説明

液晶表示装置、及びその作製方法

【課題】作製工程を削減し、低コストで生産性の良い液晶表示装置を提供する。消費電力が少なく、信頼性の高い液晶表示装置を提供する。
【解決手段】島状半導体層を形成するためのフォトリソグラフィ工程及びエッチング工程を省略し、ゲート電極(同一層で形成される配線等を含む)を形成する工程、ソース電極及びドレイン電極(同一層で形成される配線等含む)を形成する工程、コンタクトホールを形成する(コンタクトホール以外の絶縁層等の除去を含む)工程、画素電極(同一層で形成される配線等を含む)を形成する工程の4つのフォトリソグラフィ工程で液晶表示装置を作製する。コンタクトホールを形成する工程において、半導体層が除去された溝部を形成することで、寄生チャネルの形成を防ぐ。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、半導体装置、液晶表示装置、及びその作製方法に関する。
【0002】
なお、本明細書中において半導体装置とは、半導体特性を利用することで機能しうる装置全般を指し、トランジスタ、半導体回路、記憶装置、撮像装置、表示装置、電気光学装置及び電子機器などは全て半導体装置である。
【背景技術】
【0003】
近年、ガラス基板等の絶縁性表面を有する基板上に形成された、厚さ数nm乃至数百nm程度の半導体薄膜により構成されるトランジスタが注目されている。トランジスタは、IC(Integrated Circuit)及び電気光学装置を始めとした電子デバイスに広く応用されている。トランジスタは、特に液晶表示装置等に代表される、画像表示装置のスイッチング素子として開発が急がれている。アクティブマトリクス型液晶表示装置では、選択されたスイッチング素子に接続された画素電極と、該画素電極に対応する対向電極の間に電圧が印加されることにより、画素電極と対向電極との間に配置された液晶層の光学変調が行われ、この光学変調が表示パターンとして観察者に認識される。ここで、アクティブマトリクス型液晶表示装置とは、マトリクス状に配置された画素電極をスイッチング素子により駆動することによって、画面上に表示パターンが形成される方式を採用した液晶表示装置をいう。
【0004】
上記のようなアクティブマトリクス型液晶表示装置の用途は拡大しており、画面サイズの大面積化、高精細化及び高開口率化の要求が高まっている。また、アクティブマトリクス型液晶表示装置には高い信頼性が求められ、その生産方法には高い生産性及び生産コストの低減が求められる。生産性を高め、生産コストを低減する方法の一つに、工程の簡略化が挙げられる。
【0005】
アクティブマトリクス型液晶表示装置では、スイッチング素子として主にトランジスタが用いられている。トランジスタの作製において、フォトリソグラフィ工程を削減または簡略化することは、工程全体の簡略化のために重要である。例えばフォトリソグラフィ工程が1つ増加すると、レジスト塗布、プリベーク、露光、現像、ポストベーク等の工程と、その前後の工程において、被膜の形成及びエッチング工程、更にはレジスト剥離、洗浄及び乾燥工程等が必要になる。そのため、作製工程におけるフォトリソグラフィ工程が1つ増加するだけで、工程数が大幅に増加する。そのため、作製工程におけるフォトリソグラフィ工程を削減または簡略化するために、数多くの技術開発がなされている。
【0006】
トランジスタは、チャネル形成領域がゲート電極より下層に設けられるトップゲート型と、チャネル形成領域がゲート電極より上層に設けられるボトムゲート型に大別される。これらのトランジスタは、少なくとも5枚のフォトマスクにより作製されることが一般的である。
【0007】
フォトリソグラフィ工程を簡略化させる従来の技術としては、裏面露光、レジストリフロー又はリフトオフ法といった複雑な技術を用いるものが多く、特殊な装置を必要とするものが多い。このような複雑な技術を用いることで、これに起因する様々な問題が生じ、歩留まりの低下の一因となっている。また、トランジスタの電気的特性を低下させてしまうことも多い。
【0008】
また、トランジスタの作製工程における、フォトリソグラフィ工程を簡略化するための代表的な手段として、多階調マスク(ハーフトーンマスク又はグレートーンマスクと呼ばれるもの)を用いた技術が広く知られている。多階調マスクを用いて作製工程を低減する技術として、例えば特許文献1が挙げられる。
【先行技術文献】
【特許文献】
【0009】
【特許文献1】特開2003−179069号公報
【発明の概要】
【発明が解決しようとする課題】
【0010】
本発明の一態様は、トランジスタの作製に用いるフォトリソグラフィ工程を従来よりも少なくすることを課題の一とする。
【0011】
本発明の一態様は、トランジスタを有する表示装置の作製に用いるフォトマスクの枚数を従来よりも少なくすることを課題の一とする。
【0012】
本発明の一態様は、低コストで生産性の良い液晶表示装置を提供することを課題の一とする。
【0013】
本発明の一態様は、消費電力が低減された液晶表示装置を提供することを課題の一とする。
【0014】
本発明の一態様は、信頼性の高い液晶表示装置を提供することを課題の一とする。
【課題を解決するための手段】
【0015】
島状半導体層を形成するためのフォトリソグラフィ工程及びエッチング工程を省略し、ゲート電極(同一層で形成される配線を含む)を形成する工程、ソース電極及びドレイン電極(同一層で形成される配線を含む)を形成する工程、コンタクトホールを形成する(コンタクトホール以外の絶縁層等の除去を含む)工程、画素電極(同一層で形成される配線等を含む)を形成する工程の4つのフォトリソグラフィ工程で液晶表示装置に用いる半導体装置を作製する。
【0016】
この場合、島状の半導体層を形成するためのフォトリソグラフィ工程やエッチング工程を行わないため、トランジスタが形成される領域以外にも半導体層が残る。このため、例えば、画素電極に供給される電位によっては、画素電極と重畳する半導体層にチャネルが形成されてしまう。なお、このようにして本来必要のない場所に形成されるチャネルを寄生チャネルという。
【0017】
例えば、複数ある画素のうち、第1の画素が有する画素電極と重畳する半導体層に寄生チャネルが形成されると、第1の画素が有する配線と、第1の画素に隣接する第2の画素が有する配線が、寄生チャネルにより電気的に接続されてしまう恐れがある。すなわち、第1の画素が有する画素電極がゲート電極として機能し、第1の画素が有する配線がソース電極またはドレイン電極の一方として機能し、第2の画素が有する配線がソース電極またはドレイン電極の他方として機能するトランジスタが形成されてしまう。このようにして本来必要のない場所にチャネルが形成されるトランジスタを寄生トランジスタという。
【0018】
また、隣接する配線の距離が短い場合は、ゲート電極として機能する層が無くても、隣接する配線間に寄生チャネルが形成され、隣接する配線同士が電気的に接続されてしまう恐れがある。
【0019】
寄生チャネルまたは寄生トランジスタが形成されると、配線間の信号が干渉し、正確な信号の伝達が困難となる。
【0020】
寄生チャネルまたは寄生トランジスタの形成による影響を避けるため、ソース電極に電気的に接続する第2の配線に沿って溝部を設ける。溝部は、ゲート電極と電気的に接続する第1の配線の線幅方向の両端部を越えて、第1の配線の少なくとも一部を横切るように形成される。また、溝部は、容量配線の線幅方向の両端部を越えて、容量配線の少なくとも一部を横切るように形成される。また、溝部は、第2の配線が延在する方向と平行な方向において、画素電極の端部を越えて形成される。なお、溝部と画素電極は、重畳していても、重畳していなくても良い。
【0021】
溝部の形成は、コンタクトホールを形成する工程で、コンタクトホールの形成と同時に行われ、溝部では半導体層が除去される。すなわち、少なくとも溝部の底面には半導体層がない状態となる。
【0022】
本発明の一態様は、ゲート電極と、ソース電極と、ドレイン電極と、半導体層と、を有するトランジスタと、ゲート電極に電気的に接続する第1の配線と、ソース電極に電気的に接続する第2の配線と、ドレイン電極に電気的に接続する画素電極と、容量配線と、溝部を有し、半導体層は、第1の配線と、第2の配線と、画素電極と、容量配線に重畳し、溝部は、第1の配線上の少なくとも一部と、容量配線上の少なくとも一部に形成され、また溝部は、第2の配線に沿って形成され、第2の配線が延在する方向と平行な方向において、画素電極の端部を越えて形成されることを特徴とする。
【0023】
半導体層が除去された溝部を形成することにより、寄生トランジスタの生成を防ぐことができる。
【0024】
第1の配線上に形成される溝部(第1の溝部ともいう)と、容量配線上に形成される溝部(第2の溝部ともいう)と、画素電極の端部を越えて形成される溝部(第3の溝部ともいう)は、それぞれの溝部を個別に形成してもよいし、一つの溝部で、第1の溝部乃至第3の溝部のうち、複数の溝部の機能を兼ねる構成としてもよい。
【0025】
また、溝部の大きさに特に制限はないが、寄生トランジスタの生成を確実に防ぐため、第2の配線が延在する方向と直交する方向における、溝部内の半導体層が除去された部分の距離は1μm以上とすることが好ましく、2μm以上とするとさらに好ましい。
【0026】
また、本発明の一態様は、基板上に、第1のフォトリソグラフィ工程によりゲート電極と、ゲート電極に電気的に接続する第1の配線と、容量配線を形成し、ゲート電極と、第1の配線と、容量配線上にゲート絶縁層を形成し、ゲート絶縁層上に半導体層を形成し、半導体層上に、第2のフォトリソグラフィ工程によりソース電極及びドレイン電極を形成し、ソース電極及びドレイン電極上に絶縁層を形成し、第3のフォトリソグラフィ工程において、ドレイン電極と重なる絶縁層の一部を選択的に除去して行うコンタクトホールの形成と、第1の配線上の半導体層の少なくとも一部の除去と、容量配線上の半導体層の少なくとも一部の除去を行い、絶縁層上に、第4のフォトリソグラフィ工程により画素電極を形成することを特徴とする。
【0027】
また、基板とゲート電極の間に、基板からの不純物元素の拡散を防止する機能を有する絶縁層を設けても良い。
【0028】
本発明の一態様は、基板上に第1の絶縁層を形成し、第1の絶縁層上に第1の電極を形成し、第1の電極上に第2の絶縁層を形成し、第2の絶縁層上に半導体層を形成し、半導体層上に第3の電極と第4の電極を形成し、第3の電極と第4の電極を覆って第3の絶縁層を形成し、第3の電極または第4の電極と重なる第3の絶縁層の一部を除去して行うコンタクトホールの形成と、第3の絶縁層の一部と、半導体層の一部と、及び第2の絶縁層の一部を除去する工程を、同一の工程で行うことを特徴とする。
【0029】
第2の絶縁層はゲート絶縁層として機能し、第3の絶縁層は保護絶縁層として機能する。また、第1の電極はゲート電極として機能し、第3の電極はソース電極またはドレイン電極の一方として機能し、第4の電極はソース電極またはドレイン電極の他方として機能する。
【0030】
コンタクトホールの形成と、第3の絶縁層、半導体層、及び第2の絶縁層の一部の除去は、ドライエッチングまたはウェットエッチング、もしくはドライエッチングとウェットエッチングを組み合わせて行うことができる。
【0031】
ゲート電極、ソース電極、ドレイン電極、もしくはこれらの電極に接続する配線を、銅またはアルミニウムを含む材料で形成することにより、配線抵抗を低減し、信号の遅延を防ぐことができる。
【0032】
また、半導体層に酸化物半導体を用いることで、消費電力が少なく、信頼性の高い液晶表示装置を実現できる。
【0033】
なお、電子供与体(ドナー)となる水分または水素などの不純物が低減されて高純度化された酸化物半導体(purified OS)は、その後、酸化物半導体に酸素を供給して、酸化物半導体内の酸素欠損を低減することによりi型(真性)の酸化物半導体又はi型に限りなく近い(実質的にi型化した)酸化物半導体とすることができる。i型または実質的にi型化された酸化物半導体を用いたトランジスタは、オフ電流が著しく低いという特性を有する。具体的に、高純度化された酸化物半導体は、二次イオン質量分析法(SIMS:Secondary Ion Mass Spectrometry)による水素濃度の測定値が、5×1019/cm以下、好ましくは5×1018/cm以下、より好ましくは5×1017/cm以下、さらに好ましくは1×1016/cm以下とする。
【0034】
また、ホール効果測定により測定できるi型または実質的にi型化された酸化物半導体のキャリア密度は、1×1014/cm未満、好ましくは1×1012/cm未満、さらに好ましくは1×1011/cm未満である。また、酸化物半導体のバンドギャップは、2eV以上、好ましくは2.5eV以上、より好ましくは3eV以上である。i型または実質的にi型化された酸化物半導体を用いることにより、トランジスタのオフ電流を下げることができる。
【0035】
ここで、酸化物半導体中の、水素濃度のSIMS分析について触れておく。SIMS分析は、その原理上、試料表面近傍や、材質が異なる膜との積層界面近傍のデータを正確に得ることが困難であることが知られている。そこで、膜中における水素濃度の厚さ方向の分布をSIMSで分析する場合、対象となる膜が存在する範囲において、値に極端な変動が無く、ほぼ一定の値が得られる領域における平均値を、水素濃度として採用する。また、測定の対象となる膜の厚さが小さい場合、隣接する膜内の水素濃度の影響を受けて、ほぼ一定の値が得られる領域を見いだせない場合がある。この場合、当該膜が存在する領域における、水素濃度の最大値または最小値を、当該膜中の水素濃度として採用する。さらに、当該膜が存在する領域において、最大値を有する山型のピーク、最小値を有する谷型のピークが存在しない場合、変曲点の値を水素濃度として採用する。
【発明の効果】
【0036】
本発明の一態様によれば、液晶表示装置の作製工程を削減できるため、低コストで生産性の良い液晶表示装置を提供することができる。
【0037】
本発明の一態様によれば、消費電力が少なく、信頼性の高い液晶表示装置を提供することができる。
【0038】
本発明の一態様は、上記課題の少なくとも一を解決する。
【図面の簡単な説明】
【0039】
【図1】本発明の一態様を説明する上面図。
【図2】本発明の一態様を説明する断面図。
【図3】本発明の一態様を説明する上面図。
【図4】本発明の一態様を説明する断面図。
【図5】本発明の一態様を説明する上面図及び断面図。
【図6】本発明の一態様を説明する回路図。
【図7】本発明の一態様を説明する上面図及び断面図。
【図8】本発明の一態様を説明する上面図及び断面図。
【図9】本発明の一態様を説明する断面図。
【図10】本発明の一態様を説明する断面図。
【図11】本発明の一態様を説明する断面図。
【図12】本発明の一態様を説明する上面図及び断面図。
【図13】本発明の一態様を説明する図。
【図14】電子機器の使用形態の例を説明する図。
【図15】酸化物材料の結晶構造を説明する図。
【図16】酸化物材料の結晶構造を説明する図。
【図17】酸化物材料の結晶構造を説明する図。
【図18】酸化物材料の結晶構造を説明する図。
【図19】半導体装置の溝部の積層構成を説明する図。
【発明を実施するための形態】
【0040】
実施の形態について、図面を用いて詳細に説明する。但し、本発明は以下の説明に限定されず、本発明の趣旨及びその範囲から逸脱することなくその形態及び詳細を様々に変更し得ることは当業者であれば容易に理解される。従って、本発明は以下に示す実施の形態の記載内容に限定して解釈されるものではない。なお、以下に説明する発明の構成において、同一部分又は同様な機能を有する部分には同一の符号を異なる図面間で共通して用い、その繰り返しの説明は省略する。
【0041】
また、本明細書等における「第1」、「第2」、「第3」などの序数は、構成要素の混同を避けるために付すものであり、数的に限定するものではない。
【0042】
また、図面等において示す各構成の、位置、大きさ、範囲などは、理解の簡単のため、実際の位置、大きさ、範囲などを表していない場合がある。このため、開示する発明は、必ずしも、図面等に開示された位置、大きさ、範囲などに限定されない。
【0043】
トランジスタは半導体素子の一種であり、電流や電圧の増幅や、導通または非導通を制御するスイッチング動作などを実現することができる。本明細書におけるトランジスタは、IGFET(Insulated Gate Field Effect Transistor)や薄膜トランジスタ(TFT:Thin Film Transistor)を含む。
【0044】
また、トランジスタの「ソース」や「ドレイン」の機能は、異なる極性のトランジスタを採用する場合や、回路動作において電流の方向が変化する場合などには入れ替わることがある。このため、本明細書においては、「ソース」や「ドレイン」の用語は、入れ替えて用いることができるものとする。
【0045】
また、本明細書等において「電極」や「配線」の用語は、これらの構成要素を機能的に限定するものではない。例えば、「電極」は「配線」の一部として用いられることがあり、その逆もまた同様である。さらに、「電極」や「配線」の用語は、複数の「電極」や「配線」が一体となって形成されている場合なども含む。
【0046】
(実施の形態1)
本実施の形態では、フォトマスク数及びフォトリソグラフィ工程数を削減した液晶表示装置の画素構成および作製方法の一例について、図1乃至図10を用いて説明する。
【0047】
図6(A)に、液晶表示装置に用いる半導体装置100の構成の一例を説明する。半導体装置100は、基板101上に画素領域102と、m個(mは1以上の整数)の端子105及び端子107を有する端子部103と、n個(nは1以上の整数)の端子106を有する端子部104を有している。また、半導体装置100は、端子部103に電気的に接続するm本の配線212と、端子部104に電気的に接続するn本の配線216と、配線203を有している。また、画素領域102は、縦m個(行)×横n個(列)のマトリクス状に配置された複数の画素110を有している。i行j列の画素110(i、j)(iは1以上m以下の整数、jは1以上n以下の整数)は、配線212−i、配線216−jにそれぞれ電気的に接続されている。また、各画素は、容量電極または容量配線として機能する配線203と接続され、配線203は端子107と電気的に接続されている。また、配線212−iは端子105−iと電気的に接続され、配線216−jは端子106−jと電気的に接続されている。
【0048】
端子部103及び端子部104は外部入力端子であり、外部に設けられた制御回路とFPC(Flexible Printed Circuit)等を用いて接続される。外部に設けられた制御回路から供給される信号は、端子部103及び端子部104を介して半導体装置100に入力される。図6(A)では、端子部103を画素領域102の左右外側に形成し、2カ所から信号を入力する構成を示している。また、端子部104を画素領域102の上下外側に形成し、2カ所から信号を入力する構成を示している。2カ所から信号を入力することにより、信号の供給能力が高まるため、半導体装置100の高速動作が容易となる。また、半導体装置100の大型化や高精細化に伴う配線抵抗の増大による信号遅延の影響を軽減することができる。また、半導体装置100に冗長性を持たせることが可能となるため、半導体装置100の信頼性を向上させることができる。なお、図6(A)では端子部103及び端子部104をそれぞれ2カ所設ける構成としているが、それぞれ1カ所設ける構成としても構わない。
【0049】
図6(B)は、画素110の回路構成を示している。画素110は、トランジスタ111と、液晶素子112と、容量素子113を有している。トランジスタ111のゲート電極は配線212−iに電気的に接続され、トランジスタ111のソース電極またはドレイン電極の一方は配線216−jに電気的に接続されている。また、トランジスタ111のソース電極またはドレイン電極の他方は、液晶素子112の一方の電極と、容量素子113の一方の電極に電気的に接続されている。液晶素子112の他方の電極は、電極114に電気的に接続されている。電極114の電位は、0Vや、GNDや、共通電位などの固定電位としておけばよい。容量素子113の他方の電極は、配線203に電気的に接続されている。
【0050】
トランジスタ111は、液晶素子112に配線216−jから供給される画像信号を入力させるか否かを選択する機能を有する。配線212−iにトランジスタ111をオン状態とする信号が供給されると、トランジスタ111を介して配線216−jの画像信号が液晶素子112に供給される。液晶素子112は、供給される画像信号(電位)に応じて、光の透過率が制御される。容量素子113は、液晶素子112に供給された電位を保持するための保持容量(Cs容量ともいう)としての機能を有する。容量素子113は、必ずしも設ける必要はないが、容量素子113を設けることにより、トランジスタ111がオフ状態の時にソース電極とドレイン電極間に流れる電流(オフ電流)に起因する、液晶素子112に与えられた電位の変動を抑制することができる。
【0051】
トランジスタ111のチャネルが形成される半導体層には、単結晶半導体、多結晶半導体、微結晶半導体、非晶質半導体等を用いることができる。半導体材料としては、例えば、シリコン、ゲルマニウム、シリコンゲルマニウム、炭化シリコン、またはガリウムヒ素等を挙げることができる。なお、本実施の形態で説明する表示装置は、画素領域内に半導体層が残る構成であるため、上記半導体を用いた表示装置を透過型の表示装置として用いる場合は、半導体層を極力薄くするなどして、可視光の透過率を高めることが好ましい。
【0052】
また、トランジスタ111のチャネルが形成される半導体層に酸化物半導体を用いることもできる。酸化物半導体は、エネルギーギャップが3.0eV以上と大きく、可視光に対する透過率が大きい。また、酸化物半導体を適切な条件で加工して得られたトランジスタにおいては、オフ電流を使用時の温度条件下(例えば、25℃)において、100zA(1×10−19A)以下、もしくは10zA(1×10−20A)以下、さらには1zA(1×10−21A)以下とすることができる。このため、容量素子113を設けなくても液晶素子112に印加された電位の保持が可能となる。また、消費電力の小さい液晶表示装置を実現することができるため、トランジスタ111のチャネルが形成される半導体に酸化物半導体層を用いることが好ましい。
【0053】
次に、図6で示した画素110の構成例について、図1及び図2を用いて説明する。図1は、画素110の平面構成を示す上面図であり、図2は、画素110の積層構成を示す断面図である。なお、図1におけるA1−A2、B1−B2、C1−C2、D1−D2の鎖線は、図2(A)乃至図2(D)における断面A1−A2、断面B1−B2、断面C1−C2、断面D1−D2に相当する。
【0054】
本実施の形態に示すトランジスタ111は、ドレイン電極206bを、U字型(C字型、コの字型、または馬蹄型)のソース電極206aで囲む形状としている。このような形状とすることで、トランジスタの面積が小さくても、十分なチャネル幅を確保することが可能となり、トランジスタの導通時に流れる電流(オン電流ともいう)の量を増やすことが可能となる。
【0055】
また、画素電極210と電気的に接続するドレイン電極206bと、ゲート電極202の間に生じる寄生容量が大きいと、フィードスルーの影響を受けやすくなるため、液晶素子112に供給された電位が正確に保持できず、表示品位が低下する要因となる。本実施の形態に示すように、ソース電極206aをU字型としてドレイン電極206bを囲む形状とすることで、十分なチャネル幅を確保しつつ、ドレイン電極206bとゲート電極202間に生じる寄生容量を小さくすることができるため、液晶表示装置の表示品位を向上させることができる。
【0056】
配線203は、容量電極または容量配線として機能する。本実施の形態では、配線203とドレイン電極206bを重畳させて容量素子113を形成している。
【0057】
また、本実施の形態で説明する半導体装置は、工程簡略化のため島状半導体層を形成するためのフォトリソグラフィ工程やエッチング工程を行わないため、画素領域の全てに半導体層205が残る構成となる。その結果、配線212−iがゲート電極として機能し、配線216−jがソース電極またはドレイン電極の一方として機能し、配線216−j+1がソース電極またはドレイン電極の他方として機能する第1の寄生トランジスタが生じる。
【0058】
また、配線203がゲート電極として機能し、配線216−jがソース電極またはドレイン電極の一方として機能し、配線216−j+1がソース電極またはドレイン電極の他方として機能する第2の寄生トランジスタが生じる。
【0059】
また、画素電極210がゲート電極として機能し、絶縁層207がゲート絶縁層として機能し、配線216−jがソース電極またはドレイン電極の一方として機能し、配線216−j+1がソース電極またはドレイン電極の他方として機能する第3の寄生トランジスタが生じる。
【0060】
第1の寄生トランジスタは、配線212−iにトランジスタ111をオン状態とする電位が供給されると、第1の寄生トランジスタもオン状態となり、配線216−jと配線216−j+1が電気的に接続されることとなる。第1の寄生トランジスタにより配線216−jと配線216−j+1が電気的に接続されると、双方の画像信号が干渉し、正確な画像信号を液晶素子112に供給することが困難となる。
【0061】
また、第2の寄生トランジスタがn型のトランジスタとして機能する場合、配線203に供給された電位よりも、配線216−jまたは配線216−j+1の電位が低くなり、その電位差の絶対値が第2の寄生トランジスタのしきい値よりも大きくなると、画素電極210の下に位置する半導体層205にチャネルが形成され、第2の寄生トランジスタがオン状態となる。
【0062】
第2の寄生トランジスタがオン状態となると、配線216−jと配線216−j+1が電気的に接続されることとなる。第2の寄生トランジスタにより配線216−jと配線216−j+1が電気的に接続されると、双方の画像信号が干渉し、正確な画像信号を液晶素子112に供給することが困難となる。
【0063】
また、第3の寄生トランジスタがn型のトランジスタとして機能する場合、画素電極210に供給された、または保持された電位よりも、配線216−jまたは配線216−j+1の電位が低くなり、その電位差の絶対値が第3の寄生トランジスタのしきい値よりも大きくなると、画素電極210の下に位置する半導体層205にチャネルが形成され、第3の寄生トランジスタがオン状態となる。
【0064】
第3の寄生トランジスタがオン状態となると、配線216−jと配線216−j+1が電気的に接続されることとなる。第3の寄生トランジスタにより配線216−jと配線216−j+1が電気的に接続されると、双方の画像信号が干渉し、正確な画像信号を液晶素子112に供給することが困難となる。また、画素の開口率を大きくするなどの理由により、画素電極210を配線216−jや配線216−j+1に近づけると、第3の寄生トランジスタの影響がより強くなる。
【0065】
そこで、本実施の形態では、画素110に半導体層205が除去された溝部230を設け、上述の寄生トランジスタが生じない構成とする。溝部230を、配線212−iの線幅方向の両端部を越えて横切る様に設けることで、第1の寄生トランジスタの生成を防ぐことができる。また、溝部230を、配線203の線幅方向の両端部を越えて横切る様に設けることで、第2の寄生トランジスタの生成を防ぐことができる。なお、配線212−i上の溝部230もしくは、配線203上の溝部230は、それぞれ複数設けてもよい。
【0066】
また、溝部230を配線216−jと画素電極210との間、または配線216−j+1と画素電極210との間の少なくともどちらか一方に、配線216−jまたは配線216−j+1が延在する方向と平行な方向に沿って、画素電極210の端部231及び端部232を越えて形成する。これにより、第3の寄生トランジスタの生成を防ぐことができる。なお、溝部230は、配線216−jまたは配線216−j+1と平行に設けられている必要はなく、また、屈曲部または湾曲部を有していてもよい。
【0067】
なお、図1では、配線212−iと配線203に挟まれた領域で溝部230が途切れているが、配線212−iの線幅方向の端部を越えて設けられた溝部230を延伸し、配線203の幅方向の端部を越えて設けられた溝部230と接続した構成としてもよい。
【0068】
また、配線203上に溝部230を設けずに、配線203の電位を、配線216−jまたは配線216−j+1に供給される電位よりも低い電位としておくことで、第2の寄生トランジスタの生成を防ぐこともできる。ただし、この場合は、上記電位を配線203に供給するための電源を別途設ける必要がある。
【0069】
また、半導体層205が除去された溝部230の大きさに特に制限はないが、寄生トランジスタの生成を確実に防ぐため、配線216−jまたは配線216−j+1が延在する方向と直交する方向における、溝部230内の半導体層が除去された部分の距離は1μm以上とすることが好ましく、2μm以上とするとさらに好ましい。
【0070】
断面A1−A2は、トランジスタ111及び容量素子113の積層構造を示している。トランジスタ111は、ボトムゲート構造のトランジスタである。断面B1−B2は、画素電極210及び溝部230を含む、配線216−jから配線216−j+1までの積層構造を示している。また、断面C1−C2は、配線216−jと、配線212−iの交差部における積層構造を示している。また、断面D1−D2は、配線216−j+1と、配線212−iの交差部と、溝部230の積層構造を示している。
【0071】
図2(A)に示す断面A1−A2において、基板200上に下地層201が形成され、下地層201上にゲート電極202及び配線203が形成されている。また、ゲート電極202及び配線203上に、ゲート絶縁層204と半導体層205が形成されている。また、半導体層205上にソース電極206a及びドレイン電極206bが形成されている。また、半導体層205の一部に接し、ソース電極206a及びドレイン電極206b上に絶縁層207が形成されている。絶縁層207上には画素電極210が形成され、絶縁層207に形成されたコンタクトホール208を介してドレイン電極206bに電気的に接続されている。
【0072】
配線203とドレイン電極206bが、ゲート絶縁層204と半導体層205を間に挟んで重なっている部分が容量素子113として機能する。ゲート絶縁層204と半導体層205は誘電体層として機能する。配線203と画素電極210の間に形成される誘電体層を多層構造とすることで、一つの誘電体層にピンホールが生じても、ピンホールは他の誘電体層で被覆されるため、容量素子113を正常に機能させることができる。また、酸化物半導体の比誘電率は14乃至16と大きいため、半導体層205に酸化物半導体を用いると、容量素子113の容量値を大きくすることが可能となる。
【0073】
図2(B)に示す断面B1−B2において、基板200上に下地層201が形成され、下地層201上にゲート絶縁層204が形成され、ゲート絶縁層204上に半導体層205が形成されている。半導体層205上に配線216−j及び配線216−j+1が形成され、半導体層205と、配線216−j及び配線216−j+1上に絶縁層207が形成されている。また、絶縁層207上に画素電極210が形成されている。
【0074】
配線216−j+1と画素電極210の間に、ゲート絶縁層204の一部、半導体層205の一部、及び絶縁層207の一部が除去された溝部230が形成されている。溝部230は、少なくともその底面において半導体層を有していない構成となっている。
【0075】
図2(C)に示す断面C1−C2において、基板200上に下地層201が形成され、下地層201上に配線212−iが形成されている。また、配線212−i上に、ゲート絶縁層204と半導体層205が形成されている。また、半導体層205上に配線216−jが形成され、配線216−j上に絶縁層207が形成されている。
【0076】
図2(D)に示す断面D1−D2において、基板200上に下地層201が形成され、下地層201上に配線212−iが形成されている。また、配線212−i上に、ゲート絶縁層204と半導体層205が形成されている。また、半導体層205上に配線216−j+1が形成され、配線216−j+1上に絶縁層207が形成されている。また、ゲート絶縁層204の一部、半導体層205の一部、及び絶縁層207の一部が除去された溝部230が形成されている。
【0077】
次に、図1で示した構成とは異なる画素構成例について、図3及び図4を用いて説明する。図3は、画素120の平面構成を示す上面図である。図4(A)乃至図4(C)に示す断面A1−A2、断面E1−E2、断面F1−F2は、図3におけるA1−A2、E1−E2、F1−F2の鎖線で示す部位の断面に相当する。図3に示す画素120は、図1に示した画素110と、溝部230の構成が異なる。なお、図3におけるA1−A2の鎖線で示す部位の構成は、図1及び図2(A)で説明した構成と同じである。
【0078】
画素120は、溝部230を配線216−jと画素電極210との間、及び配線216−j+1と画素電極210との間に設けた構成としている。また、溝部230を、配線212−i及び配線203の幅方向の端部を越えて横切るように設けるだけでなく、配線212−iと配線203の間の領域にも設ける構成としている。このように、溝部230を多く配置することで、寄生トランジスタの形成をより確実に防ぐことができる。
【0079】
次に、図1乃至図4で示した構成とは異なる画素構成例について、図5を用いて説明する。図5(A)は、画素130の平面構成を示す上面図である。図5(B)に示す断面G1−G2は、図5(A)におけるG1−G2の鎖線で示す部位の断面に相当する。図5に示す画素130は、画素電極211に光反射率の高い導電層を用いることで、反射型の液晶表示装置に適用できる画素構成の一例を示している。
【0080】
画素130は、半導体層205が除去された溝部251及び溝部252が、配線212−iの線幅方向の両端部を越えて横切る様に設けられている。配線212−iの線幅方向の両端部を越えて横切る溝部を複数設けることで、配線212−iと重畳して形成される寄生チャネルの影響を、より確実に抑えることができる。
【0081】
また、画素130は、半導体層205が除去された溝部253及び溝部254が、配線203の線幅方向の両端部を越えて横切る様に設けられている。配線203の線幅方向の両端部を越えて横切る溝部を複数設けることで、配線203と重畳して形成される寄生チャネルの影響を、より確実に抑えることができる。
【0082】
また、画素130は、半導体層205が除去された溝部255及び溝部256が、配線216−jまたは配線216−j+1が延在する方向と平行な方向に沿って、画素電極211の端部233及び端部234を越えて設けられている。配線216−jまたは配線216−j+1が延在する方向と平行な方向に沿って、画素電極211の端部233及び端部234を越えて溝部を複数設けることで、画素電極211と重畳して形成される寄生チャネルの影響を、より確実に抑えることができる。溝部255及び溝部256は、配線216−jまたは配線216−j+1に平行に設けられている必要はなく、屈曲部または湾曲部を有していてもよい。
【0083】
画素130が有する溝部255及び溝部256は、湾曲部を有し、一部が画素電極211と重畳して形成されている。また、画素130は、画素電極211と重畳して形成される溝部257及び溝部258を有している。このように、画素電極211に重畳して溝部255乃至溝部258を設けることにより、画素電極211表面に凹凸を設けることができる。画素電極211表面に凹凸を設けると、入射した外光を乱反射させ、より良好な表示を行うことができる。よって、表示における視認性が向上する。
【0084】
また、画素電極211と重畳して形成される溝部255乃至溝部258は、溝部の側面がテーパー形状であると、画素電極211の被覆性が向上するため好ましい。
【0085】
次に、端子105及び端子106の構成例について、図7を用いて説明する。図7(A1)、図7(A2)は、端子105の上面図及び断面図をそれぞれ図示している。図7(A1)におけるJ1−J2の鎖線は、図7(A2)における断面J1−J2に相当する。また、図7(B1)、図7(B2)は、端子106の上面図及び断面図をそれぞれ図示している。図7(B1)におけるK1−K2の鎖線は、図7(B2)における断面K1−K2に相当する。なお、断面J1−J2及び断面K1−K2において、J2及びK2は、基板端部に相当する。
【0086】
断面J1−J2において、基板200上に下地層201が形成され、下地層201上に配線212が形成されている。また、配線212上に、ゲート絶縁層204、半導体層205、及び絶縁層207が形成されている。絶縁層207上に電極221が形成され、電極221は、ゲート絶縁層204、半導体層205、及び絶縁層207に形成されたコンタクトホール219を介して配線212に電気的に接続されている。
【0087】
断面K1−K2において、基板200上に、下地層201、ゲート絶縁層204、及び半導体層205が形成されている。半導体層205上に配線216が形成され、配線216上に絶縁層207が形成されている。絶縁層207上に電極222が形成され、電極222は、絶縁層207に形成されたコンタクトホール220を介して配線216に電気的に接続されている。
【0088】
なお、端子107の構成も、端子105または端子106と同様の構成とすることができる。
【0089】
また、画素領域102と端子部104はn本の配線216で接続されているが、画素領域102から端子部104が有する端子106に至るまでの配線216の引き回しにおいて、隣接する配線216同士が近い場合は、隣接する配線216の電位差によって、隣接する配線216間に存在する半導体層205中に寄生チャネルが形成され、隣接する配線216同士が電気的に接続されてしまう恐れがある。
【0090】
このような現象は、絶縁層を介して、画素領域102から端子部104までの領域全体、もしくは、隣接する配線216の間に導電層を設け、該導電層の電位を半導体層205中に寄生チャネルが形成されない電位としておくことで防ぐことができる。
【0091】
例えば、半導体層205に酸化物半導体を用いる場合、多くの酸化物半導体はn型の半導体となりやすいため、導電層の電位を配線216に供給される電位よりも低い電位としておけばよい。
【0092】
また、後述するコンタクトホール形成工程において、隣接する配線216間の半導体層205を除去することでも、隣接する配線216同士の電気的な接続を防ぐことができる。
【0093】
図8に、隣接する配線216の間に、溝部240を形成し、半導体層205を除去する構成を示す。図8(A)は、端子106に接続する配線216の平面構成を示す上面図である。図8(B)に示す断面L1−L2は、図8(A)におけるL1−L2の鎖線で示す部位の断面に相当する。図8(A)において、配線216−jは端子106−jに接続され、配線216−j+1は端子106−j+1に接続され、配線216−j+2は端子106−j+2に接続されている。なお、溝部240は、溝部230と同様に形成することができる。
【0094】
隣接する配線216−jと配線216−j+1の間に、半導体層205が除去された溝部240が形成されている。また、隣接する配線216−j+1と配線216−j+2の間に、半導体層205が除去された溝部240が形成されている。このように、隣接する配線216間に半導体層205が除去された溝部240を設けることで、隣接する配線216同士の電気的な接続を防ぐことができる。
【0095】
また、半導体層205が除去された溝部240の大きさに特に制限はないが、寄生チャネルの生成を確実に防ぐため、配線216−jまたは配線216−j+1が延在する方向と直交する方向における、溝部240内の半導体層が除去された部分の距離は1μm以上とすることが好ましく、2μm以上とするとさらに好ましい。
【0096】
続いて、図1を用いて説明した液晶表示装置の画素部の作製方法について、図9及び図10を用いて説明する。なお、図9及び図10における断面A1−A2、断面J1−J2、及び断面K1−K2は、図1及び図7におけるA1−A2、J1−J2、及びK1−K2の鎖線で示した部位の断面図である。
【0097】
まず、基板200上に下地層201となる絶縁層を50nm以上300nm以下、好ましくは100nm以上200nm以下の厚さで形成する。基板200は、ガラス基板、セラミック基板の他、本作製工程の処理温度に耐えうる程度の耐熱性を有するプラスチック基板等を用いることができる。また、基板に透光性を要しない場合には、ステンレス合金等の金属の基板の表面に絶縁層を設けたものを用いてもよい。ガラス基板としては、例えば、バリウムホウケイ酸ガラス、アルミノホウケイ酸ガラス若しくはアルミノケイ酸ガラス等の無アルカリガラス基板を用いるとよい。他に、石英基板、サファイア基板などを用いることができる。また、基板200として、第3世代(550mm×650mm)、第3.5世代(600mm×720mm、または620mm×750mm)、第4世代(680mm×880mm、または730mm×920mm)、第5世代(1100mm×1300mm)、第6世代(1500mm×1850mm)、第7世代(1870mm×2200mm)、第8世代(2200mm×2400mm)、第9世代(2400mm×2800mm、2450mm×3050mm)、第10世代(2950mm×3400mm)等のガラス基板を用いることができる。本実施の形態では、基板200にアルミノホウケイ酸ガラスを用いる。
【0098】
下地層201は、窒化アルミニウム、酸化窒化アルミニウム、窒化シリコン、酸化シリコン、窒化酸化シリコンまたは酸化窒化シリコンから選ばれた一又は複数の絶縁層による積層構造により形成することができ、基板200からの不純物元素の拡散を防止する機能がある。なお、本明細書中において、窒化酸化珪素とは、その組成として、酸素よりも窒素の含有量が多いものであって、好ましくは、RBS及びHFSを用いて測定した場合に、組成範囲として酸素が5原子%以上30原子%以下、窒素が20原子%以上55原子%以下、珪素が25原子%以上35原子%以下、水素が10原子%以上30原子%以下の範囲で含まれるものをいう。下地層201は、スパッタリング法、CVD法、塗布法、印刷法等を適宜用いることができる。
【0099】
本実施の形態では、下地層201として、窒化シリコンと酸化シリコンの積層を用いる。具体的には、基板200上に窒化シリコンを50nmの厚さで形成し、該窒化シリコン上に酸化シリコンを150nmの厚さで形成する。なお、下地層201中にリン(P)や硼素(B)がドープされていても良い。
【0100】
また、下地層201に、塩素、フッ素などのハロゲン元素を含ませることで、基板200からの不純物元素の拡散を防止する機能をさらに高めることができる。下地層201に含ませるハロゲン元素の濃度は、SIMS(二次イオン質量分析計)を用いた分析により得られる濃度ピークにおいて、1×1015/cm以上1×1020/cm以下とすればよい。
【0101】
また、下地層201として酸化ガリウムを用いてもよい。また、下地層201を酸化ガリウムと上記絶縁層の積層構造としてもよい。酸化ガリウムは帯電しにくい材料であるため、絶縁層のチャージアップによるしきい値電圧の変動を抑えることができる。
【0102】
次に、下地層201上にスパッタリング法、真空蒸着法、またはメッキ法を用いて100nm以上500nm以下、好ましくは200nm以上300nm以下の厚さで導電層を形成し、第1のフォトリソグラフィ工程により、レジストマスクを形成し、導電層を選択的にエッチング除去し、ゲート電極202、配線203、配線212を形成する。
【0103】
ゲート電極202、配線203、配線212を形成するための導電層は、モリブデン(Mo)、チタン(Ti)、タングステン(W)タンタル(Ta)、アルミニウム(Al)、銅(Cu)、クロム(Cr)、ネオジム(Nd)、スカンジウム(Sc)等の金属材料又はこれらを主成分とする合金材料を用いて、単層又は積層して形成することができる。
【0104】
導電層は配線となるため、低抵抗材料であるAlやCuを用いるのが好ましい。AlやCuを用いることで、信号遅延を低減し、高画質化を実現することができる。なお、Alは耐熱性が低く、ヒロック、ウィスカー、あるいはマイグレーションによる不良が発生しやすい。Alのマイグレーションを防ぐため、Alに、Mo、Ti、Wなどの、Alよりも融点の高い金属材料を積層することが好ましい。また、導電層にAlを含む材料を用いる場合には、以後の工程におけるプロセス最高温度を380℃以下とすることが好ましく、350℃以下とするとよい。
【0105】
また、導電層にCuを用いる場合も、マイグレーションによる不良やCu元素の拡散を防ぐため、Mo、Ti、Wなどの、Cuよりも融点の高い金属材料を積層することが好ましい。また、導電層にCuを含む材料を用いる場合には、以後の工程におけるプロセス最高温度を450℃以下とすることが好ましい。
【0106】
本実施の形態では、導電層として下地層201上に厚さ5nmのTi層を形成し、Ti層上に厚さ250nmのCu層を形成する。その後、第1のフォトリソグラフィ工程により導電層を選択的にエッチング除去し、ゲート電極202、配線203、配線212を形成する(図9(A)参照)。また、形成されたゲート電極202、配線203、配線212の端部がテーパー形状であると、後に積層する絶縁層や導電層の被覆性が向上するため好ましい。
【0107】
なお、フォトリソグラフィ工程に用いるレジストマスクはインクジェット法で形成してもよい。インクジェット法では、フォトマスクを使用しないため、更に製造コストを低減することができる。また、レジストマスクはエッチング工程の後に剥離するものとし、各フォトリソグラフィ工程における説明は省くこととする。また、特段の説明が無い限り、本明細書で言うフォトリソグラフィ工程には、レジストマスクの形成工程と、導電層または絶縁層のエッチング工程と、レジストマスクの剥離工程が含まれているものとする。
【0108】
次いで、ゲート電極202、配線203、配線212上にゲート絶縁層204を50nm以上800nm以下、好ましくは100nm以上600nm以下の厚さで形成する。ゲート絶縁層204には、酸化シリコン、窒化シリコン、酸化窒化シリコン、窒化酸化シリコン、酸化アルミニウム、窒化アルミニウム、酸化窒化アルミニウム、窒化酸化アルミニウム、酸化タンタル、酸化ガリウム、酸化イットリウム、酸化ランタン、酸化ハフニウム、ハフニウムシリケート(HfSi(x>0、y>0))、窒素が導入されたハフニウムシリケート、窒素が導入されたハフニウムアルミネート等を用いることができ、プラズマCVD法やスパッタリング法等で形成することができる。また、ゲート絶縁層204は単層に限らず異なる層の積層でも良い。例えば、ゲート絶縁層AとしてプラズマCVD法により窒化シリコン層(SiN(y>0))を形成し、ゲート絶縁層Aの上にゲート絶縁層Bとして酸化シリコン層(SiO(x>0))を積層して、ゲート絶縁層204としても良い。
【0109】
ゲート絶縁層204の形成は、スパッタリング法やプラズマCVD法などの他、μ波(例えば周波数2.45GHz)を用いた高密度プラズマCVD法などの成膜方法を適用することができる。
【0110】
本実施の形態では、ゲート絶縁層204として、窒化シリコンと酸化シリコンの積層を用いる。具体的には、ゲート電極202上に窒化シリコンを50nmの厚さで形成し、該窒化シリコン上に酸化シリコンを100nmの厚さで形成する。
【0111】
また、ゲート絶縁層204は保護層としても機能する。Cuを含むゲート電極202を、窒化シリコンを含む絶縁層で覆う構成とすることで、ゲート電極202からのCu拡散を防ぐことができる。
【0112】
また、ゲート絶縁層204には、この後形成する半導体層に酸化物半導体を用いる場合には、酸化物半導体と同種の成分を含む絶縁材料を用いてもよい。ゲート絶縁層204を異なる層の積層とする場合には、酸化物半導体に接する層を酸化物半導体と同種の成分を含む絶縁材料とすればよい。このような材料は酸化物半導体との相性が良く、これをゲート絶縁層204に用いることで、酸化物半導体との界面の状態を良好に保つことができるからである。ここで、「酸化物半導体と同種の成分」とは、酸化物半導体の構成元素から選択される一または複数の元素を意味する。例えば、酸化物半導体がIn−Ga−Zn系の酸化物半導体材料によって構成される場合、同種の成分を含む絶縁材料としては酸化ガリウムなどがある。
【0113】
また、ゲート絶縁層204を積層構造とする場合には、酸化物半導体と同種の成分を含む絶縁材料でなる膜と、該膜の成分材料とは異なる材料を含む膜との積層構造としても良い。
【0114】
また、酸化物半導体層に水素、水酸基及び水分がなるべく含まれないようにするために、酸化物半導体層の成膜の前処理として、スパッタリング装置の予備加熱室で基板200を予備加熱し、基板200やゲート絶縁層204に吸着した水素、水分などの不純物を脱離し排気することが好ましい。なお、予備加熱室に設ける排気手段はクライオポンプが好ましい。なお、この予備加熱の処理は省略することもできる。またこの予備加熱は、ゲート絶縁層204の成膜前に、ゲート電極202、配線203、及び配線212まで形成した基板200にも同様に行ってもよい。
【0115】
半導体層205に用いる酸化物半導体としては、少なくともインジウム(In)あるいは亜鉛(Zn)を含むことが好ましい。特にInとZnを含むことが好ましい。また、該酸化物半導体を用いたトランジスタの電気特性のばらつきを減らすためのスタビライザーとして、それらに加えてガリウム(Ga)を有することが好ましい。また、スタビライザーとしてスズ(Sn)を有することが好ましい。また、スタビライザーとしてハフニウム(Hf)を有することが好ましい。また、スタビライザーとしてアルミニウム(Al)を有することが好ましい。
【0116】
また、他のスタビライザーとして、ランタノイドである、ランタン(La)、セリウム(Ce)、プラセオジム(Pr)、ネオジム(Nd)、サマリウム(Sm)、ユウロピウム(Eu)、ガドリニウム(Gd)、テルビウム(Tb)、ジスプロシウム(Dy)、ホルミウム(Ho)、エルビウム(Er)、ツリウム(Tm)、イッテルビウム(Yb)、ルテチウム(Lu)のいずれか一種あるいは複数種を有してもよい。
【0117】
例えば、酸化物半導体として、酸化インジウム、酸化スズ、酸化亜鉛、二元系金属の酸化物であるIn−Zn系酸化物、Sn−Zn系酸化物、Al−Zn系酸化物、Zn−Mg系酸化物、Sn−Mg系酸化物、In−Mg系酸化物、In−Ga系酸化物、三元系金属の酸化物であるIn−Ga−Zn系酸化物(IGZOとも表記する)、In−Al−Zn系酸化物、In−Sn−Zn系酸化物、Sn−Ga−Zn系酸化物、Al−Ga−Zn系酸化物、Sn−Al−Zn系酸化物、In−Hf−Zn系酸化物、In−La−Zn系酸化物、In−Ce−Zn系酸化物、In−Pr−Zn系酸化物、In−Nd−Zn系酸化物、In−Sm−Zn系酸化物、In−Eu−Zn系酸化物、In−Gd−Zn系酸化物、In−Tb−Zn系酸化物、In−Dy−Zn系酸化物、In−Ho−Zn系酸化物、In−Er−Zn系酸化物、In−Tm−Zn系酸化物、In−Yb−Zn系酸化物、In−Lu−Zn系酸化物、四元系金属の酸化物であるIn−Sn−Ga−Zn系酸化物、In−Hf−Ga−Zn系酸化物、In−Al−Ga−Zn系酸化物、In−Sn−Al−Zn系酸化物、In−Sn−Hf−Zn系酸化物、In−Hf−Al−Zn系酸化物を用いることができる。
【0118】
酸化物半導体層は、好ましくはInを含有する酸化物半導体、さらに好ましくは、In、及びGaを含有する酸化物半導体である。酸化物半導体層を高純度化するため、この後行う脱水化または脱水素化は有効である。
【0119】
ここで、例えば、In−Ga−Zn系酸化物とは、インジウム(In)、ガリウム(Ga)、亜鉛(Zn)を有する酸化物という意味であり、InとGaとZnの比率は問わない。また、InとGaとZn以外の金属元素を含んでもよい。
【0120】
また、酸化物半導体層は、化学式InMO(ZnO)(m>0)で表記される薄膜を用いることができる。ここで、Mは、Sn、Zn、Ga、Al、MnおよびCoから選ばれた一または複数の金属元素を示す。また、酸化物半導体として、InSnO(ZnO)(n>0)で表記される材料を用いてもよい。
【0121】
例えば、In:Ga:Zn=1:1:1(=1/3:1/3:1/3)あるいはIn:Ga:Zn=2:2:1(=2/5:2/5:1/5)の原子数比のIn−Ga−Zn系酸化物やその組成の近傍の酸化物を用いることができる。あるいは、In:Sn:Zn=1:1:1(=1/3:1/3:1/3)、In:Sn:Zn=2:1:3(=1/3:1/6:1/2)あるいはIn:Sn:Zn=2:1:5(=1/4:1/8:5/8)の原子数比のIn−Sn−Zn系酸化物やその組成の近傍の酸化物を用いるとよい。
【0122】
しかし、これらに限られず、必要とする半導体特性(移動度、しきい値、ばらつき等)に応じて適切な組成のものを用いればよい。また、必要とする半導体特性を得るために、キャリア濃度や不純物濃度、欠陥密度、金属元素と酸素の原子数比、原子間結合距離、密度等を適切なものとすることが好ましい。
【0123】
例えば、In−Sn−Zn系酸化物では比較的容易に高い移動度が得られる。しかしながら、In−Ga−Zn系酸化物でも、バルク内欠陥密度を低減することにより移動度を上げることができる。
【0124】
なお、例えば、In、Ga、Znの原子数比がIn:Ga:Zn=a:b:c(a+b+c=1)である酸化物の組成が、原子数比がIn:Ga:Zn=A:B:C(A+B+C=1)の酸化物の組成の近傍であるとは、a、b、cが、
(a―A)+(b―B)+(c―C)≦r
を満たすことをいい、rは、例えば、0.05とすればよい。他の酸化物でも同様である。
【0125】
酸化物半導体は単結晶でも、非単結晶でもよい。後者の場合、アモルファスでも、多結晶でもよい。また、アモルファス中に結晶性を有する部分を含む構造でも、非アモルファスでもよい。
【0126】
アモルファス状態の酸化物半導体は、比較的容易に平坦な表面を得ることができるため、これを用いてトランジスタを作製した際の界面散乱を低減でき、比較的容易に、比較的高い移動度を得ることができる。
【0127】
また、結晶性を有する酸化物半導体では、よりバルク内欠陥を低減することができ、表面の平坦性を高めればアモルファス状態の酸化物半導体以上の移動度を得ることができる。表面の平坦性を高めるためには、平坦な表面上に酸化物半導体を形成することが好ましく、具体的には、平均面粗さ(Ra)が1nm以下、好ましくは0.3nm以下、より好ましくは0.1nm以下の表面上に形成するとよい。なお、Raは原子間力顕微鏡(AFM:Atomic Force Microscope)にて評価可能である。
【0128】
結晶性を有する酸化物半導体としては、c軸配向し、かつab面、表面または界面の方向から見て三角形状または六角形状の原子配列を有し、c軸においては金属原子が層状または金属原子と酸素原子とが層状に配列しており、ab面においてはa軸またはb軸の向きが異なる(c軸を中心に回転した)結晶(CAAC:C Axis Aligned Crystalともいう。)を含む酸化物を用いてもよい。
【0129】
CAACを含む酸化物とは、広義に、非単結晶であって、そのab面に垂直な方向から見て、三角形、六角形、正三角形または正六角形の原子配列を有し、かつc軸方向に垂直な方向から見て、金属原子が層状、または金属原子と酸素原子が層状に配列した相を含む酸化物をいう。
【0130】
CAACは単結晶ではないが、非晶質のみから形成されているものでもない。また、CAACは結晶化した部分(結晶部分)を含むが、1つの結晶部分と他の結晶部分の境界を明確に判別できないこともある。
【0131】
CAACに酸素が含まれる場合、酸素の一部は窒素で置換されてもよい。また、CAACを構成する個々の結晶部分のc軸は一定の方向(例えば、CAACを支持する基板面、CAACの表面などに垂直な方向)に揃っていてもよい。または、CAACを構成する個々の結晶部分のab面の法線は一定の方向(例えば、CAACを支持する基板面、CAACの表面などに垂直な方向)を向いていてもよい。
【0132】
CAACは、その組成などに応じて、導体であったり、半導体であったり、絶縁体であったりする。また、その組成などに応じて、可視光に対して透明であったり不透明であったりする。
【0133】
このようなCAACの例として、膜状に形成され、膜表面または支持する基板面に垂直な方向から観察すると三角形または六角形の原子配列が認められ、かつその膜断面を観察すると金属原子または金属原子および酸素原子(または窒素原子)の層状配列が認められる結晶を挙げることもできる。
【0134】
CAACに含まれる結晶構造の一例について図15乃至図17を用いて詳細に説明する。なお、特に断りがない限り、図15乃至図17は上方向をc軸方向とし、c軸方向と直交する面をab面とする。なお、単に上半分、下半分という場合、ab面を境にした場合の上半分、下半分をいう。また、図15において、丸で囲まれたOは4配位のOを示し、二重丸は3配位のOを示す。
【0135】
図15(A)に、1個の6配位のInと、Inに近接の6個の4配位の酸素原子(以下4配位のO)と、を有する構造を示す。ここでは、金属原子が1個に対して、近接の酸素原子のみ示した構造を小グループと呼ぶ。図15(A)の構造は、八面体構造をとるが、簡単のため平面構造で示している。なお、図15(A)の上半分および下半分にはそれぞれ3個ずつ4配位のOがある。図15(A)に示す小グループは電荷が0である。
【0136】
図15(B)に、1個の5配位のGaと、Gaに近接の3個の3配位の酸素原子(以下3配位のO)と、Gaに近接の2個の4配位のOと、を有する構造を示す。3配位のOは、いずれもab面に存在する。図15(B)の上半分および下半分にはそれぞれ1個ずつ4配位のOがある。また、Inも5配位をとるため、図15(B)に示す構造をとりうる。図15(B)に示す小グループは電荷が0である。
【0137】
図15(C)に、1個の4配位のZnと、Znに近接の4個の4配位のOと、を有する構造を示す。図15(C)の上半分には1個の4配位のOがあり、下半分には3個の4配位のOがある。または、図15(C)の上半分に3個の4配位のOがあり、下半分に1個の4配位のOがあってもよい。図15(C)に示す小グループは電荷が0である。
【0138】
図15(D)に、1個の6配位のSnと、Snに近接の6個の4配位のOと、を有する構造を示す。図15(D)の上半分には3個の4配位のOがあり、下半分には3個の4配位のOがある。図15(D)に示す小グループは電荷が+1となる。
【0139】
図15(E)に、2個のZnを含む小グループを示す。図15(E)の上半分には1個の4配位のOがあり、下半分には1個の4配位のOがある。図15(E)に示す小グループは電荷が−1となる。
【0140】
ここでは、複数の小グループの集合体を中グループと呼び、複数の中グループの集合体を大グループ(ユニットセルともいう。)と呼ぶ。
【0141】
ここで、これらの小グループ同士が結合する規則について説明する。図15(A)に示す6配位のInの上半分の3個のOは、下方向にそれぞれ3個の近接Inを有し、下半分の3個のOは、上方向にそれぞれ3個の近接Inを有する。図15(B)に示す5配位のGaの上半分の1個のOは、下方向に1個の近接Gaを有し、下半分の1個のOは上方向に1個の近接Gaを有する。図15(C)に示す4配位のZnの上半分の1個のOは、下方向に1個の近接Znを有し、下半分の3個のOは、上方向にそれぞれ3個の近接Znを有する。この様に、金属原子の上方向の4配位のOの数と、そのOの下方向にある近接金属原子の数は等しく、同様に金属原子の下方向の4配位のOの数と、そのOの上方向にある近接金属原子の数は等しい。Oは4配位なので、下方向にある近接金属原子の数と、上方向にある近接金属原子の数の和は4になる。従って、金属原子の上方向にある4配位のOの数と、別の金属原子の下方向にある4配位のOの数との和が4個のとき、金属原子を有する二種の小グループ同士は結合することができる。例えば、6配位の金属原子(InまたはSn)が下半分の4配位のOを介して結合する場合、4配位のOが3個であるため、5配位の金属原子(GaまたはIn)、または4配位の金属原子(Zn)のいずれかと結合することになる。
【0142】
これらの配位数を有する金属原子は、c軸方向において、4配位のOを介して結合する。また、このほかにも、層構造の合計の電荷が0となるように複数の小グループが結合して中グループを構成する。
【0143】
図16(A)に、In−Sn−Zn系酸化物の層構造を構成する中グループのモデル図を示す。図16(B)に、3つの中グループで構成される大グループを示す。なお、図16(C)は、図16(B)の層構造をc軸方向から観察した場合の原子配列を示す。
【0144】
図16(A)においては、簡単のため、3配位のOは省略し、4配位のOは個数のみ示し、例えば、Snの上半分および下半分にはそれぞれ3個ずつ4配位のOがあることを丸枠の3として示している。同様に、図16(A)において、Inの上半分および下半分にはそれぞれ1個ずつ4配位のOがあり、丸枠の1として示している。また、同様に、図16(A)において、下半分には1個の4配位のOがあり、上半分には3個の4配位のOがあるZnと、上半分には1個の4配位のOがあり、下半分には3個の4配位のOがあるZnとを示している。
【0145】
図16(A)において、In−Sn−Zn系酸化物の層構造を構成する中グループは、上から順に4配位のOが3個ずつ上半分および下半分にあるSnが、4配位のOが1個ずつ上半分および下半分にあるInと結合し、そのInが、上半分に3個の4配位のOがあるZnと結合し、そのZnの下半分の1個の4配位のOを介して4配位のOが3個ずつ上半分および下半分にあるInと結合し、そのInが、上半分に1個の4配位のOがあるZn2個からなる小グループと結合し、この小グループの下半分の1個の4配位のOを介して4配位のOが3個ずつ上半分および下半分にあるSnと結合している構成である。この中グループが複数結合して大グループを構成する。
【0146】
ここで、3配位のOおよび4配位のOの場合、結合1本当たりの電荷はそれぞれ−0.667、−0.5と考えることができる。例えば、In(6配位または5配位)、Zn(4配位)、Sn(5配位または6配位)の電荷は、それぞれ+3、+2、+4である。従って、Snを含む小グループは電荷が+1となる。そのため、Snを含む層構造を形成するためには、電荷+1を打ち消す電荷−1が必要となる。電荷−1をとる構造として、図15(E)に示すように、2個のZnを含む小グループが挙げられる。例えば、Snを含む小グループが1個に対し、2個のZnを含む小グループが1個あれば、電荷が打ち消されるため、層構造の合計の電荷を0とすることができる。
【0147】
具体的には、図16(B)に示した大グループが繰り返されることで、In−Sn−Zn系酸化物の結晶(InSnZn)を得ることができる。なお、得られるIn−Sn−Zn系酸化物の層構造は、InSnZn(ZnO)(mは0または自然数。)とする組成式で表すことができる。
【0148】
また、このほかにも、四元系金属の酸化物であるIn−Sn−Ga−Zn系酸化物や、三元系金属の酸化物であるIn−Ga−Zn系酸化物(IGZOとも表記する。)、In−Al−Zn系酸化物、Sn−Ga−Zn系酸化物、Al−Ga−Zn系酸化物、Sn−Al−Zn系酸化物や、In−Hf−Zn系酸化物、In−La−Zn系酸化物、In−Ce−Zn系酸化物、In−Pr−Zn系酸化物、In−Nd−Zn系酸化物、In−Sm−Zn系酸化物、In−Eu−Zn系酸化物、In−Gd−Zn系酸化物、In−Tb−Zn系酸化物、In−Dy−Zn系酸化物、In−Ho−Zn系酸化物、In−Er−Zn系酸化物、In−Tm−Zn系酸化物、In−Yb−Zn系酸化物、In−Lu−Zn系酸化物や、二元系金属の酸化物であるIn−Zn系酸化物、Sn−Zn系酸化物、Al−Zn系酸化物、Zn−Mg系酸化物、Sn−Mg系酸化物、In−Mg系酸化物や、In−Ga系酸化物などを用いた場合も同様である。
【0149】
例えば、図17(A)に、In−Ga−Zn系酸化物の層構造を構成する中グループのモデル図を示す。
【0150】
図17(A)において、In−Ga−Zn系酸化物の層構造を構成する中グループは、上から順に4配位のOが3個ずつ上半分および下半分にあるInが、4配位のOが1個上半分にあるZnと結合し、そのZnの下半分の3個の4配位のOを介して、4配位のOが1個ずつ上半分および下半分にあるGaと結合し、そのGaの下半分の1個の4配位のOを介して、4配位のOが3個ずつ上半分および下半分にあるInと結合している構成である。この中グループが複数結合して大グループを構成する。
【0151】
図17(B)に3つの中グループで構成される大グループを示す。なお、図17(C)は、図17(B)の層構造をc軸方向から観察した場合の原子配列を示している。
【0152】
ここで、In(6配位または5配位)、Zn(4配位)、Ga(5配位)の電荷は、それぞれ+3、+2、+3であるため、In、ZnおよびGaのいずれかを含む小グループは、電荷が0となる。そのため、これらの小グループの組み合わせであれば中グループの合計の電荷は常に0となる。
【0153】
また、In−Ga−Zn系酸化物の層構造を構成する中グループは、図17(A)に示した中グループに限定されず、In、Ga、Znの配列が異なる中グループを組み合わせた大グループも取りうる。
【0154】
具体的には、図17(B)に示した大グループが繰り返されることで、In−Ga−Zn系酸化物の結晶を得ることができる。なお、得られるIn−Ga−Zn系酸化物の層構造は、InGaO(ZnO)(nは自然数。)とする組成式で表すことができる。
【0155】
n=1(InGaZnO)の場合は、例えば、図18(A)に示す結晶構造を取りうる。なお、図18(A)に示す結晶構造において、図15(B)で説明したように、Ga及びInは5配位をとるため、GaがInに置き換わった構造も取りうる。
【0156】
また、n=2(InGaZn)の場合は、例えば、図18(B)に示す結晶構造を取りうる。なお、図18(B)に示す結晶構造において、図15(B)で説明したように、Ga及びInは5配位をとるため、GaがInに置き換わった構造も取りうる。
【0157】
次に、スパッタリング法、蒸着法、PCVD法、PLD法、ALD法またはMBE法などを用いて酸化物半導体層205を成膜する。
【0158】
酸化物半導体層205は、好ましくはスパッタリング法により、基板温度を100℃以上600℃以下、好ましくは150℃以上550℃以下、さらに好ましくは200℃以上500℃以下とし、酸素ガス雰囲気で成膜する。酸化物半導体層205の厚さは、1nm以上40nm以下、好ましくは3nm以上20nm以下とする。成膜時の基板温度が高いほど、得られる酸化物半導体層205の不純物濃度は低くなる。また、酸化物半導体層205中の原子配列が整い、高密度化され、多結晶またはCAACが形成されやすくなる。さらに、酸素ガス雰囲気で成膜することでも、希ガスなどの余分な原子が含まれないため、多結晶またはCAACが形成されやすくなる。ただし、酸素ガスと希ガスの混合雰囲気としてもよく、その場合は酸素ガスの割合は30体積%以上、好ましくは50体積%以上、さらに好ましくは80体積%以上とする。なお、酸化物半導体層205は薄いほど、トランジスタの短チャネル効果が低減される。ただし、薄くしすぎると界面散乱の影響が強くなり、電界効果移動度の低下が起こることがある。(図9(B)参照)。
【0159】
酸化物半導体層205としてIn−Ga−Zn系酸化物材料をスパッタリング法で成膜する場合、好ましくは、原子数比がIn:Ga:Zn=1:1:1、4:2:3、3:1:2、1:1:2、2:1:3、または3:1:4で示されるIn−Ga−Zn系酸化物ターゲットを用いる。前述の原子数比を有するIn−Ga−Zn系酸化物ターゲットを用いて酸化物半導体層205を成膜することで、多結晶またはCAACが形成されやすくなる。なお、In−Ga−Zn系の酸化物半導体は、IGZOと呼ぶことができる。
【0160】
また、In−Sn−Zn系の酸化物半導体は、ITZOと呼ぶことができる。また、酸化物半導体層205としてIn−Sn−Zn系酸化物材料をスパッタリング法で成膜する場合、好ましくは、原子数比がIn:Sn:Zn=1:1:1、2:1:3、1:2:2、または20:45:35で示されるIn−Sn−Zn系酸化物ターゲットを用いる。前述の原子数比を有するIn−Sn−Zn系酸化物ターゲットを用いて酸化物半導体層205を成膜することで、多結晶またはCAACが形成されやすくなる。
【0161】
本実施の形態では、酸化物半導体層としてIn−Ga−Zn系酸化物ターゲットを用いてスパッタリング法により30nmの厚さで形成する。また、酸化物半導体層は、希ガス(代表的にはアルゴン)雰囲気下、酸素雰囲気下、又は希ガスと酸素の混合雰囲気下においてスパッタリング法により形成することができる(図9(B)参照)。
【0162】
酸化物半導体層をスパッタリング法で作製するためのターゲットとしては、例えば、組成比として、In:Ga:ZnO=1:1:1[mol数比]の金属酸化物ターゲットを用い、In−Ga−Zn−O層を成膜する。また、このターゲットの材料及び組成に限定されず、例えば、In:Ga:ZnO=1:1:2[mol数比]の金属酸化物ターゲットを用いてもよい。
【0163】
また、金属酸化物ターゲットの相対密度は90%以上100%以下、好ましくは95%以上99.9%以下である。相対密度の高い金属酸化物ターゲットを用いることにより、成膜した酸化物半導体層を緻密な膜とすることができる。
【0164】
酸化物半導体層を成膜する際に用いるスパッタガスは水素、水、水酸基又は水素化物などの不純物が除去された高純度ガスを用いることが好ましい。例えば、スパッタガスとしてアルゴンを用いる場合は、純度9N、露点−121℃、含有HO量0.1ppb以下、含有H量0.5ppb以下が好ましく、酸素を用いる場合は、純度8N、露点−112℃、含有HO量1ppb以下、含有H量1ppb以下が好ましい。
【0165】
酸化物半導体層の成膜は、減圧状態に保持された成膜室内に基板を保持し、基板温度を100℃以上600℃以下好ましくは300℃以上500℃以下として行う。なお、第1のフォトリソグラフィ工程により形成された配線層にAlが用いられている場合は、基板温度を380℃以下、好ましくは350℃以下とし、また、第1のフォトリソグラフィ工程により形成された配線層にCuが用いられている場合は、基板温度を450℃以下とする。
【0166】
基板を加熱しながら成膜することにより、成膜した酸化物半導体層に含まれる水素、水分、水素化物、または水酸化物などの不純物濃度を低減することができる。また、スパッタリングによる損傷が軽減される。そして、成膜室内の残留水分を除去しつつ水素及び水分が除去されたスパッタガスを導入し、上記ターゲットを用いて酸化物半導体層を成膜する。
【0167】
成膜室内の残留水分を除去するためには、吸着型の真空ポンプ、例えば、クライオポンプ、イオンポンプ、チタンサブリメーションポンプを用いることが好ましい。また、排気手段としては、ターボ分子ポンプにコールドトラップを加えたものであってもよい。クライオポンプを用いて排気した成膜室は、例えば、水素原子、水(HO)など水素原子を含む化合物(より好ましくは炭素原子を含む化合物も)等が排気されるため、当該成膜室で成膜した酸化物半導体層に含まれる不純物の濃度を低減できる。
【0168】
成膜条件の一例としては、基板とターゲットの間との距離を100mm、圧力0.6Pa、直流(DC)電源電力0.5kW、スパッタガスとして酸素(酸素流量比率100%)を用いる条件が適用される。なお、パルス直流電源を用いると、成膜時に発生する粉状物質(パーティクル、ごみともいう)が軽減でき、膜厚分布も均一となるために好ましい。
【0169】
また、酸化物半導体層中のナトリウム(Na)、リチウム(Li)、カリウム(K)などのアルカリ金属の濃度は、Naは5×1016cm−3以下、好ましくは1×1016cm−3以下、さらに好ましくは1×1015cm−3以下、Liは5×1015cm−3以下、好ましくは1×1015cm−3以下、Kは5×1015cm−3以下、好ましくは1×1015cm−3以下とすることが好ましい。
【0170】
酸化物半導体は不純物に対して鈍感であり、酸化物半導体中にはかなりの金属不純物が含まれていても問題がなく、ナトリウムのようなアルカリ金属が多量に含まれる廉価なソーダ石灰ガラスも使えると指摘されている(神谷、野村、細野、「アモルファス酸化物半導体の物性とデバイス開発の現状」、固体物理、2009年9月号、Vol.44、pp.621−633.)。しかし、このような指摘は適切でない。アルカリ金属は酸化物半導体を構成する元素ではないため、不純物である。アルカリ土類金属も、酸化物半導体を構成する元素ではない場合において、不純物となる。特に、アルカリ金属のうちNaは、酸化物半導体層に接する絶縁層が酸化物である場合、当該絶縁層中に拡散してNaとなる。また、Naは、酸化物半導体層内において、酸化物半導体を構成する金属と酸素の結合を分断する、或いは、その結合中に割り込む。その結果、例えば、閾値電圧がマイナス方向にシフトすることによるノーマリオン化、移動度の低下等の、トランジスタの特性の劣化が起こり、加えて、特性のばらつきも生じる。この不純物によりもたらされるトランジスタの特性の劣化と、特性のばらつきは、酸化物半導体層中の水素の濃度が十分に低い場合において顕著に現れる。したがって、酸化物半導体中の水素の濃度が5×1019cm−3以下、特に5×1018cm−3以下である場合には、酸化物半導体中のアルカリ金属の濃度を上記の値にすることが強く求められる。
【0171】
次いで、第1の加熱処理を行う。この第1の加熱処理によって酸化物半導体層中の過剰な水素(水や水酸基を含む)を除去(脱水化または脱水素化)し、酸化物半導体層中の不純物濃度を低減することができる。
【0172】
第1の加熱処理は、減圧雰囲気下、窒素や希ガスなどの不活性ガス雰囲気下、酸素ガス雰囲気下、または超乾燥エア(CRDS(キャビティリングダウンレーザー分光法)方式の露点計を用いて測定した場合の水分量が20ppm(露点換算で−55℃)以下、好ましくは1ppm以下、好ましくは10ppb以下の空気)雰囲気下で、250℃以上750℃以下、または400℃以上基板の歪み点未満の温度で行う。ただし、第1のフォトリソグラフィ工程により形成された配線層にAlが用いられている場合は、加熱処理の温度を380℃以下、好ましくは350℃以下とし、また、第1のフォトリソグラフィ工程により形成された配線層にCuが用いられている場合は、加熱処理の温度を450℃以下とする。本実施の形態では、加熱処理装置の一つである電気炉に基板を導入し、酸化物半導体層に対して窒素雰囲気下で450℃、1時間の加熱処理を行う。
【0173】
なお、加熱処理装置は電気炉に限られず、抵抗発熱体などの発熱体からの熱伝導または熱輻射によって、被処理物を加熱する装置を備えていてもよい。例えば、GRTA(Gas Rapid Thermal Anneal)装置、LRTA(Lamp Rapid Thermal Anneal)装置等のRTA(Rapid Thermal Anneal)装置を用いることができる。LRTA装置は、ハロゲンランプ、メタルハライドランプ、キセノンアークランプ、カーボンアークランプ、高圧ナトリウムランプ、高圧水銀ランプなどのランプから発する光(電磁波)の輻射により、被処理物を加熱する装置である。GRTA装置は、高温のガスを用いて加熱処理を行う装置である。高温のガスには、アルゴンなどの希ガス、または窒素のような、加熱処理によって被処理物と反応しない不活性ガスが用いられる。
【0174】
例えば、第1の加熱処理として、高温に加熱した不活性ガス中に基板を移動させて入れ、数分間加熱した後、基板を移動させて高温に加熱した不活性ガス中から出すGRTAを行ってもよい。
【0175】
加熱処理を、窒素または希ガスなどの不活性ガス、酸素、超乾燥エアのガス雰囲気下で行なう場合は、これらの雰囲気に水、水素などが含まれないことが好ましい。また、加熱処理装置に導入する窒素、酸素、または希ガスの純度を、6N(99.9999%)以上好ましくは7N(99.99999%)以上(即ち不純物濃度を1ppm以下、好ましくは0.1ppm以下)とすることが好ましい。
【0176】
第1の加熱処理は、減圧雰囲気または不活性雰囲気で加熱処理を行った後、温度を保持しつつ酸化性雰囲気に切り替えてさらに加熱処理を行うと好ましい。これは、減圧雰囲気または不活性雰囲気にて加熱処理を行うと、酸化物半導体層中の不純物濃度を低減することができるが、同時に酸素欠損も生じてしまうためであり、このとき生じた酸素欠損を、酸化性雰囲気での加熱処理により低減することができる。
【0177】
このように、水素濃度が十分に低減されて高純度化され、十分な酸素の供給により酸素欠乏に起因するエネルギーギャップ中の欠陥準位が低減された酸化物半導体では、キャリア濃度が1×1012/cm未満、望ましくは、1×1011/cm未満、より望ましくは1.45×1010/cm未満となる。例えば、室温(25℃)でのオフ電流(ここでは、単位チャネル幅(1μm)あたりの値)は、100zA(1zA(ゼプトアンペア)は1×10−21A)以下、望ましくは、10zA以下となる。また、85℃では、100zA(1×10−19A)以下、望ましくは10zA(1×10−20A)以下となる。このように、i型化(真性化)または実質的にi型化された酸化物半導体を用いることで、極めて優れたオフ電流特性のトランジスタ111を得ることができる。
【0178】
また、高純度化された酸化物半導体を有するトランジスタは、しきい値電圧やオン電流などの電気的特性に温度依存性がほとんど見られない。また、光劣化によるトランジスタ特性の変動も少ない。
【0179】
このように、高純度化し、また、酸素欠損を低減することにより電気的にi型(真性)化した酸化物半導体を有するトランジスタは、電気的特性変動が抑制されており、電気的に安定である。よって安定した電気的特性を有する酸化物半導体を用いた信頼性の高い液晶表示装置を提供することができる。
【0180】
次いで、半導体層205上に、ソース電極206a、ドレイン電極206b、及び配線216となる導電層を形成する。ソース電極206a、ドレイン電極206b、及び配線216に用いる導電層は、ゲート電極202と同様の材料及び方法で形成することができる。また、ソース電極206a、ドレイン電極206b、及び配線216に用いる導電層として、導電性の金属酸化物で形成しても良い。導電性の金属酸化物としては酸化インジウム(In)、酸化スズ(SnO)、酸化亜鉛(ZnO)、酸化インジウム酸化スズ(In―SnO、ITOと略記する)、酸化インジウム酸化亜鉛(In―ZnO)またはこれらの金属酸化物材料に酸化シリコンを含ませたものを用いることができる。
【0181】
本実施の形態では、導電層として半導体層205上に厚さ5nmのTi層を形成し、Ti層上に厚さ250nmのCu層を形成する。その後、第2のフォトリソグラフィ工程により、レジストマスクを形成し、導電層を選択的にエッチング除去し、ソース電極206a、ドレイン電極206b、及び配線216を形成する(図9(C)参照)。
【0182】
次いで、ソース電極206a、ドレイン電極206b、及び配線216上に絶縁層207を形成する(図10(A)参照)。絶縁層207は、ゲート絶縁層204または下地層201と同様の材料及び方法で形成することができる。なお、水素や水などが混入しにくいという点では、スパッタリング法による形成が好適である。絶縁層207に水素が含まれると、その水素の酸化物半導体層への侵入、又は水素による酸化物半導体層中の酸素の引き抜きが生じ、酸化物半導体層が低抵抗化(n型化)する恐れがある。従って、絶縁層207は、水素及び水素を含む不純物が含まれない手段を用いて成膜することが重要である。
【0183】
絶縁層207としては、代表的には酸化シリコン、酸化窒化シリコン、酸化ハフニウム、酸化アルミニウム、酸化ガリウムなどの無機絶縁材料を用いることができる。酸化ガリウムは帯電しにくい材料であるため、絶縁層のチャージアップによるしきい値電圧の変動を抑えることができる。なお、半導体層205に酸化物半導体を用いる場合、絶縁層207として、または、絶縁層207と積層して、酸化物半導体と同種の成分を含む金属酸化物層を形成してもよい。
【0184】
本実施の形態では、絶縁層207として膜厚200nmの酸化シリコンを、スパッタリング法を用いて成膜する。成膜時の基板温度は、室温以上300℃以下とすればよく、本実施の形態では100℃とする。酸化シリコン層のスパッタリング法による成膜は、希ガス(代表的にはアルゴン)雰囲気下、酸素雰囲気下、または希ガスと酸素の混合雰囲気下において行うことができる。また、ターゲットには、酸化シリコンまたはシリコンを用いることができる。例えば、シリコンをターゲットに用いて、酸素を含む雰囲気下でスパッタを行うと酸化シリコンを形成することができる。
【0185】
絶縁層207の成膜時における成膜室内の残留水分を除去するためには、吸着型の真空ポンプ(クライオポンプなど)を用いることが好ましい。クライオポンプを用いて排気した成膜室で成膜した絶縁層207は、絶縁層207中に含まれる不純物の濃度を低減することができる。また、絶縁層207の成膜室内の残留水分を除去するための排気手段としては、ターボ分子ポンプにコールドトラップを加えたものであってもよい。
【0186】
絶縁層207を成膜する際に用いるスパッタガスは水素、水、水酸基又は水素化物などの不純物が除去された高純度ガスを用いることが好ましい。
【0187】
次いで、減圧雰囲気下、不活性ガス雰囲気下、酸素ガス雰囲気下、または超乾燥エア雰囲気下で第2の加熱処理(好ましくは200℃以上600℃以下、例えば250℃以上550℃以下)を行ってもよい。ただし、第1のフォトリソグラフィ工程、または第2のフォトリソグラフィ工程により形成された配線層にAlが用いられている場合は、加熱処理の温度を380℃以下、好ましくは350℃以下とし、また、上記配線層にCuが用いられている場合は、加熱処理の温度を450℃以下とする。例えば、窒素雰囲気下で450℃、1時間の第2の加熱処理を行ってもよい。第2の加熱処理を行うと、酸化物半導体層の一部(チャネル形成領域)が絶縁層207と接した状態で昇温され、酸素を含む絶縁層207から酸素を半導体層205へ供給することができる。なお、上記雰囲気に水、水素などが含まれないことが好ましい。
【0188】
次いで、第3のフォトリソグラフィ工程により、レジストマスクを形成し、ドレイン電極206b上の絶縁層207の一部を選択的に除去し、コンタクトホール208を形成する。また、断面K1−K2断面における配線216上の絶縁層207の一部を選択的に除去し、コンタクトホール220を形成する。また、断面J1−J2断面における配線212上では、絶縁層207、半導体層205、及びゲート絶縁層204の一部を選択的に除去し、コンタクトホール219を形成する。(図10(B)参照)。なお、図示していないが、本フォトリソグラフィ工程において、溝部230もコンタクトホール219と同様に形成する。このため、溝部230の側面は、絶縁層207、半導体層205、及びゲート絶縁層204が露出している。
【0189】
絶縁層207、半導体層205、及びゲート絶縁層204のエッチングは、ドライエッチングでもウェットエッチングでもよく、両方を用いてもよい。ドライエッチングに用いるエッチングガスとしては、塩素を含むガス(塩素系ガス、例えば塩素(Cl)、三塩化硼素(BCl)、四塩化珪素(SiCl)、四塩化炭素(CCl)など)を用いることができる。
【0190】
ドライエッチングとしては、平行平板型RIE(Reactive Ion Etching)法や、ICP(Inductively Coupled Plasma:誘導結合型プラズマ)エッチング法を用いることができる。また、下地層201は基板200からの不純物元素の拡散を防止する機能を有するため、上記エッチングに際して、下地層201が極力エッチングされることのないように、エッチング条件を調整することが好ましい。
【0191】
一般に、半導体層のエッチングとコンタクトホールの形成は、異なるフォトリソグラフィ工程及びエッチング工程により別々に実施されるが、本実施の形態に示す作製工程によれば、一回のフォトリソグラフィ工程とエッチング工程により、同時に実施することが可能となる。よって、フォトマスクの削減のみならず、フォトリソグラフィ工程そのものを削減することができ、その後のエッチング工程も削減することができる。すなわち、少ないフォトリソグラフィ工程により、低コストで、生産性よく液晶表示装置を作製することができる。
【0192】
また、本実施の形態に示す作製工程によれば、酸化物半導体層にフォトレジストが直接形成されることがない。また、酸化物半導体層のチャネル形成領域が絶縁層207で保護されているため、その後のフォトレジストの剥離洗浄工程においても、酸化物半導体層のチャネル形成領域に水分が付着することがないため、トランジスタ111の特性バラツキが低減され、信頼性が向上する。
【0193】
次いで、絶縁層207上に、スパッタリング法、真空蒸着法などを用いて、画素電極210、電極221、及び電極222となる透光性を有する導電層(透明導電層ともいう)を30nm以上200nm以下、好ましくは50nm以上100nm以下の厚さで形成する(図10(C)参照)。
【0194】
透光性を有する導電層としては、酸化タングステンを含むインジウム酸化物、酸化タングステンを含むインジウム亜鉛酸化物、酸化チタンを含むインジウム酸化物、酸化チタンを含むインジウム錫酸化物、インジウム錫酸化物(以下、ITOと示す。)、インジウム亜鉛酸化物、酸化ケイ素を添加したインジウム錫酸化物などの透光性を有する導電性材料を用いることができる。また、1枚乃至10枚のグラフェンシートよりなる材料を用いてもよい。
【0195】
また、本実施の形態では透過型の液晶表示装置の画素部の作製方法について例示したが、透過型に限らず、反射型や半透過型の液晶表示装置の画素部にも適用することができる。反射型の液晶表示装置の画素部を得る場合は、画素電極として光反射率の高い導電層(反射導電層ともいう)、例えば、アルミニウム、チタン、銀、ロジウム、ニッケルなどの可視光の反射率が高い金属、或いは、これら金属の少なくとも1つを含む合金、またはそれらの積層を用いればよい。半透過型の液晶表示装置の画素部を得る場合は、一つの画素電極を、透明導電層と反射導電層とで形成し、透過部分と反射部分とを設ける。
【0196】
本実施の形態では、透光性を有する導電層として厚さ80nmのITO層を形成し、第4のフォトリソグラフィ工程により、レジストマスクを形成し、透光性を有する導電層を選択的にエッチングして、画素電極210、電極221、及び電極222を形成する。
【0197】
画素電極210は、コンタクトホール208を介してドレイン電極206bに電気的に接続される。また、電極221はコンタクトホール219を介して配線212に電気的に接続される。また、電極222はコンタクトホール220を介して配線216に電気的に接続される。
【0198】
また、端子部103及び端子部104に形成されるコンタクトホール219及びコンタクトホール220において、配線212及び配線216を露出した状態のままとせず、ITOなどの酸化物導電性材料で覆うことは重要である。配線212及び配線216は金属層であるため、配線212及び配線216を露出した状態のままとすると、露出表面が酸化され、FPC等との接触抵抗が増大する。接触抵抗の増大は、外部から入力される信号の遅延や波形のなまりを生じ、外部からの信号が正確に伝達されず、半導体装置の信頼性が低下してしまう。配線212及び配線216の露出表面を、ITOなどの酸化物導電性材料で覆うことにより、接触抵抗の増大を防ぎ、半導体装置の信頼性を向上させることができる。
【0199】
本実施の形態によれば、従来よりも少ないフォトリソグラフィ工程により半導体装置を作製することが可能となる。よって、低コストで、生産性の良い液晶表示装置を作製することができる。
【0200】
本実施の形態では、ボトムゲート構造のトランジスタを例として説明したが、トップゲート構造のトランジスタに適用することも可能である。
【0201】
本実施の形態は、他の実施の形態と自由に組み合わせることができる。
【0202】
(実施の形態2)
本実施の形態では、実施の形態1と一部異なる工程例を図11を用いて説明する。なお、実施の形態1と同一の箇所には同じ符号を用い、同じ符号の詳細な説明はここでは省略する。
【0203】
まず、実施の形態1と同様に、絶縁表面を有する基板200上に導電層を形成した後、第1のフォトリソグラフィ工程、及びエッチング工程によりゲート電極202を形成する。
【0204】
基板200とゲート電極202との間には、下地層となる絶縁層を設けてもよく、本実施の形態では下地層201を設ける。下地層201は、基板200からの不純物元素(Naなど)の拡散を防止する機能があり、酸化シリコン、酸窒化シリコン、窒化シリコン、酸化ハフニウム、酸化アルミニウム、酸化ガリウム、酸化ガリウムアルミニウムから選ばれた膜で形成することができる。また、該下地層は単層に限らず、上記の複数の膜の積層であっても良い。
【0205】
本実施の形態では、後に成膜する半導体層の成膜温度が200℃以上450℃以下、半導体層の成膜後の加熱処理の温度が200℃以上450℃以下であるため、ゲート電極202の材料として、銅を下層とし、モリブデンを上層とする積層、または銅を下層とし、タングステンを上層とする積層を用いる。
【0206】
次いで、実施の形態1と同様に、ゲート電極202上にゲート絶縁層204をCVD法やスパッタ法等を用いて形成する。ここまでの工程を経た断面図を図11(A)に示す。
【0207】
次いで、ゲート絶縁層204上に、1nm以上10nm以下の第1の酸化物半導体層を形成する。本実施の形態では、酸化物半導体用ターゲット(In−Ga−Zn系酸化物半導体用ターゲット(In:Ga:ZnO=1:1:2[mol数比]))を用いて、基板とターゲットの間との距離を170mm、基板温度250℃、圧力0.4Pa、直流(DC)電源0.5kW、酸素のみ、アルゴンのみ、又はアルゴン及び酸素雰囲気下で膜厚5nmの第1の酸化物半導体層を成膜する。
【0208】
次いで、基板を配置する雰囲気を窒素、または乾燥空気とし、第1の加熱処理を行う。第1の加熱処理の温度は、200℃以上450℃以下とする。また、第1の加熱処理の加熱時間は1時間以上24時間以下とする。第1の加熱処理によって第1の結晶性酸化物半導体層148aを形成する(図11(B)参照)。
【0209】
次いで、第1の結晶性酸化物半導体層148a上に10nmよりも厚い第2の酸化物半導体層を形成する。本実施の形態では、酸化物半導体用ターゲット(In−Ga−Zn系酸化物半導体用ターゲット(In:Ga:ZnO=1:1:2[mol数比]))を用いて、基板とターゲットの間との距離を170mm、基板温度400℃、圧力0.4Pa、直流(DC)電源電力0.5kW、スパッタガスとして酸素のみ、アルゴンのみ、又はアルゴン及び酸素の混合ガスを用いて、雰囲気下で膜厚25nmの第2の酸化物半導体層を成膜する。
【0210】
次いで、基板を配置する雰囲気を窒素、または乾燥空気とし、第2の加熱処理を行う。第2の加熱処理の温度は、200℃以上450℃以下とする。また、第2の加熱処理の加熱時間は1時間以上24時間以下とする。第2の加熱処理によって第2の結晶性酸化物半導体層148bを形成する(図11(C)参照)。
【0211】
以降の工程は、実施の形態1に従って、ソース電極206aや、ドレイン電極206bや、絶縁層207などを形成し、絶縁層207、第1の結晶性酸化物半導体層148a、及び第2の結晶性酸化物半導体層148bを同一のレジストマスクを用いてエッチングすることによって、フォトリソグラフィ工程を削減する。
【0212】
こうして、実施の形態1に従ってトランジスタ111を得ることができる。ただし、本実施の形態を用いた場合、これらのトランジスタのチャネル形成領域を含む半導体層は、第1の結晶性酸化物半導体層148a、及び第2の結晶性酸化物半導体層148bの積層となる。第1の結晶性酸化物半導体層148a、及び第2の結晶性酸化物半導体層148bは、C軸配向を有している。第1の結晶性酸化物半導体層148a及び第2の結晶性酸化物半導体層148bは、単結晶構造ではなく、非晶質構造でもない構造であり、C軸配向を有した結晶性酸化物半導体(CAAC)である。なお、第1の結晶性酸化物半導体層148a及び第2の結晶性酸化物半導体層148bは、一部に結晶粒界を有している。
【0213】
CAACを得るには酸化物半導体膜の堆積初期段階において六方晶の結晶が形成されるようにすることと、当該結晶を種として結晶が成長されるようにすることが肝要である。そのためには、基板加熱温度を100℃以上500℃以下、好適には200℃以上400℃以下、さらに好適には250℃以上300℃以下にすると好ましい。また、これに加えて、成膜時の基板加熱温度よりも高い温度で、堆積された酸化物半導体膜を熱処理することで膜中に含まれるミクロな欠陥や、積層界面の欠陥を修復することができる。
【0214】
第1の結晶性酸化物半導体層と第2の結晶性酸化物半導体層の積層を有するトランジスタは、トランジスタに光照射が行われ、またはバイアス−熱ストレス(BT)試験前後においてもトランジスタのしきい値電圧の変化量が低減でき、安定した電気的特性を有する。
【0215】
本実施の形態は、他の実施の形態と自由に組み合わせることができる。
【0216】
(実施の形態3)
実施の形態1及び実施の形態2で例示したトランジスタを用いた表示装置の一形態を図12に示す。
【0217】
図12(A)は、トランジスタ4010、及び液晶素子4013を、第1の基板4001と第2の基板4006との間にシール材4005によって封止したパネルの平面図であり、図12(B)は、図12(A)のM−Nにおける断面図に相当する。また、第1の基板4001上に、溝部4040が設けられている。
【0218】
第1の基板4001上に設けられた画素部4002を囲むようにして、シール材4005が設けられ、画素部4002上に第2の基板4006が設けられている。よって画素部4002は、第1の基板4001とシール材4005と第2の基板4006とによって、液晶層4008と共に封止されている。
【0219】
また、第1の基板4001上のシール材4005によって囲まれている領域より外側の領域に、入力端子4020を有し、FPC(Flexible printed circuit)4018a、FPC4018bが接続されている。FPC4018aは、別途異なる基板に作製された信号線駆動回路4003と電気的に接続され、FPC4018bは、別途異なる基板に作製された走査線駆動回路4004と電気的に接続されている。画素部4002に与えられる各種信号及び電位は、FPC4018a及びFPC4018bを介して、信号線駆動回路4003及び走査線駆動回路4004から供給される。
【0220】
なお、別途異なる基板に作製された駆動回路の接続方法は、特に限定されるものではなく、COG(Chip On Glass)方法、ワイヤボンディング方法、TCP(Tape Carrier Package)方法、或いはTAB(Tape Automated Bonding)方法などを用いることができる。
【0221】
また、図示していないが、信号線駆動回路4003または走査線駆動回路4004は、本明細書で開示するトランジスタを用いて、基板4001上に形成してもよい。
【0222】
表示装置に設けられる表示素子としては液晶素子(液晶表示素子ともいう)を用いることができる。また、電子インクなど、電気的作用によりコントラストが変化する表示媒体も適用することができる。
【0223】
図12に示す表示装置は、電極4015及び配線4016を有しており、電極4015及び配線4016はFPC4018aが有する端子と異方性導電層4019を介して、電気的に接続されている。
【0224】
電極4015は、第1の電極4030と同じ導電層から形成され、配線4016は、トランジスタ4010のソース電極及びドレイン電極と同じ導電層で形成されている。
【0225】
本実施の形態では、トランジスタ4010として、実施の形態1及び実施の形態2で示したトランジスタを適用することができる。画素部4002に設けられたトランジスタ4010は表示素子と電気的に接続し、表示パネルを構成する。表示素子は表示を行うことがでれば特に限定されず、様々な表示素子を用いることができる。
【0226】
図12は、表示素子として液晶素子を用いた表示装置の例を示している。図12において、表示素子である液晶素子4013は、第1の電極4030、第2の電極4031、及び液晶層4008を含む。なお、液晶層4008を挟持するように配向膜として機能する絶縁層4032、絶縁層4033が設けられている。なお、配向膜として機能する絶縁層4032は、溝部4040上にも設けられている。第2の電極4031は第2の基板4006側に設けられ、第1の電極4030と第2の電極4031とは液晶層4008を介して積層する構成となっている。
【0227】
また、スペーサー4035は、第2の基板4006上に絶縁層で形成された柱状のスペーサーであり、液晶層4008の膜厚(セルギャップ)を制御するために設けられている。なお球状のスペーサーを用いても良い。
【0228】
表示素子として、液晶素子を用いる場合、サーモトロピック液晶、低分子液晶、高分子液晶、高分子分散型液晶、強誘電性液晶、反強誘電性液晶等を用いることができる。これらの液晶材料は、条件により、コレステリック相、スメクチック相、キュービック相、カイラルネマチック相、等方相等を示す。
【0229】
また、配向膜を用いないブルー相を示す液晶を用いてもよい。ブルー相は液晶相の一つであり、コレステリック液晶を昇温していくと、コレステリック相から等方相へ転移する直前に発現する相である。ブルー相は狭い温度範囲でしか発現しないため、温度範囲を改善するために5重量%以上のカイラル剤を混合させた液晶組成物を用いて液晶層に用いる。ブルー相を示す液晶とカイラル剤とを含む液晶組成物は、応答速度が1msec以下と短く、光学的等方性であるため配向処理が不要であり、視野角依存性が小さい。また配向膜を設けなくてもよいのでラビング処理も不要となるため、ラビング処理によって引き起こされる静電破壊を防止することができ、作製工程中の液晶表示装置の不良や破損を軽減することができる。よって液晶表示装置の生産性を向上させることが可能となる。
【0230】
また、液晶材料の固有抵抗率は、1×10Ω・cm以上であり、好ましくは1×1011Ω・cm以上であり、さらに好ましくは1×1012Ω・cm以上である。なお、本明細書における固有抵抗率の値は、20℃で測定した値とする。
【0231】
液晶表示装置に設けられる保持容量の大きさは、画素部に配置されるトランジスタのリーク電流等を考慮して、所定の期間の間電荷を保持できるように設定される。チャネル領域が形成される半導体層に、高純度化された酸化物半導体を用いたトランジスタを用いることにより、各画素における液晶容量に対して1/3以下、好ましくは1/5以下の容量の大きさを有する保持容量を設ければ充分である。
【0232】
本実施の形態で用いる高純度化された酸化物半導体層を用いたトランジスタは、オフ状態における電流値(オフ電流値)を低くすることができる。よって、画像信号等の電気信号の保持時間を長くすることができ、電源オン状態では書き込み間隔も長く設定できる。よって、リフレッシュ動作の頻度を少なくすることができるため、消費電力を抑制する効果を奏する。また、高純度化された酸化物半導体層を用いたトランジスタは、保持容量を設けなくても、液晶素子に印加された電位の保持が可能となる。
【0233】
また、本実施の形態で用いる高純度化された酸化物半導体層を用いたトランジスタは、比較的高い電界効果移動度が得られるため、高速駆動が可能である。よって、液晶表示装置の画素部に上記トランジスタを用いることで、高画質な画像を提供することができる。また、上記トランジスタは、同一基板上に駆動回路部または画素部に作り分けて作製することもできるため、液晶表示装置の部品点数を削減することができる。
【0234】
液晶表示装置には、TN(Twisted Nematic)モード、IPS(In−Plane−Switching)モード、FFS(Fringe Field Switching)モード、ASM(Axially Symmetric aligned Micro−cell)モード、OCB(Optical Compensated Birefringence)モード、FLC(Ferroelectric Liquid Crystal)モード、AFLC(AntiFerroelectric Liquid Crystal)モードなどを用いることができる。
【0235】
また、ノーマリーブラック型の液晶表示装置、例えば垂直配向(VA)モードを採用した透過型の液晶表示装置としてもよい。ここで、垂直配向モードとは、液晶表示パネルの液晶分子の配列を制御する方式の一種であり、電圧が印加されていないときにパネル面に対して液晶分子が垂直方向を向く方式である。垂直配向モードとしては、いくつか挙げられるが、例えば、MVA(Multi−Domain Vertical Alignment)モード、PVA(Patterned Vertical Alignment)モード、ASV(Advanced Super−View)モードなどを用いることができる。また、画素(ピクセル)をいくつかの領域(サブピクセル)に分け、それぞれ別の方向に分子を倒すよう工夫されているマルチドメイン化あるいはマルチドメイン設計といわれる方法を用いることができる。
【0236】
また、液晶表示装置において、ブラックマトリクス(遮光層)、偏光部材、位相差部材、反射防止部材などの光学部材(光学基板)などは適宜設ける。例えば、偏光基板及び位相差基板による円偏光を用いてもよい。また、光源としてバックライト、サイドライトなどを用いてもよい。
【0237】
また、バックライトとして複数の発光ダイオード(LED)を用いて、時間分割表示方式(フィールドシーケンシャル駆動方式)を行うことも可能である。フィールドシーケンシャル駆動方式を適用することで、カラーフィルタを用いることなく、カラー表示を行うことができる。
【0238】
また、画素部における表示方式は、プログレッシブ方式やインターレース方式等を用いることができる。また、カラー表示する際に画素で制御する色要素としては、RGB(Rは赤、Gは緑、Bは青を表す)の三色に限定されない。例えば、RGBW(Wは白を表す)、又はRGBに、イエロー、シアン、マゼンタ等を一色以上追加したものがある。なお、色要素のドット毎にその表示領域の大きさが異なっていてもよい。ただし、本発明はカラー表示の液晶表示装置に限定されるものではなく、モノクロ表示の液晶表示装置に適用することもできる。
【0239】
なお、図12において、第1の基板4001、第2の基板4006としては、ガラス基板の他、可撓性を有する基板も用いることができ、例えば透光性を有するプラスチック基板などを用いることができる。プラスチックとしては、FRP(Fiberglass−Reinforced Plastics)板、PVF(ポリビニルフルオライド)フィルム、ポリエステルフィルムまたはアクリル樹脂フィルムを用いることができる。また、アルミニウムホイルをPVFフィルムやポリエステルフィルムで挟んだ構造のシートを用いることもできる。
【0240】
液晶表示装置は光源又は表示素子からの光を透過させて表示を行う。よって光が透過する画素部に設けられる基板、絶縁層、導電層などの薄膜はすべて可視光の波長領域の光に対して透光性とする。
【0241】
表示素子に電圧を印加する第1の電極及び第2の電極(画素電極、共通電極、対向電極などともいう)においては、取り出す光の方向、電極が設けられる場所、及び電極のパターン構造によって透光性、反射性を選択すればよい。
【0242】
第1の電極4030、第2の電極4031は、酸化タングステンを含むインジウム酸化物、酸化タングステンを含むインジウム亜鉛酸化物、酸化チタンを含むインジウム酸化物、酸化チタンを含むインジウム錫酸化物、インジウム錫酸化物(以下、ITOと示す。)、インジウム亜鉛酸化物、酸化ケイ素を添加したインジウム錫酸化物などの透光性を有する導電性材料を用いることができる。また、1枚乃至10枚のグラフェンシートよりなる材料を用いてもよい。
【0243】
また、第1の電極4030、第2の電極4031のいずれか一方はタングステン(W)、モリブデン(Mo)、ジルコニウム(Zr)、ハフニウム(Hf)、バナジウム(V)、ニオブ(Nb)、タンタル(Ta)、クロム(Cr)、コバルト(Co)、ニッケル(Ni)、チタン(Ti)、白金(Pt)、アルミニウム(Al)、銅(Cu)、銀(Ag)等の金属、又はその合金、若しくはその窒化物から一つ、又は複数種を用いて形成することができる。
【0244】
また、第1の電極4030、第2の電極4031として、導電性高分子(導電性ポリマーともいう)を含む導電性組成物を用いて形成することができる。導電性高分子としては、いわゆるπ電子共役系導電性高分子を用いることができる。例えば、ポリアニリンまたはその誘導体、ポリピロールまたはその誘導体、ポリチオフェンまたはその誘導体、若しくはアニリン、ピロールおよびチオフェンの2種以上からなる共重合体またはその誘導体などがあげられる。
【0245】
また、トランジスタは静電気などにより破壊されやすいため、保護回路を設けることが好ましい。保護回路は、非線形素子を用いて構成することが好ましい。
【0246】
以上のように実施の形態1及び実施の形態2で例示したトランジスタを適用することで、信頼性の高い液晶表示装置を提供することができる。なお、実施の形態1及び実施の形態2で例示したトランジスタは上述の表示機能を有する半導体装置のみでなく、電源回路に搭載されるパワーデバイス、LSI等の半導体集積回路、対象物の情報を読み取るイメージセンサ機能を有する半導体装置など様々な機能を有する半導体装置に適用することが可能である。
【0247】
本実施の形態は、他の実施の形態と自由に組み合わせることができる。
【0248】
(実施の形態4)
本実施の形態では、左目用の映像と右目用の映像を高速で切り換える表示装置を用いて、表示装置の映像と同期する専用の眼鏡を用いて動画または静止画である3D映像を視認する例を、図13を用いて示す。
【0249】
図13(A)は表示装置2711と、専用の眼鏡本体2701がケーブル2703で接続されている外観図を示す。表示装置2711には、本明細書で開示する液晶表示装置を用いることができる。専用の眼鏡本体2701は、左目用パネル2702aと右目用パネル2702bに設けられているシャッターが交互に開閉することによって使用者が表示装置2711の画像を3Dとして認識することができる。
【0250】
また、表示装置2711と専用の眼鏡本体2701の主要な構成についてのブロック図を図13(B)に示す。
【0251】
図13(B)に示す表示装置2711は、表示制御回路2716、表示部2717、タイミング発生器2713、ソース線側駆動回路2718、外部操作手段2722及びゲート線側駆動回路2719を有する。なお、キーボード等の外部操作手段2722による操作に応じて、出力する信号を可変する。
【0252】
タイミング発生器2713では、スタートパルス信号などを形成するとともに、左目用映像と左目用パネル2702aのシャッターとを同期させるための信号、右目用映像と右目用パネル2702bのシャッターとを同期させるための信号などを形成する。
【0253】
左目用映像の同期信号2731aを表示制御回路2716に入力して表示部2717に表示すると同時に、左目用パネル2702aのシャッターを開ける同期信号2730aを左目用パネル2702aに入力する。また、右目用映像の同期信号2731bを表示制御回路2716に入力して表示部2717に表示すると同時に、右目用パネル2702bのシャッターを開ける同期信号2730bを右目用パネル2702bに入力する。
【0254】
また、左目用の映像と右目の映像を高速で切り換えるため、表示装置2711は、発光ダイオード(LED)を用いて、時分割によりカラー表示する継時加法混色法(フィールドシーケンシャル法)とすることが好ましい。
【0255】
また、フィールドシーケンシャル法を用いるため、タイミング発生器2713は、発光ダイオードのバックライト部にも同期信号2730a、2730bと同期する信号を入力することが好ましい。なお、バックライト部はR、G、及びBのLEDを有するものとする。
【0256】
なお、本実施の形態は、本明細書で示す他の実施の形態と適宜組み合わせることができる。
【0257】
(実施の形態5)
本実施の形態においては、上記実施の形態で説明した表示装置を具備する電子機器の例について説明する。
【0258】
図14(A)は、ノート型のパーソナルコンピュータであり、本体3001、筐体3002、表示部3003、キーボード3004などによって構成されている。上記実施の形態で示した液晶表示装置を適用することにより、信頼性の高いノート型のパーソナルコンピュータとすることができる。
【0259】
図14(B)は、携帯情報端末(PDA)であり、本体3021には表示部3023と、外部インターフェイス3025と、操作ボタン3024等が設けられている。また操作用の付属品としてスタイラス3022がある。上記実施の形態で示した液晶表示装置を適用することにより、信頼性の高い携帯情報端末(PDA)とすることができる。
【0260】
図14(C)は、電子書籍の一例を示している。例えば、電子書籍は、筐体2706および筐体2704の2つの筐体で構成されている。筐体2706および筐体2704は、軸部2712により一体とされており、該軸部2712を軸として開閉動作を行うことができる。このような構成により、紙の書籍のような動作を行うことが可能となる。
【0261】
筐体2706には表示部2705が組み込まれ、筐体2704には表示部2707が組み込まれている。表示部2705および表示部2707は、続き画面を表示する構成としてもよいし、異なる画面を表示する構成としてもよい。異なる画面を表示する構成とすることで、例えば右側の表示部(図14(C)では表示部2705)に文章を表示し、左側の表示部(図14(C)では表示部2707)に画像を表示することができる。上記実施の形態で示した液晶表示装置を適用することにより、信頼性の高い電子書籍とすることができる。
【0262】
また、図14(C)では、筐体2706に操作部などを備えた例を示している。例えば、筐体2706において、電源端子2721、操作キー2723、スピーカー2725などを備えている。操作キー2723により、頁を送ることができる。なお、筐体の表示部と同一面にキーボードやポインティングデバイスなどを備える構成としてもよい。また、筐体の裏面や側面に、外部接続用端子(イヤホン端子、USB端子など)、記録媒体挿入部などを備える構成としてもよい。さらに、電子書籍は、電子辞書としての機能を持たせた構成としてもよい。
【0263】
また、電子書籍は、無線で情報を送受信できる構成としてもよい。無線により、電子書籍サーバから、所望の書籍データなどを購入し、ダウンロードする構成とすることも可能である。
【0264】
図14(D)は、携帯電話であり、筐体2800及び筐体2801の二つの筐体で構成されている。筐体2801には、表示パネル2802、スピーカー2803、マイクロフォン2804、ポインティングデバイス2806、カメラ用レンズ2807、外部接続端子2808などを備えている。また、筐体2800には、携帯型情報端末の充電を行う太陽電池セル2810、外部メモリスロット2811などを備えている。また、アンテナは筐体2801内部に内蔵されている。
【0265】
また、表示パネル2802はタッチパネルを備えており、図14(D)には映像表示されている複数の操作キー2805を点線で示している。なお、太陽電池セル2810で出力される電圧を各回路に必要な電圧に昇圧するための昇圧回路も実装している。
【0266】
表示パネル2802は、使用形態に応じて表示の方向が適宜変化する。また、表示パネル2802と同一面上にカメラ用レンズ2807を備えているため、テレビ電話が可能である。スピーカー2803及びマイクロフォン2804は音声通話に限らず、テレビ電話、録音、再生などが可能である。さらに、筐体2800と筐体2801は、スライドし、図14(D)のように展開している状態から重なり合った状態とすることができ、携帯に適した小型化が可能である。
【0267】
外部接続端子2808はACアダプタ及びUSBケーブルなどの各種ケーブルと接続可能であり、充電及びパーソナルコンピュータなどとのデータ通信が可能である。また、外部メモリスロット2811に記録媒体を挿入し、より大量のデータ保存及び移動に対応できる。
【0268】
また、上記機能に加えて、赤外線通信機能、テレビ受信機能などを備えたものであってもよい。上記実施の形態で示した液晶表示装置を適用することにより、信頼性の高い携帯電話とすることができる。
【0269】
図14(E)は、デジタルビデオカメラであり、本体3051、表示部(A)3057、接眼部3053、操作スイッチ3054、表示部(B)3055、バッテリー3056などによって構成されている。上記実施の形態で示した液晶表示装置を適用することにより、信頼性の高いデジタルビデオカメラとすることができる。
【0270】
図14(F)は、テレビジョン装置の一例を示している。テレビジョン装置は、筐体9601に表示部9603が組み込まれている。表示部9603により、映像を表示することが可能である。また、ここでは、スタンド9605により筐体9601を支持した構成を示している。上記実施の形態で示した液晶表示装置を適用することにより、信頼性の高いテレビジョン装置とすることができる。
【0271】
テレビジョン装置の操作は、筐体9601が備える操作スイッチや、別体のリモコン操作機により行うことができる。また、リモコン操作機に、当該リモコン操作機から出力する情報を表示する表示部を設ける構成としてもよい。
【0272】
なお、テレビジョン装置は、受信機やモデムなどを備えた構成とする。受信機により一般のテレビ放送の受信を行うことができ、さらにモデムを介して有線または無線による通信ネットワークに接続することにより、一方向(送信者から受信者)または双方向(送信者と受信者間、あるいは受信者間同士など)の情報通信を行うことも可能である。
【0273】
本実施の形態は、他の実施の形態に記載した構成と適宜組み合わせて実施することが可能である。
【実施例1】
【0274】
上記実施の形態で開示した方法を用いて、4つのフォトリソグラフィ工程で液晶表示装置を作製した。本実施例では、4つのフォトリソグラフィ工程で作製した液晶表示装置の溝部の積層構成について、図19を用いて説明する。図19(A)は、溝部の積層構成を説明するための断面TEM(Transmission Electron Microscopy)像であり、図1におけるH1−H2の鎖線で示す部位の断面に相当する。また、図19(B)は、図19(A)のTEM像をわかりやすくするための、図19(A)の模式図である。なお、図19(A)及び図19(B)の図中左下に、1目盛りが0.3μmに相当するスケールバーを付記している。
【0275】
図19に示す断面H1−H2において、ガラス基板900上に、下地層901aとして窒化シリコン層を形成し、下地層901bとして酸化窒化シリコン層を形成した。また、下地層901b上に、ゲート絶縁層904として酸化窒化シリコン層を形成し、ゲート絶縁層904上に半導体層905としてIn−Ga−Zn系酸化物半導体を形成した。また、半導体層905上に、配線916として下層側からW層、Ti層、Al層、Ti層の四層を積層して形成した。また、半導体層905及び配線916上に、絶縁層907として酸化シリコン層を形成し、絶縁層907上に絶縁層908として酸化窒化シリコン層を形成した。
【0276】
溝部930の形成は、フォトリソグラフィ工程によりレジストマスクを形成し、ICPエッチング法により絶縁層908、絶縁層907、半導体層905、ゲート絶縁層904、下地層901b、及び下地層901aを選択的に除去し、その後レジストマスクを除去する工程で行った。なお、本実施例では、溝部930形成時に、ガラス基板900の一部も除去されている。
【0277】
その後、図19に示されていない画素電極を形成し、画素電極上に配向膜911を形成した。図19から、溝部930中にも配向膜911が残存し、配向膜911が溝部930の側面を覆っていることがわかる。
【0278】
なお、保護層921及び保護層922は、断面TEM像を取得するための前処理として試料上に形成した層である。
【0279】
このように、溝部930において半導体層905を除去することにより、寄生トランジスタの形成を防ぎ、また、少ないフォトリソグラフィ工程で液晶表示装置を作製することができた。
【符号の説明】
【0280】
100 半導体装置
101 基板
102 画素領域
103 端子部
104 端子部
105 端子
106 端子
107 端子
110 画素
111 トランジスタ
112 液晶素子
113 容量素子
114 電極
120 画素
130 画素
200 基板
201 下地層
202 ゲート電極
203 配線
204 ゲート絶縁層
205 半導体層
207 絶縁層
208 コンタクトホール
210 画素電極
211 画素電極
212 配線
216 配線
219 コンタクトホール
220 コンタクトホール
221 電極
222 電極
230 溝部
231 端部
232 端部
233 端部
234 端部
240 溝部
251 溝部
252 溝部
253 溝部
254 溝部
255 溝部
256 溝部
257 溝部
258 溝部
900 ガラス基板
904 ゲート絶縁層
905 半導体層
907 絶縁層
908 絶縁層
911 配向膜
916 配線
921 保護層
922 保護層
930 溝部
2701 眼鏡本体
2706 筐体
2703 ケーブル
2704 筐体
2705 表示部
2707 表示部
2711 表示装置
2712 軸部
2713 タイミング発生器
2716 表示制御回路
2717 表示部
2718 ソース線側駆動回路
2719 ゲート線側駆動回路
2721 電源端子
2722 外部操作手段
2723 操作キー
2725 スピーカー
2800 筐体
2801 筐体
2802 表示パネル
2803 スピーカー
2804 マイクロフォン
2805 操作キー
2806 ポインティングデバイス
2807 カメラ用レンズ
2808 外部接続端子
2810 太陽電池セル
2811 外部メモリスロット
3001 本体
3002 筐体
3003 表示部
3004 キーボード
3021 本体
3022 スタイラス
3023 表示部
3024 操作ボタン
3025 外部インターフェイス
3051 本体
3053 接眼部
3054 操作スイッチ
3055 表示部(B)
3056 バッテリー
3057 表示部(A)
4001 基板
4002 画素部
4003 信号線駆動回路
4004 走査線駆動回路
4005 シール材
4006 基板
4008 液晶層
4010 トランジスタ
4013 液晶素子
4015 電極
4016 配線
4018 FPC
4019 異方性導電層
4020 入力端子
4030 電極
4031 電極
4032 絶縁層
4033 絶縁層
4035 スペーサー
4040 溝部
9601 筐体
9603 表示部
9605 スタンド
148a 結晶性酸化物半導体層
148b 結晶性酸化物半導体層
206a ソース電極
206b ドレイン電極
901a 下地層
901b 下地層
2702a 左目用パネル
2702b 右目用パネル
2730a 同期信号
2730b 同期信号
2731a 同期信号
2731b 同期信号
4018a FPC
4018b FPC

【特許請求の範囲】
【請求項1】
ゲート電極と、ソース電極と、ドレイン電極と、半導体層と、を有するトランジスタと、
前記ゲート電極に電気的に接続する第1の配線と、前記ソース電極に電気的に接続する第2の配線と、前記ドレイン電極に電気的に接続する画素電極と、容量配線と、溝部と、を有し、
前記半導体層は、前記第1の配線と、前記第2の配線と、前記画素電極と、前記容量配線に重畳し、
前記溝部は、前記第1の配線上に、前記第1の配線の線幅方向に横切って形成され、
また前記溝部は、前記容量配線上に、前記容量配線の線幅方向に横切って形成され、
また前記溝部は、前記第2の配線が延在する方向と平行な方向において、前記画素電極の端部を越えて形成されていることを特徴とする液晶表示装置。
【請求項2】
請求項1において、
前記溝部の底面に半導体層がないことを特徴とする液晶表示装置。
【請求項3】
請求項1または請求項2において、
前記溝部の側面に半導体層を有することを特徴とする液晶表示装置。
【請求項4】
請求項1乃至請求項3のいずれか一項において、
前記溝部は、配向膜と重畳していることを特徴とする液晶表示装置。
【請求項5】
請求項1乃至請求項4のいずれか一項において、
前記溝部の少なくとも一部が、前記画素電極と重畳していることを特徴とする液晶表示装置。
【請求項6】
請求項1乃至請求項5のいずれか一項において、
前記半導体層は、酸化物半導体であることを特徴とする液晶表示装置。
【請求項7】
基板上に、第1のフォトリソグラフィ工程によりゲート電極を形成し、
前記ゲート電極上にゲート絶縁層を形成し、
前記ゲート絶縁層上に半導体層を形成し、
第2のフォトリソグラフィ工程により、前記半導体層上にソース電極及びドレイン電極を形成し、
前記ソース電極及び前記ドレイン電極上に絶縁層を形成し、
第3のフォトリソグラフィ工程により、
前記ドレイン電極と重なる前記絶縁層の一部を選択的に除去して行うコンタクトホールの形成と、
前記絶縁層、前記半導体層、前記ゲート絶縁層の一部を除去して行う溝部の形成を行い、
第4のフォトリソグラフィ工程により、前記絶縁層上に画素電極を形成することを特徴とする液晶表示装置の作製方法。
【請求項8】
請求項7において、
前記基板と、前記ゲート電極の間に、下地層が形成されることを特徴とする液晶表示装置の作製方法。
【請求項9】
請求項7または請求項8において、
前記半導体層は、酸化物半導体を含むことを特徴とする液晶表示装置の作製方法。
【請求項10】
請求項7乃至請求項9のいずれか一項において、
前記ゲート電極、前記ソース電極、または前記ドレイン電極は、銅を含む材料で形成されていることを特徴とする液晶表示装置の作製方法。
【請求項11】
請求項10において、
前記ゲート電極、前記ソース電極、または前記ドレイン電極を形成した後のプロセス最高温度が450℃以下であることを特徴とする液晶表示装置の作製方法。
【請求項12】
請求項7乃至請求項9のいずれか一項において、
前記ゲート電極、前記ソース電極、または前記ドレイン電極は、アルミニウムを含む材料で形成されていることを特徴とする液晶表示装置の作製方法。
【請求項13】
請求項12において、
前記ゲート電極、前記ソース電極、または前記ドレイン電極を形成した後のプロセス最高温度が380℃以下であることを特徴とする液晶表示装置の作製方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate

【図14】
image rotate

【図15】
image rotate

【図16】
image rotate

【図17】
image rotate

【図18】
image rotate

【図19】
image rotate


【公開番号】特開2012−84859(P2012−84859A)
【公開日】平成24年4月26日(2012.4.26)
【国際特許分類】
【出願番号】特願2011−196782(P2011−196782)
【出願日】平成23年9月9日(2011.9.9)
【出願人】(000153878)株式会社半導体エネルギー研究所 (5,264)
【Fターム(参考)】