説明

走行速度制御装置及び騎乗型乗り物

【課題】故障検出時における運転状態に応じて適切な減速制御を行う。
【解決手段】自動二輪車1における所定の故障を検出する故障検出部31と、故障検出部31により故障が検出されると、時間経過に伴って走行速度を減少させるようにエンジンEを制御する速度規制制御部33と、自動二輪車1の運転状態を検出する運転状態検出部36〜38とを備え、速度規制制御部33は、故障検出時に運転状態検出部36〜38で検出される運転状態に応じて減速パターンを決定する。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、故障検出時に走行速度を制御する走行速度制御装置及び騎乗型乗り物に関するものである。
【背景技術】
【0002】
従来の自動二輪車の一部の車種において、運転者により把持されるスロットルグリップの開度をグリップポジションセンサで検出し、スロットル弁を開閉するモータをその検出値に応じてECUにより電子制御する装置を備えたものがある。これによれば、スロットル弁の最適な目標開度が算出され、実開度と目標開度との偏差が最小となるようにスロットル弁の開度が電子制御されるため、エンジンへの吸気量が最適に保たれる。
【0003】
このような装置には、その制御系統に何らかの故障が発生した場合に、運転者のグリップ操作量に関係なく目標開度が瞬時にアイドリング開度に設定され、モータの最大能力でスロットル弁が強制的に閉じられる機能を備えたものがある。車体重量が大きい四輪の自動車の場合には、慣性力が大きいため、スロットル弁が急閉しても減速ショックは大きくなりにくい。しかし、車体重量が小さい自動二輪車等のライトビークルの場合には、慣性力が小さいため、スロットル弁が急閉した際の減速ショックが強く、故障検出時の運転状態によっては、運転者に違和感を与える場合がある。そこで、このような違和感を無くすために、故障が検出された場合には、スロットル弁の閉じ速度を制御しながら走行速度を緩やかに減少させるものが提案されている(例えば、特許文献1参照)。
【特許文献1】特開2003−65140号公報
【発明の開示】
【発明が解決しようとする課題】
【0004】
しかしながら、特許文献1に開示されたものであると、故障検出時におけるスロットル弁の閉じ速度は、自動二輪車の運転状態にかかわらず一定となっているため、故障検出時の運転状態によっては、運転者に違和感を与える場合がある。例えば、故障検出時に加速状態である場合には、運転者に比較的大きな減速感が伝わってしまう。一方、故障検出時に減速状態である場合には、運転者に伝わる減速ショックが小さいにも関わらず、アイドリング状態に至る減速が完了するまでに時間を掛けてしまうことになる。このような状況は、自動二輪車以外の乗り物であっても同様に生じる。
【0005】
そこで本発明は、故障検出時における運転状態に応じて減速制御を行うことを目的としている。
【課題を解決するための手段】
【0006】
本発明は上述のような事情に鑑みてなされたものであり、第1の発明に係る走行速度制御装置は、乗り物における故障を検出する故障検出部と、前記故障検出部により故障が検出されると、時間経過に伴って走行速度を減少させるように走行駆動源を制御する速度規制制御部と、乗り物の運転状態を検出する運転状態検出部とを備え、前記速度規制制御部は、故障検出時に前記運転状態検出部で検出される運転状態に応じて減速パターンを決定する構成であることを特徴とする。
【0007】
前記構成によれば、速度規制制御部は、故障検出時の運転状態に基づいて走行速度の減少パターンを決定しているので、故障検出時に運転状況に応じた適切な減速制御を実施することができる。
【0008】
運転者から与えられる走行速度変化指令を検出する指令検出部と、前記指令検出部から出力される信号に応じて、前記走行駆動源の出力を変化させる出力制御部とをさらに備え、前記故障検出部は、前記指令検出部又は前記出力制御部の異常を故障として検出する構成であってもよい。
【0009】
前記構成によれば、指令検出部からの出力信号に応じて出力制御部により走行駆動源の出力を電子制御する構成で異常が生じても、走行速度を減少させる制御に移行させることができる。
【0010】
前記走行駆動源はエンジンとし、前記指令検出部は、運転者の操作で動く入力部材の位置を検出する操作位置センサとし、前記出力制御部は、前記エンジンへの吸気量を調節するスロットル弁と、前記スロットル弁の開度を変化させるアクチュエータと、前記操作位置センサから出力される信号に応じて前記アクチュエータを駆動制御するアクチュエータ制御部とを有し、前記速度規制制御部は、前記故障検出部により故障が検出されると、前記スロットル弁の開度が目標となる規制開度まで減少するように前記アクチュエータ制御部に指令することで走行速度を減少させる構成であってもよい。ここで、目標となる規制開度は、予め決められたスロットル開度でもよいし、故障検出時又は故障検出後の運転状態に応じて決められるスロットル開度でもよい。例えば、故障検出後における運転者のスロットル開度操作量に一定の減少率(例えば、40%)を乗じたものが規制開度に設定されてもよい。
【0011】
前記構成によれば、速度規制制御部は、故障検出時の運転状況に応じてスロットル弁の閉じ速度を適切に制御し、乗り物を効果的に減速させることができる。
【0012】
前記スロットル弁を規制開度に向けて付勢する付勢手段と、前記アクチュエータとなるモータの一対の給電端子部に接続されるモータ駆動回路とをさらに備え、前記モータ駆動回路は、前記一対の給電端子部を電気的に短絡させるブレーキモードと、前記一対の給電端子部を電気的に切断させるフリーモードとに切換可能に構成され、前記速度規制制御部は、前記故障検出部により故障が検出された場合に、前記モータ駆動回路を前記ブレーキモードと前記フリーモードとの間で交互に切り換えることで減速率を制御する構成であってもよい。
【0013】
前記構成によれば、ブレーキモードでは、一対の給電端子部が互いに短絡されているので、モータが外力により回転する際には、給電端子部に誘導起電力が生じることを妨げるブレーキ力がモータに作用する。即ち、ブレーキモードでは、スロットル弁が付勢手段により規制開度に向けて回動する際、スロットル弁は加速度が生じないように緩やかに閉じることとなる。一方、フリーモードでは、一対の給電端子部が互いに切断されているので、モータが外力により回転する際、モータはその外力に応じて自由に回転させられる。即ち、フリーモードでは、スロットル弁が付勢手段により規制開度に向けて回動する際、スロットル弁は付勢手段の力に応じて速やかに閉じることとなる。
【0014】
したがって、速度規制制御部は、モータ駆動回路をブレーキモードとフリーモードとの間で適宜交互に切り換えることで、モータの付勢手段に対する抵抗を調節することができ、スロットル弁の閉じ速度を制御することが可能となる。
【0015】
前記スロットル弁の開度を検出するスロットル開度センサをさらに備え、前記操作位置センサの出力に対応するスロットル開度が、前記スロットル開度センサで検出される開度よりも小である場合には、前記速度規制制御部による減速制御を実施せずに、前記操作位置センサから出力される信号に応じて前記アクチュエータ制御部により前記アクチュエータを駆動制御させる構成であってもよい。
【0016】
前記構成によれば、操作位置センサの出力に対応するスロットル開度が、スロットル弁の実開度よりも小さい場合には、速度規制制御部による制御よりも運転者の意思が優先され、スムーズな減速を行うことが可能となる。
【0017】
前記運転状態検出部は、前記乗り物の走行速度を検出する速度センサを含み、前記故障検出部により故障が検出されたときに前記速度センサで検出される走行速度が大きい場合には、その走行速度が小さい場合に比べて、前記速度規制制御部による減速率が小さくなるように前記減速パターンが設定されていてもよい。
【0018】
前記構成によれば、故障検出時における走行速度が大きい場合には、より緩やかに減速がなされるので、運転者による操作性を更に向上させることができる。
【0019】
前記運転状態検出部は、前記乗り物の走行加速度を検出する加速度センサを含み、前記故障検出部により故障が検出されたときに前記加速度センサで検出される走行加速度が大きい場合には、その走行加速度が小さい場合に比べて、前記速度規制制御部による減速率が小さくなるように前記減速パターンが設定されていてもよい。
【0020】
前記構成によれば、故障検出時に走行加速度が大きい場合には、より緩やかに減速がなされるので、運転者に伝わる減速ショックを更に軽減することができる。一方、故障検出時の走行加速度が小さい場合には、運転者に伝わる減速ショックが小さいために速やかな減速がなされるので、減速制御を早く完了させることができる。
【0021】
前記運転状態検出部は、乗り物の変速装置のギヤ位置を検出するギヤポジションセンサを含み、 前記速度規制制御部は、減速比が異なる2つのギヤ位置において、減速比が高いギヤ位置である場合に、減速比が低いギヤ位置である場合に比べて、減速率が小さくなるようにしてもよい。
【0022】
前記構成によれば、故障検出時にギヤ位置が低速位置である場合には、より緩やかに減速がなされるので、運転者に伝わる減速ショックを更に軽減することができる。
【0023】
第2の発明に係る騎乗型乗り物は、前記走行速度制御装置を備えることを特徴とする。
【0024】
前記構成によれば、騎乗型乗り物は、故障検出時の運転状態に基づいて走行速度の減少パターンを決定する走行速度制御装置を備えているので、故障検出時に運転状況に応じて適切な減速を行うことができる。
【発明の効果】
【0025】
以上の説明から明らかなように、本発明によれば、運転状態に基づいて故障検出時の減速パターンが決定されるので、故障検出時に運転状況に応じた適切な減速制御を実施することができる。
【発明を実施するための最良の形態】
【0026】
以下、本発明に係る実施形態を図面を参照して説明する。なお、以下の説明で用いる方向の概念は、自動二輪車に騎乗した運転者から見た方向を基準とする。
【0027】
(第1実施形態)
図1は本発明の第1実施形態に係る自動二輪車1の左側面図である。図1に示すように、自動二輪車1(騎乗型乗り物)は前輪2と後輪3とを備え、前輪2は略上下方向に延びるフロントフォーク4の下端部にて回転自在に支持され、該フロントフォーク4は、その上端部に設けられたアッパーブラケット(図示せず)と該アッパーブラケットの下方に設けられたアンダーブラケット(図示せず)とを介してステアリングシャフト(図示せず)に支持されている。該ステアリングシャフトはヘッドパイプ5によって回転自在に支持されている。該アッパーブラケットには左右へ延びるバー型のハンドル6が取り付けられている。ハンドル6の運転者の右手により把持されるグリップは、手首のひねりにより回転させて走行速度を調節する入力部材であるスロットルグリップ28(図2)となっている。ハンドル6の運転者の左手により把持されるグリップの前方にはクラッチレバー8が設けられている。運転者はハンドル6を時計回り又は反時計回りに回動操作することにより、前記ステアリングシャフトを回転軸として前輪2を所望の方向へ転向させることができる。
【0028】
ヘッドパイプ5からは左右一対のメインフレーム10が若干下方に傾斜しながら後方へ延びており、このメインフレーム10の後部に左右一対のピボットフレーム11が接続されている。このピボットフレーム11には略前後方向に延びるスイングアーム12の前端部が枢支されており、このスイングアーム12の後端部に駆動輪である後輪3が回転自在に軸支されている。ハンドル6の後方には燃料タンク13が設けられており、この燃料タンク13の後方に運転者騎乗用のシート14が設けられている。
【0029】
前輪2と後輪3の間では、エンジンE(走行駆動源)がメインフレーム10及びピボットフレーム11に支持された状態で搭載されている。エンジンEには変速装置Tが接続されており、この変速装置Tから出力される駆動力がチェーンCを介して後輪3に伝達される。エンジンEの吸気ポート(図示せず)にはメインフレーム10の内側に配置されたスロットルボディ15が接続されている。また、シート14の下方の内部空間には、そのスロットルボディ15を制御するECU16(電子制御ユニット)が収容されている。スロットルボディ15の上流側には燃料タンク13の下方に配置されたエアクリーナボックス17が接続されており、前方からの走行風圧を利用して外気を取り込む構成となっている。また、車体前部から車体両側にかけてエンジンEなどを覆うようにカウリング18が設けられている。
【0030】
図2は図1に示す自動二輪車1に搭載された走行速度制御装置19のブロック図である。図2に示すように、走行速度制御装置19は、バタフライ式のスロットル弁21を開閉することでエンジンE(図1)への吸気量を調節する公知のスロットルボディ15を備えている。スロットル弁21は回転可能に支持されたスロットル軸22に固定されている。スロットル軸22の左端部には、後述する規制開度付勢機構23が設けられている。
【0031】
スロットル軸22には第1ギア24が取り付けられている。スロットルボディ15はモータ26(アクチュエータ)を有しており、モータ26の駆動軸に取り付けられた第2ギア25が第1ギア24に噛合されている。即ち、モータ26の回転駆動力が、第1ギア24及び第2ギア25を介してスロットル軸22に伝達されて、スロットル弁21が開閉される。スロットル軸22の右端部には、スロットル軸22の回転角度(開度)を検出可能なスロットルポジションセンサ27がスロットル開度センサとして設けられている。なお、スロットルポジションセンサ27を設ける代わりに、ECU16がモータ26の回転数を管理してスロットル軸22の回転角度を把握することにより、スロットル開度センサを兼ねてもよい。
【0032】
スロットルグリップ28(入力部材)は回転自在に支持された回転軸29とともに回転し、その回転軸29には、スロットルグリップ28の回転角度(開度)を検出するためのグリップポジションセンサ30が設けられている。即ち、グリップポジションセンサ30が、運転者からスロットルグリップ28に与えられる走行速度変化指令を検出する指令検出部としての役目を果たしている。
【0033】
ECU16は、故障検出部31、減速パターン記憶部32、速度規制制御部33、モータ制御部34(アクチュエータ制御部)及びモータ駆動回路35を備えている。故障検出部31は、走行速度制御装置19の制御系統の故障を検出する。この故障には、モータ26に関する故障と、モータ26を停止させなければならないモータ26以外の故障とがある。例えば、故障検出部31は、グリップポジションセンサ30の出力に対応するスロットル開度と、スロットルポジションセンサ27で検出される実開度との差が、所定時間以上にわたり許容値よりも大きいままである場合には、故障であると判断する。また、同機能のセンサを2つ設けて両者が同じ出力であることを照合する構成が採用されている場合に、故障検出部31は、2つのセンサの出力が許容範囲を超えて相違する場合には、故障であると判断する。その際のセンサとしては、グリップポジションセンサやスロットルポジションセンサ等のあらゆるセンサ類を対象とすることができる。
【0034】
たとえば故障として、グリップポジションセンサ30によるスロットル開度指令を正常検出可能であり、かつ、モータ26の誤動作の可能性が少ない第1の故障状態が考えられる。またスロットル開度指令が検出できない又はモータ26を停止させる必要のある第2の故障が考えられる。第1の故障状態は、グリップポジションセンサ30及びモータ26以外の故障が考えられ、第2の故障状態は、グリップポジションセンサ30およびモータ26のいずれかの故障が考えられる。
【0035】
また、減速パターン記憶部32は、後述するように、故障検出時の減速制御において走行速度、走行加速度及びギヤ位置などの自動二輪車1の運転状態をパラメータとして決定される複数の減速パターンを保存している。なお、本実施形態における減速パターンは、モータ26が制御するスロットル開度の減少パターンとなっている。
【0036】
図3は図2に示す走行速度制御装置19の減速パターン記憶部32に保存されたパターンマップ100を説明する図面である。図3に示すパターンマップ100には、速度、加速度及びギヤ位置の夫々の値に応じて多数の減速パターンが予め用意されている。具体的には、パターンマップ100では、故障検出時に速度センサ36で検出される速度が大きい場合には、その速度が小さい場合に比べて、減速率(スロットル開度減少率)が小さくなる減速パターン(スロットル開度減少パターン)が用意されている。
【0037】
また、パターンマップ100では、故障検出時に加速度センサ37で検出される加速度が大きい場合には、その加速度が小さい場合に比べて、減速率(スロットル開度減少率)が小さくなる減速パターン(スロットル開度減少パターン)が用意されている。さらに、パターンマップ100では、故障検出時にギヤポジションセンサ38で検出されるギヤ位置が1速である場合には、ギヤ位置が2速以上である場合に比べて、減速率(スロットル開度減少率)が小さくなる減速パターン(スロットル開度減少パターン)が用意されている。ここで減速率とは、単位時間当たりに走行速度が低下する量である。またスロットル開度減少率とは、単位時間あたりにスロットル開度が閉じる量である。本実施形態では、走行速度制御装置19は、少なくとも故障検出初期段階における減速率(スロットル開度減少率)を、運転状態に基づいて決定する。
【0038】
また変形例の減速パターンとして、エンジンEのクランク軸の回転数に対する変速装置の出力軸の回転数の減速比が高い場合には、低い場合に比べて減速率(スロットル開度減少率)が小さくなる減少パターンが用意されていてもよい。さらに、エンジン回転数に対する出力軸の減速比が高い状態で加速指令が与えられた場合には、減速比が低い状態で加速指令が与えられた場合に比べて減速率(スロットル開度減少率)が小さくなる減少パターンが用意されていてもよい。
【0039】
また故障検出時に、加速センサ36によって自動二輪車1が減速状態であることが検出されると、定速走行状態及び加速走行状態の少なくともいずれかに比べて、減速率(スロットル開度減少率)が大きい減少パターンが用意されてもよい。
【0040】
またグリップポジションセンサ30、ギヤポジションセンサ38及びブレーキセンサなどの他の運転状態検出部を用いて、走行速度または走行加速度などの運転状態を検出し、その検出した運転状態に応じて減速率(スロットル開度減少率)を決定してもよい。たとえば故障判断時において、グリップポジションセンサ30によって加速指令が与えられたことを検出した状態では、定速指令が与えられている状態に比べて、減速率(スロットル開度減少率)が小さくなる減少パターンが用意されていてもよい。またブレーキセンサによって、減速指令が与えられたことを検出した場合には、定速指令および加速指令が与えられる場合に比べて、減速率(スロットル開度減少率)が大きくなる減少パターンが用意されていてもよい。
【0041】
再び図2に戻ると、速度規制制御部33は、故障検出部31により故障が検出されると、減速パターン記憶部32を参照し、強制的に走行速度を徐々に減少させるようにモータ26の制御を行う。モータ制御部34は、グリップポジションセンサ30の出力に応じてモータ26の制御を行う。モータ駆動回路35は、モータ26を正逆回転させるための駆動回路である。即ち、モータ制御部34、モータ駆動回路35及びスロットルボディ15が、グリップポジションセンサ30から出力される信号に応じてエンジンEの出力を変化させる出力制御部20としての役割を果たしている。
【0042】
また、ECU16の速度規制制御部33には、速度センサ36、加速度センサ37及びギヤポジションセンサ38が接続されている。速度センサ36は、自動二輪車1の進行方向の走行速度を検出するものである。加速度センサ37は、自動二輪車1の進行方向の走行加速度を検出するものである。ギヤポジションセンサ38は、自動二輪車1の変速装置Tのギヤ位置を検出するものである。即ち、速度センサ36、加速度センサ37及びギヤポジションセンサ38が、自動二輪車1の運転状態を検出する運転状態検出部の役目を果たしている。なお、加速度の検出は、速度センサ36で検出された速度値の単位時間当たりの変化量を算出することで代用してもよい。
【0043】
図4は図2に示す走行速度制御装置19の規制開度付勢機構23(付勢手段)の概略斜視図である。図4に示すように、規制開度付勢機構23は、モータ26(図2)による負荷がスロットル軸22に伝達されない場合に、スロットル弁21をアイドリング開度よりも少しだけ大きい規制開度に維持させるための機構である。詳しくは、規制開度付勢機構23は、スロットル軸22からその回転軸線に直交する方向に突出した第1揺動片40及び第2揺動片43を有しており、第1揺動片40にリターンスプリング42の一端部が接続され、そのリターンスプリング42の他端部は固定壁41に接続されている。即ち、リターンスプリング42によりスロットル弁21は閉方向に付勢されている。
【0044】
また、スロットル軸22と同一軸線上には回転軸45が設けられ、その回転軸45にはその回転軸線に直交する方向に側面視でL形状の第3揺動片44が突出している。第3揺動片44は、側面視で所定の角度が形成された第1突出部46と第2突出部48とを有しており、第1突出部46の先端部からスロットル軸22の回転軸線方向に向けて支持部47が突出している。支持部47は、第2揺動片43を当接/離反可能に支持しており、スロットル弁21の閉じ動作を適宜規制している。また、第2突出部48には、オープンスプリング50の一端部が接続され、そのオープンスプリング50の他端部は固定壁49に接続されている。即ち、オープンスプリング50によりスロットル弁21は開方向に付勢されている。そして、第2突出部48の動作軌跡上にはストッパ51が配置されており、支持部47が第2揺動片43を所定角度以上に押し上げることをストッパ51により規制している。よって、モータ26(図2)による負荷がスロットル軸22に伝達されない場合には、リターンスプリング42とオープンスプリング50とにより、スロットル弁21はアイドリング開度より若干大きい規制開度に保持されるように付勢される。
【0045】
次に、走行速度制御装置19の動作について図2の構成を参照しながら図5のフローチャートに基づいて説明する。図5は図2に示す走行速度制御装置19の減速制御を説明するフローチャートである。自動二輪車1(図1)の電源がONされると、ECU16のモータ制御部34により、グリップポジションセンサ30の出力に応じてモータ26の制御を行う通常制御が実施される(ステップS1)。そして、ECU16は、この通常制御中に故障検出部31により故障が検出されたか否かを判断する(ステップS2)。故障が検出されていない場合には、ステップS1に戻って通常制御を継続する。一方、故障が検出された場合には、速度規制制御部33が、減速パターン記憶部32に記憶された複数の減速パターンのうちから、故障検出時の自動二輪車1の運転状態に対応する減速パターンを読み出す。
【0046】
具体的には、速度規制制御部33は、故障検出時に速度センサ36で検出された速度、故障検出時に加速度センサ37で検出された加速度、及び、故障検出時にギヤポジションセンサ38で検出されたギヤ位置をパラメータとし、減速パターン記憶部32からそれらパラメータに対応する減速パターンを選び出す。そして、速度規制制御部33は、選ばれた減速パターンに基づいてモータ制御部34に指令してモータ26を駆動し、スロットル弁21の開度を規制開度α2(図6)まで徐々に減少させる減速制御を実施する(ステップS4)。
【0047】
図6は図2に示す走行速度制御装置19による減速制御におけるスロットル開度と時間との関係を表すグラフである。図6に示すように、スロットル開度は、故障検出時点t1の開度α1から徐々に減少し、アイドリング開度α3よりも少しだけ大きい規制開度α2に到達した時点t2からスロットル開度は略一定に保たれる。この際、スロットル開度がα1からα2に至るまでに要する時間(t2−t1)や、スロットル開度がα1からα2に至るまでの開度減少率((α2−α1)/(t2−t1))や、スロットル開度がα1からα2に至るまでの開度減少曲線形状などは、減速パターン記憶部32で選ばれる減速パターンにより相違することとなる。例えば、前記開度減少曲線形状は、直線状、放物線状、階段状又はそれらの組み合わせとなる形状等であってもよい。
【0048】
再び図5に戻ると、ステップS4の実行が開始された後、速度規制制御部33は、グリップポジションセンサ30の出力に対応するスロットル開度が、スロットルポジションセンサ27で検出される実開度以上であるか否かを判断する(ステップS5)。グリップポジションセンサ30の出力に対応するスロットル開度が実開度よりも小である場合には、通常制御に戻って運転者の意思どおりにスロットル開度が減少する(ステップS7)。一方、グリップポジションセンサ30の出力に対応するスロットル開度が実開度以上である場合には、速度規制制御部33は、実開度が規制開度に達しているか否かを判断する(ステップS6)。
【0049】
実開度が規制開度に達していない場合には、ステップS4に戻って減速制御が継続される。一方、実開度が既に規制開度に達している場合には、速度規制制御部33はモータ26を停止させ、スロットル開度は規制開度付勢機構23により規制開度α2に維持される(ステップS8)。このモータ26が停止した状態では、エンジンEの点火時期を進角させることでしかエンジン出力を増加させることができないので、運転者がスロットルグリップを開き方向に動作させても自動二輪車1の走行速度は極低速に規制されることとなる。
【0050】
以上の構成によれば、速度規制制御部33は、故障検出時の運転状態に基づいて減速パターンを決定しているので、故障発生時に運転状況に応じた適切な減速制御を実施することができる。また、グリップポジションセンサ30の出力に対応するスロットル開度が、スロットルポジションセンサ27で検出されるスロットル弁21の実開度よりも小さい場合には通常制御がなされるので、運転者の意思を優先したスムーズな減速を行うことも可能となる。
【0051】
さらに、減速パターン記憶部32に保存されたパターンマップ100では、故障検出時における走行速度が大きい場合には、より緩やかに減速がなされるので、運転者の操作性を向上させることができる。また、故障検出時における走行加速度が大きい場合には、より緩やかに減速がなされるので、運転者に伝わる減速ショックをより軽減することができる。一方、故障検出時の走行加速度が小さい場合には、運転者に伝わる減速ショックが小さいために速やかな減速がなされ、減速制御を早く完了させることができる。また、故障検出時にギヤ位置が1速である場合には、より緩やかに減速がなされるので、運転者に伝わる減速ショックをより軽減することができる。
【0052】
なお、本実施形態では、自動二輪車1の運転状態として、走行速度、走行加速度及びギヤ位置を参照して減速パターンが決定されているが、運転状態としてエンジン回転数やスロットル開度や故障状態も参照して減速パターンを決定してもよい。即ち、走行速度、走行加速度、ギヤ位置、エンジン回転数、スロットル開度及び故障状態のうちから任意に選択されたものの組み合わせを運転状態として参照して減速パターンを決定してもよい。また、故障検出部31は走行速度制御装置19のECU16に設けられているが、外部の故障検出手段からECUに故障信号が与えられる構成としてもよい。
【0053】
さらに、本実施形態では、故障検出後のスロットル弁21の規制開度は、アイドリング開度α3よりも若干大きい開度α2に設定されているが、アイドリング開度α3を規制開度に設定してもよいし、グリップポジションセンサ30の出力に対応するスロットル開度の所定割合(例えば、40%)を規制開度に設定してもよい。
【0054】
(第2実施形態)
図7は本発明の第2実施形態に係る走行速度制御装置のECUにおけるモータ駆動回路35の各モードを表した回路図である。なお、以下の説明で第1実施形態と同様である構成については説明を省略している。図7に示すように、モータ駆動回路35は、Hブリッジ回路となっている。このHブリッジ回路35は、モータ26の一対の給電端子部26a,26bに接続されている。Hブリッジ回路35は、トランジスタからなる一対のハイサイドスイッチSW1,SW2及び一対のローサイドスイッチSW3,SW4を備えている。
【0055】
Hブリッジ回路35は、正転モード、逆転モード、ブレーキモード及びフリーモードを有している。正転モードは、左側のハイサイドスイッチSW1及び右側のローサイドスイッチSW4がオン、かつ、右側のハイサイドスイッチSW2及び左側のローサイドスイッチSW3がオフとなる状態であり、モータ26はスロットル開度の増加方向に回転駆動される。逆転モードは、左側のハイサイドスイッチSW1及び右側のローサイドスイッチSW4がオフ、かつ、右側のハイサイドスイッチSW2及び左側のローサイドスイッチSW3がオンとなる状態であり、モータ26はスロットル開度の減少方向に回転駆動される。
【0056】
ブレーキモードは、一対のハイサイドスイッチSW1,SW2がオフ、かつ、一対のローサイドスイッチSW3,SW4がオンとなる状態であり、モータ26の一対の給電端子部26a,26bは互いに電気的に短絡されている。よって、ブレーキモードにおいて、規制開度付勢機構23による外力でモータ26が回転する際には、給電端子部26a,26bに誘導起電力が生じることを妨げるブレーキ力がモータ26に作用し、モータ26は加速度の生じない緩やかな回転状態に維持される。
【0057】
フリーモードは、一対のハイサイドスイッチSW1,SW2及び一対のローサイドスイッチSW3,SW4がオフとなる状態であり、モータ26の一対の給電端子部26a,26bは互いに電気的に切断されている。よって、フリーモードにおいて、規制開度付勢機構23による外力でモータ26が回転する際には、モータ26は自由に回転可能であり、外力に応じて速やかに回転する。
【0058】
図8は第2実施形態の走行速度制御装置の減速制御を説明するフローチャートである。図8に示すように、ステップS10〜ステップS12は、第1実施形態のステップS1〜ステップS3と同様であるため説明を省略する。ステップS12の後、スロットルポジションセンサ27で検出される実開度が、読み出された減速パターンにより決定される現時点の目標開度よりも大きいか否かが判断される(ステップS13)。
【0059】
実開度が目標開度よりも大きい場合には、Hブリッジ回路35はフリーモードとなるように制御され、スロットル開度が速やかに減少させられる(ステップS14)。一方、実開度が目標開度より大きくない場合には、Hブリッジ回路35はブレーキモードとなるように制御され、スロットル開度が緩やかに減少させられる(ステップS15)。
【0060】
次のステップS16〜ステップS18は、第1実施形態のステップS5〜ステップS7と同様であるため説明を省略する。そして、ステップS17において、実開度が規制開度に達していない場合には、ステップS13に戻って減速制御が継続される。一方、実開度が既に規制開度に達している場合には、Hブリッジ回路35がブレーキモードとなることでモータ26が停止させられ、スロットル開度は規制開度付勢機構23により規制開度α2に維持される(ステップS19)。
【0061】
図9は第2実施形態の走行速度制御装置による減速制御におけるスロットル開度と時間との関係を表すグラフである。図9中、1点鎖線はフリーモードのみでスロットル開度が減少する場合を示している。2点鎖線はブレーキモードのみでスロットル開度が減少する場合を示している。破線は本発明の減速パターン(スロットル開度減少パターン)の目標開度を示している。実線は本発明の減速パターン(スロットル開度減少パターン)に基づいて制御された実開度を示している。図9に示すように、故障検出時点t1からスロットル開度が目標開度となるようにブレーキモードとフリーモードとが互いに適宜切り換えられ、スロットル開度がα1から目標開度に沿って徐々に減少している。そして、スロットル開度が規制開度α2に到達した時点t2からスロットル開度は略一定に保たれている。
【0062】
以上の構成によれば、Hブリッジ回路35がブレーキモードとフリーモードとの間で適宜交互に切り換えられるので、モータ26の規制開度付勢機構23に対する抵抗を調節することができ、スロットル開度の減少率を制御することが可能となる。
【0063】
(第3実施形態)
図10は第3実施形態の走行速度制御装置の減速制御を説明するフローチャートである。図11は第3実施形態の走行速度制御装置のPWM制御を説明する図面である。本実施形態のモータ駆動回路35も第2実施形態と同様にHブリッジ回路となっている。第2実施形態との相違点は、Hブリッジ回路35のブレーキモードとフリーモードとの間の切り換えをPWM制御で行っている点である。このPWM制御におけるデューティ比は、Hブリッジ回路35のローサイドスイッチSW3,SW4を同時にオンする時間の割合を意味している。なお、以下の説明で第1又は第2実施形態と同様である構成については説明を省略している。
【0064】
図10に示すように、ステップS20〜ステップS23は、第2実施形態のステップS10〜ステップS13と同様であるため説明を省略する。ステップS23において、実開度が目標開度よりも大きい場合には、デューティ比が所定量減少するように更新され、スロットル開度が速やかに減少させられる(ステップS24)。一方、実開度が目標開度より大きくない場合には、デューティ比が所定量増加するように更新され、スロットル開度が緩やかに減少させられる(ステップS25)。そして、図11に示すように、そのデューティ比に基づいてブレーキモードとフリーモードとの間でのPWM制御が実施される(ステップS26)。次のステップS27〜ステップS30は、第2実施形態のステップS16〜ステップS19と同様であるため説明を省略する。
【0065】
以上の構成によれば、故障検出時点からスロットル開度が目標開度となるようにブレーキモードとフリーモードとが互いに適宜切り換えられ、スロットル開度が目標開度に沿って緩やかに減少する。即ち、Hブリッジ回路35がブレーキモードとフリーモードとの間で適宜交互に切り換えられることで、モータ26の規制開度付勢機構23に対する抵抗が調節され、スロットル開度の減少率を制御することが可能となる。
【0066】
第2実施形態または第3実施形態によれば、グリップポジションセンサ30の信号出力不良、モータ駆動回路35におけるスロットル開度の信号出力不良、モータ26におけるスロットルバルブ駆動不能などの故障が生じたとしても、スロットルポジションセンサ27の出力およびモータのHブリッジ回路の制御可能性が正常であれば、故障時のスロットル開度の減少率を制御することができる。
【0067】
また本発明は、各実施形態を組み合わせてもよい。たとえば故障検出部が、第1の故障状態か、第2の故障状態かを判断する。故障検出部が第2の故障状態であると判断すると、第2または第3実施形態の動作を実行し、第1の故障状態であると判断すると第1実施形態の動作を実行してもよい。これによって故障時の減速動作をより確実に行うことができる。
【0068】
また故障検出時における乗り物の速度または加速度が予め定める設定値よりも大きい場合には、予め定められる規定減速率よりも小さい減速率となる減少パターンを用い、乗り物の速度または加速度が前記設定値以下になると、減速率を規定速度減速率となる減少パターンを用いてもよい。これによって運転者が感じる減速ショックを緩和させるとともに、故障時走行状態に可及的早く移行させることができる。このように故障検出時に走行速度を減速させている間において、運転状態が予め定める設定値超過となる場合と、運転状態が前記設定値未満となる場合とで、減速パターンを異ならせてもよい。
【0069】
また減少比のほか、走行速度の時間に対する過渡変化を運転状態に応じて変化させてもよい。たとえば故障判断時において、運転状態に基づいて運転者に伝わる減速ショックが小さい第1の運転状態では、時間に対する走行速度変化が一次関数に従い、運転状態に基づいて運転者に伝わる減速ショックが大きい第2の運転状態では、時間に対する走行速度変化が、曲線または多段階状に変化する関数に従うように、減少パターンを用意してもよい。第1の運転状態は、速度および加速度が予め定める規定値よりも小さい状態で、第2の運転状態は、速度および加速度が前記規定値よりも大きい状態である。第2の運転状態では、第1の運転状態に比べて、少なくとも故障検出初期段階の減速率が、小さくなるように設定されることが好ましい。また乗り物の積載物の重量を検出することが可能なセンサが設けられる場合、乗り物の積載物の重量が大きい場合には、積載物重量が小さい場合に比べて、減速率が大きくなる減少パターンが用意されていてもよい。
【0070】
また本実施形態では、故障検出時に走行速度を低下させるために、スロットル開度を制御したが、他のエンジン出力低下方法によって走行速度を低下させてもよい。たとえばイグニッション点火に関する制御によってエンジン出力を低下させて、所望の減速パターンで走行速度を低下させてもよい。また走行駆動源は、エンジンを含む動力発生機構以外、たとえば電動モータを含む動力発生機構であってもよい。また指令検出部は、グリップポジションセンサ以外、たとえば速度指令が与えられるスイッチであってもよい。
【0071】
なお、本発明に係る走行速度制御装置はあらゆる乗り物に適用可能であり、特に、自動二輪車や小型ジェット推進艇(Personal Water Craft:PWC)や騎乗型不整地走行車などの比較的軽量な騎乗型の乗り物に適用すると好適である。また、本発明に係る走行速度制御装置は、前述した各実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲でその構成を変更、追加、又は削除することができる。
【産業上の利用可能性】
【0072】
以上のように、本発明に係る走行速度制御装置及び騎乗型乗り物は、故障検出時に運転状況に応じた適切な減速制御を実施することができる優れた効果を有し、自動二輪車などのような乗り物に適用すると有益である。
【図面の簡単な説明】
【0073】
【図1】本発明の第1実施形態に係る自動二輪車を示す左側面図である。
【図2】図1に示す自動二輪車に搭載された走行速度制御装置のブロック図である。
【図3】図2に示す走行速度制御装置の減速パターン記憶部に保存されたパターンマップを説明する図面である。
【図4】図2に示す走行速度制御装置の規制開度付勢機構の概略斜視図である。
【図5】図2に示す走行速度制御装置の減速制御を説明するフローチャートである。
【図6】図2に示す走行速度制御装置による減速制御におけるスロットル開度と時間との関係を表すグラフである。
【図7】本発明の第2実施形態に係る走行速度制御装置のECUにおけるモータ駆動回路の各モードを表した回路図である。
【図8】第2実施形態の走行速度制御装置の減速制御を説明するフローチャートである。
【図9】第2実施形態の走行速度制御装置による減速制御におけるスロットル開度と時間との関係を表すグラフである。
【図10】第3実施形態の走行速度制御装置の減速制御を説明するフローチャートである。
【図11】第3実施形態の走行速度制御装置のPWM制御を説明する図面である。
【符号の説明】
【0074】
1 自動二輪車(騎乗型乗り物)
19 走行速度制御装置
20 出力制御部
21 スロットル弁
23 規制開度付勢機構(付勢手段)
26 モータ(アクチュエータ)
26a,26b 給電端子部
27 スロットルポジションセンサ(スロットル開度センサ)
28 スロットルグリップ(入力部材)
30 グリップポジションセンサ(指令検出部)
31 故障検出部
32 減速パターン記憶部
33 速度規制制御部
34 モータ制御部(アクチュエータ制御部)
35 モータ駆動回路
36 速度センサ(運転状態検出部)
37 加速度センサ(運転状態検出部)
38 ギヤポジションセンサ(運転状態検出部)


【特許請求の範囲】
【請求項1】
乗り物における故障を検出する故障検出部と、
前記故障検出部により故障が検出されると、時間経過に伴って走行速度を減少させるように走行駆動源を制御する速度規制制御部と、
前記乗り物の運転状態を検出する運転状態検出部とを備え、
前記速度規制制御部は、故障検出時に前記運転状態検出部で検出される運転状態に応じて減速パターンを決定する構成であることを特徴とする走行速度制御装置。
【請求項2】
運転者から与えられる走行速度変化指令を検出する指令検出部と、
前記指令検出部から出力される信号に応じて、前記走行駆動源の出力を変化させる出力制御部とをさらに備え、
前記故障検出部は、前記指令検出部又は前記出力制御部の異常を故障として検出する構成である請求項1に記載の走行速度制御装置。
【請求項3】
前記走行駆動源はエンジンとし、
前記指令検出部は、運転者の操作で動く入力部材の位置を検出する操作位置センサとし、
前記出力制御部は、前記エンジンへの吸気量を調節するスロットル弁と、前記スロットル弁の開度を変化させるアクチュエータと、前記操作位置センサから出力される信号に応じて前記アクチュエータを駆動制御するアクチュエータ制御部とを有し、
前記速度規制制御部は、前記故障検出部により故障が検出されると、前記スロットル弁の開度が目標となる規制開度まで減少するように前記アクチュエータ制御部に指令することで走行速度を減少させる構成である請求項2に記載の走行速度制御装置。
【請求項4】
前記スロットル弁を規制開度に向けて付勢する付勢手段と、
前記アクチュエータとなるモータの一対の給電端子部に接続されるモータ駆動回路とをさらに備え、
前記モータ駆動回路は、前記一対の給電端子部を電気的に短絡させるブレーキモードと、前記一対の給電端子部を電気的に切断させるフリーモードとに切換可能に構成され、
前記速度規制制御部は、前記故障検出部により故障が検出された場合に、前記モータ駆動回路を前記ブレーキモードと前記フリーモードとの間で交互に切り換えることで減速率を制御する構成である請求項3に記載の走行速度制御装置。
【請求項5】
前記スロットル弁の開度を検出するスロットル開度センサをさらに備え、
前記操作位置センサの出力に対応するスロットル開度が、前記スロットル開度センサで検出される開度よりも小である場合には、前記速度規制制御部による減速制御を実施せずに、前記操作位置センサから出力される信号に応じて前記アクチュエータ制御部により前記アクチュエータを駆動制御させる構成である請求項3又は4に記載の走行速度制御装置。
【請求項6】
前記運転状態検出部は、前記乗り物の走行速度を検出する速度センサを含み、
前記故障検出部により故障が検出されたときに前記速度センサで検出される走行速度が大きい場合には、その走行速度が小さい場合に比べて、前記速度規制制御部による減速率が小さくなるように前記減速パターンが設定されている請求項1乃至5のいずれかに記載の走行速度制御装置。
【請求項7】
前記運転状態検出部は、前記乗り物の走行加速度を検出する加速度センサを含み、
前記故障検出部により故障が検出されたときに前記加速度センサで検出される走行加速度が大きい場合には、その走行加速度が小さい場合に比べて、前記速度規制制御部による減速率が小さくなるように前記減速パターンが設定されている請求項1乃至6のいずれかに記載の走行速度制御装置。
【請求項8】
前記運転状態検出部は、乗り物の変速装置のギヤ位置を検出するギヤポジションセンサを含み、
前記速度規制制御部は、減速比が異なる2つのギヤ位置において、減速比が高いギヤ位置である場合に、減速比が低いギヤ位置である場合に比べて、減速率が小さくなるようにする請求項1乃至7のいずれかに記載の走行速度制御装置。
【請求項9】
請求項1乃至8のいずれかに記載の走行速度制御装置を備えることを特徴とする騎乗型乗り物。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate


【公開番号】特開2009−8056(P2009−8056A)
【公開日】平成21年1月15日(2009.1.15)
【国際特許分類】
【出願番号】特願2007−172260(P2007−172260)
【出願日】平成19年6月29日(2007.6.29)
【出願人】(000000974)川崎重工業株式会社 (1,710)
【Fターム(参考)】