエタノールアミナト)チタンの他、プレンアクトシリーズ(味の素ファインテクノ株式会社製))等のチタン原子含有化合物;
(アセトアルコキシアルミウムジイソプロピレート)等のアルミニウム原子含有化合物;
(テトラノルマルプロポキシジルコニウム、テトラノルマルブトキシジルコニウム、ジルコニウムテトラアセチルアセトネート、ジルコニウムトリブトキシアセチルアセトネート、ジルコニウムものブトキシアセチルアセトネートビス(エチルアセトアセテート)、ジルコニウムジブトキシビス(エチルアセトアセテート)、ジルコニウムテトラアセチルアセトネート、ジルコニウムトリブトキシステアレート)等のジルコニウム原子含有化合物;が挙げられる。
【0127】
増感剤の具体例としては、2H−ピリド−(3,2−b)−1,4−オキサジン−3(4H)−オン類、10H−ピリド−(3,2−b)−1,4−ベンゾチアジン類、ウラゾール類、ヒダントイン類、バルビツール酸類、グリシン無水物類、1−ヒドロキシベンゾトリアゾール類、アロキサン類、マレイミド類等が挙げられる。
【0128】
酸化防止剤としては、通常の重合体に使用されている、フェノール系酸化防止剤、リン系酸化防止剤、イオウ系酸化防止剤、ラクトン系酸化防止剤等が使用できる。例えば、フェノール類として、2,6−ジ−t−ブチル−4−メチルフェノール、p−メトキシフェノール、スチレン化フェノール、n−オクタデシル−3−(3’,5’−ジ−t−ブチル−4’−ヒドロキシフェニル)プロピオネート、2,2’−メチレン−ビス(4−メチル−6−t−ブチルフェノール)、2−t−ブチル−6−(3’−t−ブチル−5’−メチル−2’−ヒドロキシベンジル)−4−メチルフェニルアクリレート、4,4’−ブチリデン−ビス−(3−メチル−6−t−ブチルフェノール)、4,4’−チオ−ビス(3−メチル−6−t−ブチルフェノール)、ペンタエリスリトールテトラキス[3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート]、アルキル化ビスフェノール等を挙げることができる。リン系酸化防止剤としては、亜リン酸トリフェニル、亜リン酸トリス(ノニルフェニル)、イオウ系としては、チオジプロピオン酸ジラウリル等が挙げられる。
【0129】
光安定剤としては、ベンゾフェノン系、サリチル酸エステル系、ベンゾトリアゾール系、シアノアクリレート系、金属錯塩系等の紫外線吸収剤、ヒンダ−ドアミン系(HALS)等、光により発生するラジカルを捕捉するもの等のいずれでもよい。これらのなかでも、HALSはピペリジン構造を有する化合物で、樹脂組成物に対し着色が少なく、安定性がよいため好ましい。具体的な化合物としては、ビス(2,2,6,6−テトラメチル−4−ピペリジル)セバケート、1,2,2,6,6−ペンタメチル−4−ピペリジル/トリデシル1,2,3,4−ブタンテトラカルボキシレート、ビス(1−オクチロキシ−2,2,6,6−テトラメチル−4−ピペリジル)セバケート等が挙げられる。
【0130】
本発明で用いる樹脂組成物の調製方法は、特に限定されず、樹脂組成物を構成する各成分を公知の方法により混合すればよい。
混合の方法は特に限定されないが、樹脂組成物を構成する各成分を溶剤に溶解または分散して得られる溶液または分散液を混合するのが好ましい。これにより、樹脂組成物は、溶液または分散液の形態で得られる。
【0131】
樹脂組成物を構成する各成分を溶剤に溶解または分散する方法は、常法に従えばよい。具体的には、攪拌子とマグネティックスターラーを使用した攪拌、高速ホモジナイザー、ディスパー、遊星攪拌機、二軸攪拌機、ボールミル、三本ロール等を使用して行なうことができる。また、各成分を溶剤に溶解または分散した後に、例えば、孔径が0.5μm程度のフィルター等を用いて濾過してもよい。
【0132】
本発明で用いる樹脂組成物の固形分濃度は、通常、1〜70重量%、好ましくは5〜60重量%、より好ましくは10〜50重量%である。固形分濃度がこの範囲にあれば、溶解安定性、塗布性や形成される樹脂膜の膜厚均一性、平坦性等が高度にバランスされ得る。
【0133】
(半導体素子基板)
次いで、本発明の半導体素子基板について、説明する。本発明の半導体素子基板は、上述した樹脂組成物からなる樹脂膜を有し、該樹脂膜は、半導体素子基板に実装されている半導体素子表面、または半導体素子に含まれる半導体層と接触して形成され、かつ、該樹脂膜中の無機イオン含有量が1〜1000ppbである。
【0134】
本発明の半導体素子基板としては、基板上に半導体素子が実装された構成を有するものであればよく、特に限定されないが、アクティブマトリックス基板、有機EL素子基板、集積回路素子基板、および固体撮像素子基板などが挙げられ、上述した樹脂組成物からなる樹脂膜を形成することによる特性向上効果が特に顕著であるという観点より、アクティブマトリックス基板、および有機EL素子基板が好ましい。
【0135】
本発明の半導体素子基板の一例としてのアクティブマトリックス基板としては、特に限定されないが、基板上に、薄膜トランジスタ(TFT)などのスイッチング素子がマトリックス状に配置されると共に、該スイッチング素子を駆動するためのゲート信号を供給するゲート信号線、および該スイッチング素子に表示信号を供給するためのソース信号線が互いに交差するよう設けられている構成を有するものなどが例示される。また、スイッチング素子の一例としての薄膜トランジスタとしては、基板上に、ゲート電極、ゲート絶縁層、半導体層、ソース電極、およびドレイン電極を有する構成などが例示される。
【0136】
さらに、本発明の半導体素子基板の一例としての有機EL素子基板としては、たとえば、基板上に、陽極、正孔注入輸送層、半導体層としての有機発光層、電子注入層、および陰極などから構成される発光体部と、該発光体部を分離するために画素分離膜とを有する構成を有するものなどが例示される。
【0137】
そして、本発明の半導体素子基板を構成する樹脂膜としては、上述した樹脂組成物からなり、半導体素子基板に実装されている半導体素子表面、または半導体素子に含まれる半導体層と接触して形成される樹脂膜であればよく、特に限定されないが、本発明の半導体素子基板が、アクティブマトリックス基板、または有機EL素子基板である場合には、次のように構成することができる。すなわち、たとえば、本発明の半導体素子基板が、アクティブマトリックス基板である場合には、上述した樹脂組成物からなる樹脂膜は、アクティブマトリックス基板の表面に形成される保護膜や、アクティブマトリックス基板を構成する薄膜トランジスタの半導体層(たとえば、アモルファスシリコン層)と接触して形成されるゲート絶縁膜とすることができる。あるいは、本発明の半導体素子基板が、有機EL素子基板である場合には、有機EL素子基板の表面に形成される封止膜や、有機EL素子基板に含まれる発光体部(通常、陽極、正孔注入輸送層、半導体層としての有機発光層、電子注入層、および陰極から構成される。)を分離するための画素分離膜とすることができる。
【0138】
また、本発明の半導体素子基板を構成する樹脂膜は、無機イオン含有量が1〜1000ppbであり、好ましくは1〜500ppb、より好ましくは1〜300ppbである。無機イオン含有量を上記範囲とすることにより、半導体素子基板を低リーク電流特性に優れたものとすることができる。樹脂膜中における無機イオン含有量が多すぎると、半導体素子基板の、無機イオンに起因するリーク電流が大きくなってしまい、結果として、低リーク電流特性に劣ってしまう。
【0139】
なお、無機イオンとしては、フッ化物イオン、塩化物イオン、臭化物イオン、ヨウ化物イオンなどのハロゲンイオン;ナトリウムイオン、カリウムイオン、カルシウムイオン、マグネシウムイオン、鉄イオン、鈴イオンなどの金属イオン;などが挙げられる。
【0140】
また、本発明においては、樹脂膜中に含有される無機イオンのうち、ハロゲンイオンの含有量が、特に、1〜500ppbの範囲であることがより好ましく、1〜300ppbの範囲であることがさらに好ましい。無機イオンの含有量を上記範囲とし、かつ、無機イオンのなかでも、特にハロゲンイオンの含有量を上記範囲とすることにより、低リーク電流特性のさらなる向上を図ることができる。
【0141】
なお、本発明においては、無機イオン中の、金属イオン含有量は、たとえば、ICP質量分析装置を用い、樹脂膜中における、各原子の含有量を計測することにより、測定することができる。
また、ハロゲンイオン含有量は、本発明に用いる架橋剤(C)及び組み合わせて用いることのできる前記架橋剤それぞれに含まれる既知のハロゲンイオン量から求めることができる。
【0142】
また、本発明の半導体素子基板を構成する樹脂膜は、膜密度が、好ましくは1.0〜3.0g/cmであり、より好ましくは1.1〜3.0g/cmである。樹脂膜の膜密度が低すぎると、半導体素子基板のリーク電流が大きくなるおそれがあり、一方、膜密度が高すぎると、樹脂膜と基板との間の密着性が不十分となるおそれがある。なお、樹脂膜の膜密度は、たとえば、XRR(X線反射率法)により測定することができる。
【0143】
本発明の半導体素子基板において、樹脂膜を形成する方法としては、特に限定されず、例えば、塗布法やフィルム積層法等の方法を用いることができる。
【0144】
塗布法は、例えば、樹脂組成物を、塗布した後、加熱乾燥して溶剤を除去する方法である。樹脂組成物を塗布する方法としては、例えば、スプレー法、スピンコート法、ロールコート法、ダイコート法、ドクターブレード法、回転塗布法、バー塗布法、スクリーン印刷法等の各種の方法を採用することができる。加熱乾燥条件は、各成分の種類や配合割合に応じて異なるが、通常、30〜150℃、好ましくは60〜120℃で、通常、0.5〜90分間、好ましくは1〜60分間、より好ましくは1〜30分間で行なえばよい。
【0145】
フィルム積層法は、樹脂組成物を、樹脂フィルムや金属フィルム等のBステージフィルム形成用基材上に塗布した後に加熱乾燥により溶剤を除去してBステージフィルムを得、次いで、このBステージフィルムを、積層する方法である。加熱乾燥条件は、各成分の種類や配合割合に応じて適宜選択することができるが、加熱温度は、通常、30〜150℃であり、加熱時間は、通常、0.5〜90分間である。フィルム積層は、加圧ラミネータ、プレス、真空ラミネータ、真空プレス、ロールラミネータ等の圧着機を用いて行なうことができる。
【0146】
樹脂膜の厚さとしては、特に限定されず、用途に応じて適宜設定すればよいが、樹脂膜が、アクティブマトリックス基板用の保護膜、または有機EL素子基板用の封止膜である場合には、樹脂膜の厚さは、好ましくは0.1〜100μm、より好ましくは0.5〜50μm、さらに好ましくは0.5〜30μmである。
【0147】
また、本発明で用いる樹脂組成物は、架橋剤(C)を含むものであるため、上記した塗布法またはフィルム積層法により形成した樹脂膜について、架橋反応を行なうことができる。このような架橋は、架橋剤(C)の種類に応じて適宜方法を選択すればよいが、通常、加熱により行なう。加熱方法は、例えば、ホットプレート、オーブン等を用いて行なうことができる。加熱温度は、通常、180〜250℃であり、加熱時間は、樹脂膜の面積や厚さ、使用機器等により適宜選択され、例えばホットプレートを用いる場合は、通常、5〜60分間、オーブンを用いる場合は、通常、30〜90分間の範囲である。加熱は、必要に応じて不活性ガス雰囲気下で行ってもよい。不活性ガスとしては、酸素を含まず、かつ、樹脂膜を酸化させないものであればよく、例えば、窒素、アルゴン、ヘリウム、ネオン、キセノン、クリプトン等が挙げられる。これらの中でも窒素とアルゴンが好ましく、特に窒素が好ましい。特に、酸素含有量が0.1体積%以下、好ましくは0.01体積%以下の不活性ガス、特に窒素が好適である。これらの不活性ガスは、それぞれ単独で、または2種以上を組み合わせて用いることができる。
【0148】
また、上述した樹脂組成物からなる樹脂膜が、アクティブマトリックス基板用の保護膜、または有機EL素子基板用の封止膜など、所定のパターンで形成されるものである場合には、パターン化してもよい。樹脂膜をパターン化する方法としては、たとえば、樹脂組成物に感放射線化合物を含有させ、感放射線化合物を含有する樹脂組成物を用いて、パターン化前の樹脂膜を形成し、パターン化前の樹脂膜に活性放射線を照射して潜像パターンを形成し、次いで潜像パターンを有する樹脂膜に現像液を接触させることによりパターンを顕在化させる方法などが挙げられる。
【0149】
活性放射線としては、樹脂組成物に含有させる感放射線化合物を活性化させ、感放射線化合物を含む樹脂組成物のアルカリ可溶性を変化させることができるものであれば特に限定されない。具体的には、紫外線、g線やi線等の単一波長の紫外線、KrFエキシマレーザー光、ArFエキシマレーザー光等の光線;電子線のような粒子線;等を用いることができる。これらの活性放射線を選択的にパターン状に照射して潜像パターンを形成する方法としては、常法に従えばよく、例えば、縮小投影露光装置等により、紫外線、g線、i線、KrFエキシマレーザー光、ArFエキシマレーザー光等の光線を所望のマスクパターンを介して照射する方法、または電子線等の粒子線により描画する方法等を用いることができる。活性放射線として光線を用いる場合は、単一波長光であっても、混合波長光であってもよい。照射条件は、使用する活性放射線に応じて適宜選択されるが、例えば、波長200〜450nmの光線を使用する場合、照射量は、通常10〜1,000mJ/cm、好ましくは50〜500mJ/cmの範囲であり、照射時間と照度に応じて決まる。このようにして活性放射線を照射した後、必要に応じ、樹脂膜を60〜130℃程度の温度で1〜2分間程度加熱処理する。
【0150】
次に、パターン化前の樹脂膜に形成された潜像パターンを現像して顕在化させる。現像液としては、通常、アルカリ性化合物の水性溶液が用いられる。アルカリ性化合物としては、例えば、アルカリ金属塩、アミン、アンモニウム塩を使用することができる。アルカリ性化合物は、無機化合物であっても有機化合物であってもよい。これらの化合物の具体例としては、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、ケイ酸ナトリウム、メタケイ酸ナトリウム等のアルカリ金属塩;アンモニア水;エチルアミン、n−プロピルアミン等の第一級アミン;ジエチルアミン、ジ−n−プロピルアミン等の第二級アミン;トリエチルアミン、メチルジエチルアミン等の第三級アミン;テトラメチルアンモニウムヒドロキシド、テトラエチルアンモニウムヒドロキシド、テトラブチルアンモニウムヒドロキシド、コリン等の第四級アンモニウム塩;ジメチルエタノールアミン、トリエタノールアミン等のアルコールアミン;ピロール、ピペリジン、1,8−ジアザビシクロ[5.4.0]ウンデカ−7−エン、1,5−ジアザビシクロ[4.3.0]ノナ−5−エン、N−メチルピロリドン等の環状アミン類;等が挙げられる。これらアルカリ性化合物は、それぞれ単独で、または2種以上を組み合わせて用いることができる。
【0151】
アルカリ水性溶液の水性媒体としては、水;メタノール、エタノール等の水溶性有機溶剤を使用することができる。アルカリ水性溶液は、界面活性剤等を適当量添加したものであってもよい。
潜像パターンを有する樹脂膜に現像液を接触させる方法としては、例えば、パドル法、スプレー法、ディッピング法等の方法が用いられる。現像は、通常、0〜100℃、好ましくは5〜55℃、より好ましくは10〜30℃の範囲で、通常、30〜180秒間の範囲で適宜選択される。
【0152】
このようにして目的とするパターンが形成された樹脂膜は、必要に応じて、現像残渣を除去するために、リンス液でリンスすることができる。リンス処理の後、残存しているリンス液を圧縮空気や圧縮窒素により除去する。
さらに、必要に応じて、樹脂組成物に含有させた感放射線化合物を失活させるために、半導体素子基板全面に、活性放射線を照射することもできる。活性放射線の照射には、上記潜像パターンの形成に例示した方法を利用できる。照射と同時に、または照射後に樹脂膜を加熱してもよい。加熱方法としては、例えば、半導体素子基板をホットプレートやオーブン内で加熱する方法が挙げられる。温度は、通常、100〜300℃、好ましくは120〜200℃の範囲である。
【0153】
本発明において、樹脂膜は、パターン化した後に、架橋反応を行なうことができる。架橋は、上述した方法にしたがって行なえばよい。
【0154】
本発明の半導体素子基板によれば、半導体素子基板に実装される半導体素子表面、または半導体素子に含まれる半導体層と接触して用いられる樹脂膜を形成するための組成物として、バインダー樹脂(A)、酸性基を有する化合物(B)、上述した特定の分子量およびSP値を有する架橋剤(C)を含有してなる樹脂組成物を用い、かつ、樹脂膜中の無機イオン含有量を特定の範囲とするものであるため、半導体素子基板を、低誘電率特性、低リーク電流特性、および高絶縁破壊電圧特性に優れたものとし、かつ、半導体素子基板に含まれる樹脂膜を、透明性が高いものとすることができる。そのため、本発明によれば、電気特性に優れ、かつ、高性能化が可能な半導体素子基板を提供することができる。
特に、本発明の半導体素子基板が、アクティブマトリックス基板である場合には、ゲート電極の電圧の増加に対して、ソース電極/ドレイン電極間の電流が直線的に立ち上がるという特性を備えるものとすることができ、しかも高温高湿環境下に長時間保持しても、リーク電流特性や閾値電圧が変化せず、そのため、アクティブマトリックス基板を、長寿命かつ低消費電力であり、さらには高コントラストなものとすることができる。
【実施例】
【0155】
以下に、実施例および比較例を挙げて、本発明についてより具体的に説明する。各例中の部および%は、特に断りのない限り、重量基準である。
なお、各特性の定義および評価方法は、以下のとおりである。
【0156】
<現像時残渣、未露光部表面の荒れ>
樹脂組成物をシリコンウェハ上にスピンコートした後、ホットプレートを用いて100℃で2分間プリベークして、2.5μm厚の樹脂膜を形成した。次いで、この樹脂膜に、5μm×5μmのホールパターンのマスクを介して、365nmにおける光強度が5mW/cmである紫外線を、40秒間、空気中で照射した。次いで、0.4重量%テトラメチルアンモニウムヒドロキシド水溶液を用いて、23℃、60秒間現像処理を行った後、超純水で30秒間リンスしてコンタクトホールのパターンを形成した。
そして、このようにして得られたコンタクトホールのパターンを有する樹脂膜について、走査型電子顕微鏡(SEM)を用いて、コンタクトホール内における、溶解残渣の有無、および未露光部表面の荒れの有無の評価を行った。溶解残渣および未露光部表面の荒れのいずれも観測されない方が、現像によるパターン形成性に優れるため、好ましい。
【0157】
<焼成時ホール状態>
上記と同様にして得られたコンタクトホールのパターンを有する樹脂膜に、365nmにおける光強度が5mW/cmである紫外線を、90秒間、空気中で照射し、次いで、オーブンを用いて230℃、1時間ポストベークを行なった。そして、得られたポストベーク後の樹脂膜について、光学顕微鏡により、コンタクトホールを観察し、以下の基準に従って、焼成時ホール状態の評価を行った。
○:コンタクトホールの埋没、およびコンタクトホールの形状の歪みが観察されない。
×:コンタクトホールが埋まっている、またはコンタクトホールの形状が歪んでいる。
【0158】
<樹脂膜中の無機イオン含有量>
・金属イオン含有量
樹脂組成物をジエチレングリコールエチルメチルエーテルにより20倍に希釈し、ICP質量分析装置を用いて樹脂膜中の金属イオン含有量を測定した。
・ハロゲンイオン含有量
使用した各架橋剤中のハロゲンイオン含有量及びその使用量により、樹脂膜中のハロゲンイオン含有量を求めた。尚、各架橋剤のハロゲンイオン含有量はMSDS等の値を用いた。
【0159】
上記金属イオン含有量及びハロゲンイオン含有量に関し、それぞれ1,000ppb以下の場合を「○」、1,000ppbを超える値になる場合を「×」とした。
【0160】
<樹脂膜の膜密度>
樹脂組成物をシリコンウェハ上にスピンコートした後、ホットプレートを用いて100℃で2分間プリベークして厚み0.12μm樹脂膜を形成した。次いで、樹脂膜全面に高圧水銀灯により光照射し、樹脂膜中に残存する未分解の感放射線化合物を分解させた。次いで、窒素雰囲気中において230℃で1時間加熱することにより、樹脂膜が形成された試験用試料を得、この試料を用いてXRR(X線全反射率法)により樹脂膜の膜密度を測定した。
【0161】
<リーク電流>
アクティブマトリックス基板のソース電極とドレイン電極の間に20Vの電圧を印加し、ゲート電極に印加する電圧を−20〜+30Vに変化させて、ソース電極とドレイン電極との間に流れる電流を、マニュアルプローバーおよび半導体パラメータアナライザー(Agilent社製、4156C)を用いて測定することで、リーク電流の測定を行なった。なお、測定は、初期状態(高温、高湿環境に保持する前)のアクティブマトリックス基板、および60℃、90%RHの高温、高湿環境に100時間保持した後のアクティブマトリックス基板のそれぞれについて行なった。
【0162】
《合成例1》
N−(2−エチルヘキシル)−ビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド(NEHI)40モル%、および8−ヒドロキシカルボニルテトラシクロ[4.4.0.12,5.17,10]ドデカ−3−エン(TCDC)60モル%からなる単量体混合物100部、1,5−ヘキサジエン2部、(1,3−ジメシチルイミダゾリン−2−イリデン)(トリシクロヘキシルホスフィン)ベンジリデンルテニウムクロリド(Org.Lett.,第1巻,953頁,1999年 に記載された方法で合成した)0.02部、およびジエチレングリコールメチルエチルエーテル400部を、窒素置換したガラス製耐圧反応器に仕込み、攪拌しつつ80℃にて4時間反応させて重合反応液を得た。
【0163】
そして、得られた重合反応液をオートクレーブに入れて、150℃、水素圧4MPaで、5時間攪拌して水素化反応を行い、環状オレフィン重合体を得た。得られた重合体の重合転化率は99.7%、重量平均分子量は7150、数平均分子量は4690、分子量分布は1.52、水素添加率は、99.7%であった。
【0164】
《実施例1》
<樹脂組成物の調製>
バインダー樹脂(A)として、合成例1で得られた環状オレフィン重合体100部、溶剤として、ジエチレングリコールエチルメチルエーテル(EDM)550部、酸性基を有する化合物(B)として、ピラジン−2,3−カルボン酸3部、架橋剤(C)として、(3’,4’−エポキシシクロヘキサン)メチル3,4−エポキシシクロヘキサンカルボキシレート(商品名「セロキサイド2021P」、ダイセル化学工業社製、分子量250、ASPEN PLUSにより測定したSP値(SP)19699.55(J/CUM)1/2)30部、N,N,N’,N’,N’’,N’’−(ヘキサアルコキシアルキル)メラミン系架橋剤(商品名「サイメル370」、サイテックインダストリーズ社製、脱金属処理がされたもの)30部、エポキシ化ブタンテトラカルボン酸テトラキス(3−シクロヘキセニルメチル)修飾ε−カプロラクトン(商品名「エポリードGT401」、ダイセル化学工業社製、脂肪族環状4官能性のエポキシ樹脂)10部、感放射線化合物(C)として、1,1,3−トリス(2,5−ジメチル−4−ヒドロキシフェニル)−3−フェニルプロパン(1モル)と1,2−ナフトキノンジアジド−5−スルホン酸クロライド(2モル)との縮合物30部、および、カップリング剤としての(3−グリシジルオキシプロピル)トリメトキシシラン(商品名「SH6040」、東レ・ダウコーニング社製)20部を混合し、溶解させた後、孔径0.45μmのポリテトラフルオロエチレン製フィルターでろ過して樹脂組成物を調製した。
【0165】
<アクティブマトリックス基板の作製>
ガラス基板(商品名「コーニング1737」、コーニング社製)上に、スパッタリング装置を用いて、クロムを200nmの膜圧で形成し、フォトリソグラフィによリパターニングを行い、ゲート電極、ゲート信号線およびゲート端子部を形成した。次いで、CVD装置により、ゲート電極とゲート電極を覆って、ゲート絶縁膜となるシリコン窒化物膜を450nmの厚さ、半導体層となるa−Si層(アモルファスシリコン層)を250nmの厚さ、オーミックコンタクト層となるn+Si層を50nmの厚さで連続形成し、n+Si層とa−Si層をアイランド状にパターニングした。さらに、ゲート絶縁膜とn+Si層上にスパッタリング装置で、クロムを200nmの膜厚で形成し、フォトリソグラフィにより、ソース電極、ソース信号線、ドレイン電極、およびデータ端子部を形成し、ソース電極とドレイン電極の間の不要なn+Si層を除去してバックチャネルを形成し、ガラス基板上に複数の薄膜トランジスタが形成されたアレイ基板を得た。
【0166】
そして、得られたアレイ基板に、上記にて得られた樹脂組成物をスピンコートした後、ホットプレートを用いて、90℃で2分間プリベークして、膜厚1.2μmの樹脂膜を形成した。次いで、この樹脂膜に、10μm×10μmのホールパターンのマスクを介して、365nmにおける光強度が5mW/cmである紫外線を、40秒間、空気中で照射した。次いで、0.4重量%のテトラメチルアンモニウムヒドロキシド水溶液を用いて、25℃で90秒間現像処理を行なった後、超純水で30秒間リンスしてコンタクトホールのパターンを形成した後、230℃で15分間加熱することによりポストベークを行なうことにより、保護膜(樹脂膜)が形成されたアレイ基板を得た。
【0167】
そして、上記にて保護膜(樹脂膜)を形成したアレイ基板を真空槽に移し、スパッタリングガスとしてアルゴンと酸素との混合ガス(体積比100:4)を用い、圧力0.3Pa、DC出力400Wとし、マスクを通してDCスパッタリングすることにより、ドレイン電極に接するように、膜圧200nmのIn−Sn−O系の非晶質透明導電層(画素電極)を形成して、アクティブマトリックス基板を得た。
【0168】
そして、上記にて得られた樹脂組成物を用いて、現像時残渣、未露光部表面の荒れ、焼成時ホール状態、焼成時膜硬度、比誘電率、絶縁破壊電圧および透明性の各評価、並びに、アクティブマトリックス基板を用いて、リーク電流および閾値電流の各評価を行った。結果を表1に示す。
【0169】
《実施例2》
架橋剤(C)としての(3’,4’−エポキシシクロヘキサン)メチル3,4−エポキシシクロヘキサンカルボキシレート(商品名「セロキサイド2021P」)の配合量を30部から20部に変更した以外は、実施例1と同様にして、樹脂組成物およびアクティブマトリックス基板を得て、同様に評価を行った。結果を表1に示す。
【0170】
《実施例3》
架橋剤(C)としての(3’,4’−エポキシシクロヘキサン)メチル3,4−エポキシシクロヘキサンカルボキシレート(商品名「セロキサイド2021P」)の配合量を30部から45部に変更した以外は、実施例1と同様にして、樹脂組成物およびアクティブマトリックス基板を得て、同様に評価を行った。結果を表1に示す。
【0171】
《実施例4》
架橋剤(C)として、(3’,4’−エポキシシクロヘキサン)メチル3,4−エポキシシクロヘキサンカルボキシレート(商品名「セロキサイド2021P」)の代わりに、1,2,8,9−ジエポキシリモネン(商品名「セロキサイド3000」)、ダイセル化学工業社製、分子量168、「ASPEN PLUS」により測定したSP値19507.67)30部を用いたこと以外は、実施例1と同様にして、樹脂組成物およびアクティブマトリックス基板を得て、同様に評価を行った。結果を表1に示す。
【0172】
《実施例5》
酸性基を有する化合物(B)として、ピラジン‐2,3‐ジカルボン酸に代えて、モノアルキルビニルエーテルブロック3官能低分子量型カルボン酸(商品名「ノフキュアー TN1」、日油社製)を5部使用したこと以外は、実施例1と同様にして、樹脂組成物およびアクティブマトリックス基板を得て、同様に評価を行った。結果を表1に示す。
【0173】
《比較例1》
架橋剤(C)としての(3’,4’−エポキシシクロヘキサン)メチル3,4−エポキシシクロヘキサンカルボキシレート(商品名「セロキサイド2021P」)の代わりに、エポキシ化ブタンテトラカルボン酸テトラキス(3−シクロヘキセニルメチル)修飾ε−カプロラクトン(脂肪族環状4官能性のエポキシ樹脂、商品名「エポリードGT401」、ダイセル化学工業社製、分子量1130、「ASPEN PLUS」により測定したSP値(SP)17727.33(J/CUM)1/2)を使用した以外は、実施例1と同様にして、樹脂組成物およびアクティブマトリックス基板を得て、同様に評価を行った。すなわち、比較例1では、「エポリードGT401」の配合量を40部とした。結果を表1に示す。
【0174】
《比較例2》
架橋剤(C)としての(3’,4’−エポキシシクロヘキサン)メチル3,4−エポキシシクロヘキサンカルボキシレート(商品名「セロキサイド2021P」)の代わりに、ポリグリセリンポリグリシジルエーテル化合物(商品名「SR−4GL」、阪本薬品工業株式会社製、分子量620、「ASPEN PLUS」により測定したSP値(SP)10080.58(J/CUM)1/2)を使用した以外は、実施例1と同様にして、樹脂組成物およびアクティブマトリックス基板を得て、同様に評価を行った。結果を表1に示す。
【0175】
《比較例3》
架橋剤(C)としての(3’,4’−エポキシシクロヘキサン)メチル3,4−エポキシシクロヘキサンカルボキシレート(商品名「セロキサイド2021P」)の代わりに、(商品名「HP4700」、DIC社製、分子量412.7、ASPEN PLUSの方法により測定したSP値(SP)17045.31(J/CUM)1/2)を使用した以外は、実施例1と同様にして、樹脂組成物およびアクティブマトリックス基板を得て、同様に評価を行った。結果を表1に示す。
【0176】
《比較例4》
架橋剤(C)としての(3’,4’−エポキシシクロヘキサン)メチル3,4−エポキシシクロヘキサンカルボキシレート(商品名「セロキサイド2021P」)の配合量を30部から0部に変更したこと以外は、実施例1と同様にして、樹脂組成物およびアクティブマトリックス基板を得て、同様に評価を行った。結果を表1に示す。
【0177】
《比較例5》
酸性基を有する化合物(B)としてのピラジン−2,3−ジカルボン酸を使用しなかったこと以外は、実施例1と同様にして、樹脂組成物およびアクティブマトリックス基板を得て、同様に評価を行った。結果を表1に示す。
【0178】
《比較例6》
N,N,N’,N’,N’’,N’’−(ヘキサアルコキシアルキル)メラミン系架橋剤について、脱金属処理を施したものに代えて、該処理を施していないものを用いたこと以外は、実施例1と同様にして、樹脂組成物およびアクティブマトリックス基板を得て、同様に評価を行った。結果を表1に示す。
【0179】
【表1】

【0180】
表1に示すように、実施例1〜5の結果より、バインダー樹脂(A)、酸性基を有する化合物(B)および特定の分子量およびSP値を有する架橋剤(C)を含有する樹脂組成物を用いて得られ、無機イオン含有量が特定の範囲に制御されてなる樹脂膜は、比誘電率が低く、絶縁破壊電圧が高く、透明性に優れ、またこのような樹脂膜を備える半導体素子基板(アクティブマトリックス基板)は、リーク電流が小さく、さらには、高温高湿環境下に長時間保持しても、リーク電流特性が変化せず、高い信頼性を有するものであった。加えて、該樹脂膜は、現像時残渣、未露光部表面の荒れ、焼成時ホール状態、および焼成時膜硬度のいずれも良好な結果であり、現像時のパターン形成性に優れ、高精度なパターン化が可能なものであることも確認できる。
【0181】
これに対して、比較例1〜3の結果より、分子量およびSP値のいずれか一方または両方が本発明所定の範囲外である架橋剤を用いた場合には、リーク電流特性が悪化する結果となった。
比較例4の結果より、架橋剤(C)の配合量が少なすぎると、リーク電流特性が悪化する結果となった。
また、比較例5の結果より、酸性基を有する化合物(B)を配合しない場合には、リーク電流特性が悪化する結果となった。
さらに、比較例6の結果より、特定の分子量およびSP値を有する架橋剤(C)を所定量用いた場合でも、樹脂膜中の無機イオン含有量が多すぎると、リーク電流特性が悪化する結果となった。

【特許請求の範囲】
【請求項1】
バインダー樹脂(A)、酸性基を有する化合物(B)、架橋剤(C)を含有してなる樹脂組成物からなる樹脂膜を有する半導体素子基板であって、
前記架橋剤(C)は、分子量が100〜500であり、かつ、前記架橋剤(C)のSP値をSPとし、SP値が19620(J/CUM)1/2であるアリルグリシジルエーテルのSP値をSPとした場合に、SP−SP=−1900〜5400(J/CUM)1/2の関係にあるSP値を有し、
前記バインダー樹脂(A)100重量部に対する、前記架橋剤(C)の含有量が1〜500重量部であり、
前記樹脂膜は、前記半導体素子基板に実装されている半導体素子表面、または前記半導体素子に含まれる半導体層と接触して形成されており、該樹脂膜中の無機イオン含有量が1〜1000ppbであることを特徴とする半導体素子基板。
【請求項2】
前記バインダー樹脂(A)が、プロトン性極性基を有する環状オレフィン重合体である請求項1に記載の半導体素子基板。
【請求項3】
アクティブマトリックス基板または有機EL素子基板である請求項1または2に記載の半導体素子基板。

【公開番号】特開2012−49300(P2012−49300A)
【公開日】平成24年3月8日(2012.3.8)
【国際特許分類】
【出願番号】特願2010−189450(P2010−189450)
【出願日】平成22年8月26日(2010.8.26)
【出願人】(000229117)日本ゼオン株式会社 (1,870)
【Fターム(参考)】